Test Bank For College Mathematics for Business, Economics, Life Sciences, and Social Sciences, 14th Edition
Preview Extract
Exam
Name___________________________________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Use point-by-point plotting to sketch the graph of the equation.
1) y = x – 5
1) _______
A)
B)
C)
D)
2) y =
-3
2) _______
A)
B)
C)
D)
Determine whether the graph is the graph of a function.
3)
3) _______
A) function
B) not a function
4)
4) _______
A) function
B) not a function
5)
5) _______
A) function
B) not a function
Determine whether the relation represents a function. If it is a function, state the domain and range.
6)
6) _______
A) function
domain:{20, 45, 70, 95}
range: {4, 9, 14, 19}
B) function
domain: {4, 9, 14, 19}
range: {20, 45, 70, 95}
C) not a function
7)
7) _______
A) function
domain: {carrots, peas, squash}
range: {Bob, Ann, Dave}
B) function
domain: {Bob, Ann, Dave}
range: {carrots, peas, squash}
C) not a function
8) {(41, -3), (5, -2), (5, 0), (9, 2), (21, 4)}
8) _______
A) function
domain: {41, 9, 5, 21}
range: {-3, -2, 0, 2, 4}
B) function
domain: {-3, -2, 0, 2, 4}
range: {41, 9, 5, 21}
C) not a function
9) {(-3, 10), (-2, 5), (0, 1), (2, 5), (4, 17)}
9) _______
A) function
domain: {-3, -2, 0, 2, 4}
range: {10, 5, 1, 17}
B) function
domain: {10, 5, 1, 17}
range: {-3, -2, 0, 2, 4}
C) not a function
Determine whether the function is linear, constant, or neither
10) y =
10) ______
A) Linear
B) Constant
11) y =
A) Linear
+8
11) ______
B) Constant
C) Neither
12) y =
12) ______
A) Linear
B) Constant
13) y – 12 = 0
13) ______
C) Neither
C) Neither
A) Linear
B) Constant
C) Neither
Use point-by-point plotting to sketch the graph of the equation.
14) f(x) =
14) ______
A)
B)
C)
D)
The graph of a function f is given. Use the graph to answer the question.
15) Use the graph of f given below to find f(-5).
15) ______
A) -5
B) 3
C) 8
D) 0
Find the function value.
16) Find f(-9) when f(x) = 5 – 7 . 16) ______
A) 572 B) -562 C) 68 D) 131
17) f(x) =
; f(-2) 17) ______
A) –
B)
C)
D) 4
18) Given that f(x) = 5
A) 5
– 18t + 16 B)
– 2x, find f(t + 2).
+ 2t – 6
C) 3t + 6
18) ______
D) 5
+ 18t + 16
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Provide an appropriate response.
19) If g(x) =
+ x – 9, find g(-2), g(1), and g
20) For f(t) = 3t + 2 and g(t) = 2 –
.
19) _____________
, find 4f(3) – g(-3) + g(0).
21) For f(t) = 3 – 5t, find
.
20) _____________
21) _____________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Compute and simplify the difference quotient
22) f(x) = 5
A) 10x + 7
+ 7x
, h โ 0.
22) ______
B) 10x + 5h + 7 C) 10
+ 5h+ 7x
D) 15x – 7h + 14
Determine the domain of the function.
23) f(x) = – 7x + 923) ______
A) No solution B) All real numbers except
C) All real numbers
24) f(x) =
D) x โค
24) ______
A) No solution B) All real numbers except 2
C) All real numbers
D) x < 2
25) f(x) =
25) ______
A) x โค 3 B) All real numbers except 3
C) x < 3 D) No solution
26) f(x) =
26) ______
A) All real numbers
B) x 0 78) ______
A) -0.93 < x < 2.46
B) x 0.93
C) x 2.46 D) -2.46 < x < 0.93
79) 1.5 – 4.7x – 2.9 โค 0 79) ______
A) x 0.53 B) x 3.66
C) -3.66 < x < 0.53
D) -0.53 < x g(x) using parts i and ii; (iv) solve f(x) < g(x) using parts i and ii.
83) f(x) = -0.8x(x – 8), g(x) = 0.4x + 3.2; 0 โค x โค 10
83) ______
A) (i) f is the curve, g is the line
(ii) 0.61, 7.02
(iii) 0.61 < x < 7.02
(iv) 0 โค x < 0.61 or 7.02 < x โค 8
B) (i) f is the curve, g is the line
(ii) 0.58, 6.92
(iii) 0.58 < x < 6.92
(iv) 0 โค x < 0.58 or 6.92 < x โค 8
C) (i) f is the curve, g is the line
(ii) 0.58, 7.98
(iii) 0.58 < x < 7.98
(iv) 0 โค x < 0.58 or 7.98 < x โค 8
D) (i) f is the curve, g is the line
(ii) 0.61, 7.98
(iii) 0.61 < x < 7.98
(iv) 0 โค x < 0.61 or 7.98 < x โค 8
Solve the problem.
84) In economics, functions that involve revenue, cost and profit are used. Suppose R(x) and C(x) denote the total revenue
and the total cost, respectively, of producing a new high-tech widget. The difference
total profit for producing x widgets. Given R(x) = 60x – 0.4
______
A) P(x) = 60x – 0.4
C) P(x) = -0.4
B) P(x) = -0.4
+ 57x – 13
and
represents the
find the equation for P(x).
84)
+ 63x + 13
D) P(x) = 3x + 13
85) In economics, functions that involve revenue, cost and profit are used. Suppose R(x) and C(x) denote the total revenue
and the total cost, respectively, of producing a new high-tech widget. The difference
total profit for producing x widgets. Given R(x) = 60x – 0.4
A) 55687
and
find P(100).
represents the
85) ______
B) 313 C) 2000 D) 1687
86) A professional basketball player has a vertical leap of 37 inches. A formula relating an athlete's vertical leap V, in
inches, to hang time T, in seconds, is V=
A) 1 sec B) 0.6 sec
C) 0.9 sec
. What is his hang time? Round to the nearest tenth. 86) ______
D) 0.8 sec
87) Under certain conditions, the power P, in watts per hour, generated by a windmill with winds blowing v miles per
hour is given by P(v) = 0.015
. Find the power generated by 18-mph winds.
87) ______
A) 4.86 watts per hour B) 0.00006075 watts per hour
C) 58.32 watts per hour D) 87.48 watts per hour
88) The U. S. Census Bureau compiles data on population. The population (in thousands) of a southern city can be
approximated by P(x) = 0.08
population about 804,200?
– 13.08x + 927, where x corresponds to the years after 1950. In what calendar year was the
88) ______
A) 1965 B) 2000 C) 1955 D) 1960
89) Assume that a person's critical weight W, defined as the weight above which the risk of death rises dramatically, is
given by W(h) =
, where W is in pounds and h is the person's height in inches.
Find the tcritical weight for a person who is 6 ft 11 in. tall. Round to the nearest tenth.
A) 212.4 lb
B) 221.5 lb
C) 377.4 lb
89) ______
D) 339.3 lb
90) The polynomial
gives the approximate total earnings of a company, in millions of
dollars, where x represents the number of years since 1996. This model is valid for the years from 1996 to 2000.
Determine the earnings for 2000. Round to 2 decimal places.
90) ______
A) $2.26 million B) $2.82 million C) $2.03 million D) $2.36 million
Use the REGRESSION feature on a graphing calculator.
91) The average retail price in the Spring of 2000 for a used Camaro Z28 coupe depends on the age of the car as shown in
the following table.
Find the quadratic model that best estimates this data. Round your answer to whole numbers.
A) y = 102
– 2576x + 20,669
C) y = 102
– 2576x
91) ______
B) y = -1551x + 18,790x
D) y = -9
+ 235
– 3134x + 21,252
92) As the number of farms has decreased in South Carolina, the average size of the remaining farms has grown larger, as
shown below.
Let x represent the number of years since 1900. Use a graphing calculator to fit a quadratic function to the data. Round
your answer to five decimal places.
92) ______
A) y = 0.02536
+ 1.21114 x + 102.58741
B) y = -.00114
+ 0.19605
C) y = 0.02536
+ 1.21114 + 102.58741
D) y = 0.02536
+ 1.21114 x + 102.58741
– 5.29775 + 143.55245
93) Since 1984 funeral directors have been regulated by the Federal Trade Commission. The average cost of a funeral for
an adult in a Midwest city has increased, as shown in the following table.
Let x represent the number of years since 1980. Use a graphing calculator to fit a quartic function to the data. Round your
answer to five decimal places. 93) ______
A) y = 170.5971x + 1991.5213
B) y = -2.047489
+ 212.82699x + 1879.85469
C) y = -0.04268
+ 1.53645
– 16.76289
+ 231.82723x + 1927.58518
D) y = -0.04268
Solve the problem.
94) The population P, in thousands, of Fayetteville is given by
population at 9 months. 94) ______
A) 7988 B) 15, 976
C) 40,000
D) 30, 769
P(t) =
, where t is the time, in months. Find the
95) If the average cost per unit C(x) to produce x units of plywood is given by
units? 95) ______
A) $24.00
B) $120.00
C) $80.00
what is the unit cost for 10
D) $3.00
96) Suppose the cost per ton, y, to build an oil platform of x thousand tons is approximated by
the cost per ton for
96) ______
A) $16.67
C) $7083.33
B) $425.00
What is
D) $467.03
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
97) The financial department of a company that produces digital cameras arrived at the following price-demand function
and the corresponding revenue function:
p(x) = 95.4 – 6x
price-demand
R(x) = x โ p(x) = x(95.4 – 6x) revenue function
The function p(x) is the wholesale price per camera at which x million cameras can be sold and R(x) is the corresponding
revenue (in million dollars). Both functions have domain 1 โค x โค 15. They also found the cost function to be C(x) = 150 +
15.1x (in million dollars) for manufacturing and selling x cameras. Find the profit function and determine the
approximate number of cameras, rounded to the nearest hundredths, that should be sold for maximum profit.
97)
_____________
98) The financial department of a company that manufactures portable MP3 players arrived at the following daily cost
equation for manufacturing x MP3 players per day:
The average cost per unit at a production
level of players per day is
(A) Find the rational function .
(B) Graph the average cost function on a graphing utility for 10 โค x โค 200.
(C) Use the appropriate command on a graphing utility to find the daily production level (to the nearest integer) at which
the average cost per player is a minimum. What is the minimum average cost (to the nearest cent)?
98)
_____________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
For the polynomial function find the following: (i) Degree of the polynomial; (ii) All x intercepts; (iii) The y intercept.
99) y = 8x + 5
99) ______
A) (i) 1
(ii) (iii) 8
B) (i) 1
(ii) (iii) 5
(ii)
C) (i) 1
(iii) 5
(ii) 5
D) (i) 1
(iii)
100) y =
– 49 100) _____
A) (i) 2
(ii) -7, 7
(iii) -49 B) (i) 1
(ii) 7
(iii) -49 C) (i) 1
(ii) 24.5
(iii) -49 D) (i) 2
(ii) -8, 8
(iii) -49
101) y =
+ 5x – 50
A) (i) 2
(ii) -10, 1
(iii) -50 B) (i) 2
(ii) -10, 5
(iii) -50 C) (i) 2
(ii) 10, 5
(iii) -50 D) (i) 2
(ii) 10, -5
(iii) -50
101) _____
102) y = 18 + 3x
A) (i) 2
(ii) 6, 3
(iii) 18 B) (i) 2
(ii) 6, -3
(iii) 18 C) (i) 2
(ii) -3, -6
(iii) -18 D) (i) 2
(ii) 3, -6
(iii) -18
102) _____
103) y = (x + 10)(x + 6)(x + 6)
A) (i) 3
(ii) -10, -6, -6
(iii) 360 B) (i) 3
(ii) -10, -6, -6
(iii) -36 C) (i) 3
(ii) 10, 6, 6
(iii) 36 D) (i) 3
(ii) 10, 6, 6
(iii) 360
103) _____
104) f(x) = (
104) _____
+ 7)(
+ 9)
A) (i) 60
(ii) 7, 9
(iii) -63 B) (i) 16
(ii) none
(iii) 63 C) (i) 16
(ii) 7, 9
(iii) 63 D) (i) 60
(ii) none
(iii) -63
The graph that follows is the graph of a polynomial function. (i) What is the minimum degree of a polynomial
function that could have the graph? (ii) Is the leading coefficient of the polynomial negative or positive?
105)
105) _____
A) (i) 3
(ii) Positive
(ii) Positive
(ii) Negative
(ii) Negative
B) (i) 2
C) (i) 3
D) (i) 2
106)
106) _____
A) (i) 2
(ii) Negative
(ii) Positive
(ii) Positive
(ii) Negative
107)
B) (i) 3
C) (i) 2
D) (i) 3
107) _____
A) (i) 3
(ii) Positive
(ii) Negative
(ii) Negative
(ii) Positive
B) (i) 3
C) (i) 4
D) (i) 4
108)
108) _____
A) (i) 2
(ii) Negative
(ii) Positive
(ii) Negative
(ii) Positive
B) (i) 1
C) (i) 1
D) (i) 2
109)
109) _____
A) (i) 4
(ii) Positive
B) (i) 4
(ii) Negative
(ii) Negative
(ii) Positive
C) (i) 3
D) (i) 3
Provide an appropriate response.
110) What is the maximum number of x intercepts that a polynomial of degree 10 can have?
A) 10 B) 11
C) 9
D) Not enough information is given.
110) _____
111) What is the minimum number of x intercepts that a polynomial of degree 11 can have? Explain.
A) 0 because a polynomial of odd degree may not cross the x axis at all.
B) 1 because a polynomial of odd degree crosses the x axis at least once.
C) 11 because this is the degree of the polynomial.
D) Not enough information is given.
111) _____
112) What is the minimum number of x intercepts that a polynomial of degree 8 can have? Explain.
A) 1 because a polynomial of even degree crosses the x axis at least once.
B) 0 because a polynomial of even degree may not cross the x axis at all.
C) 8 because this is the degree of the polynomial.
D) Not enough information is given.
112) _____
For the rational function below (i) Find the intercepts for the graph; (ii) Determine the domain; (iii) Find any vertical
or horizontal asymptotes for the graph; (iv) Sketch any asymptotes as dashed lines. Then sketch the graph of y = f(x).
113) f(x) =
113) _____
A) (i) x intercept: -2; y intercept: 2
(ii) Domain: all real numbers except -1
(iii) Vertical asymptote: x = -1; horizontal asymptote: y = 1
(iv)
B) (i) x intercept: 0; y intercept: 0
(ii) Domain: all real numbers except 1
(iii) Vertical asymptote: x = 1; horizontal asymptote: y = 1
(iv)
C) (i) x intercept: 2; y intercept: 2
(ii) Domain: all real numbers except 1
(iii) Vertical asymptote: x = 1; horizontal asymptote: y = 1
(iv)
D) (i) x intercept: 0; y intercept: 0
(ii) Domain: all real numbers except -1
(iii) Vertical asymptote: x = -1; horizontal asymptote: y = 1
(iv)
114) f(x) =
114) _____
A) (i) x intercept: 5; y intercept:
(ii) Domain: all real numbers except 4
(iii) Vertical asymptote: x = 4; horizontal asymptote: y = 1
(iv)
B) (i) x intercept: -3; y intercept:
(ii) Domain: all real numbers except -4
(iii) Vertical asymptote: x = -4; horizontal asymptote: y = 1
(iv)
C) (i) x intercept: -5; y intercept:
(ii) Domain: all real numbers except -4
(iii) Vertical asymptote: x = -4; horizontal asymptote: y = 1
(iv)
D) (i) x intercept: 3; y intercept:
(ii) Domain: all real numbers except 4
(iii) Vertical asymptote: x = 4; horizontal asymptote: y = 1
(iv)
115) f(x) =
115) _____
A) (i) x intercept: 0; y intercept: 0
(ii) Domain: all real numbers except 2
(iii) Vertical asymptote: x = 2; horizontal asymptote: y = -3
(iv)
B) (i) x intercept: 0; y intercept: 0
(ii) Domain: all real numbers except 2
(iii) Vertical asymptote: x = 2; horizontal asymptote: y = 3
(iv)
C) (i) x intercept: 0; y intercept: 0
(ii) Domain: all real numbers except -2
(iii) Vertical asymptote: x = -2; horizontal asymptote: y = 3
(iv)
D) (i) x intercept: 0; y intercept: 0
(ii) Domain: all real numbers except -2
(iii) Vertical asymptote: x = -2; horizontal asymptote: y = -3
(iv)
116) f(x) =
116) _____
A) (i) x intercept: ; y intercept: (ii) Domain: all real numbers except 2
(iii) Vertical asymptote: x = 2; horizontal asymptote: y = -2
(iv)
B) (i) x intercept: ; y intercept: (ii) Domain: all real numbers except 2
(iii) Vertical asymptote: x = 2; horizontal asymptote: y = -2
(iv)
C) (i) x intercept: – ; y intercept: (ii) Domain: all real numbers except -2
(iii) Vertical asymptote: x = -2; horizontal asymptote: y = -2
(iv)
D) (i) x intercept: – ; y intercept: (ii) Domain: all real numbers except -2
(iii) Vertical asymptote: x = -2; horizontal asymptote: y = -2
(iv)
For the rational function below (i) Find any intercepts for the graph; (ii) Find any vertical and horizontal asymptotes
for the graph; (iii) Sketch any asymptotes as dashed lines. Then sketch a graph of f.
117) y =
117) _____
A) (i) y intercept: – 2
(ii) horizontal asymptote: y = 0
(iii)
B) (i) y intercept: -6
(ii) horizontal asymptote: y = 0; vertical asymptotes: x = 6 and x = -6
(iii)
C) (i) y intercept: 6
(ii) horizontal asymptote: y = 0; vertical asymptotes: x = 6 and x = -6
(iii)
D) (i) y intercept: – 2
(ii) horizontal asymptote: y = 0; vertical asymptotes: x = 3 and x = -3
(iii)
Sketch the graph of the function.
118) f(x) =
118) _____
A)
B)
C)
D)
119) f(x) =
119) _____
A)
B)
C)
D)
Find the equation of any horizontal asymptote.
120) f(x) =
120) _____
A) y = 0 B) y =
C) y =
121) f(x) =
121) _____
A) y = -6
B) y = 6 C) y = 1 D) None
122) f(x) =
122) _____
A) y = 8 B) y = 3 C) None
D) None
D) y = -4
Find the equations of any vertical asymptotes.
123) f(x) =
123) _____
A) y = 1, y = -4 B) y = 3 C) x = -1, x = 4
D) x = 1, x = -4
124) f(x) =
124) _____
A) x = 10, x = -10
B) x = -5C) y = 5, y = -8 D) x = 5, x = -8
125) f(x) =
125) _____
A) x = 6, x = -4 B) x = 6 C) x = -6, x = 4
126) f(x) =
D) None
126) _____
A) x = 2, x = -2 B) x = -8C) x = 8 D) None
Write an equation for the lowest-degree polynomial function with the graph and intercepts shown in the figure.
127)
127) _____
A) f(x) =
+ 5x + 6
B) f(x) =
– 6x + 5
C) f(x) =
+ 6x + 5
D) f(x) =
+ 5x – 6
128)
128) _____
A) f(x) =
+ 9x – 10
B) f(x) =
+ 9x + 10
C) f(x) =
+ 10x + 9
D) f(x) = –
– 10x – 9
129)
129) _____
A) f(x) = –
– 16x
B) f(x) = –
+ 16x
C) f(x) = –
– 16x
D) f(x) =
+ 16x
Solve the problem.
130) Financial analysts in a company that manufactures ovens arrived at the following daily cost equation for
manufacturing x ovens per day: C(x) =
+ 4x + 1800. The average cost per unit at a production level of x ovens per day
is (x) = C(x)/x. (i) Find the rational function . (ii) Sketch a graph of (x) for 10 โค x โค 125. (iii) For what daily production
level (to the nearest integer) is the average cost per unit at a minimum, and what is the minimum average cost per oven
(to the nearest cent)? HINT: Refer to the sketch in part (ii) and evaluate
minimum value is found.
130) _____
(x) at appropriate integer values until a
A) (i)
(ii)
(x) =
(iii) 61 units; $133.29 per oven
(ii)
B) (i)
(x) =
D) (i)
(x) =
(iii) 42 units; $88.86 per oven
C) (i)
(ii)
(x) =
(iii) 44 units; $185.61 per oven
(ii)
(iii) 22 units; $48.93 per oven
Graph the function.
131) f(x) =
131) _____
A)
B)
C)
D)
132) f(x) =
+2
132) _____
A)
B)
C)
D)
133) f(x) =
-3
133) _____
A)
B)
C)
D)
134) f(x) =
134) _____
A)
B)
C)
D)
135) f(x) =
135) _____
A)
B)
C)
D)
Solve the equation.
136) Solve for x:
A) -1 B) 1
C) 9
136) _____
D) 3
137) Solve for x:
=
137) _____
A) 5
B) 15 C) -5 D) -15
138) Solve for x:
โ
A) {4} B) {5, 4} C) {-5, -4}
=
138) _____
D) {5}
139) Solve for t:
= 0.05
Round your answer to four decimal places.
A) -66.4815
B) -70.1312
C) 44.321
D) 42.7962
139) _____
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Solve the problem.
140) In the table below, the amount of the U.S. minimum wage is listed for selected years.
Find an exponential regression model of the form y = a โ , where y represents the U.S. minimum wage x years after
1960. Round a and b to four decimal places. According to this model, what will the minimum wage be in 2005? In 2010?
140) ____________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
141) Hi-Tech UnWater begins a cable TV advertising campaign in Miami to market a new water. The percentage of the
target market that buys water is estimated by the function
t represents the number of days of the
campaign. After how long will 90% of the target market have bought the water? 141) _____
A) 90 days
B) 120 days
C) 115 days
D) 3 days
142) The number of books in a community college library increases according to the function
measured in years. How many books will the library have after 8 year(s)?
142) _____
where t is
A) 4462 B) 7200 C) 9153 D) 10,275
143) Since life expectancy has increased in the last century, the number of Alzheimer's patients has increased
dramatically. The number of patients in the United States reached 4 million in 2000. Using data collected since 2000, it has
been found that the data can be modeled by the exponential function
2000. Estimate the Alzheimer's patients in 2025. Round to the nearest tenth.
A) 8.0 million
B) 3.9 million
C) 4.8 million
where x is the years since
143) _____
D) 7.8 million
144) A sample of 800 grams of radioactive substance decays according to the function
where t is the
time in years. How much of the substance will be left in the sample after 10 years? Round to the nearest whole gram.
144) _____
A) 9 grams
B) 605 grams
C) 800 grams
D) 1 gram
145) The number of reports of a certain virus has increased exponentially since 1960. The current number of cases can be
approximated using the function
the year 2010. 145) _____
where t is the number of years since 1960. Estimate the of cases in
A) 266 B) 207 C) 190 D) 240
146) An initial investment of $12,000 is invested for 2 years in an account that earns 4% interest, compounded quarterly.
Find the amount of money in the account at the end of the period.
146) _____
A) $994.28
B) $12,865.62
C) $12,994.28
D) $12,979.20
147) Suppose that $2200 is invested at 3% interest, compounded semiannually. Find the function for the amount of money
after t years.
147) _____
A) A = 2200
B) A = 2200
C) A = 2200
D) A = 2200
Use the REGRESSION feature on a graphing calculator.
148) A strain of E-coli Beu-recA441 is placed into a petri dish at
Celsius and allowed to grow. The following data are
collected. Theory states that the number of bacteria in the petri dish will initially grow according to the law of uninhibited
growth. The population is measured using an optical device in which the amount of light that passes through the petri
dish is measured.
Find the exponential equation in the form y = a โ
148) _____
A) y =
C) y = 0.0903 โ
, where x is the hours of growth. Round to four decimal places.
B) y = 1.3384 โ
D) y =
149) The total cost of the Democratic and the Republican national conventions has increased 596% over the 20-year period
between 1980 and 2004. The following table lists the total cost, in millions of dollars, for selected years.
Find the exponential functions that best estimates this data. Round your answer to four decimal places
149) _____
A) y = 6.6643x + 2.8857 B) y = 22.2887xโ (
C) y = 1.0929 โ (
D) y = 22.2887 โ (
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
150) A particular bacterium is found to have a doubling time of 20 minutes. If a laboratory culture begins with a
population of 300 of this bacteria and there is no change in the growth rate, how many bacteria will be present in 55
minutes? Use six decimal places in the interim calculation for the growth rate.
150) ____________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Convert to a logarithmic equation.
151)
=8
151) _____
A)
3=8
B)
152)
= 25
152) _____
A) 2 =
8=2
25 B) 2 =
153)
=3
A) 0.4771 = log 10
5
=7
2=3
C) 25 =
D)
8=3
2 D) 5 =
25
153) _____
B) 0.4771 = log 3
C) 3 = log 0.4771D) 0.4771 =
154)
C)
10
154) _____
A) ln t = 7
B)
t=e
C) ln 7 = t
D)
e=t
Convert to an exponential equation.
155)
A)
27 =
=
B) 9 =
156)
A)
155) _____
512 = t
= 512
B)
C) 27 =
156) _____
=t
C)
157) ln 44 = 3.7842
157) _____
A)
B)
= ln 44
D) 27 =
= 512
= 44 C)
D)
=t
= 3.7842 D)
=1
Evaluate.
158)
A) 4
158) _____
B)
C) 32
D) 8
Use a calculator to evaluate the expression. Round the result to five decimal places.
159) log 0.17
159) _____
A) -1.76955
B) -1.77196
C) -0.76955
D) -4.07454
160) log 0.234
A) 1.26364
160) _____
B) -0.63074
C) 0.234D) -1.45243
161) log 51.237 161) _____
A) 51.237
B) 3.93646
C) 1.70958
D) Undefined
162) log (-10.25) 162) _____
A) -1.01072
B) 1.01072
C) 2.32728
D) Undefined
163)
36.8 163) _____
A) 3.60550
B) 1.56585
C) 1.73388
D) 0.57674
164) ln 0.027
A) 0.56864
164) _____
B) -3.61192
C) -1.56864
D) Undefined
165) ln 1097
A) 4.69775
165) _____
B) 3.04021
C) 9.30292
D) 7.00033
Write in terms of simpler forms.
166)
XY
A)
X+
166) _____
Y
B)
167)
167) _____
A)
B)
168)
168) _____
A) M
9
169)
A)
b+
B) M +
9
X-
Y
C)
X-
Y
D)
y
C)
b-y
D)
b-
y
C) 9
M
D) 9 +
169) _____
B)
C)
D)
Solve for x to two decimal places (using a calculator).
170) 700 = 500
170) _____
A) 1.35 B) 1.40 C) 520 D) 8.58
171) 5.2 =
171) _____
A) 1.07 B) 5.17 C) 2.32 D) 22.97
Use the properties of logarithms to solve.
172)
A) 2
x+
B) 24
(x – 2) =
C) 7
D) 6
173)
x-
5=
24
2-
172) _____
(x – 3)
173) _____
M
X+
Y
A) 3
B) 2
174)
A) 6
(x + 3) +
x=
B) -6
C) -6, -3 D) 3
175)
A) 7
C) 2, 5 D) 5
(4x – 5) = 1
B)
C)
54
174) _____
175) _____
D)
176) ln (3x – 4) = ln 20 – ln (x – 5) 176) _____
A) -5, –
B) 0,
C)
177) log (x + 10) – log (x + 4) = log x
A) 2
B) -5
C) 2, – 5 D) 6
178) log (x – 9) = 1 – log x 178) _____
A) -10, 1
B) 10 C) -1, 10
D) 5,
177) _____
D) -10
Graph by converting to exponential form first.
179) y =
(x – 2)
179) _____
A)
B)
C)
D)
180) y =
(x + 1)
180) _____
A)
B)
C)
D)
Graph the function using a calculator and point-by-point plotting. Indicate increasing and decreasing intervals.
181) f(x) = 3 ln x
181) _____
A) Increasing: (0, โ)
B) Decreasing: (0, โ)
C) Decreasing: (0, โ)
D) Increasing: (-3, โ)
182) f(x) =
182) _____
A) Decreasing:
Increasing:
,
,
B) Decreasing: (0, -3]
Increasing: [-3, โ)
C) Decreasing: (0, 1]
Increasing: [1, โ)
D) Decreasing: (0, โ)
183) f(x) = -4 – ln x
183) _____
A) Decreasing: (0, โ)
B) Increasing (-4, โ)
C) Increasing (0, โ)
D) Decreasing: (0, โ)
184) f(x) = 2 – ln(x + 4)
184) _____
A) Decreasing: (4, โ)
B) Decreasing: (-4, โ)
C) Decreasing: (0, โ)
D) Decreasing: (-4, โ)
Solve the problem.
185) If $1250 is invested at a rate of 8 % compounded monthly, what is the balance after 10 years?
[A =
] 185) _____
A) $2844.31
B) $2281.25
C) $1031.25
D) $1594.31
186) If $4,000 is invested at 7% compounded annually, how long will it take for it to grow to $6,000, assuming no
withdrawals are made? Compute answer to the next higher year if not exact.
[A =
A) 6 years
]
186) _____
B) 2 years
C) 8 years
D) 5 years
187) In North America, coyotes are one of the few species with an expanding range. The future population of coyotes in a
region of Mississippi valley can be modeled by the equation
, where t is time in years. Use the
equation to determine when the population will reach 170. (Round your answer to the nearest tenth year.)
187)
_____
A) 583.1 years B) 581.3 years
C) 586.2 years
D) 578.0 years
188) A country has a population growth rate of 2.4% compounded continuously. At this rate, how long will it take for the
population of the country to double? Round your answer to the nearest tenth.
188) _____
A) 30 years
B) 2.9 years
C) .29 years
D) 28.9 years
189) A carbon-14 dating test is performed on a fossil bone, and analysis finds that 15.5% of the original amount of
carbon-14 is still present in the bone. Estimate the age of the fossil bone. (Recall that carbon-14 decays according to the
equation A =
).
A) 15, 000 years B) 1,500 years
189) _____
C) 150 years
D) 15,035 years
190) Assume that a savings account earns interest at the rate of 2% compounded monthly. If this account contains $1000
now, how many months will it take for this amount to double if no withdrawals are made?
190) _____
A) 408 months B) 417 months C) 12 months
D) 450 months
191) U. S. Census Bureau data shows that the number of families in the United States (in millions) in year x is given by
h(x) = 51.42 + 15.473 โ log x , where x = 0 is 1980. How many families were there in 2002? 191) _____
A) 72 million
B) 48 million
C) 90 million
D) 21 million
192) The level of a sound in decibels (db) is determined by the formula N = 10 โ log(I ร
) db, where I is the intensity of
the sound in watts per square meter. A certain noise has an intensity of
sound level of this noise? (Round your answer to the nearest decibel.)
per square meter. What is the
A) 206 db
B) 79 db
192) _____
C) 9 db D) 89 db
193) Book sales on the Internet (in billions of dollars) in year x are approximated by f(x) = 1.84 + 2.1 โ ln x, where x = 0
corresponds to 2000. How much will be spent on Internet book sales in 2008? Round to the nearest tenth.
193)
_____
A) 3.9 billion
B) 6.0 billion
C) 6.2 billion
D) 8.0 billion
1) D
2) B
3) B
4) A
5) B
6) B
7) C
8) C
9) A
10) A
11) C
12) B
13) B
14) B
15) B
16) B
17) B
18) D
19) -27, -12, 20) 53
21) -5
22) B
23) C
24) B
25) A
26) D
27) f(x) =
has domain all real numbers except x = 48.
28) B
29) A
30) A
31) A
32) B
33) B
34) C
35) B
36) A
37) A
38) B
39) A
40) D
41) Choice (A) defines a function. To each element (student) of the first set (or domain), there corresponds exactly one
element (teacher) of the second set (or range).
Choice (B) does not define a function. An element (student) of the first set (or domain) corresponds to more that one
element (teacher) of the second set (or range).
42) C
43) A
44) C
45) D
46) A
47) D
48) A
49) D
50) B
51) Basic function is f(x) =
; shift right 2 units, shift up 5 units. f(x) =
+5
52) Basic function is f(x) =
53) D
54) C
55) D
; reflect over the x -axis, shift left 4 units, shift down 2 units.
56) g(x) =
57) C
58) B
59) D
60) C
61) C
62) A
63) C
64) C
65) D
66) D
67) B
68) B
69) A
70) B
71) C
72) B
73) D
74) f(x) =
0).
75) Max f(x) =
76) A
77) C
78) C
79) D
80) C
81) B
82) D
83) B
+ 9 ; vertex: (-2, 9); maximum: f(-2) = 9; Range of f = {y
};
x-intercepts: (-5, 0), (1,
84) C
85) D
86) C
87) D
88) D
89) D
90) D
91) A
92) A
93) C
94) B
95) A
96) D
97) P(x) =
98) (A)
(B)
+ 80.3x – 150, must sell approximately 6.69 million cameras.
(x) =
(C) 39; $182.46
99) B
100) A
101) B
102) B
103) A
104) B
105) A
106) C
107) B
108) C
109) A
110) A
111) B
112) B
113) A
114) D
115) B
116) D
117) D
118) D
119) C
+ 105 + x
120) C
121) C
122) C
123) D
124) D
125) B
126) D
127) B
128) D
129) B
130) B
131) B
132) C
133) B
134) C
135) A
136) B
137) B
138) B
139) D
140) y = 1.1389(
141) C
142) C
143) D
144) B
145) A
146) C
147) D
148) C
149) D
150) 2,018 bacteria
151) D
152) A
153) B
154) A
155) C
156) A
157) B
158) A
159) C
160) B
161) C
162) D
163) C
164) B
165) D
166) A
167) D
168) C
169) A
170) D
171) D
); $7.54; $9.30
172) D
173) D
174) A
175) D
176) C
177) A
178) B
179) A
180) C
181) A
182) C
183) A
184) B
185) A
186) A
187) D
188) D
189) D
190) B
191) A
192) D
193) C
Document Preview (75 of 343 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Test Bank For College Mathematics for Business, Economics, Life Sciences, and Social Sciences, 14th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Michael Walker
0 (0 Reviews)
Best Selling
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)