Test Bank for Global Business, 4th Edition

Preview Extract
Chapter 2 Solutions Prob. 2.1 (a&b) Sketch a vacuum tube device. Graph photocurrent I versus retarding voltage V for several light intensities. I light intensity Vo V T an his th d wo sa eir is p rk w le co ro is ill o u vi pr de f a rse de ot st ny s d s ec ro p an o te y ar d le d th t o a ly by e s in f th se for Un te is ss th ite gr w in e ity o g us d S of rk ( stu e o tat th inc de f i es e lu nt ns co w d le tr p or in a uc y k g rn to rig an on in rs h d th g. in t la is e D t w no W iss ea s t p or em ch in er ld m W ina g itt id tio ed e n . We or b) Note that Vo remains same for all intensities. (c) Find retarding potential. ฮป=2440ร…=0.244ยตm Vo = hฮฝ – ฮฆ = ฮฆ =4.09eV 1.24eV โ‹… ยตm 1.24eV โ‹… ยตm -ฮฆ = – 4.09eV = 5.08eV – 4.09eV โ‰ˆ 1eV ฮป(ยตm) 0.244ยตm Prob. 2.2 Show third Bohr postulate equates to integer number of DeBroglie waves fitting within circumference of a Bohr circular orbit. 4ฯ€โˆˆo n 2 h2 q2 mv 2 rn = and = and pฮธ = mvr mq 2 4ฯ€โˆˆo r 2 r rn = 4ฯ€โˆˆo n 2 h2 n 2 h2 4ฯ€โˆˆo rn 2 n 2 h2 rn n 2 h2 = โ‹… = โ‹… = mq 2 mrB 2 q 2 mrn 2 mv 2 m 2 v 2 rn m 2 v 2 rn 2 = n 2 h2 mvrn = nh pฮธ = nh is the third Bohr postulate Prob. 2.3 (a) Find generic equation for Lyman, Balmer, and Paschen series. ฮ”E = mq 4 mq 4 hc = ฮป 32ฯ€ 2โˆˆo 2 n12 h2 32ฯ€ 2โˆˆo 2 n 2 2 h2 mq 4 (n 2 2 – n12 ) mq 4 (n 2 2 – n12 ) hc = = ฮป 32โˆˆo 2 n12 n 2 2 h2 ฯ€ 2 8โˆˆo 2 n12 n 2 2 h 2 ฮป= 8โˆˆo 2 n12 n 2 2 h 2 โ‹… hc 8ฮต o 2 h3c n12 n 2 2 โ‹… 2 2 = mq 4 (n 2 2 – n12 ) mq 4 n 2 – n1 ฮป= โ‹… โ‹… 10-12 mF ) 2 โ‹… (6.63 โ‹…10โˆ’34 Jโ‹…s)3โ‹… 2.998 โ‹… 108 ms n12 n 2 2 8(8.85 โ‹… 2 2 9.11 โ‹… 10-31kg โ‹… (1.60 โ‹… 10-19 C)4 n 2 – n1 ฮป = 9.11 โ‹…108 m โ‹… n12 n 2 2 n 12 n 2 2 โ‰ˆ โ‹… = 9.11 n 2 2 – n12 n 2 2 – n12 T an his th d wo sa eir is p rk w le co ro is ill o u vi pr de f a rse de ot st ny s d s ec ro p an o te y ar d le d th t o a ly by e s in f th se for Un te is ss th ite gr w in e ity o g us d S of rk ( stu e o tat th inc de f i es e lu nt ns co w d le tr p or in a uc y k g rn to rig an on in rs h d th g. in t la is e D t w no W iss ea s t p or em ch in er ld m W ina g itt id tio ed e n . We or b) n1 =1 for Lyman, 2 for Balmer, and 3 for Paschen (b) Plot wavelength versus n for Lyman, Balmer, and Paschen series. n 2 3 4 5 n^2 4 9 16 25 LYMAN SERIES n^2-1 n^2/(n^2-1) 3 1.33 8 1.13 15 1.07 24 1.04 LYMAN LIMIT n 3 4 5 6 7 n^2 9 16 25 36 49 BALMER SERIES n^2-4 4n^2/(n^2-4) 5 7.20 12 5.33 21 4.76 32 4.50 45 4.36 BALMER LIMIT 911*n^2/(n^2-1) 1215 1025 972 949 911วบ 911*4*n^2/(n^2-4) 6559 4859 4338 4100 3968 3644วบ n 4 5 6 7 8 9 10 n^2 16 25 36 49 64 81 100 PASCHEN SERIES n^2-9 9*n^2/(n^2-9) 7 20.57 16 14.06 27 12.00 40 11.03 55 10.47 72 10.13 91 9.89 PASCHEN LIMIT 911*9*n^2/(n^2-9) 18741 12811 10932 10044 9541 9224 9010 8199วบ Prob. 2.4 (a) Find ฮ”px for ฮ”x=1วบ. h h 6.63 โ‹…10-34 J โ‹… s ฮ”px โ‹… ฮ”x = โ†’ ฮ”p x = = = 5.03 โ‹…10-25 kgsโ‹…m -10 4ฯ€ 4ฯ€ โ‹… ฮ”x 4ฯ€ โ‹…10 m (b) Find ฮ”t for ฮ”E=1eV. h h 4.14 โ‹…10-15eV โ‹… s ฮ”E โ‹… ฮ”t = โ†’ ฮ”t = = = 3.30 โ‹…10-16s 4ฯ€ 4ฯ€ โ‹… ฮ”E 4ฯ€ โ‹…1eV Prob. 2.5 Find wavelength of 100eV and 12keV electrons. Comment on electron microscopes compared to visible light microscopes. 2โ‹…E m h = 2โ‹…Eโ‹…m E = 12 mv 2 โ†’ v = h h = = p mv For 100eV, -1 6.63 โ‹…10-34 J โ‹… s T an his th d wo sa eir is p rk w le co ro is ill o u vi pr de f a rse de ot st ny s d s ec ro p an o te y ar d le d th t o a ly by e s in f th se for Un te is ss th ite gr w in e ity o g us d S of rk ( stu e o tat th inc de f i es e lu nt ns co w d le tr p or in a uc y k g rn to rig an on in rs h d th g. in t la is e D t w no W iss ea s t p or em ch in er ld m W ina g itt id tio ed e n . We or b) ฮป= 2 โ‹… 9.11โ‹…10-31kg -1 -1 โ‹… E 2 = E 2 โ‹… 4.91โ‹…10-19 J 2 โ‹… m -1 1 ฮป = E 2 โ‹… 4.91โ‹…10-19 J 2 โ‹… m = (100eV โ‹…1.602 โ‹…10-19 eVJ ) 2 โ‹… 4.91โ‹…10-19J 2 โ‹… m = 1.23 โ‹…10-10 m = 1.23โ‰ˆ 1 For 12keV, -1 1 -1 ฮป = E 2 โ‹… 4.91โ‹…10-19 J 2 โ‹… m = (1.2 โ‹…104eV โ‹…1.602 โ‹…10-19 eVJ ) 2 โ‹… 4.91โ‹…10-19J 2 โ‹… m = 1.12 โ‹…10-11m = 0.112โ‰ˆ 1 1 The resolution on a visible microscope is dependent on the wavelength of the light which is around 5000วบ; so, the much smaller electron wavelengths provide much better resolution. Prob. 2.6 Which of the following could NOT possibly be wave functions and why? Assume 1-D in each case. (Here i= imaginary number, C is a normalization constant) A) ฮจ (x) = C for all x. B) ฮจ (x) = C for values of x between 2 and 8 cm, and ฮจ (x) = 3.5 C for values of x between 5 and 10 cm. ฮจ (x) is zero everywhere else. C) ฮจ (x) = i C for x= 5 cm, and linearly goes down to zero at x= 2 and x = 10 cm from this peak value, and is zero for all other x. If any of these are valid wavefunctions, calculate C for those case(s). What potential energy for x โ‰ค 2 and x โ‰ฅ 10 is consistent with this? โˆž A) For a wavefunction ฮจ (x) , we know ฮก = โˆซ ฮจ * (x)ฮจ (x)dx = 1 -โˆž โŽง๏ฃฑ 0 c = 0 ฮก = โˆซ ฮจ * (x)ฮจ (x)dx = c2 โˆซ dx โ†’ ฮก= โŽจ๏ฃฒ โ‡’ ฮจ (x) cannot be a wave function โŽฉ๏ฃณโˆž c โ‰  0 -โˆž -โˆž โˆž โˆž B) For 5 โ‰ค x โ‰ค 8 , ฮจ (x) has two values, C and 3.5C. For c โ‰  0 , ฮจ (x) is not a function โˆž and for c = 0 : ฮก = โˆซ ฮจ * (x)ฮจ (x)dx = 0 โ‡’ ฮจ (x) cannot be a wave function. -โˆž โŽง๏ฃฑ iC โŽช๏ฃดโŽช๏ฃด 3 ( x-2 ) 2 โ‰ค x โ‰ค 5 C) ฮจ (x)= โŽจ๏ฃฒ โŽช๏ฃดโˆ’ iC ( x-10 ) 5 โ‰ค x โ‰ค 10 โŽช๏ฃดโŽฉ๏ฃณ 5 โˆž 5 10 c2 c2 2 2 ( x-2 ) dx + โˆซ ( x-10 ) dx 9 25 2 5 -โˆž T an his th d wo sa eir is p rk w le co ro is ill o u vi pr de f a rse de ot st ny s d s ec ro p an o te y ar d le d th t o a ly by e s in f th se for Un te is ss th ite gr w in e ity o g us d S of rk ( stu e o tat th inc de f i es e lu nt ns co w d le tr p or in a uc y k g rn to rig an on in rs h d th g. in t la is e D t w no W iss ea s t p or em ch in er ld m W ina g itt id tio ed e n . We or b) ฮก = โˆซ ฮจ* (x)ฮจ(x)dx = โˆซ 5 10 c2 c2 (x-2)3 โŽค๏ฃนโŽฆ๏ฃป + (x-10)3 โŽค๏ฃนโŽฆ๏ฃป 2 5 3ร—9 3ร—25 2 โŽก๏ฃฎ 27 125 โŽค๏ฃน 8c = c 2 โŽข๏ฃฏ + = โŽฅ๏ฃบ 3 โŽฃ๏ฃฐ 27 3ร—25 โŽฆ๏ฃป = ฮก=1 โ‡’ 8c2 =1 โ‡’ c=0.612 โ†’ ฮจ (x) can be a wave function 3 Since ฮจ (x) = 0 for x โ‰ค 2 and x โ‰ฅ 10 , the potential energy should be infinite in these two regions. Prob. 2.7 A particle is described in 1D by a wavefunction: ฮจ = Be-2x for x โ‰ฅ0 and Ce+4x for x<0, and B and C are real constants. Calculate B and C to make ฮจ a valid wavefunction. Where is the particle most likely to be? A valid wavefunction must be continuous, and normalized. For ฮจ (0) = C = B โˆž 2 To normalize ฮจ , โˆซ ฮจ dx = 1 -โˆž 0 โˆž 2 8x 2 -4x โˆซ C e dx + โˆซ C e dx = 1 -โˆž 0 2 โˆž C 8x โŽ›๏ฃซ โˆ’1 โŽž๏ฃถ โŽก๏ฃฎโŽฃ๏ฃฐe โŽค๏ฃนโŽฆ๏ฃป + C2 โŽœ๏ฃฌ โŽŸ๏ฃท โŽก๏ฃฎโŽฃ๏ฃฐe-4x โŽค๏ฃนโŽฆ๏ฃป = 1 โˆ’โˆž 0 8 โŽ๏ฃญ 4 โŽ ๏ฃธ 0 T an his th d wo sa eir is p rk w le co ro is ill o u vi pr de f a rse de ot st ny s d s ec ro p an o te y ar d le d th t o a ly by e s in f th se for Un te is ss th ite gr w in e ity o g us d S of rk ( stu e o tat th inc de f i es e lu nt ns co w d le tr p or in a uc y k g rn to rig an on in rs h d th g. in t la is e D t w no W iss ea s t p or em ch in er ld m W ina g itt id tio ed e n . We or b) C2 C2 8 + =1 โ‡’ C= 8 4 3 Prob. 2.8 The electron wavefunction is Ceikx between x=2 and 22 cm, and zero everywhere else. What is the value of C? What is the probability of finding the electron between x=0 and 4 cm? ฮจ = Ceikx 22 * 2 -1 1 cm 20 โˆซ ฮจ ฮจdx = C (20) = 1 โ‡’ C = 2 4 2 1 โŽ›๏ฃซ 1 โŽž๏ฃถ Probability = โˆซ ฮจ dx = โŽœ๏ฃฌ โŽŸ๏ฃท ( 2 ) = 10 โŽ๏ฃญ 20 โŽ ๏ฃธ 0 2 Prob. 2.9 Find the probability of finding an electron at x0 zero or non-zero? Is the classical probability of finding an electron at x>6 zero or non? The energy barrier at x=0 is infinite; so, there is zero probability of finding an electron at x<0 (|ฯˆ|2=0). However, it is possible for electrons to tunnel through the barrier at 5<x6 would be quantum mechanically greater than zero (|ฯˆ|2>0) and classical mechanically zero. Prob. 2.10 Find 4 โ‹… px 2 + 2 โ‹… pz 2 + 7mE for ฮจ( x, y, z, t ) = A โ‹… e j (10โ‹…x +3โ‹… y -4โ‹…t ) . * px โˆซ A โ‹…e 2 = -โˆž – j(10โ‹…x+3โ‹… y-4โ‹…t) โŽ›๏ฃซ h โˆ‚ โŽž๏ฃถ โŽœ๏ฃฌ j โˆ‚x โŽŸ๏ฃท A โ‹… e โŽ๏ฃญ โŽ ๏ฃธ โˆž 2 โˆซA e – j(10โ‹…x+3โ‹… y-4โ‹…t) -โˆž โˆž * pz โˆซ A โ‹…e 2 = -โˆž โˆซA e – j(10โ‹…x+3โ‹… y-4โ‹…t) -โˆž * โˆซ A โ‹…e E = -โˆž = 100 โ‹… h2 e j(10โ‹… x+3โ‹… y – 4โ‹… t) j(10โ‹… x+3โ‹… y -4โ‹…t) dz =0 dz h โˆ‚ โŽž๏ฃถ j(10โ‹…x+3โ‹… y – 4โ‹… t) dt โŽœ๏ฃฌ โˆ’ j โˆ‚t โŽŸ๏ฃท A โ‹… e โŽ๏ฃญ โŽ ๏ฃธ = 4โ‹…h – j(10โ‹…x+3โ‹… y-4โ‹…t) โŽ›๏ฃซ โˆž dx 2 โŽœ๏ฃฌ j โˆ‚z โŽŸ๏ฃท A โ‹… e โŽ๏ฃญ โŽ ๏ฃธ 2 j(10โ‹… x+3โ‹… y – 4โ‹… t) e j(10โ‹…x+3โ‹…y-4โ‹…t) dx – j(10โ‹…x+3โ‹… y-4โ‹…t) โŽ›๏ฃซ h โˆ‚ โŽž๏ฃถ โˆž โˆž 2 T an his th d wo sa eir is p rk w le co ro is ill o u vi pr de f a rse de ot st ny s d s ec ro p an o te y ar d le d th t o a ly by e s in f th se for Un te is ss th ite gr w in e ity o g us d S of rk ( stu e o tat th inc de f i es e lu nt ns co w d le tr p or in a uc y k g rn to rig an on in rs h d th g. in t la is e D t w no W iss ea s t p or em ch in er ld m W ina g itt id tio ed e n . We or b) โˆž 2 โˆซA e – j(10โ‹…x+3โ‹… y-4โ‹…t) e j(10โ‹…x+3โ‹…y-4โ‹…t) dt -โˆž 4 โ‹… p x +2 โ‹… p z +7 mE = 400h2 + 28(9.11 โ‹…10-31kg) h 2 2 Prob. 2.11 Find the uncertainty in position (ฮ”x) and momentum (ฮ”ฯ). L 2 โŽ›๏ฃซ ฯ€x โŽž๏ฃถ โ‹… sin โŽœ๏ฃฌ โŽŸ๏ฃท โ‹… e-2ฯ€jEt/h and โˆซ ฮจ* โ‹… ฮจdx = 1 L โŽ๏ฃญ L โŽ ๏ฃธ 0 ฮจ(x,t) = L L x = โˆซ ฮจ * โ‹… x โ‹… ฮจdx = 0 2 โŽ›๏ฃซ ฯ€ x โŽž๏ฃถ x โ‹… sin 2 โŽœ๏ฃฌ โŽŸ๏ฃท dx = 0.5L (from problem note) โˆซ L0 โŽ๏ฃญ L โŽ ๏ฃธ L L 2 โŽ›๏ฃซ ฯ€ x โŽž๏ฃถ 2 = โˆซ ฮจ โ‹… x โ‹… ฮจdx = โˆซ x 2 โ‹… sin 2 โŽœ๏ฃฌ โŽŸ๏ฃท dx = 0.28L (from problem note) L0 โŽ๏ฃญ L โŽ ๏ฃธ 0 * 2 ฮ”x = x2 – x ฮ”p โ‰ฅ h h = 0.47 โ‹… 4ฯ€ โ‹… ฮ”x L Prob. 2.12 = 0.28L2 – (0.5L) 2 = 0.17L T an his th d wo sa eir is p rk w le co ro is ill o u vi pr de f a rse de ot st ny s d s ec ro p an o te y ar d le d th t o a ly by e s in f th se for Un te is ss th ite gr w in e ity o g us d S of rk ( stu e o tat th inc de f i es e lu nt ns co w d le tr p or in a uc y k g rn to rig an on in rs h d th g. in t la is e D t w no W iss ea s t p or em ch in er ld m W ina g itt id tio ed e n . We or b) x 2 Calculate the first three energy levels for a 10วบ quantum well with infinite walls. En = n 2 โ‹… ฯ€ 2 โ‹… h2 (6.63 โ‹…10-34 ) 2 = โ‹… n 2 = 6.03 โ‹…10-20 โ‹… n 2 โˆ’31 โˆ’9 2 2 2โ‹…mโ‹…L 8 โ‹… 9.11โ‹…10 โ‹… (10 ) E1 = 6.03 โ‹…10-20 J = 0.377eV E 2 = 4 โ‹… 0.377eV = 1.508eV E 3 = 9 โ‹… 0.377eV = 3.393eV Prob. 2.13 Show schematic of atom with 1s22s22p4 and atomic weight 21. Comment on its reactivity. nucleus with 8 protons and 13 neutrons 2 electrons in 1s 2 electrons in 2s 4 electrons in 2p = proton = neturon = electron This atom is chemically reactive because the outer 2p shell is not full. It will tend to try to add two electrons to that outer shell.

Document Preview (7 of 171 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in