Preview Extract
Chapter 2 Solutions
Prob. 2.1
(a&b) Sketch a vacuum tube device. Graph photocurrent I versus retarding voltage V for
several light intensities.
I
light
intensity
Vo
V
T
an his
th d wo
sa eir is p rk
w le co ro is
ill o u vi pr
de f a rse de ot
st ny s d s ec
ro p an o te
y ar d le d
th t o a ly by
e
s
in f th se for Un
te is ss th ite
gr w in e
ity o g us d S
of rk ( stu e o tat
th inc de f i es
e lu nt ns co
w d le tr p
or in a uc y
k g rn to rig
an on in rs h
d th g. in t la
is e D t w
no W iss ea s
t p or em ch
in
er ld
m W ina g
itt id tio
ed e n
. We or
b)
Note that Vo remains same for all intensities.
(c) Find retarding potential.
ฮป=2440ร
=0.244ยตm
Vo = hฮฝ – ฮฆ =
ฮฆ =4.09eV
1.24eV โ
ยตm
1.24eV โ
ยตm
-ฮฆ =
– 4.09eV = 5.08eV – 4.09eV โ 1eV
ฮป(ยตm)
0.244ยตm
Prob. 2.2
Show third Bohr postulate equates to integer number of DeBroglie waves fitting within
circumference of a Bohr circular orbit.
4ฯโo n 2 h2
q2
mv 2
rn =
and
=
and pฮธ = mvr
mq 2
4ฯโo r 2
r
rn =
4ฯโo n 2 h2 n 2 h2 4ฯโo rn 2 n 2 h2 rn
n 2 h2
=
โ
=
โ
=
mq 2
mrB 2 q 2
mrn 2 mv 2 m 2 v 2 rn
m 2 v 2 rn 2 = n 2 h2
mvrn = nh
pฮธ = nh is the third Bohr postulate
Prob. 2.3
(a) Find generic equation for Lyman, Balmer, and Paschen series.
ฮE =
mq 4
mq 4
hc
=
ฮป
32ฯ 2โo 2 n12 h2 32ฯ 2โo 2 n 2 2 h2
mq 4 (n 2 2 – n12 )
mq 4 (n 2 2 – n12 )
hc
=
=
ฮป
32โo 2 n12 n 2 2 h2 ฯ 2
8โo 2 n12 n 2 2 h 2
ฮป=
8โo 2 n12 n 2 2 h 2 โ
hc 8ฮต o 2 h3c n12 n 2 2
โ
2 2
=
mq 4 (n 2 2 – n12 )
mq 4
n 2 – n1
ฮป=
โ
โ
10-12 mF ) 2 โ
(6.63 โ
10โ34 Jโ
s)3โ
2.998 โ
108 ms n12 n 2 2
8(8.85
โ
2 2
9.11 โ
10-31kg โ
(1.60 โ
10-19 C)4
n 2 – n1
ฮป = 9.11 โ
108 m โ
n12 n 2 2
n 12 n 2 2
โ
โ
=
9.11
n 2 2 – n12
n 2 2 – n12
T
an his
th d wo
sa eir is p rk
w le co ro is
ill o u vi pr
de f a rse de ot
st ny s d s ec
ro p an o te
y ar d le d
th t o a ly by
e
s
in f th se for Un
te is ss th ite
gr w in e
ity o g us d S
of rk ( stu e o tat
th inc de f i es
e lu nt ns co
w d le tr p
or in a uc y
k g rn to rig
an on in rs h
d th g. in t la
is e D t w
no W iss ea s
t p or em ch
in
er ld
m W ina g
itt id tio
ed e n
. We or
b)
n1 =1 for Lyman, 2 for Balmer, and 3 for Paschen
(b) Plot wavelength versus n for Lyman, Balmer, and Paschen series.
n
2
3
4
5
n^2
4
9
16
25
LYMAN SERIES
n^2-1
n^2/(n^2-1)
3
1.33
8
1.13
15
1.07
24
1.04
LYMAN LIMIT
n
3
4
5
6
7
n^2
9
16
25
36
49
BALMER SERIES
n^2-4
4n^2/(n^2-4)
5
7.20
12
5.33
21
4.76
32
4.50
45
4.36
BALMER LIMIT
911*n^2/(n^2-1)
1215
1025
972
949
911วบ
911*4*n^2/(n^2-4)
6559
4859
4338
4100
3968
3644วบ
n
4
5
6
7
8
9
10
n^2
16
25
36
49
64
81
100
PASCHEN SERIES
n^2-9
9*n^2/(n^2-9)
7
20.57
16
14.06
27
12.00
40
11.03
55
10.47
72
10.13
91
9.89
PASCHEN LIMIT
911*9*n^2/(n^2-9)
18741
12811
10932
10044
9541
9224
9010
8199วบ
Prob. 2.4
(a) Find ฮpx for ฮx=1วบ.
h
h
6.63 โ
10-34 J โ
s
ฮpx โ
ฮx =
โ ฮp x =
=
= 5.03 โ
10-25 kgsโ
m
-10
4ฯ
4ฯ โ
ฮx
4ฯ โ
10 m
(b) Find ฮt for ฮE=1eV.
h
h
4.14 โ
10-15eV โ
s
ฮE โ
ฮt =
โ ฮt =
=
= 3.30 โ
10-16s
4ฯ
4ฯ โ
ฮE
4ฯ โ
1eV
Prob. 2.5
Find wavelength of 100eV and 12keV electrons. Comment on electron microscopes compared to
visible light microscopes.
2โ
E
m
h
=
2โ
Eโ
m
E = 12 mv 2 โ v =
h
h
=
=
p
mv
For 100eV,
-1
6.63 โ
10-34 J โ
s
T
an his
th d wo
sa eir is p rk
w le co ro is
ill o u vi pr
de f a rse de ot
st ny s d s ec
ro p an o te
y ar d le d
th t o a ly by
e
s
in f th se for Un
te is ss th ite
gr w in e
ity o g us d S
of rk ( stu e o tat
th inc de f i es
e lu nt ns co
w d le tr p
or in a uc y
k g rn to rig
an on in rs h
d th g. in t la
is e D t w
no W iss ea s
t p or em ch
in
er ld
m W ina g
itt id tio
ed e n
. We or
b)
ฮป=
2 โ
9.11โ
10-31kg
-1
-1
โ
E 2 = E 2 โ
4.91โ
10-19 J 2 โ
m
-1
1
ฮป = E 2 โ
4.91โ
10-19 J 2 โ
m = (100eV โ
1.602 โ
10-19 eVJ ) 2 โ
4.91โ
10-19J 2 โ
m = 1.23 โ
10-10 m = 1.23โ
1
For 12keV,
-1
1
-1
ฮป = E 2 โ
4.91โ
10-19 J 2 โ
m = (1.2 โ
104eV โ
1.602 โ
10-19 eVJ ) 2 โ
4.91โ
10-19J 2 โ
m = 1.12 โ
10-11m = 0.112โ
1
1
The resolution on a visible microscope is dependent on the wavelength of the light which is
around 5000วบ; so, the much smaller electron wavelengths provide much better resolution.
Prob. 2.6
Which of the following could NOT possibly be wave functions and why? Assume 1-D in each
case. (Here i= imaginary number, C is a normalization constant)
A) ฮจ (x) = C for all x.
B) ฮจ (x) = C for values of x between 2 and 8 cm, and ฮจ (x) = 3.5 C for values of x between 5
and 10 cm. ฮจ (x) is zero everywhere else.
C) ฮจ (x) = i C for x= 5 cm, and linearly goes down to zero at x= 2 and x = 10 cm from this
peak value, and is zero for all other x.
If any of these are valid wavefunctions, calculate C for those case(s). What potential energy for x
โค 2 and x โฅ 10 is consistent with this?
โ
A) For a wavefunction ฮจ (x) , we know ฮก = โซ ฮจ * (x)ฮจ (x)dx = 1
-โ
โง๏ฃฑ 0 c = 0
ฮก = โซ ฮจ * (x)ฮจ (x)dx = c2 โซ dx โ ฮก= โจ๏ฃฒ
โ ฮจ (x) cannot be a wave function
โฉ๏ฃณโ c โ 0
-โ
-โ
โ
โ
B) For 5 โค x โค 8 , ฮจ (x) has two values, C and 3.5C. For c โ 0 , ฮจ (x) is not a function
โ
and for c = 0 : ฮก = โซ ฮจ * (x)ฮจ (x)dx = 0 โ ฮจ (x) cannot be a wave function.
-โ
โง๏ฃฑ iC
โช๏ฃดโช๏ฃด 3 ( x-2 ) 2 โค x โค 5
C) ฮจ (x)= โจ๏ฃฒ
โช๏ฃดโ iC ( x-10 ) 5 โค x โค 10
โช๏ฃดโฉ๏ฃณ 5
โ
5
10
c2
c2
2
2
( x-2 ) dx + โซ ( x-10 ) dx
9
25
2
5
-โ
T
an his
th d wo
sa eir is p rk
w le co ro is
ill o u vi pr
de f a rse de ot
st ny s d s ec
ro p an o te
y ar d le d
th t o a ly by
e
s
in f th se for Un
te is ss th ite
gr w in e
ity o g us d S
of rk ( stu e o tat
th inc de f i es
e lu nt ns co
w d le tr p
or in a uc y
k g rn to rig
an on in rs h
d th g. in t la
is e D t w
no W iss ea s
t p or em ch
in
er ld
m W ina g
itt id tio
ed e n
. We or
b)
ฮก = โซ ฮจ* (x)ฮจ(x)dx = โซ
5
10
c2
c2
(x-2)3 โค๏ฃนโฆ๏ฃป +
(x-10)3 โค๏ฃนโฆ๏ฃป
2
5
3ร9
3ร25
2
โก๏ฃฎ 27 125 โค๏ฃน 8c
= c 2 โข๏ฃฏ +
=
โฅ๏ฃบ
3
โฃ๏ฃฐ 27 3ร25 โฆ๏ฃป
=
ฮก=1 โ
8c2
=1 โ c=0.612 โ ฮจ (x) can be a wave function
3
Since ฮจ (x) = 0 for x โค 2 and x โฅ 10 , the potential energy should be infinite in these two
regions.
Prob. 2.7
A particle is described in 1D by a wavefunction:
ฮจ = Be-2x for x โฅ0 and Ce+4x for x<0, and B and C are real constants. Calculate B and C to make
ฮจ a valid wavefunction. Where is the particle most likely to be?
A valid wavefunction must be continuous, and normalized.
For ฮจ (0) = C = B
โ
2
To normalize ฮจ , โซ ฮจ dx = 1
-โ
0
โ
2 8x
2 -4x
โซ C e dx + โซ C e dx = 1
-โ
0
2
โ
C 8x
โ๏ฃซ โ1 โ๏ฃถ
โก๏ฃฎโฃ๏ฃฐe โค๏ฃนโฆ๏ฃป + C2 โ๏ฃฌ โ๏ฃท โก๏ฃฎโฃ๏ฃฐe-4x โค๏ฃนโฆ๏ฃป = 1
โโ
0
8
โ๏ฃญ 4 โ ๏ฃธ
0
T
an his
th d wo
sa eir is p rk
w le co ro is
ill o u vi pr
de f a rse de ot
st ny s d s ec
ro p an o te
y ar d le d
th t o a ly by
e
s
in f th se for Un
te is ss th ite
gr w in e
ity o g us d S
of rk ( stu e o tat
th inc de f i es
e lu nt ns co
w d le tr p
or in a uc y
k g rn to rig
an on in rs h
d th g. in t la
is e D t w
no W iss ea s
t p or em ch
in
er ld
m W ina g
itt id tio
ed e n
. We or
b)
C2 C2
8
+
=1 โ C=
8
4
3
Prob. 2.8
The electron wavefunction is Ceikx between x=2 and 22 cm, and zero everywhere else. What is
the value of C? What is the probability of finding the electron between x=0 and 4 cm?
ฮจ = Ceikx
22
*
2
-1
1
cm
20
โซ ฮจ ฮจdx = C (20) = 1 โ C =
2
4
2
1
โ๏ฃซ 1 โ๏ฃถ
Probability = โซ ฮจ dx = โ๏ฃฌ
โ๏ฃท ( 2 ) = 10
โ๏ฃญ 20 โ ๏ฃธ
0
2
Prob. 2.9
Find the probability of finding an electron at x0 zero or non-zero? Is the classical probability of finding an electron at x>6 zero or non?
The energy barrier at x=0 is infinite; so, there is zero probability of finding an electron at
x<0 (|ฯ|2=0). However, it is possible for electrons to tunnel through the barrier at 5<x6 would be quantum mechanically greater
than zero (|ฯ|2>0) and classical mechanically zero.
Prob. 2.10
Find 4 โ
px 2 + 2 โ
pz 2 + 7mE for ฮจ( x, y, z, t ) = A โ
e j (10โ
x +3โ
y -4โ
t ) .
*
px
โซ A โ
e
2
= -โ
– j(10โ
x+3โ
y-4โ
t) โ๏ฃซ h โ โ๏ฃถ
โ๏ฃฌ j โx โ๏ฃท A โ
e
โ๏ฃญ
โ ๏ฃธ
โ
2
โซA e
– j(10โ
x+3โ
y-4โ
t)
-โ
โ
*
pz
โซ A โ
e
2
= -โ
โซA e
– j(10โ
x+3โ
y-4โ
t)
-โ
*
โซ A โ
e
E = -โ
= 100 โ
h2
e
j(10โ
x+3โ
y – 4โ
t)
j(10โ
x+3โ
y -4โ
t)
dz
=0
dz
h โ โ๏ฃถ
j(10โ
x+3โ
y – 4โ
t)
dt
โ๏ฃฌ โ j โt โ๏ฃท A โ
e
โ๏ฃญ
โ ๏ฃธ
= 4โ
h
– j(10โ
x+3โ
y-4โ
t) โ๏ฃซ
โ
dx
2
โ๏ฃฌ j โz โ๏ฃท A โ
e
โ๏ฃญ
โ ๏ฃธ
2
j(10โ
x+3โ
y – 4โ
t)
e j(10โ
x+3โ
y-4โ
t) dx
– j(10โ
x+3โ
y-4โ
t) โ๏ฃซ h โ โ๏ฃถ
โ
โ
2
T
an his
th d wo
sa eir is p rk
w le co ro is
ill o u vi pr
de f a rse de ot
st ny s d s ec
ro p an o te
y ar d le d
th t o a ly by
e
s
in f th se for Un
te is ss th ite
gr w in e
ity o g us d S
of rk ( stu e o tat
th inc de f i es
e lu nt ns co
w d le tr p
or in a uc y
k g rn to rig
an on in rs h
d th g. in t la
is e D t w
no W iss ea s
t p or em ch
in
er ld
m W ina g
itt id tio
ed e n
. We or
b)
โ
2
โซA e
– j(10โ
x+3โ
y-4โ
t)
e j(10โ
x+3โ
y-4โ
t) dt
-โ
4 โ
p x +2 โ
p z +7 mE = 400h2 + 28(9.11 โ
10-31kg) h
2
2
Prob. 2.11
Find the uncertainty in position (ฮx) and momentum (ฮฯ).
L
2
โ๏ฃซ ฯx โ๏ฃถ
โ
sin โ๏ฃฌ โ๏ฃท โ
e-2ฯjEt/h and โซ ฮจ* โ
ฮจdx = 1
L
โ๏ฃญ L โ ๏ฃธ
0
ฮจ(x,t) =
L
L
x = โซ ฮจ * โ
x โ
ฮจdx =
0
2
โ๏ฃซ ฯ x โ๏ฃถ
x โ
sin 2 โ๏ฃฌ
โ๏ฃท dx = 0.5L (from problem note)
โซ
L0
โ๏ฃญ L โ ๏ฃธ
L
L
2
โ๏ฃซ ฯ x โ๏ฃถ
2
= โซ ฮจ โ
x โ
ฮจdx = โซ x 2 โ
sin 2 โ๏ฃฌ
โ๏ฃท dx = 0.28L (from problem note)
L0
โ๏ฃญ L โ ๏ฃธ
0
*
2
ฮx =
x2 – x
ฮp โฅ
h
h
= 0.47 โ
4ฯ โ
ฮx
L
Prob. 2.12
= 0.28L2 – (0.5L) 2 = 0.17L
T
an his
th d wo
sa eir is p rk
w le co ro is
ill o u vi pr
de f a rse de ot
st ny s d s ec
ro p an o te
y ar d le d
th t o a ly by
e
s
in f th se for Un
te is ss th ite
gr w in e
ity o g us d S
of rk ( stu e o tat
th inc de f i es
e lu nt ns co
w d le tr p
or in a uc y
k g rn to rig
an on in rs h
d th g. in t la
is e D t w
no W iss ea s
t p or em ch
in
er ld
m W ina g
itt id tio
ed e n
. We or
b)
x
2
Calculate the first three energy levels for a 10วบ quantum well with infinite walls.
En =
n 2 โ
ฯ 2 โ
h2
(6.63 โ
10-34 ) 2
=
โ
n 2 = 6.03 โ
10-20 โ
n 2
โ31
โ9 2
2
2โ
mโ
L
8 โ
9.11โ
10 โ
(10 )
E1 = 6.03 โ
10-20 J = 0.377eV
E 2 = 4 โ
0.377eV = 1.508eV
E 3 = 9 โ
0.377eV = 3.393eV
Prob. 2.13
Show schematic of atom with 1s22s22p4 and atomic weight 21. Comment on its reactivity.
nucleus with
8 protons and
13 neutrons
2 electrons in 1s
2 electrons in 2s
4 electrons in 2p
= proton
= neturon
= electron
This atom is chemically reactive because
the outer 2p shell is not full. It will tend
to try to add two electrons to that outer
shell.
Document Preview (7 of 171 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Test Bank for Global Business, 4th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Mia Garcia
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)