Preview Extract
Trigonometry A Unit Circle Approach 10th Edition Sullivan Solutions Manual
Full Download: http://testbanklive.com/download/trigonometry-a-unit-circle-approach-10th-edition-sullivan-solutions-manual/
Chapter 2
Trigonometric Functions
16.
Section 2.1
1. C = 2ฯ r ; A = ฯ r 2
1
2ฯ (2) = 2ฯ
2. A =
2
3. standard position
17.
18.
4. central angle
5. d
6. rฮธ ;
1 2
rฮธ
2
19.
7. b
8.
s ฮธ
;
t t
20.
9. True
10. False; ฯ
= rฯ
21.
11.
12.
22.
13.
14.
15.
_
1
1 1 ๏ถยบ
๏ฆ
23. 40ยบ10 ‘ 25″ = ๏ง 40 + 10 โ
+ 25 โ
โ
๏ท
60
60 60 ๏ธ
๏จ
โ (40 + 0.1667 + 0.00694)ยบ
โ 40.17ยบ
1
1 1 ๏ถยบ
๏ฆ
24. 61ยบ 42 ‘ 21″ = ๏ง 61 + 42 โ
+ 21 โ
โ
๏ท
60
60 60 ๏ธ
๏จ
โ (61 + 0.7000 + 0.00583)ยบ
โ 61.71ยบ
126
Copyright ยฉ 2016 Pearson Education, Inc.
Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com
Section 2.1: Angles and Their Measure
32. 29.411ยบ = 29ยบ + 0.411ยบ
= 29ยบ + 0.411(60 ‘)
= 29ยบ +24.66 ‘
= 29ยบ +24 ‘+ 0.66 ‘
= 29ยบ +0.66(60″)
= 29ยบ +24 ‘+ 39.6″
โ 29ยบ 24 ‘ 40″
1
1 1 ยบ
+ 20 โ
โ
60
60 60
โ (50 + 0.2333 + 0.00556)ยบ
25. 50ยบ14 ’20” = 50 + 14 โ
โ 50.24ยบ
1
1 1 ๏ถยบ
๏ฆ
26. 73ยบ 40 ‘ 40″ = ๏ง 73 + 40 โ
+ 40 โ
โ
๏ท
60
60 60 ๏ธ
๏จ
โ (73 + 0.6667 + 0.0111)ยบ
โ 73.68ยบ
33. 19.99ยบ = 19ยบ + 0.99ยบ
= 19ยบ + 0.99(60 ‘)
= 19ยบ +59.4 ‘
= 19ยบ +59 ‘+ 0.4 ‘
= 19ยบ +59 ‘+ 0.4(60″)
= 19ยบ +59 ‘+ 24″
= 19ยบ 59 ‘ 24″
1
1 1 ๏ถยบ
๏ฆ
27. 9ยบ 9 ‘9″ = ๏ง 9 + 9 โ
+ 9 โ
โ
๏ท
60
60 60 ๏ธ
๏จ
= (9 + 0.15 + 0.0025)ยบ
โ 9.15ยบ
1
1 1 ๏ถยบ
๏ฆ
28. 98ยบ 22 ‘ 45″ = ๏ง 98 + 22 โ
+ 45 โ
โ
๏ท
60
60
60 ๏ธ
๏จ
โ (98 + 0.3667 + 0.0125)ยบ
โ 98.38ยบ
34. 44.01ยบ = 44ยบ + 0.01ยบ
= 44ยบ + 0.01(60 ‘)
= 44ยบ +0.6 ‘
= 44ยบ +0 ‘+ 0.6 ‘
= 44ยบ +0 ‘+ 0.6(60″)
= 44ยบ +0 ‘+ 36″
= 44ยบ 0 ’36”
29. 40.32ยบ = 40ยบ + 0.32ยบ
= 40ยบ + 0.32(60 ‘)
= 40ยบ +19.2 ‘
= 40ยบ +19 ‘+ 0.2 ‘
= 40ยบ +19 ‘+ 0.2(60″)
= 40ยบ +19 ‘+ 12″
= 40ยบ19 ’12”
35. 30ยฐ = 30 โ
ฯ
ฯ
radian = radian
180
6
ฯ
2ฯ
radian =
radians
180
3
30. 61.24ยบ = 61ยบ + 0.24ยบ
= 61ยบ + 0.24(60 ‘)
= 61ยบ +14.4 ‘
= 61ยบ +14 ‘+ 0.4 ‘
= 61ยบ +14 ‘+ 0.4(60″)
= 61ยบ +14 ‘+ 24″
= 61ยบ14 ‘ 24″
36. 120ยฐ = 120 โ
31. 18.255ยบ = 18ยบ + 0.255ยบ
= 18ยบ + 0.255(60 ‘)
= 18ยบ +15.3′
= 18ยบ +15’+ 0.3’
= 18ยบ +15’+ 0.3(60″)
= 18ยบ +15’+ 18″
= 18ยบ15’18”
39. โ 60ยฐ = โ 60 โ
37. 240ยฐ = 240 โ
4ฯ
ฯ
radian =
radians
180
3
38. 330ยฐ = 330 โ
11ฯ
ฯ
radian =
radians
180
6
40. โ30ยฐ = โ30 โ
41. 180ยฐ = 180 โ
Copyright ยฉ 2016 Pearson Education, Inc.
ฯ
ฯ
radian = โ radian
180
6
ฯ
radian = ฯ radians
180
42. 270ยฐ = 270 โ
127
ฯ
ฯ
radian = โ radian
180
3
ฯ
3ฯ
radian =
radians
180
2
Chapter 2: Trigonometric Functions
43. โ135ยฐ = โ135 โ
ฯ
3ฯ
radian = โ
radians
180
4
44. โ 225ยฐ = โ 225 โ
45. โ 90ยฐ = โ 90 โ
5ฯ
ฯ
radian = โ
radians
180
4
ฯ
ฯ
radian = โ radians
180
2
46. โ180ยฐ = โ180 โ
ฯ ฯ 180
= โ
degrees = 60ยฐ
3 3 ฯ
48.
5ฯ 5ฯ 180
degrees = 150ยฐ
=
โ
6
6 ฯ
50. โ
51.
54.
2ฯ
radian
9
โ โ 0.70 radian
ฯ
radian
180
17ฯ
radian
=โ
60
โ โ 0.89 radian
62. โ 51ยฐ = โ 51 โ
63. 125ยฐ = 125 โ
2ฯ
2ฯ 180
degrees = โ120ยฐ
=โ โ
3
3 ฯ
25ฯ
radians
36
โ 2.18 radians
64. 350ยฐ = 350 โ
180
degrees = 720ยฐ
ฯ
ฯ
radian
180
35ฯ
radians
18
โ 6.11 radians
=
ฯ
ฯ 180
degrees = 15ยฐ
= โ
12 12 ฯ
65. 3.14 radians = 3.14 โ
5ฯ 5ฯ 180
degrees = 75ยฐ
=
โ
12 12 ฯ
66. 0.75 radian = 0.75 โ
ฯ
ฯ 180
=โ โ
degrees = โ 90ยฐ
2
2 ฯ
56. โฯ = โฯ โ
ฯ
radian
180
=
ฯ ฯ 180
degrees = 90ยฐ
= โ
2 2 ฯ
55. โ
ฯ
radian
180
=โ
5ฯ
5ฯ 180
=โ โ
degrees = โ 225ยฐ
4
4 ฯ
52. 4ฯ = 4ฯ โ
53.
61. โ 40ยฐ = โ 40 โ
ฯ
radian = โฯ radians
180
47.
49. โ
ฯ
radian
180
73ฯ
=
radians
180
โ 1.27 radians
60. 73ยฐ = 73 โ
67. 2 radians = 2 โ
180
degrees = โ180ยฐ
ฯ
68. 3 radians = 3 โ
ฯ
ฯ 180
degrees = โ 30ยฐ
57. โ = โ โ
6
6 ฯ
180
degrees โ 42.97ยบ
ฯ
180
degrees โ 114.59ยบ
ฯ
180
degrees โ 171.89ยบ
ฯ
69. 6.32 radians = 6.32 โ
3ฯ
3ฯ 180
=โ โ
degrees = โ 135ยฐ
58. โ
4
4 ฯ
70.
17ฯ
ฯ
59. 17ยฐ = 17 โ
radian =
radian โ 0.30 radian
180
180
2 radians = 2 โ
128
Copyright ยฉ 2016 Pearson Education, Inc.
180
degrees โ 179.91ยบ
ฯ
180
degrees โ 362.11ยบ
ฯ
180
degrees โ 81.03ยบ
ฯ
Section 2.1: Angles and Their Measure
71. r = 10 meters; ฮธ =
s = rฮธ = 10 โ
1
radian; A = 2 ft 2
3
1
A = r 2ฮธ
2
1 2 ๏ฆ1๏ถ
2= r ๏ง ๏ท
2 ๏จ3๏ธ
1
2 = r2
6
12 = r 2
1
radian;
2
81. ฮธ =
1
= 5 meters
2
72. r = 6 feet; ฮธ = 2 radian; s = rฮธ = 6 โ
2 = 12 feet
1
radian; s = 2 feet;
3
s = rฮธ
s
2
r= =
= 6 feet
ฮธ (1/ 3)
73. ฮธ =
r = 12 = 2 3 โ 3.464 feet
1
radian; A = 6 cm 2
4
1
A = r 2ฮธ
2
1 ๏ฆ1๏ถ
6 = r2 ๏ง ๏ท
2 ๏จ4๏ธ
1
6 = r2
8
48 = r 2
82. ฮธ =
1
radian; s = 6 cm;
4
s = rฮธ
s
6
r= =
= 24 cm
ฮธ (1/ 4 )
74. ฮธ =
75. r = 5 miles; s = 3 miles;
s = rฮธ
s 3
ฮธ = = = 0.6 radian
r 5
r = 48 = 4 3 โ 6.928 cm
83. r = 5 miles; A = 3 mi 2
1
A = r 2ฮธ
2
1 2
3 = (5) ฮธ
2
25
3= ฮธ
2
6
ฮธ=
= 0.24 radian
25
76. r = 6 meters; s = 8 meters;
s = rฮธ
s 8 4
ฮธ = = = โ 1.333 radians
r 6 3
77. r = 2 inches; ฮธ = 30ยบ = 30 โ
s = rฮธ = 2 โ
ฯ
ฯ
= radian;
180 6
ฯ ฯ
= โ 1.047 inches
6 3
78. r = 3 meters; ฮธ = 120ยบ = 120 โ
s = rฮธ = 3 โ
84. r = 6 meters; A = 8 m 2
1
A = r 2ฮธ
2
1 2
8 = ( 6) ฮธ
2
8 = 18ฮธ
8 4
ฮธ = = โ 0.444 radian
18 9
ฯ
2ฯ
=
radians
180 3
2ฯ
= 2ฯ โ 6.283 meters
3
1
radian
2
1
1
100
2๏ฆ1๏ถ
A = r 2ฮธ = (10 ) ๏ง ๏ท =
=25 m 2
2
2
2
4
๏จ ๏ธ
79. r = 10 meters; ฮธ =
85. r = 2 inches; ฮธ = 30ยบ = 30 โ
80. r = 6 feet; ฮธ = 2 radians
A=
1
1 2
A = r 2ฮธ = ( 6 ) ( 2 ) =36 ft 2
2
2
ฯ
ฯ
= radian
180 6
1 2
1
ฯ
2 ๏ฆฯ ๏ถ
r ฮธ = ( 2 ) ๏ง ๏ท = โ 1.047 in 2
2
2
๏จ6๏ธ 3
129
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
86. r = 3 meters; ฮธ = 120ยบ = 120 โ
A=
ฯ
2ฯ
=
radians
180 3
92. r = 40 inches; ฮธ = 20ยบ =
1 2
1 2 ๏ฆ 2ฯ ๏ถ
2
r ฮธ = ( 3) ๏ง
๏ท =3ฯ โ 9.425 m
2
2
3
๏จ
๏ธ
87. r = 2 feet; ฮธ =
ฯ
s = rฮธ = 40 โ
ฯ
6
ฯ
ฯ
= radian
180 4
1 2
1
2 ๏ฆฯ ๏ถ
A = r ฮธ = ( 4 ) ๏ง ๏ท = 2ฯ โ 6.28 m 2
2
2
๏จ4๏ธ
ฯ
ฯ
= radians
180 3
1
1 2 ๏ฆ ฯ ๏ถ 3ฯ
A = r 2ฮธ = ( 3) ๏ง ๏ท =
โ 4.71 cm 2
2
2
3
2
๏จ ๏ธ
94. r = 3 cm; ฮธ = 60ยบ = 60 โ
radian
ฯ 2ฯ
=
โ 2.094 meters
6 3
1
1
4ฯ
2 ๏ฆฯ ๏ถ
A = r 2ฮธ = ( 4 ) ๏ง ๏ท =
โ 4.189 m 2
2
2
๏จ6๏ธ 3
s = rฮธ = 4 โ
89. r = 12 yards; ฮธ = 70ยบ = 70 โ
ฯ
3ฯ
=
radians
180 4
1
1
675ฯ
2 ๏ฆ 3ฯ ๏ถ
A = r 2ฮธ = ( 30 ) ๏ง ๏ท =
โ 1060.29 ft 2
2
2
4
2
๏จ ๏ธ
95. r = 30 feet; ฮธ = 135ยบ = 135 โ
ฯ
7ฯ
=
radians
180 18
96. r = 15 yards; A = 100 yd 2
1
A = r 2ฮธ
2
1
2
100 = (15 ) ฮธ
2
100 = 112.5ฮธ
100
8
= โ 0.89 radian
ฮธ=
112.5 9
7ฯ
โ 14.661 yards
18
1
1
2 ๏ฆ 7ฯ ๏ถ
2
A = r 2ฮธ = (12 ) ๏ง
๏ท = 28ฯ โ 87.965 yd
2
2
18
๏จ
๏ธ
s = rฮธ = 12 โ
90. r = 9 cm; ฮธ = 50ยบ = 50 โ
ฯ 40ฯ
=
โ 13.96 inches
9
9
93. r = 4 m; ฮธ = 45ยบ = 45 โ
radians
3
ฯ 2ฯ
s = rฮธ = 2 โ
=
โ 2.094 feet
3 3
1
1
2ฯ
2 ๏ฆฯ ๏ถ
A = r 2ฮธ = ( 2 ) ๏ง ๏ท = =
โ 2.094 ft 2
2
2
3
๏จ3๏ธ
88. r = 4 meters; ฮธ =
ฯ
radian
9
ฯ
5ฯ
=
radian
180 18
ยฐ
5ฯ
โ 7.854 cm
18
1
1 2 ๏ฆ 5ฯ ๏ถ 45ฯ
A = r 2ฮธ = ( 9 ) ๏ง
โ 35.343 cm 2
๏ท=
2
2
18
4
๏จ
๏ธ
s = rฮธ = 9 โ
or
8 180 ๏ฆ 160 ๏ถ
โ
=๏ง
๏ท โ 50.93ยฐ
9 ฯ
๏จ ฯ ๏ธ
1 2
1
2ฯ
ฮธ = 120ยฐ =
r1 ฮธ โ r2 2ฮธ
2
2
3
1
2ฯ
1
2ฯ
= (34) 2
โ (9) 2
2
3
2
3
97. A =
91. r = 6 inches
In 15 minutes,
15
1
ฯ
rev = โ
360ยบ = 90ยบ = radians
ฮธ=
60
4
2
ฯ
s = rฮธ = 6 โ
= 3ฯ โ 9.42 inches
2
=
1
2ฯ
1
2ฯ
(1156)
โ (81)
2
3
2
3
= (1156)
In 25 minutes,
25
5
5ฯ
rev = โ
360ยบ = 150ยบ =
radians
ฮธ=
60
12
6
5ฯ
s = rฮธ = 6 โ
= 5ฯ โ 15.71 inches
6
ฯ
3
โ (81)
ฯ
3
1156ฯ
81ฯ
โ
3
3
1075ฯ
=
โ 1125.74 in 2
3
=
130
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.1: Angles and Their Measure
104. r = 5 m; ฯ = 5400 rev/min = 10800ฯ rad/min
v = rฯ = (5) โ
10800ฯ m/min = 54000ฯ cm/min
cm 1m
1km 60 min
โ
โ
โ
v = 54000ฯ
min 100cm 1000m 1hr
โ 101.8 km/hr
1 2
1
25ฯ
ฮธ = 125ยฐ =
r1 ฮธ โ r2 2ฮธ
2
2
36
1
25ฯ
1
25ฯ
= (30) 2
โ (6) 2
2
36
2
36
98. A =
=
1
25ฯ
1
25ฯ
(900)
โ (36)
2
36
2
36
= (450)
105. d = 26 inches; r = 13 inches; v = 35 mi/hr
35 mi 5280 ft 12 in. 1 hr
v=
โ
โ
โ
hr
mi
ft 60 min
= 36,960 in./min
v 36,960 in./min
ฯ= =
13 in.
r
โ 2843.08 radians/min
2843.08 rad 1 rev
โ
โ
min
2ฯ rad
โ 452.5 rev/min
25ฯ
25ฯ
โ (18)
36
36
11250ฯ
450ฯ
โ
36
36
10800ฯ
=
= 300ฯ โ 942.48 in 2
36
=
99. r = 5 cm; t = 20 seconds; ฮธ =
1
radian
3
(1 / 3) 1 1 1
radian/sec
=
= โ
=
20
3 20 60
t
1
s rฮธ 5 โ
(1 / 3) 5 1
cm/sec
v= =
=
= โ
=
20
3 20 12
t
t
ฯ=
ฮธ
106. r = 15 inches; ฯ = 3 rev/sec = 6ฯ rad/sec
v = rฯ = 15 โ
6ฯ in./sec = 90ฯ โ 282.7 in/sec
in. 1ft
1mi 3600sec
v = 90ฯ
โ
โ
โ
โ 16.1 mi/hr
sec 12in. 5280ft
1hr
100. r = 2 meters; t = 20 seconds; s = 5 meters
ฯ=
ฮธ
( s / r ) (5 / 2)
=
=
20
t
t
s 5 1
= m/sec
v= =
t 20 4
107. r = 3960 miles
ฮธ = 35ยบ 9 ‘โ 29ยบ 57 ‘
= 5ยบ12 ‘
= 5.2ยบ
ฯ
= 5.2 โ
180
โ 0.09076 radian
s = rฮธ = 3960(0.09076) โ 359 miles
5 1 1
= โ
= radian/sec
2 20 8
101. r = 25 feet; ฯ = 13 rev/min = 26ฯ rad/min
v = rฯ = 25 โ
26ฯ ft./min = 650ฯ โ 2042.0 ft/min
ft. 1mi 60 min
โ
โ
โ 23.2 mi/hr
v = 650ฯ
min 5280ft 1hr
108. r = 3960 miles
ฮธ = 38ยบ 21’โ 30ยบ 20 ‘
= 8ยบ1′
โ 8.017ยบ
ฯ
= 8.017 โ
180
โ 0.1399 radian
s = rฮธ = 3960(0.1399) โ 554 miles
102. r = 6.5 m; ฯ = 22 rev/min = 44ฯ rad/min
v = rฯ = (6.5) โ
44ฯ m/min = 286ฯ โ 898.5 m/min
m 1km 60 min
โ
โ
โ 53.9 km/hr
v = 286ฯ
min 1000m 1hr
103. r = 4 m; ฯ = 8000 rev/min = 16000ฯ rad/min
v = rฯ = (4) โ
16000ฯ m/min = 64000ฯ cm/min
cm 1m
1km 60 min
v = 64000ฯ
โ
โ
โ
min 100cm 1000m 1hr
โ 120.6 km/hr
109. r = 3429.5 miles
ฯ = 1 rev/day = 2ฯ radians/day =
v = rฯ = 3429.5 โ
131
Copyright ยฉ 2016 Pearson Education, Inc.
ฯ
radians/hr
12
ฯ
โ 898 miles/hr
12
Chapter 2: Trigonometric Functions
115. r = 4 feet; ฯ = 10 rev/min = 20ฯ radians/min
v = rฯ
= 4 โ
20ฯ
ft
= 80ฯ
min
80ฯ ft 1 mi 60 min
=
โ
โ
min 5280 ft
hr
โ 2.86 mi/hr
110. r = 3033.5 miles
ฯ
ฯ = 1 rev/day = 2ฯ radians/day =
radians/hr
12
ฯ
v = rฯ = 3033.5 โ
โ 794 miles/hr
12
111. r = 2.39 ร 105 miles
ฯ = 1 rev/27.3 days
= 2ฯ radians/27.3 days
ฯ
radians/hr
=
12 โ
27.3
ฯ
v = rฯ = ( 2.39 ร 105 ) โ
โ 2292 miles/hr
327.6
116. d = 26 inches; r = 13 inches;
ฯ = 480 rev/min = 960ฯ radians/min
v = rฯ
= 13 โ
960ฯ
in
= 12480ฯ
min
12480ฯ in 1 ft
1 mi 60 min
=
โ
โ
โ
min
12 in 5280 ft
hr
โ 37.13 mi/hr
v
ฯ=
r
80 mi/hr 12 in 5280 ft 1 hr
1 rev
=
โ
โ
โ
โ
13 in
1 ft 1 mi 60 min 2ฯ rad
โ 1034.26 rev/min
112. r = 9.29 ร 107 miles
ฯ = 1 rev/365 days
= 2ฯ radians/365 days
ฯ
radians/hr
=
12 โ
365
v = rฯ = ( 9.29 ร 107 ) โ
ฯ
โ 66, 633 miles/hr
4380
113. r1 = 2 inches; r2 = 8 inches;
ฯ1 = 3 rev/min = 6ฯ radians/min
Find ฯ2 :
v1 = v2
117. d = 8.5 feet;
r = 4.25 feet;
v = 9.55 mi/hr
v 9.55 mi/hr
=
4.25 ft
r
9.55 mi
1
5280 ft 1 hr 1 rev
=
โ
โ
โ
โ
hr
4.25 ft
mi
60 min 2ฯ
โ 31.47 rev/min
ฯ=
r1ฯ1 = r2ฯ2
2(6ฯ) = 8ฯ2
12ฯ
8
= 1.5ฯ radians/min
1.5ฯ
=
rev/min
2ฯ
3
= rev/min
4
ฯ2 =
118. Let t represent the time for the earth to rotate 90
miles.
t
24
=
90 2ฯ(3559)
90(24)
t=
โ 0.0966 hours โ 5.8 minutes
2ฯ(3559)
114. r = 30 feet
1 rev
2ฯ
ฯ
=
=
โ 0.09 radian/sec
ฯ=
70 sec 70 sec 35
ฯ rad 6ฯ ft
v = rฯ = 30 feet โ
=
โ 2.69 feet/sec
35 sec 7 sec
132
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.1: Angles and Their Measure
123. We know that the distance between Alexandria
and Syene to be s = 500 miles. Since the
measure of the Sunโs rays in Alexandria is 7.2ยฐ ,
the central angle formed at the center of Earth
between Alexandria and Syene must also be
7.2ยฐ . Converting to radians, we have
119. A = ฯ r 2
= ฯ (9) 2
= 81ฯ
3
243
ฯ . Now
81ฯ =
4
4
we calculate the small area.
A = ฯr2
We need ยพ of this area.
= ฯ (3)
= 9ฯ
7.2ยฐ = 7.2ยฐ โ
s = rฮธ
2
500 = r โ
1
9
We need ยผ of the small area.
9ฯ = ฯ
4
4
243
9
252
ฯ+ ฯ=
ฯ = 63ฯ
So the total area is:
4
4
4
square feet.
r=
25
ฯ
ฯ
180ยฐ
=
ฯ
25
radian . Therefore,
ฯ
25
โ
500 =
12,500
C = 2ฯ r = 2ฯ โ
ฯ
โ 3979 miles
12,500
ฯ
= 25, 000 miles.
The radius of Earth is approximately 3979 miles,
and the circumference is approximately 25,000
miles.
120. First we find the radius of the circle.
C = 2ฯ r
8ฯ = 2ฯ r
4=r
124. a.
The area of the circle is A = ฯ r 2 = ฯ (4) 2 = 16ฯ .
The area of the sector of the circle is 4ฯ . Now
we calculate the area of the rectangle.
A = lw
A = (4)(4 + 7)
A = 44
The length of the outfield fence is the arc
length subtended by a central angle ฮธ = 96ยฐ
with r = 200 feet.
s = r โ
ฮธ = 200 โ
96ยฐ โ
ฯ
โ 335.10 feet
180ยฐ
The outfield fence is approximately 335.1
feet long.
b. The area of the warning track is the
difference between the areas of two sectors
with central angle ฮธ = 96ยฐ . One sector with
r = 200 feet and the other with r = 190
feet.
1
1
ฮธ
A = R 2ฮธ โ r 2ฮธ = ( R 2 โ r 2 )
2
2
2
96ยฐ ฯ
2
=
โ
( 200 โ 1902 )
2 180ยฐ
4ฯ
=
( 3900 ) โ 3267.26
15
The area of the warning track is about
3267.26 square feet.
So the area of the rectangle that is outside of the
circle is 44 โ 4ฯ u 2 .
121. The earth makes one full rotation in 24 hours.
The distance traveled in 24 hours is the
circumference of the earth. At the equator the
circumference is 2ฯ(3960) miles. Therefore,
the linear velocity a person must travel to keep
up with the sun is:
s 2ฯ(3960)
v= =
โ 1037 miles/hr
t
24
122. Find s, when r = 3960 miles and ฮธ = 1’.
1 degree ฯ radians
โ
โ 0.00029 radian
ฮธ = 1’โ
60 min 180 degrees
s = rฮธ = 3960(0.00029) โ 1.15 miles
Thus, 1 nautical mile is approximately 1.15
statute miles.
133
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
125. r1 rotates at ฯ1 rev/min , so v1 = r1ฯ1 .
r2 rotates at ฯ2 rev/min , so v2 = r2ฯ2 .
Since the linear speed of the belt connecting the
pulleys is the same, we have:
v1 = v2
135. x 2 โ 9 cannot be zero so the domain is:
{ x | x โ ยฑ3}
136. Shift to the left 3 units would give y = x + 3 .
r1ฯ1 = r2ฯ2
Reflecting about the x-axis would give
y = โ x + 3 . Shifting down 4 units would result
r1ฯ1 r2ฯ2
=
r2ฯ1 r2ฯ1
in y = โ x + 3 โ 4 .
r1 ฯ2
=
r2 ฯ1
x1 + x2 y1 + y2
,
2
2
137.
126. Answers will vary.
127. If the radius of a circle is r and the length of the
arc subtended by the central angle is also r, then
the measure of the angle is 1 radian. Also,
180
1 radian =
degrees .
=
3 + ( โ4) 6 + 2
,
2
2
=
1
โ1 8
,
= โ ,4
2 2
2
ฯ
1ยฐ =
1
revolution
360
Section 2.2
๏ฆ ฯ radians ๏ถ
128. Note that 1ยฐ = 1ยฐ โ
๏ง
๏ท โ 0.017 radian
๏จ 180ยฐ ๏ธ
๏ฆ 180ยฐ ๏ถ
and 1 radian โ
๏ง
๏ท โ 57.296ยฐ .
๏จ ฯ radians ๏ธ
Therefore, an angle whose measure is 1 radian is
larger than an angle whose measure is 1 degree.
1. c 2 = a 2 + b 2
2.
3. True
4. equal; proportional
129. Linear speed measures the distance traveled per
unit time, and angular speed measures the
change in a central angle per unit time. In other
words, linear speed describes distance traveled
by a point located on the edge of a circle, and
angular speed describes the turning rate of the
circle itself.
๏ฆ 1 3๏ถ
5. ๏ง๏ง โ ,
๏ท๏ท
๏จ 2 2 ๏ธ
6. โ
can be rewritten as follows: s = rฮธ =
180
8.
rฮธ .
10. a
11.
f ( x) = 3x + 7
0 = 3x + 7
3 x = โ7 โ x = โ
( 0,1)
๏ฆ 2 2๏ถ
9. ๏ง๏ง
,
๏ท๏ท
๏จ 2 2 ๏ธ
131 โ 133. Answers will vary.
134.
1
2
7. b
130. This is a true statement. That is, since an angle
measured in degrees can be converted to radian
measure by using the formula
180 degrees = ฯ radians , the arc length formula
ฯ
f ( 5 ) = 3 ( 5 ) โ 7 = 15 โ 7 = 8
y x
;
r r
12. False
7
3
134
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Trigonometric Functions: Unit Circle Approach
๏ฆ 2 21 ๏ถ
2
21
15. P = ๏ง โ ,
๏ท๏ x=โ , y =
5
5
๏จ 5 5 ๏ธ
๏ฆ 3 1๏ถ
3
1
13. P = ๏ง๏ง
, ๏ท๏ท ๏ x =
, y=
2
2
๏จ 2 2๏ธ
1
sin t = y =
2
3
cos t = x =
2
๏ฆ1๏ถ
๏ง ๏ท
y
1 2
1
3
3
2
=
โ
=
tan t = = ๏จ ๏ธ = โ
x ๏ฆ 3๏ถ 2 3
3
3 3
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
csc t =
21
5
2
cos t = x = โ
5
๏ฆ 21 ๏ถ
y ๏ง๏จ 5 ๏ท๏ธ
21 ๏ฆ 5 ๏ถ
21
tan t = =
=
๏งโ ๏ท= โ
x ๏ฆ 2๏ถ
5 ๏จ 2๏ธ
2
๏งโ ๏ท
๏จ 5๏ธ
sin t = y =
1
1
5
5
21 5 21
=
= 1โ
=
โ
=
21
y ๏ฆ 21 ๏ถ
21
21 21
๏ง
๏ท
๏จ 5 ๏ธ
1
1
5
๏ฆ 5๏ถ
sec t = =
= 1๏ง โ ๏ท = โ
2
๏จ 2๏ธ
x ๏ฆ 2๏ถ
๏งโ ๏ท
๏จ 5๏ธ
๏ฆ 2๏ถ
โ
2 5
x ๏ง๏จ 5 ๏ท๏ธ
cot t = =
=โ โ
y ๏ฆ 21 ๏ถ
5 21
๏ง
๏ท
๏จ 5 ๏ธ
1
1
2
=
= 1โ
= 2
y ๏ฆ1๏ถ
1
๏ง ๏ท
๏จ2๏ธ
csc t =
1
1
2
2
3 2 3
=
= 1โ
=
โ
=
x ๏ฆ 3๏ถ
3
3
3 3
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
๏ฆ 3๏ถ
๏ง
๏ท
x ๏ง 2 ๏ท๏ธ
3 2
cot t = = ๏จ
=
โ
= 3
y
2 1
๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
sec t =
=โ
๏ฆ1
3๏ถ
1
3
14. P = ๏ง , โ
๏ท๏ x= , y=โ
๏จ2
2 ๏ธ
2
2
sin t = y = โ
3
2
2
21
โ
21
21
=โ
2 21
21
๏ฆ 1 2 6๏ถ
1
2 6
16. P = ๏ง โ ,
๏ท๏ x=โ , y =
5
5
๏จ 5 5 ๏ธ
1
2
๏ฆ
3๏ถ
โ
y ๏ง๏จ 2 ๏ท๏ธ
3 2
=โ
โ
=โ 3
tan t = =
x
2 1
๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
cos t = x =
2 6
5
1
cos t = x = โ
5
๏ฆ2 6๏ถ
๏ท 2 6
y ๏ง
๏ฆ 5๏ถ
tan t = = ๏จ 5 ๏ธ =
๏งโ ๏ท= โ2 6
x
5 ๏จ 1๏ธ
๏ฆ 1๏ถ
๏งโ ๏ท
๏จ 5๏ธ
sin t = y =
1
1
2
2
3
2 3
=
=โ
=โ
โ
=โ
3
y ๏ฆ
3
3 3
3๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
1
1
2
sec t = =
= 1โ
= 2
1
x ๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
๏ฆ1๏ถ
๏ง ๏ท
x
1 2
1
3
3
cot t = = ๏จ 2 ๏ธ = โ โ
=โ
โ
=โ
y ๏ฆ
2
3
๏ถ
3
3 3
3
๏งโ
๏ท
๏จ 2 ๏ธ
csc t =
csc t =
1
1
5
5
6 5 6
=
= 1โ
=
โ
=
y ๏ฆ2 6๏ถ
12
2 6 2 6 6
๏ง
๏ท
๏จ 5 ๏ธ
135
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
1
1
๏ฆ 5๏ถ
=
= 1๏ง โ ๏ท = โ5
x ๏ฆ 1๏ถ
๏จ 1๏ธ
๏งโ ๏ท
๏จ 5๏ธ
๏ฆ 1๏ถ
๏งโ ๏ท
1๏ฆ 5 ๏ถ
x
cot t = = ๏จ 5 ๏ธ = โ ๏ง
5 ๏จ 2 6 ๏ท๏ธ
y ๏ฆ2 6๏ถ
๏ง
๏ท
๏จ 5 ๏ธ
sec t =
=โ
1
2 6
โ
6
6
=โ
csc t =
1
1
2
2
2
=
= 1โ
=
โ
= 2
x ๏ฆ 2๏ถ
2
2 2
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
๏ฆ 2๏ถ
๏ง
๏ท
x ๏ง 2 ๏ท๏ธ
=1
cot t = = ๏จ
y ๏ฆ 2๏ถ
๏ง๏ง 2 ๏ท๏ท
๏จ
๏ธ
sec t =
6
12
๏ฆ
2 2๏ถ
2
2
17. P = ๏ง โ
,
, y=
๏ท๏ x=โ
2
2
๏จ 2 2 ๏ธ
sin t =
2
2
cos t = x = โ
๏ฆ 2 2 1๏ถ
2 2
1
19. P = ๏ง
,โ ๏ท๏ x=
, y=โ
3๏ธ
3
3
๏จ 3
1
sin t = y = โ
3
2
2
๏ฆ 2๏ถ
๏ง
๏ท
y
tan t = = ๏จ 2 ๏ธ = โ1
x ๏ฆ
2๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
csc t =
1
1
2
2
2
=
= 1โ
=
โ
= 2
y ๏ฆ 2๏ถ
2
2 2
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
cos t = x =
2 2
3
๏ฆ 1๏ถ
๏งโ ๏ท
y
1 3
tan t = = ๏จ 3 ๏ธ = โ โ
x ๏ฆ2 2๏ถ
3 2 2
๏ง
๏ท
๏จ 3 ๏ธ
1
1
2
2
2
=
= 1โ
=
โ
= 2
y ๏ฆ 2๏ถ
2
2 2
๏ง
๏ท
๏จ 2 ๏ธ
=โ
1
1
2
2
๏ฆ 2 ๏ถ
sec t = =
= 1๏ง โ
=โ
โ
=โ 2
๏ท
x ๏ฆ
2๏ธ
2 2
2๏ถ
๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
csc t =
๏ฆ
2๏ถ
โ
x ๏ง๏จ 2 ๏ท๏ธ
cot t = =
= โ1
y
๏ฆ 2๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
1
2 2
โ
2
2
=โ
2
4
1
1
๏ฆ 3๏ถ
=
= 1๏ง โ ๏ท = โ3
y ๏ฆ 1๏ถ
๏จ 1๏ธ
๏งโ ๏ท
๏จ 3๏ธ
1
1
3
2 3 2
๏ฆ 3 ๏ถ
=
= 1๏ง
โ
=
๏ท=
x ๏ฆ2 2๏ถ
4
๏จ2 2๏ธ 2 2 2
๏ง
๏ท
๏จ 3 ๏ธ
๏ฆ2 2๏ถ
๏ท 2 2
x ๏ง
๏ฆ 3๏ถ
cot t = = ๏จ 3 ๏ธ =
๏ง โ ๏ท = โ2 2
y
3 ๏จ 1๏ธ
๏ฆ 1๏ถ
๏งโ ๏ท
๏จ 3๏ธ
sec t =
๏ฆ 2 2๏ถ
2
2
,
, y=
18. P = ๏ง๏ง
๏ท๏ท ๏ x =
2
2
๏จ 2 2 ๏ธ
2
2
2
cos t = x =
2
๏ฆ 2๏ถ
๏ง
๏ท
y ๏ง๏จ 2 ๏ท๏ธ
tan t = =
=1
x ๏ฆ 2๏ถ
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
sin t = y =
๏ฆ
5
2๏ถ
5
2
20. P = ๏ง๏ง โ
, โ ๏ท๏ท ๏ x = โ
, y=โ
3๏ธ
3
3
๏จ 3
2
sin t = y = โ
3
cos t = x = โ
136
Copyright ยฉ 2016 Pearson Education, Inc.
5
3
Section 2.2: Trigonometric Functions: Unit Circle Approach
๏ฆ 11ฯ ๏ถ
๏ฆ 3ฯ 8ฯ ๏ถ
25. csc ๏ง
๏ท = csc ๏ง + ๏ท
2
2 ๏ธ
๏จ
๏ธ
๏จ 2
๏ฆ 3ฯ
๏ถ
= csc ๏ง + 4ฯ ๏ท
๏จ 2
๏ธ
๏ฆ 2๏ถ
๏งโ ๏ท
y
2๏ฆ 3 ๏ถ
3๏ธ
tan t = = ๏จ
= โ ๏งโ
๏ท
x ๏ฆ
3๏จ
5๏ธ
5๏ถ
๏ง๏ง โ
๏ท๏ท
๏จ 3 ๏ธ
=
2
=
๏ฆ 3ฯ
๏ถ
= csc ๏ง + 2 โ
2ฯ ๏ท
๏จ 2
๏ธ
๏ฆ 3ฯ ๏ถ
= csc ๏ง ๏ท
๏จ 2 ๏ธ
= โ1
2 5
5
5
1
1
3
๏ฆ 3๏ถ
= 1๏ง โ ๏ท = โ
csc t = =
y ๏ฆ 2๏ถ
2๏ธ
2
๏จ
๏งโ ๏ท
๏จ 3๏ธ
sec t =
5
5
โ
1
1
๏ฆ 3 ๏ถ
=
= 1๏ง โ
๏ท
x ๏ฆ
๏ถ
5๏ธ
5
๏จ
โ
๏ง๏ง 3 ๏ท๏ท
๏จ
๏ธ
=โ
3
โ
5
=โ
26. sec ( 8ฯ ) = sec ( 0 + 8ฯ )
= sec ( 0 + 4 โ
2ฯ ) = sec ( 0 ) = 1
๏ฆ 3ฯ ๏ถ
๏ฆ 3ฯ ๏ถ
27. cos ๏ง โ ๏ท = cos ๏ง ๏ท
๏จ 2 ๏ธ
๏จ 2 ๏ธ
๏ฆ ฯ 4ฯ ๏ถ
= cos ๏ง โ
๏ท
๏จ2 2 ๏ธ
3 5
5
5 5
๏ฆ
5๏ถ
๏งโ
๏ท
๏ง
3 ๏ท๏ธ
x
5 ๏ฆ 3๏ถ
5
cot t = = ๏จ
=โ
๏งโ ๏ท =
y
3 ๏จ 2๏ธ 2
๏ฆ 2๏ถ
๏งโ ๏ท
๏จ 3๏ธ
๏ฆฯ
๏ถ
= cos ๏ง + (โ1) โ
2ฯ ๏ท
๏จ2
๏ธ
๏ฆฯ๏ถ
= cos ๏ง ๏ท
๏จ2๏ธ
=0
๏ฆ 11ฯ ๏ถ
๏ฆ 3ฯ 8ฯ ๏ถ
21. sin ๏ง
๏ท = sin ๏ง + ๏ท
2
2 ๏ธ
๏จ
๏ธ
๏จ 2
๏ฆ 3ฯ
๏ถ
= sin ๏ง + 4ฯ ๏ท
๏จ 2
๏ธ
28. sin ( โ3ฯ ) = โ sin ( 3ฯ )
= โ sin ( ฯ + 2ฯ ) = โ sin ( ฯ ) = 0
๏ฆ 3ฯ
๏ถ
= sin ๏ง + 2 โ
2ฯ ๏ท
2
๏จ
๏ธ
๏ฆ 3ฯ ๏ถ
= sin ๏ง ๏ท
๏จ 2 ๏ธ
= โ1
29. sec ( โฯ ) = sec ( ฯ ) = โ1
30. tan ( โ3ฯ ) = โ tan(3ฯ)
= โ tan ( 0 + 3ฯ ) = โ tan ( 0 ) = 0
22. cos ( 7ฯ ) = cos ( ฯ + 6ฯ )
= cos ( ฯ + 3 โ
2ฯ ) = cos ( ฯ ) = โ1
23. tan ( 6ฯ ) = tan(0 + 6ฯ) = tan ( 0 ) = 0
๏ฆ 7ฯ ๏ถ
๏ฆ ฯ 6ฯ ๏ถ
24. cot ๏ง ๏ท = cot ๏ง + ๏ท
๏จ 2 ๏ธ
๏จ2 2 ๏ธ
๏ฆฯ
๏ถ
๏ฆฯ๏ถ
= cot ๏ง + 3ฯ ๏ท = cot ๏ง ๏ท = 0
2
๏จ
๏ธ
๏จ2๏ธ
31. sin 45ยบ + cos 60ยบ =
2 1 1+ 2
+ =
2 2
2
32. sin 30ยบ โ cos 45ยบ =
1
2 1โ 2
โ
=
2 2
2
33. sin 90ยบ + tan 45ยบ = 1 + 1 = 2
34. cos180ยบ โ sin180ยบ = โ1 โ 0 = โ1
35. sin 45ยบ cos 45ยบ =
137
Copyright ยฉ 2016 Pearson Education, Inc.
2 2 2 1
โ
= =
2 2
4 2
Chapter 2: Trigonometric Functions
36. tan 45ยบ cos 30ยบ = 1 โ
2ฯ
1
๏ฆ 2๏ถ
=
= 1๏ง โ ๏ท = โ2
3 ๏ฆ 1๏ถ
๏จ 1๏ธ
๏งโ ๏ท
๏จ 2๏ธ
๏ฆ 1๏ถ
โ
2ฯ ๏ง๏จ 2 ๏ท๏ธ
1 2
1
3
3
cot
=
=โ โ
=โ
โ
=โ
3 ๏ฆ 3๏ถ
2 3
3
3 3
๏ง
๏ท
๏จ 2 ๏ธ
3
3
=
2
2
cos
37. csc 45ยบ tan 60ยบ = 2 โ
3 = 6
38. sec 30ยบ cot 45ยบ =
2 3
2 3
โ
1 =
3
3
39. 4sin 90ยบ โ 3 tan180ยบ = 4 โ
1 โ 3 โ
0 = 4
48. The point on the unit circle that corresponds to
๏ฆ
3 1๏ถ
5ฯ
= 150ยบ is ๏ง โ
ฮธ=
, ๏ท.
๏จ 2 2๏ธ
6
5ฯ 1
sin
=
6 2
40. 5cos 90ยบ โ 8sin 270ยบ = 5 โ
0 โ 8(โ1) = 8
41. 2sin
ฯ
ฯ
3
3
โ 3 tan = 2 โ
โ 3โ
= 3โ 3 =0
3
6
2
3
42. 2sin
ฯ
ฯ
2
+ 3 tan = 2 โ
+ 3 โ
1 = 2 + 3
4
4
2
43. 2sec
ฯ
ฯ
3
4 3
+ 4 cot = 2 โ
2 + 4 โ
=2 2+
4
3
3
3
44. 3csc
ฯ
ฯ
2 3
+ cot = 3 โ
+1 = 2 3 +1
3
4
3
45. csc
5ฯ
3
=โ
6
2
๏ฆ1๏ถ
๏ง ๏ท
5ฯ
1 ๏ฆ 2 ๏ถ 3
3
tan
= ๏จ 2 ๏ธ = โ
๏ง โ
=โ
๏ทโ
6 ๏ฆ
3
3๏ธ 3
3๏ถ 2 ๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
5ฯ
1
2
csc
=
= 1โ
= 2
1
6 ๏ฆ ๏ถ
1
๏ง ๏ท
๏จ2๏ธ
cos
ฯ
ฯ
+ cot = 1 + 0 = 1
2
2
46. sec ฯ โ csc
sec
ฯ
= โ1 โ 1 = โ 2
2
๏ฆ
3๏ถ
โ
๏ง
5ฯ ๏จ 2 ๏ท๏ธ
3 2
cot
=
=โ
โ
=โ 3
6
2 1
๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
47. The point on the unit circle that corresponds to
๏ฆ 1 3๏ถ
2ฯ
= 120ยบ is ๏ง โ ,
ฮธ=
๏ท.
3
๏จ 2 2 ๏ธ
49. The point on the unit circle that corresponds to
๏ฆ
7ฯ
3 1๏ถ
ฮธ = 210ยบ =
is ๏ง โ
,โ ๏ท.
6
๏จ 2
2๏ธ
1
sin 210ยบ = โ
2
3
cos 210ยบ = โ
2
๏ฆ 1๏ถ
๏งโ ๏ท
1 ๏ฆ 2 ๏ถ 3
3
2๏ธ
= โ โ
๏ง โ
=
tan 210ยบ = ๏จ
๏ทโ
2
3
๏ฆ
๏ถ
3
3
3
๏จ
๏ธ
๏ง๏ง โ 2 ๏ท๏ท
๏จ
๏ธ
1
๏ฆ 2๏ถ
csc 210ยบ =
= 1โ
๏ง โ ๏ท = โ 2
๏ฆ 1๏ถ
๏จ 1๏ธ
๏งโ ๏ท
2
๏จ
๏ธ
2ฯ
3
=
3
2
2ฯ
1
cos
=โ
3
2
sin
๏ฆ 3๏ถ
2ฯ ๏ง๏จ 2 ๏ท๏ธ
3 ๏ฆ 2๏ถ
tan
=
=
โ
๏ง โ ๏ท = โ 3
3 ๏ฆ 1๏ถ
2 ๏จ 1๏ธ
๏งโ ๏ท
๏จ 2๏ธ
csc
๏ฆ 2 ๏ถ 3
5ฯ
1
2 3
=
= 1โ
๏ง โ
=โ
๏ทโ
6 ๏ฆ
3
3๏ธ 3
3๏ถ
๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
2ฯ
1
2
3 2 3
=
=
โ
=
3 ๏ฆ 3๏ถ
3
3 3
๏ง
๏ท
๏จ 2 ๏ธ
138
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Trigonometric Functions: Unit Circle Approach
๏ฆ 2 ๏ถ 3
2 3
= 1โ
๏ง โ
=โ
๏ทโ
3
๏ฆ
3๏ธ 3
3๏ถ
๏จ
๏ง๏ง โ
๏ท๏ท
๏จ 2 ๏ธ
๏ฆ
3๏ถ
๏ง๏ง โ
๏ท
2 ๏ท๏ธ
3 ๏ฆ 2๏ถ
๏จ
cot 210ยบ =
=โ
โ
๏ง โ ๏ท = 3
2 ๏จ 1๏ธ
๏ฆ 1๏ถ
โ
๏ง
๏ท
๏จ 2๏ธ
sec 210ยบ =
1
csc
sec
3ฯ
1
2 2
๏ฆ 2 ๏ถ 2
=
= 1โ
๏ง โ
=โ
=โ 2
๏ทโ
4 ๏ฆ
2
๏ถ
2
2
๏จ
๏ธ
2
๏งโ
๏ท
๏จ 2 ๏ธ
๏ฆ
2๏ถ
โ
3ฯ ๏ง๏จ 2 ๏ท๏ธ
2 2
=
=โ
โ
= โ1
cot
4
2
๏ฆ 2๏ถ
2
๏ง
๏ท
๏จ 2 ๏ธ
50. The point on the unit circle that corresponds to
๏ฆ 1
4ฯ
3๏ถ
ฮธ = 240ยบ =
is ๏ง โ , โ
๏ท.
3
๏จ 2
2 ๏ธ
52. The point on the unit circle that corresponds to
๏ฆ
2 2๏ถ
11ฯ
ฮธ=
,
= 495ยบ is ๏ง โ
๏ท.
๏จ 2 2 ๏ธ
4
3
2
1
cos 240ยบ = โ
2
๏ฆ
3๏ถ
๏งโ
๏ท
๏จ
2
๏ธ = โ 3 โ
๏ฆ โ 2 ๏ถ = 3
tan 240ยบ =
๏ง
๏ท
1
2 ๏จ 1๏ธ
๏ฆ
๏ถ
๏งโ ๏ท
๏จ 2๏ธ
sin 240ยบ = โ
11ฯ
2
=
4
2
11ฯ
2
cos
=โ
4
2
๏ฆ 2๏ถ
๏ง
๏ท
11ฯ
2 ๏ฆ 2 ๏ถ
= ๏จ 2 ๏ธ =
โ
๏ง โ
tan
๏ท = โ1
4
2
๏ฆ
๏ถ
2๏ธ
๏จ
2
๏งโ
๏ท
๏จ 2 ๏ธ
sin
๏ฆ 2 ๏ถ 3
2 3
= 1โ
๏ง โ
=โ
๏ทโ
3
๏ฆ
3๏ธ 3
3๏ถ
๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
1
๏ฆ 2๏ถ
sec 240ยบ =
= 1โ
๏ง โ ๏ท = โ 2
1
๏ฆ
๏ถ
๏จ 1๏ธ
๏งโ ๏ท
๏จ 2๏ธ
๏ฆ 1๏ถ
๏งโ ๏ท
1 ๏ฆ 2 ๏ถ 3
3
cot 240ยบ = ๏จ 2 ๏ธ = โ โ
๏ง โ
=
๏ทโ
2 ๏จ
3
๏ฆ
3๏ธ 3
3๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
csc 240ยบ =
3ฯ
1
2
2 2 2
=
= 1โ
โ
=
= 2
4 ๏ฆ 2๏ถ
2
2 2
๏ง
๏ท
๏จ 2 ๏ธ
1
csc
sec
11ฯ
1
2
2 2 2
=
= 1โ
โ
=
= 2
4
2
๏ฆ 2๏ถ
2 2
๏ง
๏ท
๏จ 2 ๏ธ
11ฯ
1
2 2
๏ฆ 2 ๏ถ 2
=
= 1โ
๏ง โ
=โ
=โ 2
๏ทโ
4
2
๏ฆ
๏ถ
2
2
2
๏จ
๏ธ
๏งโ
๏ท
๏จ 2 ๏ธ
๏ฆ
2๏ถ
โ
11ฯ ๏ง๏จ 2 ๏ท๏ธ
2 2
=
=โ
โ
= โ1
cot
4
2
๏ฆ 2๏ถ
2
๏ง
๏ท
๏จ 2 ๏ธ
51. The point on the unit circle that corresponds to
๏ฆ
2 2๏ถ
3ฯ
ฮธ=
,
= 135ยบ is ๏ง โ
๏ท.
๏จ 2 2 ๏ธ
4
3ฯ
2
=
4
2
3ฯ
2
cos
=โ
4
2
๏ฆ 2๏ถ
๏ง
๏ท
3ฯ
2 ๏ฆ 2 ๏ถ
= ๏จ 2 ๏ธ =
โ
๏ง โ
tan
๏ท = โ1
4 ๏ฆ
2 ๏จ
2๏ธ
2๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
sin
53. The point on the unit circle that corresponds to
๏ฆ 1 3๏ถ
8ฯ
ฮธ=
= 480ยบ is ๏ง โ ,
๏ท.
3
๏จ 2 2 ๏ธ
8ฯ
3
=
3
2
8ฯ
1
cos
=โ
3
2
sin
139
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
55. The point on the unit circle that corresponds to
๏ฆ 2 2๏ถ
9ฯ
,
ฮธ = 405ยบ =
is ๏ง
๏ท.
๏จ 2 2 ๏ธ
4
๏ฆ 3๏ถ
8ฯ ๏ง๏จ 2 ๏ท๏ธ
3 ๏ฆ 2๏ถ
=
=
โ
๏ง โ ๏ท = โ 3
tan
3 ๏ฆ 1๏ถ
2 ๏จ 1๏ธ
โ
๏ง
๏ท
๏จ 2๏ธ
2
2
2
cos 405ยบ =
2
๏ฆ 2๏ถ
๏ง
๏ท
2 2
tan 405ยบ = ๏จ 2 ๏ธ =
โ
=1
2
๏ฆ 2๏ถ
2
๏ง
๏ท
๏จ 2 ๏ธ
sin 405ยบ =
8ฯ
1
2
3 2 3
csc
=
= 1โ
โ
=
3 ๏ฆ 3๏ถ
3
3 3
๏ง
๏ท
๏จ 2 ๏ธ
8ฯ
1
๏ฆ 2๏ถ
sec
=
= 1 โ
๏ง โ ๏ท = โ2
3 ๏ฆ 1๏ถ
๏จ 1๏ธ
๏งโ ๏ท
๏จ 2๏ธ
๏ฆ 1๏ถ
โ
8ฯ ๏ง๏จ 2 ๏ท๏ธ
1 2
3
3
=
=โ โ
โ
=โ
cot
3 ๏ฆ 3๏ถ
2 3 3
3
๏ง
๏ท
๏จ 2 ๏ธ
csc 405ยบ =
sec 405ยบ =
54. The point on the unit circle that corresponds to
๏ฆ 3 1๏ถ
13ฯ
= 390ยบ is ๏ง
ฮธ=
, ๏ท.
๏จ 2 2๏ธ
6
13ฯ 1
sin
=
6
2
1
2
2
= 1โ
โ
= 2
๏ฆ 2๏ถ
2 2
๏ง
๏ท
๏จ 2 ๏ธ
1
๏ฆ 2๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
= 1โ
2
2
โ
2
2
= 2
๏ฆ 2๏ถ
๏ง
๏ท
cot 405ยบ = ๏จ 2 ๏ธ = 1
๏ฆ 2๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
13ฯ
3
=
6
2
๏ฆ1๏ถ
๏ง ๏ท
13ฯ
1 2
3
3
2
= ๏จ ๏ธ = โ
โ
=
tan
6
3
๏ฆ 3๏ถ 2 3 3
๏ง๏ง 2 ๏ท๏ท
๏จ
๏ธ
13ฯ
1
2
csc
=
= 1โ
= 2
6
1
๏ฆ1๏ถ
๏ง ๏ท
2
๏จ ๏ธ
cos
56. The point on the unit circle that corresponds to
๏ฆ 3 1๏ถ
13ฯ
, ๏ท.
ฮธ = 390ยบ =
is ๏ง
6
๏จ 2 2๏ธ
1
sin 390ยบ =
2
3
cos 390ยบ =
2
๏ฆ1๏ถ
๏ง ๏ท
1 2
3
3
tan 390ยบ = ๏จ 2 ๏ธ = โ
โ
=
3
๏ฆ 3๏ถ 2 3 3
๏ง
๏ท
๏จ 2 ๏ธ
1
2
csc 390ยบ =
= 1โ
= 2
1
๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
13ฯ
1
2
3 2 3
=
= 1โ
โ
=
6
3
๏ฆ 3๏ถ
3 3
๏ง๏ง 2 ๏ท๏ท
๏จ
๏ธ
๏ฆ 3๏ถ
๏ง
๏ท
13ฯ ๏ง๏จ 2 ๏ท๏ธ
3 2
cot
=
=
โ
= 3
1
6
2
1
๏ฆ ๏ถ
๏ง ๏ท
๏จ2๏ธ
sec
sec 390ยบ =
1
๏ฆ 3๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
= 1โ
2
3
โ
3
3
=
๏ฆ 3๏ถ
๏ง
๏ท
3 2
cot 390ยบ = ๏จ 2 ๏ธ =
โ
= 3
2 1
๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
140
Copyright ยฉ 2016 Pearson Education, Inc.
2 3
3
Section 2.2: Trigonometric Functions: Unit Circle Approach
57. The point on the unit circle that corresponds to
๏ฆ 3 1๏ถ
ฯ
ฮธ = โ = โ 30ยบ is ๏ง , โ ๏ท .
๏จ 2
2๏ธ
6
1
๏ฆ ฯ๏ถ
sin ๏ง โ ๏ท = โ
2
๏จ 6๏ธ
59. The point on the unit circle that corresponds to
๏ฆ
2
2๏ถ
3ฯ
ฮธ = โ135ยบ = โ
is ๏ง โ
,โ
๏ท.
๏จ 2
2 ๏ธ
4
2
2
2
cos ( โ135ยบ ) = โ
2
๏ฆ
2๏ถ
๏งโ
๏ท
2 ๏ฆ 2 ๏ถ
tan ( โ135ยบ ) = ๏จ 2 ๏ธ = โ
โ
๏ง โ
๏ท =1
2 ๏จ
๏ฆ
2๏ธ
2๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
sin ( โ135ยบ ) = โ
3
๏ฆ ฯ๏ถ
cos ๏ง โ ๏ท =
6
2
๏จ
๏ธ
๏ฆ 1๏ถ
๏งโ ๏ท
1 2
3
3
2๏ธ
๏ฆ ฯ๏ถ
tan ๏ง โ ๏ท = ๏จ
=โ โ
โ
=โ
2 3 3
3
๏จ 6๏ธ ๏ฆ 3๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
1
๏ฆ ฯ๏ถ
โ2
csc ๏ง โ ๏ท =
๏จ 6 ๏ธ ๏ฆโ 1 ๏ถ
๏ง
๏ท
๏จ 2๏ธ
1
2
3 2 3
๏ฆ ฯ๏ถ
=
โ
=
sec ๏ง โ ๏ท =
6
3
๏ฆ
๏ถ
3 3
๏จ
๏ธ
3
๏ง
๏ท
๏จ 2 ๏ธ
๏ฆ 3๏ถ
๏ง
๏ท ๏ฆ 3๏ถ
๏ฆ ฯ๏ถ
๏ฆ 2๏ถ
cot ๏ง โ ๏ท = ๏จ 2 ๏ธ = ๏ง๏ง
๏ทโ
๏ง โ ๏ท = โ 3
๏จ 6 ๏ธ ๏ฆ โ 1 ๏ถ ๏จ 2 ๏ท๏ธ ๏จ 1 ๏ธ
๏ง
๏ท
๏จ 2๏ธ
csc ( โ135ยบ ) =
1
๏ฆ 2 ๏ถ 2
= 1โ
๏ง โ
=โ 2
๏ทโ
๏ฆ
๏ถ
2๏ธ 2
2
๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
sec ( โ135ยบ ) =
๏ฆ 2 ๏ถ 2
= 1โ
๏ง โ
= 2
๏ทโ
๏ฆ
2๏ธ 2
2๏ถ
๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
1
๏ฆ
2๏ถ
๏งโ
๏ท
2
๏จ
๏ธ =1
cot ( โ135ยบ ) =
๏ฆ
2๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
58. The point on the unit circle that corresponds to
๏ฆ1
ฯ
3๏ถ
ฮธ = โ = โ 60ยบ is ๏ง , โ
๏ท.
3
๏จ2
2 ๏ธ
60. The point on the unit circle that corresponds to
๏ฆ 1 3๏ถ
4ฯ
is ๏ง โ ,
ฮธ = โ 240ยบ = โ
๏ท.
3
๏จ 2 2 ๏ธ
3
๏ฆ ฯ๏ถ
sin ๏ง โ ๏ท = โ
2
๏จ 3๏ธ
๏ฆ ฯ๏ถ 1
cos ๏ง โ ๏ท =
๏จ 3๏ธ 2
๏ฆ
3๏ถ
โ
๏ง
๏ท
3 2
๏ฆ ฯ๏ถ
โ
=โ 3
tan ๏ง โ ๏ท = ๏จ 2 ๏ธ = โ
1
3
2
1
๏ฆ ๏ถ
๏จ
๏ธ
๏ง ๏ท
๏จ2๏ธ
3
2
1
cos ( โ 240ยบ ) = โ
2
๏ฆ 3๏ถ
๏ง
๏ท
3 ๏ฆ 2๏ถ
โ
๏ง โ ๏ท = โ 3
tan ( โ 240ยบ ) = ๏จ 2 ๏ธ =
2 ๏จ 1๏ธ
๏ฆ 1๏ถ
๏งโ ๏ท
๏จ 2๏ธ
1
๏ฆ 2 ๏ถ 3
2 3
๏ฆ ฯ๏ถ
csc ๏ง โ ๏ท =
= 1โ
๏ง โ
=โ
๏ทโ
3
3๏ธ 3
๏จ 3๏ธ ๏ฆ
3๏ถ
๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
1
2
๏ฆ ฯ๏ถ
= 1โ
= 2
sec ๏ง โ ๏ท =
1
๏จ 3๏ธ ๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
๏ฆ1๏ถ
๏ง ๏ท
ฯ
1 ๏ฆ 2 ๏ถ 3
3
2
๏ฆ
๏ถ
=โ
cot ๏ง โ ๏ท = ๏จ ๏ธ = โ
๏ง โ
๏ทโ
3
3๏ธ 3
๏จ 3๏ธ ๏ฆ
3๏ถ 2 ๏จ
๏งโ
๏ท
๏จ 2 ๏ธ
1
๏ฆ 2 ๏ถ 3 2 3
= 1โ
๏ง
=
๏ทโ
3
๏ฆ 3๏ถ
๏จ 3๏ธ 3
๏ง
๏ท
๏จ 2 ๏ธ
1
๏ฆ 2๏ถ
= 1 โ
๏ง โ ๏ท = โ2
sec ( โ 240ยบ ) =
๏ฆ 1๏ถ
๏จ 1๏ธ
๏งโ ๏ท
๏จ 2๏ธ
๏ฆ 1๏ถ
๏งโ ๏ท
1 ๏ฆ 2 ๏ถ 3
3
=โ
cot ( โ240ยบ ) = ๏จ 2 ๏ธ = โ โ
๏ง
๏ทโ
2 ๏จ 3๏ธ 3
3
๏ฆ 3๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
sin ( โ240ยบ ) =
csc ( โ240ยบ ) =
141
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
61. The point on the unit circle that corresponds to
5ฯ
ฮธ=
= 450ยบ is ( 0, 1) .
2
5ฯ
5ฯ 1
=1
= =1
sin
csc
2
2 1
5ฯ
5ฯ 1
sec
=0
= = undefined
cos
2 0
2
5ฯ 1
5ฯ 0
tan
= = undefined cot
= =0
2 0
2 1
64. The point on the unit circle that corresponds to
๏ฆ 3 1๏ถ
13ฯ
ฮธ =โ
= โ390ยฐ is ๏ง๏ง
, โ ๏ท๏ท .
6
2๏ธ
๏จ 2
1
3
๏ฆ 13ฯ ๏ถ
๏ฆ 13ฯ ๏ถ
sin ๏ง โ
cos ๏ง โ
๏ท=โ
๏ท=
2
๏จ 6 ๏ธ
๏จ 6 ๏ธ 2
๏ฆ 1๏ถ
๏งโ ๏ท
1 2
3
3
๏ฆ 13ฯ ๏ถ ๏จ 2 ๏ธ
=โ โ
โ
=โ
tan ๏ง โ
๏ท=
2 3 3
3
๏จ 6 ๏ธ ๏ฆ 3๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
1
๏ฆ 13ฯ ๏ถ
csc ๏ง โ
๏ท= 1 โ 2
๏จ 6 ๏ธ ๏ฆโ ๏ถ
๏ง
๏ท
๏จ 2๏ธ
62. The point on the unit circle that corresponds to
ฮธ = 5ฯ = 900ยบ is ( โ1, 0 ) .
sin 5ฯ = 0
cos 5ฯ = โ1
tan 5ฯ =
0
=0
โ1
1
= undefined
0
1
= โ1
sec 5ฯ =
โ1
โ1
cot 5ฯ =
= undefined
0
csc 5ฯ =
1
2
3 2 3
๏ฆ 13ฯ ๏ถ
sec ๏ง โ
=
โ
=
๏ท=
3
3 3
๏จ 6 ๏ธ ๏ฆ 3๏ถ
๏ง
๏ท
๏จ 2 ๏ธ
๏ฆ 3๏ถ
๏ง
๏ท
๏ฆ 13ฯ ๏ถ ๏จ 2 ๏ธ ๏ฆ 3 ๏ถ ๏ฆ 2 ๏ถ
cot ๏ง โ
=๏ง
๏ทโ
๏ง โ ๏ท = โ 3
๏ท=
๏จ 6 ๏ธ ๏ฆ โ 1 ๏ถ ๏ง๏จ 2 ๏ท๏ธ ๏จ 1 ๏ธ
๏ง
๏ท
๏จ 2๏ธ
63. The point on the unit circle that corresponds to
๏ฆ 1
3๏ถ
14ฯ
ฮธ =โ
= โ840ยฐ is ๏ง๏ง โ , โ
๏ท.
2 ๏ท๏ธ
3
๏จ 2
65. Set the calculator to degree mode:
sin 28ยบ โ 0.47 .
3
1
๏ฆ 14ฯ ๏ถ
๏ฆ 14ฯ ๏ถ
sin ๏ง โ
cos ๏ง โ
๏ท=โ
๏ท=โ
2
2
๏จ 3 ๏ธ
๏จ 3 ๏ธ
๏ฆ
3๏ถ
โ
๏ง
๏ท
3 ๏ฆ 2๏ถ
๏ฆ 14ฯ ๏ถ ๏จ 2 ๏ธ
tan ๏ง โ
=
=โ
โ
๏ง โ ๏ท = 3
๏ท
2 ๏จ 1๏ธ
๏จ 3 ๏ธ ๏ฆโ 1 ๏ถ
๏ง
๏ท
๏จ 2๏ธ
66. Set the calculator to degree mode:
cos14ยบ โ 0.97 .
1
๏ฆ 2 ๏ถ 3
2 3
๏ฆ 14ฯ ๏ถ
csc ๏ง โ
= 1โ
๏ง โ
=โ
๏ทโ
๏ท=
3
๏ถ
3
3
๏จ 3 ๏ธ ๏ฆ
3
๏จ
๏ธ
๏งโ
๏ท
๏จ 2 ๏ธ
1
๏ฆ 14ฯ ๏ถ
๏ฆ 2๏ถ
= 1โ
๏ง โ ๏ท = โ 2
sec ๏ง โ
๏ท=
๏จ 3 ๏ธ ๏ฆโ 1 ๏ถ
๏จ 1๏ธ
๏ง
๏ท
2
๏จ
๏ธ
1
๏ฆ
๏ถ
๏งโ ๏ท
1 ๏ฆ 2 ๏ถ 3
3
๏ฆ 14ฯ ๏ถ ๏จ 2 ๏ธ
cot ๏ง โ
= โ โ
๏ง โ
=
๏ทโ
๏ท
2 ๏จ
3
3๏ธ 3
๏จ 3 ๏ธ๏ฆ
3๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
67. Set the calculator to degree mode:
1
sec 21ยบ =
โ 1.07 .
cos 21ยฐ
142
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Trigonometric Functions: Unit Circle Approach
74. Set the calculator to radian mode: tan 1 โ 1.56 .
68. Set the calculator to degree mode:
1
cot 70ยบ =
โ 0.36 .
tan 70ยบ
75. Set the calculator to degree mode: sin1ยบ โ 0.02 .
69. Set the calculator to radian mode: tan
ฯ
โ 0.32 .
10
76. Set the calculator to degree mode: tan1ยบ โ 0.02 .
70. Set the calculator to radian mode: sin
ฯ
โ 0.38 .
8
77. For the point (โ3, 4) , x = โ3 , y = 4 ,
r = x 2 + y 2 = 9 + 16 = 25 = 5
sin ฮธ =
4
5
csc ฮธ =
3
5
4
tan ฮธ = โ
3
5
3
3
cot ฮธ = โ
4
cos ฮธ = โ
71. Set the calculator to radian mode:
ฯ
1
cot =
โ 3.73 .
12 tan ฯ
12
5
4
sec ฮธ = โ
78. For the point (5, โ12) , x = 5 , y = โ12 ,
r = x 2 + y 2 = 25 + 144 = 169 = 13
12
13
5
cos ฮธ =
13
12
tan ฮธ = โ
5
13
12
13
sec ฮธ =
5
5
cot ฮธ = โ
12
sin ฮธ = โ
72. Set the calculator to radian mode:
5ฯ
1
csc
=
โ 1.07 .
13 sin 5ฯ
13
csc ฮธ = โ
79. For the point (2, โ3) , x = 2 , y = โ3 ,
r = x 2 + y 2 = 4 + 9 = 13
73. Set the calculator to radian mode: sin 1 โ 0.84 .
sin ฮธ =
cos ฮธ =
โ3
13
2
13
3
tan ฮธ = โ
2
143
Copyright ยฉ 2016 Pearson Education, Inc.
โ
โ
13
13
13
13
3 13
13
csc ฮธ = โ
2 13
13
sec ฮธ =
=โ
=
13
3
13
2
2
cot ฮธ = โ
3
Chapter 2: Trigonometric Functions
84. For the point (0.3, 0.4) , x = 0.3 , y = 0.4 ,
80. For the point (โ1, โ2) , x = โ1 , y = โ 2 ,
2
2
r = x 2 + y 2 = 0.09 + 0.16 = 0.25 = 0.5
r = x + y = 1+ 4 = 5
โ2
sin ฮธ =
5
cos ฮธ =
5
โ
โ1
5
5
โ
5 5
โ2
tan ฮธ =
=2
โ1
=โ
2 5
5
=โ
5
5
csc ฮธ =
0.4 4
=
0.5 5
0.3 3
cos ฮธ =
=
0.5 5
0.4 4
tan ฮธ =
=
0.3 3
5
5
=โ
โ2
2
5
=โ 5
โ1
โ1 1
cot ฮธ =
=
โ2 2
sec ฮธ =
=
r = x2 + y 2 = 4 + 4 = 8 = 2 2
โ2
โ
2 2
cos ฮธ =
tan ฮธ =
โ2
โ
2 2
โ2
โ2
2
2
2
2
=โ
2
2
=โ
2
2
csc ฮธ =
sec ฮธ =
cot ฮธ =
=1
2 2
โ2
2 2
โ2
โ2
โ2
๏ฆ
3๏ถ
86. tan 60ยบ + tan150ยบ = 3 + ๏ง๏ง โ
๏ท๏ท
๏จ 3 ๏ธ
=โ 2
=
=1
cos ฮธ =
2
โ1
2
โ
โ
2
2
2
2
1
tan ฮธ =
= โ1
โ1
=
2
2
=โ
csc ฮธ =
2
2
3 3โ 3 2 3
=
3
3
87. sin 40ยบ + sin130ยบ + sin 220ยบ + sin 310ยบ
= sin 40ยบ + sin130ยบ + sin ( 40ยบ +180ยบ ) +
r = x2 + y 2 = 1 + 1 = 2
1
2
2 ๏ฆ
2๏ถ ๏ฆ
2๏ถ
+
+ ๏ง๏ง โ
๏ท๏ท + ๏ง๏ง โ
๏ท
2
2 ๏จ 2 ๏ธ ๏จ 2 ๏ท๏ธ
=0
=โ 2
82. For the point (โ1, 1) , x = โ1 , y = 1 ,
sin ฮธ =
csc ฮธ =
85. sin 45ยบ + sin135ยบ + sin 225ยบ + sin 315ยบ
81. For the point (โ2, โ2) , x = โ 2 , y = โ 2 ,
sin ฮธ =
0.5 5
=
0.4 4
0.5 5
sec ฮธ =
=
0.3 3
0.3 3
cot ฮธ =
=
0.4 4
sin ฮธ =
sin (130ยบ +180ยบ )
2
= 2
1
= sin 40ยบ + sin130ยบ โ sin 40ยบ โ sin130ยบ
=0
2
=โ 2
โ1
โ1
cot ฮธ =
= โ1
1
sec ฮธ =
88. tan 40ยบ + tan140ยบ = tan 40ยบ + tan (180ยบ โ40ยบ )
= tan 40ยบ โ tan 40ยบ
=0
1
1
๏ฆ1 1๏ถ
83. For the point ๏ง , ๏ท , x = , y = ,
3
4
3
4
๏จ
๏ธ
89. If f (ฮธ ) = sin ฮธ = 0.1 , then
f (ฮธ + ฯ ) = sin(ฮธ + ฯ) = โ 0.1 .
1 1
25
5
+
=
=
9 16
144 12
1
5
1 12 3
5 4 5
4
12
sin ฮธ =
csc ฮธ =
= โ
=
= โ
=
5 4 5 5
1 12 1 3
12
4
1
5
5 3 5
1 12 4
sec ฮธ = 12 = โ
=
cos ฮธ = 3 = โ
=
1 12 1 4
5 3 5 5
3
12
1
1
1 3 3
1 4 4
tan ฮธ = 4 = โ
=
cot ฮธ = 3 = โ
=
1 4 1 4
1 3 1 3
3
4
r = x2 + y 2 =
90. If f (ฮธ ) = cos ฮธ = 0.3 , then
f (ฮธ + ฯ ) = cos(ฮธ + ฯ) = โ 0.3 .
91. If f (ฮธ ) = tan ฮธ = 3 , then
f (ฮธ + ฯ ) = tan(ฮธ + ฯ) = 3 .
92. If f (ฮธ ) = cot ฮธ = โ 2 , then
f (ฮธ + ฯ ) = cot(ฮธ + ฯ) = โ2 .
144
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Trigonometric Functions: Unit Circle Approach
93. If sin ฮธ =
94. If cos ฮธ =
1
1
5
, then csc ฮธ =
= 1โ
= 5 .
1
5
๏ฆ1๏ถ
๏ง ๏ท
๏จ5๏ธ
3
2
96. g ( 60ยบ ) = cos ( 60ยบ ) =
1
2
97.
f h
ฯ
6
ฯ
= sin 2
= sin
2
1
3 3
= 1โ
= .
, then sec ฮธ =
2
3
2 2
๏ฆ ๏ถ
๏ง ๏ท
๏จ3๏ธ
f ( 60ยบ ) = sin ( 60ยบ ) =
95.
107.
108. g ( p (60ยฐ) ) = cos
6
ฯ
3
3
2
=
60ยฐ
2
= cos 30ยฐ =
3
2
cos 315ยฐ
2
1
= cos 315ยฐ
2
1 2
2
= โ
=
2 2
4
109. p ( g (315ยฐ) ) =
1
๏ฆ 60ยบ ๏ถ
๏ฆ 60ยบ ๏ถ
f๏ง
๏ท = sin ๏ง
๏ท = sin ( 30ยบ ) =
2
๏จ 2 ๏ธ
๏จ 2 ๏ธ
3
๏ฆ 60ยบ ๏ถ
๏ฆ 60ยบ ๏ถ
98. g ๏ง
๏ท = cos ๏ง
๏ท = cos ( 30ยบ ) =
2
๏จ 2 ๏ธ
๏จ 2 ๏ธ
110. h f
5ฯ
6
= 2 sin
5ฯ
6
= 2โ
1
=1
2
2
๏ฆ 3๏ถ
3
99. ๏ฉ๏ซ f ( 60ยบ ) ๏น๏ป = ( sin 60ยบ ) = ๏ง๏ง
๏ท๏ท =
4
๏จ 2 ๏ธ
2
2
111. a.
2
2
1
2
๏ฆ1๏ถ
100. ๏ซ๏ฉ g ( 60ยบ ) ๏ป๏น = ( cos 60ยบ ) = ๏ง ๏ท =
2
4
๏จ ๏ธ
101.
103. 2 f ( 60ยบ ) = 2sin ( 60ยบ ) = 2 โ
3
= 3
2
104. 2 g ( 60ยบ ) = 2 cos ( 60ยบ ) = 2 โ
1
=1
2
105.
๏ฆ 2 ฯ๏ถ
, ๏ท is on the graph of f โ1 .
b. The point ๏ง
๏จ 2 4๏ธ
3
f ( 2 โ
60ยบ ) = sin ( 2 โ
60ยบ ) = sin (120ยบ ) =
2
102. g ( 2 โ
60ยบ ) = cos ( 2 โ
60ยบ ) = cos (120ยบ ) = โ
f ( โ 60ยบ ) = sin ( โ 60ยบ ) = sin ( 300ยบ ) = โ
106. g ( โ 60ยบ ) = cos ( โ 60ยบ ) = cos ( 300ยบ ) =
2
๏ฆฯ ๏ถ
๏ฆฯ ๏ถ
f ๏ง ๏ท = sin ๏ง ๏ท =
2
๏จ4๏ธ
๏จ4๏ธ
๏ฆฯ
2๏ถ
The point ๏ง ,
๏ท is on the graph of f.
๏จ4 2 ๏ธ
c.
1
2
๏ฆฯ ฯ ๏ถ
๏ฆฯ ๏ถ
f ๏ง + ๏ทโ3 = f ๏ง ๏ทโ3
๏จ4 4๏ธ
๏จ2๏ธ
๏ฆฯ ๏ถ
= sin ๏ง ๏ท โ 3
๏จ2๏ธ
= 1โ 3
= โ2
๏ฆฯ
๏ถ
The point ๏ง , โ 2 ๏ท is on the graph of
๏จ4
๏ธ
ฯ๏ถ
๏ฆ
y = f ๏งx + ๏ทโ3 .
๏จ
4๏ธ
3
2
1
2
145
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
112. a.
3
๏ฆฯ ๏ถ
๏ฆฯ ๏ถ
g ๏ง ๏ท = cos ๏ง ๏ท =
๏จ6๏ธ
๏จ6๏ธ 2
๏ฆฯ
3๏ถ
The point ๏ง ,
๏ท is on the graph of g.
๏จ6 2 ๏ธ
116.
๏ฆ 3 ฯ๏ถ
, ๏ท is on the graph of g โ1 .
b. The point ๏ง
๏จ 2 6๏ธ
c.
๏ฆฯ ฯ ๏ถ
2 g ๏ง โ ๏ท = 2 g (0)
๏จ6 6๏ธ
= 2 cos(0)
= 2 โ
1
0.5
โ0.1224
0.4
โ0.0789
โ0.1973
0.2
โ0.0199
โ0.0997
0.1
โ0.0050
โ0.0050
0.01
โ0.00005
โ0.0050
ฮธ
โ0.2448
0.001
0.0000
โ0.0005
0.0001
0.0000
โ0.00005
0.00001
0.0000
โ0.000005
cos ฮธ โ 1
ฮธ
approaches 0 as ฮธ
approaches 0.
117. Use the formula R (ฮธ ) =
v0 2 sin ( 2ฮธ )
g
with
g = 32.2ft/sec 2 ; ฮธ = 45ยบ ; v0 = 100 ft/sec :
113. Answers will vary. One set of possible answers
11ฯ
5ฯ ฯ 7ฯ 13ฯ
,โ
, ,
,
is โ
.
3
3 3 3 3
R ( 45ยบ ) =
(100) 2 sin(2 โ
45ยบ )
โ 310.56 feet
32.2
Use the formula H (ฮธ ) =
114. Answers will vary. One ser of possible answers
13ฯ
5ฯ 3ฯ 11ฯ 19ฯ
is โ
,โ
, ,
,
4
4 4 4
4
115.
cos ฮธ โ 1
g (ฮธ ) =
=2
๏ฆฯ ๏ถ
Thus, the point ๏ง , 2 ๏ท is on the graph of
๏จ6 ๏ธ
ฯ
๏ฆ
๏ถ
y = 2g ๏ง x โ ๏ท .
6๏ธ
๏จ
cos ฮธ โ 1
ฮธ
v0 2 ( sin ฮธ )
2
with
2g
g = 32.2ft/sec 2 ; ฮธ = 45ยบ ; v0 = 100 ft/sec :
H ( 45ยบ ) =
sin ฮธ
1002 (sin 45ยบ ) 2
โ 77.64 feet
2(32.2)
ฮธ
sin ฮธ
0.5
0.4794
0.9589
0.4
0.3894
0.9735
0.2
0.1987
0.9933
g = 9.8 m/sec 2 ; ฮธ = 30ยบ ; v0 = 150 m/sec :
0.1
0.0998
0.9983
R ( 30ยบ ) =
ฮธ
0.01
0.0100
1.0000
0.001
0.0010
1.0000
0.0001
0.0001
1.0000
118. Use the formula R (ฮธ ) =
f (ฮธ ) =
sin ฮธ
ฮธ
g
with
1502 sin(2 โ
30ยบ )
โ 1988.32 m
9.8
Use the formula H (ฮธ ) =
0.00001 0.00001 1.0000
v0 2 sin ( 2ฮธ )
v0 2 ( sin ฮธ )
2
with
2g
g = 9.8 m/sec 2 ; ฮธ = 30ยบ ; v0 = 150 m/sec :
approaches 1 as ฮธ approaches 0.
H ( 30ยบ ) =
1502 (sin 30ยบ ) 2
โ 286.99 m
2(9.8)
119. Use the formula R (ฮธ ) =
v0 2 sin ( 2ฮธ )
g
with
g = 9.8 m/sec 2 ; ฮธ = 25ยบ ; v0 = 500 m/sec :
R ( 25ยบ ) =
146
Copyright ยฉ 2016 Pearson Education, Inc.
5002 sin(2 โ
25ยบ )
โ 19, 541.95 m
9.8
Section 2.2: Trigonometric Functions: Unit Circle Approach
Use the formula H (ฮธ ) =
v0 2 ( sin ฮธ )
2
distance on road
rate on road
8 โ 2x
=
8
x
= 1โ
4
1
= 1 โ tan ฮธ
4
1
= 1โ
4 tan ฮธ
123. Note: time on road =
with
2g
g = 9.8 m/sec ; ฮธ = 25ยบ ; v0 = 500 m/sec :
2
H ( 25ยบ ) =
5002 (sin 25ยบ ) 2
โ 2278.14 m
2(9.8)
120. Use the formula R (ฮธ ) =
v0 2 sin ( 2ฮธ )
g
with
g = 32.2ft/sec 2 ; ฮธ = 50ยบ ; v0 = 200 ft/sec :
R ( 50ยบ ) =
2002 sin(2 โ
50ยบ )
โ 1223.36 ft
32.2
Use the formula H (ฮธ ) =
v0 2 ( sin ฮธ )
a.
2
2g
2
1
โ
3sin 30ยบ 4 tan 30ยบ
2
1
= 1+
โ
1
1
3โ
4โ
2
3
T (30ยบ ) = 1 +
with
g = 32.2ft/sec 2 ; ฮธ = 50ยบ ; v0 = 200 ft/sec :
H ( 50ยบ ) =
2002 (sin 50ยบ ) 2
โ 364.49 ft
2(32.2)
121. Use the formula t (ฮธ ) =
= 1+
Sally is on the paved road for
1
1โ
โ 0.57 hr .
4 tan 30ยบ
2a
with
g sin ฮธ cos ฮธ
g = 32 ft/sec 2 and a = 10 feet :
a.
t ( 30 ) =
b.
t ( 45 ) =
c.
t ( 60 ) =
2 (10 )
32sin 30ยบ โ
cos 30ยบ
2 (10 )
32sin 45ยบ โ
cos 45ยบ
2 (10 )
32sin 60ยบ โ
cos 60ยบ
4
3
โ
โ 1.9 hr
3 4
b.
โ 1.20 seconds
2
1
โ
3sin 45ยบ 4 tan 45ยบ
2
1
= 1+
โ
1
4
โ
1
3โ
2
T (45ยบ ) = 1 +
โ 1.12 seconds
2 2 1
โ โ 1.69 hr
3
4
Sally is on the paved road for
1
1โ
= 0.75 hr .
4 tan 45o
= 1+
โ 1.20 seconds
122. Use the formula
x (ฮธ ) = cos ฮธ + 16 + 0.5cos(2ฮธ ) .
x ( 30 ) = cos ( 30ยบ ) + 16 + 0.5cos(2 โ
30ยบ )
c.
2
1
โ
o
3sin 60 4 tan 60o
2
1
= 1+
โ
3 4โ
3
3โ
2
4
1
= 1+
โ
3 3 4 3
โ 1.63 hr
T (60ยบ ) = 1 +
= cos ( 30ยบ ) + 16 + 0.5cos ( 60ยบ )
โ 4.90 cm
x ( 45 ) = cos ( 45ยบ ) + 16 + 0.5cos(2 โ
45ยบ )
= cos ( 45ยบ ) + 16 + 0.5cos ( 90ยบ )
โ 4.71 cm
Sally is on the paved road for
1
1โ
โ 0.86 hr .
4 tan 60o
147
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
d.
2
1
.
โ
3sin 90ยบ 4 tan 90ยบ
But tan 90ยบ is undefined, so we cannot use
the function formula for this path.
However, the distance would be 2 miles in
the sand and 8 miles on the road. The total
2
5
time would be: + 1 = โ 1.67 hours. The
3
3
path would be to leave the first house
walking 1 mile in the sand straight to the
road. Then turn and walk 8 miles on the
road. Finally, turn and walk 1 mile in the
sand to the second house.
T (90ยบ ) = 1 +
127.
H โ 71
The tree is approximately 71 feet tall.
128.
124. When ฮธ = 30ยบ :
(1 + sec 30ยบ )
1
V ( 30ยบ ) = ฯ (2)3
โ 251.42 cm3
2
3
( tan 30ยบ )
3
(1 + sec 60ยบ )
1
V ( 60ยบ ) = ฯ (2)3
โ 75.40 cm3
2
3
( tan 60ยบ )
3
H
2 2D
22ยฐ
6
tan
=
2
2D
2 D tan11ยฐ = 6
2
0.52ยฐ
H
tan
=
2
2(384400)
H = 768800 tan 0.26ยฐ
x + (1 โ x 2 ) =
=
41
49
8
=0
49
Using the quadratic formula:
8
a = 1, b = โ1, c = โ
49
x2 โ x โ
3
= 15.4
tan11ยฐ
x=
Arletha is 15.4 feet from the car.
ฮธ
H
126.
tan =
2 2D
8ยฐ 555
tan =
2 2D
2 D tan 4ยฐ = 555
D=
H
2D
129. cos ฮธ + sin 2 ฮธ =
When ฮธ = 60ยบ :
D=
=
41
; cos 2 ฮธ + sin 2 ฮธ = 1
49
Substitute x = cos ฮธ ; y = sin ฮธ and solve these
simultaneous equations for y.
41 2
; x + y2 = 1
x + y2 =
49
y 2 = 1 โ x2
3
ฮธ
ฮธ
The moon has a radius of 1744 km.
(1 + sec 45ยบ )
1
V ( 45ยบ ) = ฯ (2)3
โ 117.88 cm3
2
3
( tan 45ยบ )
tan
tan
H = 3488
When ฮธ = 45ยบ :
125.
ฮธ
H
=
2 2D
20ยฐ
H
tan
=
2
2(200)
H = 400 tan10ยฐ
tan
=
โ ( โ1) ยฑ ( โ1) 2 โ 4(1)( โ 498 )
2
1ยฑ 1+
2
32
49
=
1ยฑ
81
49
2
=
1 ยฑ 97 8
1
= or โ
2
7
7
Since the point is in quadrant III then x = โ
and y 2 = 1 โ โ
555
= 3968
2 tan 4ยฐ
y=โ
The tourist is 3968 feet from the monument.
148
Copyright ยฉ 2016 Pearson Education, Inc.
1
7
2
= 1โ
48
4 3
=โ
49
7
1
48
=
49 49
1
7
Section 2.2: Trigonometric Functions: Unit Circle Approach
c.
1
130. cos 2 ฮธ โ sin ฮธ = โ ;cos 2 ฮธ + sin 2 ฮธ = 1
9
Substitute x = cos ฮธ ; y = sin ฮธ and solve these
simultaneous equations for y.
1
x2 โ y = โ ; x2 + y 2 = 1
9
2
2
x = 1โ y
1
(1 โ y 2 ) โ y = โ
9
10
y2 + y โ = 0
9
2
9 y + 9 y โ 10 = 0
Using the quadratic formula:
a = 9, b = 9, c = โ10
y=
0
90ยฐ
R is largest when ฮธ = 67.5ยบ .
sin ฮธ โ 0 sin ฮธ
=
= tan ฮธ .
cos ฮธ โ 0 cos ฮธ
Since L is parallel to M, the slope of L is equal to
the slope of M. Thus, the slope of L = tan ฮธ .
132. Slope of M =
133. a.
When t = 1 , the coordinate on the unit circle
is approximately (0.5, 0.8) . Thus,
1
โ 1.3
0.8
1
sec1 โ
= 2.0
cos1 โ 0.5
0.5
0.8
0.5
tan1 โ
= 1.6
cot1 โ
โ 0.6
0.5
0.8
Set the calculator on RADIAN mode:
sin1 โ 0.8
โ9 ยฑ 81 + 360 โ9 ยฑ 441 โ9 ยฑ 21
=
=
18
18
18
Since the point is in quadrant II then
โ3 + 21 12 2
y=
=
= and
18
18 3
2
2
4 5
x2 = 1 โ
= 1โ =
3
9 9
=
131. a.
20
45ยฐ
โ(9) ยฑ (9) 2 โ 4(9)( โ10)
18
x=โ
Using the MAXIMUM feature, we find:
csc1 โ
5
5
=โ
9
3
R ( 60 ) =
=
32
2
2
[sin ( 2 โ
60ยบ ) โ cos ( 2 โ
60ยบ ) โ 1]
2
[sin (120ยบ ) โ cos (120ยบ ) โ 1]
32
32
2
32
b. When t = 5.1 , the coordinate on the unit
circle is approximately (0.4, โ0.9) . Thus,
1
โ โ1.1
โ0.9
1
cos 5.1 โ 0.4
sec 5.1 โ
= 2.5
0.4
โ0.9
0.4
tan 5.1 โ
โ โ2.3 cot 5.1 โ
โ โ0.4
0.4
โ0.9
sin 5.1 โ โ0.9
๏ฆ 3 ๏ฆ 1๏ถ ๏ถ
โ ๏ง โ ๏ท โ 1๏ท
๏จ 2 ๏จ 2๏ธ ๏ธ
โ 32 2 ๏ง
โ 16.56 ft
b. Let Y1 =
20
45ยฐ
0
322 2
๏ฉsin ( 2 x ) โ cos ( 2 x ) โ 1๏ป๏น
32 ๏ซ
csc 5.1 โ
Set the calculator on RADIAN mode:
90ยฐ
149
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
134. a.
When t = 2 , the coordinate on the unit
circle is approximately (โ0.4, 0.9) . Thus,
138.
1
โ 1.1
0.9
1
sec 2 โ
= โ2.5
cos 2 โ โ0.4
โ0.4
0.9
โ0.4
tan 2 โ
= โ2.3
cot 2 โ
โ โ0.4
โ0.4
0.9
Set the calculator on RADIAN mode:
sin 2 โ 0.9
csc 2 โ
b. When t = 4 , the coordinate on the unit
circle is approximately (โ0.7, โ0.8) . Thus,
1
โ โ1.3
โ0.8
1
cos 4 โ โ0.7
sec 4 โ
โ โ1.4
โ0.7
โ0.8
โ0.7
tan 4 โ
cot 4 โ
โ 1.1
โ 0.9
โ0.7
โ0.8
Set the calculator on RADIAN mode:
sin 4 โ โ0.8
csc 4 โ
Answers will vary.
139.
135 โ 137. Answers will vary.
2
xโ7
2
x=
yโ7
x( y โ 7) = 2
xy โ 7 x = 2
y=
xy = 7 x + 2
7x + 2
2
= 7+
x
x
2
f 1 ( x) = 7 +
x
y=
140. 180
141.
โ13ฯ
= โ780ยฐ
3
f ( x + 3) =
=
=
150
Copyright ยฉ 2016 Pearson Education, Inc.
( x + 3) โ 1
( x + 3) 2 + 2
x+2
x2 + 6 x + 9 + 2
x+2
x 2 + 6 x + 11
is
Section 2.3: Properties of the Trigonometric Functions
142. d = (1 โ 3) 2 + (0 โ ( โ6)) 2
19. cos
= ( โ2) 2 + (6) 2
= 4 + 36 = 40 = 2 10
Section 2.3
20. sin
1 ๏ฌ
1๏ผ
1. All real numbers except โ ; ๏ญ x | x โ โ ๏ฝ
2๏พ
2 ๏ฎ
22. csc
3. False
4. True
5. 2ฯ , ฯ
ฯ
23. sec
2
7. b.
8. a
9. 1
10. False; sec ฮธ =
24. cot
1
cos ฮธ
11. sin 405ยบ = sin(360ยบ + 45ยบ ) = sin 45ยบ =
2
2
1
12. cos 420ยบ = cos(360ยบ + 60ยบ ) = cos 60ยบ =
2
25. tan
13. tan 405ยบ = tan(180ยบ + 180ยบ + 45ยบ ) = tan 45ยบ = 1
26. sec
14. sin 390ยบ = sin(360ยบ + 30ยบ ) = sin 30ยบ =
9ฯ
ฯ
2
๏ฆฯ
๏ถ
= sin ๏ง + 2ฯ ๏ท = sin =
4
4
4
2
๏จ
๏ธ
21. tan ( 21ฯ ) = tan(0 + 21ฯ) = tan ( 0 ) = 0
2. even
6. All real number, except odd multiples of
33ฯ
๏ฆฯ
๏ถ
๏ฆฯ
๏ถ
= cos ๏ง + 8ฯ ๏ท = cos ๏ง + 4 โ
2ฯ ๏ท
4
4
4
๏จ
๏ธ
๏จ
๏ธ
ฯ
= cos
4
2
=
2
1
2
9ฯ
๏ฆฯ
๏ถ
๏ฆฯ
๏ถ
= csc ๏ง + 4ฯ ๏ท = csc ๏ง + 2 โ
2ฯ ๏ท
2
๏จ2
๏ธ
๏จ2
๏ธ
ฯ
= csc
2
=1
17 ฯ
๏ฆฯ
๏ถ
๏ฆฯ
๏ถ
= sec ๏ง + 4ฯ ๏ท = sec ๏ง + 2 โ
2ฯ ๏ท
4
๏จ4
๏ธ
๏จ4
๏ธ
ฯ
= sec
4
= 2
17 ฯ
๏ฆฯ
๏ถ
๏ฆฯ
๏ถ
= cot ๏ง + 4ฯ ๏ท = cot ๏ง + 2 โ
2ฯ ๏ท
4
๏จ4
๏ธ
๏จ4
๏ธ
ฯ
= cot
4
=1
19ฯ
ฯ
3
๏ฆฯ
๏ถ
= tan ๏ง + 3ฯ ๏ท = tan =
6
6
6
3
๏จ
๏ธ
25ฯ
๏ฆฯ
๏ถ
๏ฆฯ
๏ถ
= sec ๏ง + 4ฯ ๏ท = sec ๏ง + 2 โ
2ฯ ๏ท
6
6
6
๏จ
๏ธ
๏จ
๏ธ
ฯ
= sec
6
=
15. csc 450ยบ = csc(360ยบ + 90ยบ ) = csc 90ยบ = 1
16. sec 540ยบ = sec(360ยบ + 180ยบ ) = sec180ยบ = โ1
2 3
3
27. Since sin ฮธ > 0 for points in quadrants I and II,
and cos ฮธ < 0 for points in quadrants II and III,
the angle ฮธ lies in quadrant II.
17. cot 390ยบ = cot(180ยบ + 180ยบ + 30ยบ ) = cot 30ยบ = 3
28. Since sin ฮธ 0 for points in quadrants I and
IV, the angle ฮธ lies in quadrant IV.
18. sec 420ยบ = sec(360ยบ + 60ยบ ) = sec 60ยบ = 2
151
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
29. Since sin ฮธ < 0 for points in quadrants III and
IV, and tan ฮธ 0 for points in quadrants I and IV,
and tan ฮธ > 0 for points in quadrants I and III,
the angle ฮธ lies in quadrant I.
2 5
5
, cos ฮธ =
5
5
๏ฆ2 5๏ถ
๏ง
๏ท
sin ฮธ ๏ง๏จ 5 ๏ท๏ธ 2 5 5
tan ฮธ =
=
=
โ
=2
cos ฮธ
5
๏ฆ 5๏ถ
5
๏ง๏ง
๏ท๏ท
๏จ 5 ๏ธ
37. sin ฮธ =
31. Since cos ฮธ > 0 for points in quadrants I and IV,
and tan ฮธ < 0 for points in quadrants II and IV,
the angle ฮธ lies in quadrant IV.
32. Since cos ฮธ 0 for points in quadrants I and III,
the angle ฮธ lies in quadrant III.
33. Since sec ฮธ 0 for points in quadrants I and II, the
angle ฮธ lies in quadrant II.
csc ฮธ =
34. Since csc ฮธ > 0 for points in quadrants I and II,
and cos ฮธ < 0 for points in quadrants II and III,
the angle ฮธ lies in quadrant II.
sec ฮธ =
1
1
5
5
5
=
= 1โ
โ
=
sin ฮธ ๏ฆ 2 5 ๏ถ
2
2 5 5
๏ง๏ง
๏ท๏ท
๏จ 5 ๏ธ
1
1
5
5
=
=
โ
= 5
cos ฮธ ๏ฆ 5 ๏ถ
5 5
๏ง๏ง
๏ท๏ท
๏จ 5 ๏ธ
1
1
cot ฮธ =
=
tan ฮธ 2
3
4
35. sin ฮธ = โ , cos ฮธ =
5
5
๏ฆ 3๏ถ
โ
sin ฮธ ๏ง๏จ 5 ๏ท๏ธ
3 5
3
tan ฮธ =
=
=โ โ
=โ
4
cos ฮธ
5 4
4
๏ฆ ๏ถ
๏ง ๏ท
๏จ5๏ธ
1
1
5
csc ฮธ =
=
=โ
sin ฮธ ๏ฆ 3 ๏ถ
3
๏งโ ๏ท
๏จ 5๏ธ
1
1
5
sec ฮธ =
=
=
cos ฮธ ๏ฆ 4 ๏ถ 4
๏ง ๏ท
๏จ5๏ธ
1
4
cot ฮธ =
=โ
tan ฮธ
3
5
2 5
, cos ฮธ = โ
5
5
๏ฆ
๏ถ
5
๏งโ
๏ท
5
sin ฮธ
๏ธ = ๏ฆ โ 5 ๏ถโ
๏ฆ โ 5 ๏ถ = 1
tan ฮธ =
= ๏จ
๏ง
๏ท
cos ฮธ ๏ฆ 2 5 ๏ถ ๏จ 5 ๏ธ ๏ง๏จ 2 5 ๏ท๏ธ 2
๏งโ
๏ท
๏จ 5 ๏ธ
38. sin ฮธ = โ
csc ฮธ =
1
1
๏ฆ 5 ๏ถ 5
=
= 1โ
๏ง โ
=โ 5
๏ทโ
sin ฮธ ๏ฆ
5๏ธ 5
5๏ถ
๏จ
๏งโ
๏ท
๏จ 5 ๏ธ
1
1
๏ฆ
5 ๏ถ 5
5
=
= ๏งโ
=โ
๏ทโ
cos ฮธ ๏ฆ 2 5 ๏ถ ๏จ 2 5 ๏ธ 5
2
๏งโ
๏ท
5 ๏ธ
๏จ
1
1
2
cot ฮธ =
=
= 1โ
= 2
tan ฮธ ๏ฆ 1 ๏ถ
1
๏ง ๏ท
๏จ2๏ธ
sec ฮธ =
4
3
36. sin ฮธ = , cos ฮธ = โ
5
5
๏ฆ4๏ถ
๏ง ๏ท
sin ฮธ
4 ๏ฆ 5๏ถ
4
5
tan ฮธ =
= ๏จ ๏ธ = โ
๏ง โ ๏ท = โ
cos ฮธ ๏ฆ 3 ๏ถ 5 ๏จ 3 ๏ธ
3
๏งโ ๏ท
๏จ 5๏ธ
1
1
5
csc ฮธ =
=
=
4
sin ฮธ ๏ฆ ๏ถ 4
๏ง ๏ท
๏จ5๏ธ
152
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Properties of the Trigonometric Functions
1
3
39. sin ฮธ = , cos ฮธ =
2
2
๏ฆ1๏ถ
๏ง ๏ท
sin ฮธ
1 2
3
3
2
= ๏จ ๏ธ = โ
โ
=
tan ฮธ =
cos ฮธ ๏ฆ 3 ๏ถ 2 3 3
3
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
1
1
2
csc ฮธ =
=
= 1โ
= 2
sin ฮธ ๏ฆ 1 ๏ถ
1
๏ง ๏ท
๏จ2๏ธ
sec ฮธ =
cot ฮธ =
sec ฮธ =
cot ฮธ =
1
1
4
2
=
=โ
โ
= โ2 2
tan ฮธ ๏ฆ
2 2
2๏ถ
๏ง๏ง โ
๏ท๏ท
๏จ 4 ๏ธ
2 2
1
, cos ฮธ = โ
3
3
๏ฆ2 2๏ถ
๏ง
๏ท
sin ฮธ ๏ง๏จ 3 ๏ท๏ธ 2 2 3
tan ฮธ =
=
=
โ
โ = โ2 2
cos ฮธ
3
1
๏ฆ 1๏ถ
๏งโ ๏ท
๏จ 3๏ธ
42. sin ฮธ =
1
1
2
3 2 3
=
=
โ
=
cos ฮธ ๏ฆ 3 ๏ถ
3
3 3
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
1
1
3
3
=
=
โ
= 3
tan ฮธ ๏ฆ 3 ๏ถ
3 3
๏ง๏ง 3 ๏ท๏ท
๏จ
๏ธ
1
1
3
2 3 2
=
= 1โ
โ
=
sin ฮธ ๏ฆ 2 2 ๏ถ
4
2 2 2
๏ง๏ง
๏ท๏ท
๏จ 3 ๏ธ
1
1
๏ฆ 3๏ถ
=
= 1 โ
๏ง โ ๏ท = โ3
sec ฮธ =
cos ฮธ ๏ฆ 1 ๏ถ
๏จ 1๏ธ
๏งโ ๏ท
๏จ 3๏ธ
csc ฮธ =
3
1
, cos ฮธ =
2
2
๏ฆ 3๏ถ
๏ง
๏ท
sin ฮธ ๏ง๏จ 2 ๏ท๏ธ
3 2
tan ฮธ =
=
=
โ
= 3
cos ฮธ
2 1
๏ฆ1๏ถ
๏ง ๏ท
๏จ2๏ธ
40. sin ฮธ =
cot ฮธ =
1
1
2
3 2 3
=
= 1โ
โ
=
sin ฮธ ๏ฆ 3 ๏ถ
3
3 3
๏ง๏ง
๏ท๏ท
๏จ 2 ๏ธ
1
1
2
sec ฮธ =
=
= 1โ
= 2
cos ฮธ ๏ฆ 1 ๏ถ
1
๏ง ๏ท
๏จ2๏ธ
1
1
1
2
2
=
=โ
โ
=โ
tan ฮธ โ 2 2
4
2 2 2
12
, ฮธ in quadrant II
13
Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
csc ฮธ =
cot ฮธ =
1
1
3
2 3 2
=
=
โ
=
cos ฮธ ๏ฆ 2 2 ๏ถ 2 2 2
4
๏ง๏ง
๏ท๏ท
๏จ 3 ๏ธ
43. sin ฮธ =
cos 2 ฮธ = 1 โ sin 2 ฮธ
cos ฮธ = ยฑ 1 โ sin 2 ฮธ
Since ฮธ is in quadrant II, cos ฮธ < 0 .
1
1
1
3
3
=
=
โ
=
tan ฮธ
3
3
3 3
cos ฮธ = โ 1 โ sin 2 ฮธ
2
144
25
5
๏ฆ 12 ๏ถ
= โ 1โ ๏ง ๏ท = โ 1โ
=โ
=โ
169
169
13
๏จ 13 ๏ธ
๏ฆ 12 ๏ถ
๏ง ๏ท 12
sin ฮธ
12
13
๏ฆ 13 ๏ถ
= ๏จ ๏ธ = โ
๏ง โ ๏ท = โ
tan ฮธ =
cos ฮธ ๏ฆ 5 ๏ถ 13 ๏จ 5 ๏ธ
5
๏งโ ๏ท
๏จ 13 ๏ธ
1
1
13
=
=
csc ฮธ =
sin ฮธ ๏ฆ 12 ๏ถ 12
๏ง ๏ท
๏จ 13 ๏ธ
1
2 2
41. sin ฮธ = โ , cos ฮธ =
3
3
๏ฆ 1๏ถ
๏งโ ๏ท
sin ฮธ
1 3
2
2
3๏ธ
tan ฮธ =
= ๏จ
=โ โ
โ
=โ
cos ฮธ ๏ฆ 2 2 ๏ถ
3 2 2 2
4
๏ง๏ง
๏ท๏ท
๏จ 3 ๏ธ
1
1
๏ฆ 3๏ถ
csc ฮธ =
=
= 1 โ
๏ง โ ๏ท = โ3
sin ฮธ ๏ฆ 1 ๏ถ
๏จ 1๏ธ
๏งโ ๏ท
3
๏จ
๏ธ
153
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
1
1
13
=
=โ
cos ฮธ ๏ฆ 5 ๏ถ
5
๏งโ ๏ท
๏จ 13 ๏ธ
1
1
5
=
=โ
cot ฮธ =
tan ฮธ ๏ฆ 12 ๏ถ
12
๏งโ ๏ท
5
๏จ
๏ธ
1
1
5
=
=โ
sin ฮธ ๏ฆ 3 ๏ถ
3
๏งโ ๏ท
๏จ 5๏ธ
1
1
5
=
=โ
sec ฮธ =
cos ฮธ ๏ฆ 4 ๏ถ
4
๏งโ ๏ท
๏จ 5๏ธ
1
1
4
=
=
cot ฮธ =
tan ฮธ ๏ฆ 3 ๏ถ 3
๏ง ๏ท
๏จ4๏ธ
csc ฮธ =
sec ฮธ =
3
44. cos ฮธ = , ฮธ in quadrant IV
5
Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
5
, ฮธ in quadrant III
13
Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
46. sin ฮธ = โ
sin 2 ฮธ = 1 โ cos 2 ฮธ
sin ฮธ = ยฑ 1 โ cos 2 ฮธ
Since ฮธ is in quadrant IV, sin ฮธ < 0 .
cos 2 ฮธ = 1 โ sin 2 ฮธ
2
16
4
๏ฆ3๏ถ
sin ฮธ = โ 1 โ cos 2 ฮธ = โ 1 โ ๏ง ๏ท = โ
=โ
25
5
๏จ5๏ธ
cos ฮธ = ยฑ 1 โ sin 2 ฮธ
Since ฮธ is in quadrant III, cos ฮธ < 0 .
๏ฆ 5๏ถ
cos ฮธ = โ 1 โ sin 2 ฮธ = โ 1 โ ๏ง โ ๏ท
๏จ 13 ๏ธ
๏ฆ 4๏ถ
โ
sin ฮธ ๏ง๏จ 5 ๏ท๏ธ
4 5
4
tan ฮธ =
=
=โ โ
=โ
cos ฮธ
5 3
3
๏ฆ3๏ถ
๏ง ๏ท
5
๏จ ๏ธ
1
1
5
=
=โ
csc ฮธ =
sin ฮธ ๏ฆ 4 ๏ถ
4
๏งโ ๏ท
๏จ 5๏ธ
1
1
5
=
=
sec ฮธ =
3
cos ฮธ ๏ฆ ๏ถ 3
๏ง ๏ท
๏จ5๏ธ
1
1
3
=
=โ
cot ฮธ =
tan ฮธ ๏ฆ 4 ๏ถ
4
๏งโ ๏ท
๏จ 3๏ธ
2
144
12
=โ
169
13
๏ฆ 5๏ถ
โ
sin ฮธ ๏ง๏จ 13 ๏ท๏ธ
5 ๏ฆ 13 ๏ถ 5
=
= โ โ
๏ง โ ๏ท =
tan ฮธ =
cos ฮธ ๏ฆ 12 ๏ถ
13 ๏จ 12 ๏ธ 12
๏งโ ๏ท
๏จ 13 ๏ธ
1
1
13
=
=โ
csc ฮธ =
sin ฮธ ๏ฆ 5 ๏ถ
5
๏งโ ๏ท
๏จ 13 ๏ธ
1
1
13
=
=โ
sec ฮธ =
cos ฮธ ๏ฆ 12 ๏ถ
12
๏งโ ๏ท
๏จ 13 ๏ธ
1
1
12
=
=
cot ฮธ =
tan ฮธ ๏ฆ 5 ๏ถ 5
๏ง ๏ท
๏จ 12 ๏ธ
=โ
4
45. cos ฮธ = โ , ฮธ in quadrant III
5
Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
sin 2 ฮธ = 1 โ cos 2 ฮธ
5
, 90ยบ < ฮธ < 180ยบ , ฮธ in quadrant II
13
Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
47. sin ฮธ =
sin ฮธ = ยฑ 1 โ cos 2 ฮธ
Since ฮธ is in quadrant III, sin ฮธ < 0 .
cos 2 ฮธ = 1 โ sin 2 ฮธ
sin ฮธ = โ 1 โ cos 2 ฮธ
cos ฮธ = ยฑ 1 โ sin 2 ฮธ
Since ฮธ is in quadrant II, cos ฮธ < 0 .
2
16
9
3
๏ฆ 4๏ถ
= โ 1โ ๏ง โ ๏ท = โ 1โ
=โ
=โ
25
25
5
๏จ 5๏ธ
๏ฆ 3๏ถ
โ
sin ฮธ ๏ง๏จ 5 ๏ท๏ธ
3 ๏ฆ 5๏ถ 3
=
= โ โ
๏ง โ ๏ท =
tan ฮธ =
cos ฮธ ๏ฆ 4 ๏ถ
5 ๏จ 4๏ธ 4
๏งโ ๏ท
5
๏จ
๏ธ
๏ฆ5๏ถ
cos ฮธ = โ 1 โ sin 2 ฮธ = โ 1 โ ๏ง ๏ท
๏จ 13 ๏ธ
= โ 1โ
154
Copyright ยฉ 2016 Pearson Education, Inc.
2
25
144
12
=โ
=โ
169
169
13
Section 2.3: Properties of the Trigonometric Functions
๏ฆ5๏ถ
๏ง ๏ท
sin ฮธ
5 ๏ฆ 13 ๏ถ
5
13
tan ฮธ =
= ๏จ ๏ธ = โ
๏ง โ ๏ท = โ
cos ฮธ ๏ฆ 12 ๏ถ 13 ๏จ 12 ๏ธ
12
๏งโ ๏ท
๏จ 13 ๏ธ
1
1
13
=
=
csc ฮธ =
sin ฮธ ๏ฆ 5 ๏ถ 5
๏ง ๏ท
๏จ 13 ๏ธ
1
1
13
=
=โ
sec ฮธ =
cos ฮธ ๏ฆ 12 ๏ถ
12
๏งโ ๏ท
๏จ 13 ๏ธ
1
1
12
=
=โ
cot ฮธ =
tan ฮธ ๏ฆ 5 ๏ถ
5
๏งโ ๏ท
12
๏จ
๏ธ
sin ฮธ = 1 โ cos 2 ฮธ
2
1
8 2 2
๏ฆ 1๏ถ
= 1โ ๏ง โ ๏ท = 1โ =
=
9
9
3
๏จ 3๏ธ
๏ฆ2 2๏ถ
๏ง
๏ท
sin ฮธ ๏ง๏จ 3 ๏ท๏ธ 2 2 ๏ฆ 3 ๏ถ
=
=
โ
๏งโ ๏ท = โ2 2
tan ฮธ =
cos ฮธ
3 ๏จ 1๏ธ
๏ฆ 1๏ถ
โ
๏ง
๏ท
๏จ 3๏ธ
1
1
3
2 3 2
=
=
โ
=
sin ฮธ ๏ฆ 2 2 ๏ถ 2 2 2
4
๏ง๏ง
๏ท๏ท
๏จ 3 ๏ธ
1
1
=
= โ3
sec ฮธ =
cos ฮธ ๏ฆ 1 ๏ถ
โ
๏ง
๏ท
๏จ 3๏ธ
csc ฮธ =
4
, 270ยบ < ฮธ < 360ยบ ; ฮธ in quadrant IV
5
Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
48. cos ฮธ =
cot ฮธ =
1
1
2
2
=
โ
=โ
tan ฮธ โ 2 2 2
4
2
3ฯ
50. sin ฮธ = โ , ฯ < ฮธ <
, ฮธ in quadrant III
3
2
Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
sin ฮธ = ยฑ 1 โ cos 2 ฮธ
Since ฮธ is in quadrant IV, sin ฮธ < 0 .
2
9
3
๏ฆ4๏ถ
sin ฮธ = โ 1 โ cos 2 ฮธ = โ 1 โ ๏ง ๏ท = โ
=โ
25
5
๏จ5๏ธ
cos ฮธ = ยฑ 1 โ sin 2 ฮธ
Since ฮธ is in quadrant III, cos ฮธ < 0 .
๏ฆ 3๏ถ
โ
sin ฮธ ๏ง๏จ 5 ๏ท๏ธ
3 5
3
=
=โ โ
=โ
tan ฮธ =
cos ฮธ
5 4
4
๏ฆ4๏ถ
๏ง ๏ท
๏จ5๏ธ
1
1
5
csc ฮธ =
=
=โ
sin ฮธ ๏ฆ 3 ๏ถ
3
๏งโ ๏ท
5
๏จ
๏ธ
1
1
5
sec ฮธ =
=
=
cos ฮธ ๏ฆ 4 ๏ถ 4
๏ง ๏ท
๏จ5๏ธ
1
1
4
cot ฮธ =
=
=โ
tan ฮธ ๏ฆ 3 ๏ถ
3
๏งโ ๏ท
๏จ 4๏ธ
๏ฆ 2๏ถ
cos ฮธ = โ 1 โ sin 2 ฮธ = โ 1 โ ๏ง โ ๏ท
๏จ 3๏ธ
2
5
5
=โ
9
3
๏ฆ 2๏ถ
๏งโ ๏ท
sin ฮธ
3๏ธ
= ๏จ
tan ฮธ =
cos ฮธ ๏ฆ
5๏ถ
๏ง๏ง โ
๏ท๏ท
๏จ 3 ๏ธ
=โ
2 ๏ฆ 3 ๏ถ 5 2 5
= โ โ
๏ง โ
=
๏ทโ
3 ๏จ
5
5๏ธ 5
1
1
3
csc ฮธ =
=
=โ
sin ฮธ ๏ฆ 2 ๏ถ
2
๏งโ ๏ท
๏จ 3๏ธ
1 ฯ
< ฮธ 0 .
cot ฮธ =
1
1
3
5
3 5
=
=โ
โ
=โ
5
cos ฮธ ๏ฆ
5 5
5๏ถ
๏ง๏ง โ
๏ท๏ท
๏จ 3 ๏ธ
1
1
5
5
5
=
โ
=
=
tan ฮธ ๏ฆ 2 5 ๏ถ 2 5 5
2
๏ง๏ง 5 ๏ท๏ท
๏จ
๏ธ
155
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
2
51. sin ฮธ = , tan ฮธ < 0, so ฮธ is in quadrant II
3
Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
sec ฮธ =
cos 2 ฮธ = 1 โ sin 2 ฮธ
cot ฮธ =
cos ฮธ = ยฑ 1 โ sin ฮธ
Since ฮธ is in quadrant II, cos ฮธ < 0 .
2
1
1
15
15
=
โ
=
tan ฮธ
15
15 15
53. sec ฮธ = 2, sin ฮธ < 0, so ฮธ is in quadrant IV
cos ฮธ = โ 1 โ sin ฮธ
2
1
1
=
sec ฮธ 2
Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
Solve for cos ฮธ : cos ฮธ =
2
4
5
5
๏ฆ2๏ถ
= โ 1โ ๏ง ๏ท = โ 1โ = โ
=โ
9
9
3
๏จ3๏ธ
๏ฆ2๏ถ
๏ง ๏ท
sin ฮธ
2 ๏ฆ 3 ๏ถ
2 5
3
= ๏จ ๏ธ = โ
๏ง โ
tan ฮธ =
๏ท=โ
cos ฮธ ๏ฆ
5
5๏ธ
5๏ถ 3 ๏จ
๏ง๏ง โ
๏ท๏ท
๏จ 3 ๏ธ
1
1
3
csc ฮธ =
=
=
2
sin ฮธ ๏ฆ ๏ถ 2
๏ง ๏ท
๏จ3๏ธ
sin 2 ฮธ = 1 โ cos 2 ฮธ
sin ฮธ = ยฑ 1 โ cos 2 ฮธ
Since ฮธ is in quadrant IV, sin ฮธ 0
4
sin ฮธ
Since tan ฮธ =
> 0 and cos ฮธ < 0 , sin ฮธ < 0 .
cos ฮธ
Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
54. csc ฮธ = 3, cot ฮธ < 0, so ฮธ is in quadrant II
1
1
=
csc ฮธ 3
Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1
Solve for sin ฮธ : sin ฮธ =
sin ฮธ = ยฑ 1 โ cos 2 ฮธ
sin ฮธ = โ 1 โ cos 2 ฮธ
cos ฮธ = ยฑ 1 โ sin 2 ฮธ
Since ฮธ is in quadrant II, cos ฮธ 0, so ฮธ is in quadrant II
3
Solve for sec ฮธ : sec2 ฮธ = 1 + tan 2 ฮธ
3
, sin ฮธ < 0, so ฮธ is in quadrant III
4
Solve for sec ฮธ : sec2 ฮธ = 1 + tan 2 ฮธ
55. tan ฮธ =
sec ฮธ = ยฑ 1 + tan 2 ฮธ
Since ฮธ is in quadrant III, sec ฮธ < 0 .
sec ฮธ = ยฑ 1 + tan 2 ฮธ
Since ฮธ is in quadrant II, sec ฮธ < 0 .
sec ฮธ = โ 1 + tan 2 ฮธ
sec ฮธ = โ 1 + tan 2 ฮธ
2
1
10
10
๏ฆ 1๏ถ
= โ 1+ ๏ง โ ๏ท = โ 1+ = โ
=โ
9
9
3
๏จ 3๏ธ
2
9
25
5
๏ฆ3๏ถ
= โ 1+ ๏ง ๏ท = โ 1+
=โ
=โ
16
16
4
๏จ4๏ธ
1
4
=โ
cos ฮธ =
sec ฮธ
5
cos ฮธ =
sin ฮธ = โ 1 โ cos 2 ฮธ
1
1
3
3 10
=
=โ
=โ
sec ฮธ ๏ฆ 10 ๏ถ
10
10
๏ง๏ง โ
๏ท๏ท
๏จ 3 ๏ธ
sin ฮธ = 1 โ cos 2 ฮธ
2
16
9
3
๏ฆ 4๏ถ
= โ 1โ ๏ง โ ๏ท = โ 1โ
=โ
=โ
25
25
5
๏จ 5๏ธ
1
1
5
=
=โ
csc ฮธ =
sin ฮธ ๏ฆ 3 ๏ถ
3
๏งโ ๏ท
๏จ 5๏ธ
1
1
4
=
=
cot ฮธ =
tan ฮธ ๏ฆ 3 ๏ถ 3
๏ง ๏ท
๏จ4๏ธ
2
๏ฆ 3 10 ๏ถ
90
= 1 โ ๏ง๏ง โ
๏ท๏ท = 1 โ
100
๏จ 10 ๏ธ
10
10
=
100
10
1
1
=
= 10
csc ฮธ =
sin ฮธ ๏ฆ 10 ๏ถ
๏ง๏ง 10 ๏ท๏ท
๏จ
๏ธ
1
1
=
= โ3
cot ฮธ =
tan ฮธ ๏ฆ 1 ๏ถ
โ
๏ง
๏ท
๏จ 3๏ธ
=
4
, cos ฮธ 0, so ฮธ is in quadrant III
Solve for tan ฮธ : sec2 ฮธ = 1 + tan 2 ฮธ
sec ฮธ = ยฑ 1 + tan 2 ฮธ
Since ฮธ is in quadrant III, sec ฮธ < 0 .
tan ฮธ = ยฑ sec 2 ฮธ โ 1
tan ฮธ = sec 2 ฮธ โ 1 = (โ 2) 2 โ 1 = 4 โ 1 = 3
sec ฮธ = โ 1 + tan 2 ฮธ
2
9
25
5
๏ฆ3๏ถ
= โ 1+ ๏ง ๏ท = โ 1+
=โ
=โ
16
16
4
๏จ4๏ธ
1
4
cos ฮธ =
=โ
sec ฮธ
5
cos ฮธ =
1
1
=โ
sec ฮธ
2
cot ฮธ =
1
1
3
3
=
โ
=
tan ฮธ
3
3 3
157
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
ฯ 2 3
๏ฆ ฯ๏ถ
75. sec ๏ง โ ๏ท = sec =
6
3
๏จ 6๏ธ
sin ฮธ = โ 1 โ cos 2 ฮธ
2
1
3
3
๏ฆ 1๏ถ
= โ 1โ ๏ง โ ๏ท = โ 1โ = โ
=โ
4
4
2
๏จ 2๏ธ
ฯ
2 3
๏ฆ ฯ๏ถ
76. csc ๏ง โ ๏ท = โ csc = โ
3
3
3
๏จ
๏ธ
1
1
2
3
2 3
csc ฮธ =
=
=โ
โ
=โ
sin ฮธ ๏ฆ
3
3 3
3๏ถ
๏งโ
๏ท
๏จ 2 ๏ธ
77. sin 2 ( 40ยบ ) + cos 2 ( 40ยบ ) = 1
78. sec 2 (18ยบ ) โ tan 2 (18ยบ ) = 1
3
59. sin(โ 60ยบ ) = โ sin 60ยบ = โ
2
60. cos(โ30ยบ ) = cos 30ยบ =
3
2
61. tan(โ30ยบ ) = โ tan 30ยบ = โ
3
3
79. sin ( 80ยบ ) csc ( 80ยบ ) = sin ( 80ยบ ) โ
1
=1
sin ( 80ยบ )
80. tan (10ยบ ) cot (10ยบ ) = tan (10ยบ ) โ
1
=1
tan (10ยบ )
81. tan ( 40ยบ ) โ
2
62. sin(โ135ยบ ) = โ sin135ยบ = โ
2
sin ( 40ยบ )
cos ( 40ยบ )
cos ( 20ยบ )
= tan ( 40ยบ ) โ tan ( 40ยบ ) = 0
63. sec(โ 60ยบ ) = sec 60ยบ = 2
82. cot ( 20ยบ ) โ
64. csc(โ30ยบ ) = โ csc 30ยบ = โ 2
83. cos ( 400ยบ ) โ
sec ( 40ยบ ) = cos ( 40ยบ +360ยบ ) โ
sec ( 40ยบ )
sin ( 20ยบ )
= cot ( 20ยบ ) โ cot ( 20ยบ ) = 0
= cos ( 40ยบ ) โ
sec ( 40ยบ )
65. sin(โ90ยบ ) = โ sin 90ยบ = โ1
= cos ( 40ยบ ) โ
66. cos(โ 270ยบ ) = cos 270ยบ = 0
1
=1
cos ( 40ยบ )
84. tan ( 200ยบ ) โ
cot ( 20ยบ ) = tan ( 20ยบ +180ยบ ) โ
cot ( 20ยบ )
ฯ
๏ฆ ฯ๏ถ
67. tan ๏ง โ ๏ท = โ tan = โ1
๏จ 4๏ธ
4
= tan ( 20ยบ ) โ
cot ( 20ยบ )
= tan ( 20ยบ ) โ
68. sin(โฯ) = โ sin ฯ = 0
ฯ
2
๏ฆ ฯ๏ถ
69. cos ๏ง โ ๏ท = cos =
4
2
๏จ 4๏ธ
1
=1
tan ( 20ยบ )
๏ฆ ฯ ๏ถ ๏ฆ 25ฯ ๏ถ
๏ฆ ฯ ๏ถ ๏ฆ 25ฯ ๏ถ
85. sin ๏ง โ ๏ท csc ๏ง
๏ท = โ sin ๏ง ๏ท csc ๏ง
๏ท
๏จ 12 ๏ธ ๏จ 12 ๏ธ
๏จ 12 ๏ธ ๏จ 12 ๏ธ
๏ฆ ฯ ๏ถ ๏ฆ ฯ 24ฯ ๏ถ
= โ sin ๏ง ๏ท csc ๏ง +
๏ท
๏จ 12 ๏ธ ๏จ 12 12 ๏ธ
๏ฆฯ ๏ถ ๏ฆฯ
๏ถ
= โ sin ๏ง ๏ท csc ๏ง + 2ฯ ๏ท
๏จ 12 ๏ธ ๏จ 12
๏ธ
๏ฆฯ ๏ถ ๏ฆฯ ๏ถ
= โ sin ๏ง ๏ท csc ๏ง ๏ท
๏จ 12 ๏ธ ๏จ 12 ๏ธ
1
๏ฆฯ ๏ถ
= โ sin ๏ง ๏ท โ
= โ1
๏จ 12 ๏ธ
๏ฆฯ ๏ถ
sin ๏ง ๏ท
๏จ 12 ๏ธ
ฯ
3
๏ฆ ฯ๏ถ
70. sin ๏ง โ ๏ท = โ sin = โ
3
2
๏จ 3๏ธ
71. tan(โฯ) = โ tan ฯ = 0
3ฯ
๏ฆ 3ฯ ๏ถ
72. sin ๏ง โ ๏ท = โ sin
= โ(โ1) = 1
2
๏จ 2 ๏ธ
ฯ
๏ฆ ฯ๏ถ
73. csc ๏ง โ ๏ท = โ csc = โ 2
4
4
๏จ
๏ธ
74. sec ( โฯ ) = sec ฯ = โ1
158
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Properties of the Trigonometric Functions
92. If cot ฮธ = โ 2 , then
๏ฆ ฯ ๏ถ
๏ฆ 37ฯ ๏ถ
๏ฆฯ ๏ถ
๏ฆ 37ฯ ๏ถ
86. sec ๏ง โ ๏ท cos ๏ง
๏ท = sec ๏ง ๏ท cos ๏ง
๏ท
18
18
18
๏จ
๏ธ
๏จ
๏ธ
๏จ ๏ธ
๏จ 18 ๏ธ
๏ฆฯ ๏ถ
๏ฆ ฯ 36ฯ ๏ถ
= sec ๏ง ๏ท cos ๏ง +
๏ท
18
๏จ ๏ธ
๏จ 18 18 ๏ธ
๏ฆฯ ๏ถ
๏ฆฯ
๏ถ
= sec ๏ง ๏ท cos ๏ง + 2ฯ ๏ท
๏จ 18 ๏ธ
๏จ 18
๏ธ
๏ฆฯ ๏ถ
๏ฆฯ ๏ถ
= sec ๏ง ๏ท cos ๏ง ๏ท
18
๏จ ๏ธ
๏จ 18 ๏ธ
1
๏ฆฯ ๏ถ
= sec ๏ง ๏ท โ
=1
๏จ 18 ๏ธ sec ๏ฆ ฯ ๏ถ
๏ง ๏ท
๏จ 18 ๏ธ
87.
sin ( โ20ยบ )
cos ( 380ยบ )
=
=
cot ฮธ + cot (ฮธ โ ฯ ) + cot (ฮธ โ 2ฯ )
= โ 2 + ( โ2 ) + ( โ2 ) = โ6
93. sin1ยบ + sin 2ยบ + sin 3ยบ +… + sin 357ยบ
+ sin 358ยบ + sin 359ยบ
= sin1ยบ + sin 2ยบ + sin 3ยบ + โ
โ
โ
+ sin(360ยบ โ3ยบ )
+ sin(360ยบ โ 2ยบ ) + sin(360ยบ โ1ยบ )
= sin1ยบ + sin 2ยบ + sin 3ยบ + โ
โ
โ
+ sin(โ3ยบ )
+ sin( โ 2ยบ ) + sin(โ1ยบ )
= sin1ยบ + sin 2ยบ + sin 3ยบ + โ
โ
โ
โ sin 3ยบ โ sin 2ยบ โ sin1ยบ
= sin (180ยบ ) = 0
+ tan ( 200ยบ )
โ sin ( 20ยบ )
cos ( 20ยบ +360ยบ )
โ sin ( 20ยบ )
cos ( 20ยบ )
94. cos1ยบ + cos 2ยบ + cos 3ยบ + โ
โ
โ
+ cos 357ยบ
+ cos 358ยบ + cos 359ยบ
= cos1ยบ + cos 2ยบ + cos 3ยบ +… + cos(360ยบ โ3ยบ )
+ cos(360ยบ โ 2ยบ ) + cos(360ยบ โ1ยบ )
= cos1ยบ + cos 2ยบ + cos 3ยบ +… + cos(โ3ยบ )
+ cos(โ 2ยบ ) + cos(โ1ยบ )
= cos1ยบ + cos 2ยบ + cos 3ยบ +… + cos 3ยบ
+ cos 2ยบ + cos1ยบ
= 2 cos1ยบ +2 cos 2ยบ +2 cos 3ยบ +… + 2 cos178ยบ
+ 2 cos179ยบ + cos180ยบ
= 2 cos1ยบ +2 cos 2ยบ +2 cos 3ยบ +… + 2 cos(180ยบ โ 2ยบ )
+ tan ( 20ยบ +180ยบ )
+ tan ( 20ยบ )
= โ tan ( 20ยบ ) + tan ( 20ยบ ) = 0
88.
sin ( 70ยบ )
cos ( โ430ยบ )
=
=
=
sin ( 70ยบ )
+ tan ( โ70ยบ )
cos ( 430ยบ )
โ tan ( 70ยบ )
sin ( 70ยบ )
cos ( 70ยบ +360ยบ )
sin ( 70ยบ )
cos ( 70ยบ )
+ 2 cos(180ยบ โ1ยบ ) + cos (180ยบ )
= 2 cos1ยบ +2 cos 2ยบ +2 cos 3ยบ +… โ 2 cos 2ยบ
โ 2 cos1ยบ + cos180ยบ
= cos180ยบ = โ1
โ tan ( 70ยบ )
โ tan ( 70ยบ )
95. The domain of the sine function is the set of all
real numbers.
= tan ( 70ยบ ) โ tan ( 70ยบ ) = 0
96. The domain of the cosine function is the set of
all real numbers.
89. If sin ฮธ = 0.3 , then
sin ฮธ + sin (ฮธ + 2ฯ ) + sin (ฮธ + 4ฯ )
= 0.3 + 0.3 + 0.3 = 0.9
97.
90. If cos ฮธ = 0.2 , then
cos ฮธ + cos (ฮธ + 2ฯ ) + cos (ฮธ + 4ฯ )
f (ฮธ ) = tan ฮธ is not defined for numbers that are
odd multiples of
= โ0.2 + 0.2 + 0.2 = 0.6
91. If tan ฮธ = 3 , then
tan ฮธ + tan (ฮธ + ฯ ) + tan (ฮธ + 2ฯ )
= 3+3+3 = 9
ฯ
.
2
98.
f (ฮธ ) = cot ฮธ is not defined for numbers that are
multiples of ฯ .
99.
f (ฮธ ) = sec ฮธ is not defined for numbers that are
odd multiples of
159
Copyright ยฉ 2016 Pearson Education, Inc.
ฯ
.
2
Chapter 2: Trigonometric Functions
100.
f (ฮธ ) = csc ฮธ is not defined for numbers that are
multiples of ฯ .
114. a.
b.
101. The range of the sine function is the set of all
real numbers between โ1 and 1, inclusive.
f (โa) = f (a) =
f (a) + f (a + 2ฯ) + f (a โ 2ฯ)
= f (a ) + f (a ) + f (a)
1 1 1
+ +
4 4 4
3
=
4
=
102. The range of the cosine function is the set of all
real numbers between โ1 and 1, inclusive.
103. The range of the tangent function is the set of all
real numbers.
115. a.
104. The range of the cotangent function is the set of
all real numbers.
b.
105. The range of the secant function is the set of all
real numbers greater than or equal to 1 and all
real numbers less than or equal to โ1 .
f (โa ) = โ f (a ) = โ 2
f ( a ) + f ( a + ฯ) + f ( a + 2 ฯ)
= f (a) + f (a) + f (a)
= 2+2+2 = 6
106. The range of the cosecant function is the set of
all real number greater than or equal to 1 and all
real numbers less than or equal to โ1 .
107. The sine function is odd because
sin(โฮธ ) = โ sin ฮธ . Its graph is symmetric with
respect to the origin.
116. a.
f (โa ) = โ f (a ) = โ (โ3) = 3
b.
f ( a ) + f ( a + ฯ) + f ( a + 4 ฯ)
= f (a) + f (a) + f (a)
= โ3 + (โ3) + (โ3)
= โ9
117. a.
b.
108. The cosine function is even because
cos(โฮธ ) = cos ฮธ . Its graph is symmetric with
respect to the y-axis.
109. The tangent function is odd because
tan(โฮธ ) = โ tan ฮธ . Its graph is symmetric with
respect to the origin.
118. a.
b.
110. The cotangent function is odd because
cot(โฮธ ) = โ cot ฮธ . Its graph is symmetric with
respect to the origin.
f (โa) = f (a) = โ 4
f (a) + f (a + 2ฯ) + f (a + 4ฯ)
= f (a ) + f (a ) + f (a)
= โ 4 + (โ 4) + (โ 4)
= โ12
f (โa ) = โ f (a ) = โ 2
f (a) + f (a + 2ฯ) + f (a + 4ฯ)
= f (a ) + f (a ) + f (a)
= 2+2+2
=6
111. The secant function is even because
sec(โฮธ ) = sec ฮธ . Its graph is symmetric with
respect to the y-axis.
119. Since tan ฮธ =
112. The cosecant function is odd because
csc(โฮธ ) = โ csc ฮธ . Its graph is symmetric with
respect to the origin.
r = 10
113. a.
b.
f (โa) = โ f (a) = โ
1
4
500 1 y
= = , then
1500 3 x
r 2 = x 2 + y 2 = 9 + 1 = 10
sin ฮธ =
1
=
1
.
1+ 9
10
5
5
T = 5โ
+
๏ฆ 1๏ถ ๏ฆ 1 ๏ถ
๏ง3โ
๏ท ๏ง
๏ท
๏จ 3 ๏ธ ๏จ 10 ๏ธ
1
3
f (a) + f (a + 2ฯ) + f (a + 4ฯ)
= f (a ) + f (a ) + f (a)
= 5 โ 5 + 5 10
1 1 1
= + + =1
3 3 3
= 5 10 โ 15.8 minutes
160
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Properties of the Trigonometric Functions
120. a.
123. Suppose there is a number p, 0 < p < 2ฯ for
1 y
ฯ
= for 0 < ฮธ < .
4 x
2
2
2
2
r = x + y = 16 + 1 = 17
tan ฮธ =
which sin(ฮธ + p ) = sin ฮธ for all ฮธ . If ฮธ = 0 ,
then sin ( 0 + p ) = sin p = sin 0 = 0 ; so that
r = 17
Thus, sin ฮธ =
1
.
17
2
1
T (ฮธ ) = 1 +
โ
1 ๏ถ ๏ฆ 1๏ถ
๏ฆ
๏ง 3โ
๏ท ๏ง4โ
๏ท
17 ๏ธ ๏จ 4 ๏ธ
๏จ
= 1+
2 17
2 17
โ1 =
โ 2.75 hours
3
3
124. Suppose there is a number p, 0 < p < 2ฯ , for
1
b. Since tan ฮธ = , x = 4 . Sally heads
4
directly across the sand to the bridge,
crosses the bridge, and heads directly across
the sand to the other house.
c.
which cos(ฮธ + p) = cos ฮธ for all ฮธ . If ฮธ =
p = ฯ . Thus cos ( ฯ ) = โ1 = cos ( 0 ) = 1 , or
not be reached and she cannot get across the
river.
โ1 = 1 . This is impossible. The smallest
positive number p for which cos(ฮธ + p) = cos ฮธ
for all ฮธ must then be p = 2ฯ .
121. Let P = ( x, y ) be the point on the unit circle that
corresponds to an angle t. Consider the equation
y
tan t = = a . Then y = ax . Now x 2 + y 2 = 1 ,
x
1
2
and
so x + a 2 x 2 = 1 . Thus, x = ยฑ
1 + a2
a
. That is, for any real number a ,
y=ยฑ
1 + a2
there is a point P = ( x, y ) on the unit circle for
which tan t = a . In other words,
โโ < tan t < โ , and the range of the tangent
function is the set of all real numbers.
1
: Since cos ฮธ has period 2ฯ , so
cos ฮธ
does sec ฮธ .
125. sec ฮธ =
1
: Since sin ฮธ has period 2ฯ , so
sin ฮธ
does csc ฮธ .
126. csc ฮธ =
127. If P = (a, b) is the point on the unit circle
corresponding to ฮธ , then Q = (โa, โb) is the
point on the unit circle corresponding to ฮธ + ฯ .
โb b
Thus, tan(ฮธ + ฯ) =
= = tan ฮธ . If there
โa a
exists a number p, 0 < p < ฯ , for which
122. Let P = ( x, y ) be the point on the unit circle that
corresponds to an angle t. Consider the equation
x
cot t = = a . Then x = ay . Now x 2 + y 2 = 1 ,
y
x=ยฑ
1
1 + a2
ฯ
,
2
๏ฆฯ
๏ถ
๏ฆฯ๏ถ
then cos ๏ง + p ๏ท = cos ๏ง ๏ท = 0 ; so that p = ฯ .
2
๏จ
๏ธ
๏จ2๏ธ
If ฮธ = 0 , then cos ( 0 + p ) = cos ( 0 ) . But
ฮธ must be larger than 14ยบ , or the road will
so a 2 y 2 + y 2 = 1 . Thus, y = ยฑ
ฯ
๏ฆฯ
๏ถ
๏ฆฯ๏ถ
then sin ๏ง + p ๏ท = sin ๏ง ๏ท .
2
๏จ2
๏ธ
๏จ2๏ธ
ฯ
3
๏ฆ ๏ถ
๏ฆฯ๏ถ
But p = ฯ . Thus, sin ๏ง ๏ท = โ1 = sin ๏ง ๏ท = 1 ,
๏จ 2 ๏ธ
๏จ2๏ธ
or โ1 = 1 . This is impossible. The smallest
positive number p for which sin(ฮธ + p ) = sin ฮธ
for all ฮธ must then be p = 2ฯ .
p = ฯ . If ฮธ =
tan(ฮธ + p ) = tan ฮธ for all ฮธ , then if ฮธ = 0 ,
tan ( p ) = tan ( 0 ) = 0. But this means that p is a
and
multiple of ฯ . Since no multiple of ฯ exists in
the interval ( 0, ฯ ) , this is impossible. Therefore,
a
. That is, for any real number a ,
1 + a2
there is a point P = ( x, y ) on the unit circle for
which cot t = a . In other words, โโ < cot t < โ ,
and the range of the tangent function is the set of
all real numbers.
the fundamental period of f (ฮธ ) = tan ฮธ is ฯ .
161
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
The graph would be shifted horizontally to the
right 3 units, stretched by a factor of 2, reflected
about the x-axis and then shifted vertically up by
5 units. So the graph would be:
1
: Since tan ฮธ has period ฯ , so
tanฮธ
does cot ฮธ .
128. cot ฮธ =
129. Let P = (a, b) be the point on the unit circle
corresponding to ฮธ . Then csc ฮธ =
1
1
=
b sin ฮธ
1
1
=
a cos ฮธ
a
1
1
cot ฮธ = =
=
b
b ๏ฆ ๏ถ tan ฮธ
๏ง ๏ท
๏จa๏ธ
sec ฮธ =
130. Let P = (a, b) be the point on the unit circle
corresponding to ฮธ . Then
b sin ฮธ
tan ฮธ = =
a cos ฮธ
a cos ฮธ
cot ฮธ = =
b sin ฮธ
139.
f (25) = 3 25 โ 9 + 6
= 3 16 + 6 = 12 + 6 = 18
So the point (25,18) is on the graph.
140. y = (0)3 โ 9(0) 2 + 3(0) โ 27
= โ27
Thus the y-intercept is (0, โ27) .
131. (sin ฮธ cos ฯ ) 2 + (sin ฮธ sin ฯ ) 2 + cos 2 ฮธ
= sin 2 ฮธ cos 2 ฯ + sin 2 ฮธ sin 2 ฯ + cos 2 ฮธ
= sin 2 ฮธ (cos 2 ฯ + sin 2 ฯ ) + cos 2 ฮธ
= sin 2 ฮธ + cos 2 ฮธ
=1
132 โ 136. Answers will vary.
Section 2.4
( โ x)4 + 3 x 4 + 3
=
= f ( x) . Thus,
( โ x) 2 โ 5 x 2 โ 5
f ( x) is even.
138. We need to use completing the square to put the
function in the form
f ( x ) = a ( x โ h) 2 + k
137.
1. y = 3x 2
f ( โ x) =
Using the graph of y = x 2 , vertically stretch the
graph by a factor of 3.
f ( x) = โ2 x 2 + 12 x โ 13
= โ2( x 2 โ 6 x) โ 13
= โ2 x 2 โ 6 x +
144
4( 2) 2
โ 13 + 2
144
4( 2) 2
= โ2( x 2 โ 6 x + 9) โ 13 + 18
= โ2( x 2 โ 6 x + 9) + 5
= โ2( x โ 3) 2 + 5
162
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
g.
2. y = 2 x
Using the graph of y = x , compress
horizontally by a factor of
1
.
2
The graph of y = cos x crosses the y-axis at
the point (0, 1), so the y-intercept is 1.
b. The graph of y = cos x is decreasing for
0< x<ฯ.
c. The smallest value of y = cos x is โ1 .
12. a.
d.
e.
ฯ 3ฯ
,
2 2
cos x = 1 when x = โ 2ฯ, 0, 2ฯ;
cos x = 0 when x =
cos x = โ1 when x = โฯ, ฯ.
ฯ
3. 1;
2
3
11ฯ ฯ ฯ 11ฯ
when x = โ
,โ , ,
2
6
6 6 6
g. The x-intercepts of cos x are
๏ฌ๏ฏ
๏ผ๏ฏ
( 2k + 1) ฯ
, k an integer ๏ฝ
๏ญx | x =
2
๏ฏ๏ฎ
๏พ๏ฏ
13. y = 2sin x
cos x =
f.
4. 3; ฯ
5. 3;
The x-intercepts of sin x are
{ x | x = kฯ , k an integer}
2ฯ ฯ
=
6
3
This is in the form y = A sin(ฯ x) where A = 2
6. True
7. False; The period is
2ฯ
ฯ
and ฯ = 1 . Thus, the amplitude is A = 2 = 2
= 2.
and the period is T =
8. True
2ฯ
ฯ
=
2ฯ
= 2ฯ .
1
14. y = 3cos x
9. d
This is in the form y = A cos(ฯ x) where A = 3
10. d
and ฯ = 1 . Thus, the amplitude is A = 3 = 3
11. a.
and the period is T =
The graph of y = sin x crosses the y-axis at
the point (0, 0), so the y-intercept is 0.
ฯ
ฯ
<x< .
2
2
The largest value of y = sin x is 1.
d.
sin x = 0 when x = 0, ฯ, 2ฯ .
e.
sin x = 1 when x = โ
T=
2ฯ
= 2ฯ .
1
2ฯ
ฯ
=
2ฯ
= ฯ.
2
๏ฆ1 ๏ถ
16. y = โ sin ๏ง x ๏ท
๏จ2 ๏ธ
This is in the form y = A sin(ฯ x) where A = โ1
3ฯ ฯ
, ;
2 2
ฯ 3ฯ
sin x = โ1 when x = โ , .
2 2
sin x = โ
=
A = โ 4 = 4 and the period is
c.
f.
ฯ
15. y = โ 4 cos(2 x)
This is in the form y = A cos(ฯ x) where
A = โ 4 and ฯ = 2 . Thus, the amplitude is
b. The graph of y = sin x is increasing for
โ
2ฯ
1
. Thus, the amplitude is A = โ 1 = 1
2
2ฯ 2ฯ
= 1 = 4ฯ .
and the period is T =
and ฯ =
1
5ฯ ฯ 7ฯ 11ฯ
when x = โ
,โ , ,
2
6
6 6 6
ฯ
163
Copyright ยฉ 2016 Pearson Education, Inc.
2
Chapter 2: Trigonometric Functions
17. y = 6sin(ฯ x)
This is in the form y = A sin(ฯ x) where A = 6
9
๏ฆ 3ฯ ๏ถ 9
๏ฆ 3ฯ ๏ถ
x ๏ท = cos ๏ง
x๏ท
22. y = cos ๏ง โ
5
2
5
๏จ
๏ธ
๏จ 2 ๏ธ
and ฯ = ฯ . Thus, the amplitude is A = 6 = 6
and the period is T =
2ฯ
ฯ
=
This is in the form y = A cos(ฯ x) where A =
2ฯ
=2.
ฯ
3ฯ
. Thus, the amplitude is
2
9
9
A =
= and the period is
5
5
2ฯ 2ฯ 4
=
= .
T=
ฯ 3ฯ 3
and ฯ =
18. y = โ 3cos(3x)
This is in the form y = A cos(ฯ x) where A = โ 3
and ฯ = 3 . Thus, the amplitude is A = โ 3 = 3
and the period is T =
2ฯ
ฯ
=
2ฯ
.
3
2
23. F
1
๏ฆ3 ๏ถ
19. y = โ cos ๏ง x ๏ท
2
๏จ2 ๏ธ
This is in the form y = A cos(ฯ x) where
24. E
25. A
1
3
and ฯ = . Thus, the amplitude is
2
2
1
1
A = โ = and the period is
2
2
2ฯ 2ฯ 4ฯ
= 3 =
.
T=
ฯ
3
2
A=โ
26. I
27. H
28. B
29. C
4 ๏ฆ2 ๏ถ
20. y = sin ๏ง x ๏ท
3 ๏จ3 ๏ธ
30. G
This is in the form y = A sin(ฯ x) where A =
4
3
31. J
32. D
2
4
4
. Thus, the amplitude is A =
=
3
3
3
2ฯ 2ฯ
= 2 = 3ฯ .
and the period is T =
and ฯ =
ฯ
33. Comparing y = 4 cos x to y = A cos (ฯ x ) , we
find A = 4 and ฯ = 1 . Therefore, the amplitude
2ฯ
is 4 = 4 and the period is
= 2ฯ . Because
1
the amplitude is 4, the graph of y = 4 cos x will
lie between โ4 and 4 on the y-axis. Because the
period is 2ฯ , one cycle will begin at x = 0 and
end at x = 2ฯ . We divide the interval [ 0, 2ฯ ]
3
5 ๏ฆ 2ฯ ๏ถ
5 ๏ฆ 2ฯ ๏ถ
x ๏ท = โ sin ๏ง
x๏ท
21. y = sin ๏ง โ
3 ๏จ 3 ๏ธ
3 ๏จ 3 ๏ธ
This is in the form y = A sin(ฯ x) where A = โ
5
3
2ฯ
. Thus, the amplitude is
3
5
5
A = โ = and the period is
3
3
2ฯ 2ฯ
=
= 3.
T=
and ฯ =
ฯ
9
5
into four subintervals, each of length
2ฯ ฯ
= by
4
2
finding the following values:
ฯ
3ฯ
, and 2ฯ
0, , ฯ ,
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = 4 cos x , we multiply the y-coordinates of the
five key points for y = cos x by A = 4 . The five
key points are
2ฯ
3
164
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
direction to obtain the graph shown below.
๏ถ
๏ฆ 3ฯ ๏ถ
, 0 ๏ท , (ฯ , โ4 ) , ๏ง , 0 ๏ท , ( 2ฯ , 4 )
2
๏จ
๏ธ
๏จ 2 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
( 0, 4 ) , ๏ฆ๏ง
ฯ
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ3,3] .
35. Comparing y = โ4sin x to y = A sin (ฯ x ) , we
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
find A = โ4 and ฯ = 1 . Therefore, the amplitude
2ฯ
is โ4 = 4 and the period is
= 2ฯ . Because
1
the amplitude is 4, the graph of y = โ4sin x will
lie between โ4 and 4 on the y-axis. Because the
period is 2ฯ , one cycle will begin at x = 0 and
end at x = 2ฯ . We divide the interval [ 0, 2ฯ ]
range is [ โ4, 4] .
34. Comparing y = 3sin x to y = A sin (ฯ x ) , we
find A = 3 and ฯ = 1 . Therefore, the amplitude
2ฯ
is 3 = 3 and the period is
= 2ฯ . Because
1
the amplitude is 3, the graph of y = 3sin x will
lie between โ3 and 3 on the y-axis. Because the
period is 2ฯ , one cycle will begin at x = 0 and
end at x = 2ฯ . We divide the interval [ 0, 2ฯ ]
into four subintervals, each of length
2ฯ ฯ
= by
4
2
ฯ
3ฯ
finding the following values: 0, , ฯ ,
, 2ฯ
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = โ4sin x , we multiply the y-coordinates of
into four subintervals, each of length
2ฯ ฯ
= by
4
2
finding the following values:
ฯ
3ฯ
0, , ฯ ,
, and 2ฯ
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for y = 3sin x ,
we multiply the y-coordinates of the five key
points for y = sin x by A = 3 . The five key
the five key points for y = sin x by A = โ4 . The
five key points are
ฯ
3ฯ
( 0, 0 ) , ๏ฆ๏ง , โ4 ๏ถ๏ท , (ฯ , 0 ) , ๏ฆ๏ง , 4 ๏ถ๏ท , ( 2ฯ , 0 )
2
๏จ
๏ธ
๏จ 2 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
๏ฆฯ ๏ถ
๏ฆ 3ฯ
๏ถ
points are ( 0, 0 ) , ๏ง ,3 ๏ท , (ฯ , 0 ) , ๏ง , โ3 ๏ท ,
2
2
๏จ
๏ธ
๏จ
๏ธ
( 2ฯ , 0 )
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
165
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
37. Comparing y = cos ( 4 x ) to y = A cos (ฯ x ) , we
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
find A = 1 and ฯ = 4 . Therefore, the amplitude
2ฯ ฯ
= . Because the
is 1 = 1 and the period is
4
2
amplitude is 1, the graph of y = cos ( 4 x ) will lie
range is [ โ4, 4] .
36. Comparing y = โ3cos x to y = A cos (ฯ x ) , we
find A = โ3 and ฯ = 1 . Therefore, the amplitude
2ฯ
= 2ฯ . Because
is โ3 = 3 and the period is
1
the amplitude is 3, the graph of y = โ3cos x will
lie between โ3 and 3 on the y-axis. Because the
period is 2ฯ , one cycle will begin at x = 0 and
end at x = 2ฯ . We divide the interval [ 0, 2ฯ ]
into four subintervals, each of length
between โ1 and 1 on the y-axis. Because the
period is
ฯ
2
, one cycle will begin at x = 0 and
ฯ
๏ฉ ฯ๏น
. We divide the interval ๏ช 0, ๏บ
๏ซ 2๏ป
ฯ /2 ฯ
=
into four subintervals, each of length
4
8
by finding the following values:
ฯ ฯ 3ฯ
ฯ
, and
0, , ,
8 4 8
2
These values of x determine the x-coordinates of
the five key points on the graph. The five key
points are
ฯ
ฯ
3ฯ
ฯ
( 0,1) , ๏ฆ๏ง , 0 ๏ถ๏ท , ๏ฆ๏ง , โ1๏ถ๏ท , ๏ฆ๏ง , 0 ๏ถ๏ท , ๏ฆ๏ง ,1๏ถ๏ท
๏ธ ๏จ 8 ๏ธ ๏จ2 ๏ธ
๏จ8 ๏ธ ๏จ4
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
end at x =
2ฯ ฯ
= by
4
2
finding the following values:
ฯ
3ฯ
0, , ฯ ,
, and 2ฯ
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = โ3cos x , we multiply the y-coordinates of
the five key points for y = cos x by A = โ3 . The
five key points are
ฯ
3ฯ
( 0, โ3) , ๏ฆ๏ง , 0 ๏ถ๏ท , (ฯ ,3) , ๏ฆ๏ง , 0 ๏ถ๏ท , ( 2ฯ , โ3)
2
๏จ
๏ธ
๏จ 2 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
y
5
(, 3)
(, 3)
3
( โโโ
, 0)
2
x
2
2
, 0)
( โโ
2
(0, 3)
(2, 3)
5
2
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ1,1] .
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ3,3] .
166
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
y-axis. Because the period is ฯ , one cycle will
begin at x = 0 and end at x = ฯ . We divide the
interval [ 0, ฯ ] into four subintervals, each of
38. Comparing y = sin ( 3x ) to y = A sin (ฯ x ) , we
find A = 1 and ฯ = 3 . Therefore, the amplitude
2ฯ
. Because the
is 1 = 1 and the period is
3
amplitude is 1, the graph of y = sin ( 3x ) will lie
length
ฯ
4
by finding the following values:
ฯ 3ฯ
, ,
, and ฯ
4 2 4
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = โ sin ( 2 x ) , we multiply the y-coordinates of
between โ1 and 1 on the y-axis. Because the
2ฯ
period is
, one cycle will begin at x = 0 and
3
2ฯ
๏ฉ 2ฯ ๏น
. We divide the interval ๏ช 0, ๏บ
end at x =
3
๏ซ 3 ๏ป
2ฯ / 3 ฯ
=
into four subintervals, each of length
4
6
by finding the following values:
ฯ ฯ ฯ
2ฯ
0, , , , and
6 3 2
3
These values of x determine the x-coordinates of
the five key points on the graph. The five key
points are
ฯ
ฯ
ฯ
2ฯ
( 0, 0 ) , ๏ฆ๏ง ,1๏ถ๏ท , ๏ฆ๏ง , 0 ๏ถ๏ท , ๏ฆ๏ง , โ1๏ถ๏ท , ๏ฆ๏ง , 0 ๏ถ๏ท
6
3
2
๏ธ ๏จ 3 ๏ธ
๏จ
๏ธ ๏จ
๏ธ ๏จ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
0,
ฯ
the five key points for y = sin x by A = โ1 .The
five key points are
ฯ
ฯ
3ฯ
( 0, 0 ) , ๏ฆ๏ง , โ1๏ถ๏ท , ๏ฆ๏ง , 0 ๏ถ๏ท , ๏ฆ๏ง ,1๏ถ๏ท , (ฯ , 0 )
๏จ4
๏ธ ๏จ2 ๏ธ ๏จ 4 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
y
2 3
, 1) (, 0)
โโโ , 1) ( โโโ
(
4
4
2
2 x
(0, 0)
, 0)
(โโ
2
, 1)
2 (โโ
4
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ1,1] .
40. Since cosine is an even function, we can plot the
equivalent form y = cos ( 2 x ) .
Comparing y = cos ( 2 x ) to y = A cos (ฯ x ) , we
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
find A = 1 and ฯ = 2 . Therefore, the amplitude
2ฯ
is 1 = 1 and the period is
= ฯ . Because the
2
amplitude is 1, the graph of y = cos ( 2 x ) will lie
range is [ โ1,1] .
39. Since sine is an odd function, we can plot the
equivalent form y = โ sin ( 2 x ) .
between โ1 and 1 on the y-axis. Because the
period is ฯ , one cycle will begin at x = 0 and
end at x = ฯ . We divide the interval [ 0, ฯ ] into
Comparing y = โ sin ( 2 x ) to y = A sin (ฯ x ) , we
find A = โ1 and ฯ = 2 . Therefore, the
2ฯ
amplitude is โ1 = 1 and the period is
=ฯ .
2
Because the amplitude is 1, the graph of
y = โ sin ( 2 x ) will lie between โ1 and 1 on the
four subintervals, each of length
the following values:
ฯ ฯ 3ฯ
, and ฯ
0, , ,
4 2 4
167
Copyright ยฉ 2016 Pearson Education, Inc.
ฯ
4
by finding
Chapter 2: Trigonometric Functions
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = cos ( 2 x ) , we multiply the y-coordinates of
the five key points for y = sin x by A = 2 . The
five key points are
( 0, 0 ) , (ฯ , 2 ) , ( 2ฯ , 0 ) , ( 3ฯ , โ2 ) , ( 4ฯ , 0 )
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
the five key points for y = cos x by A = 1 .The
five key points are
ฯ
ฯ
3ฯ
( 0,1) , ๏ฆ๏ง , 0 ๏ถ๏ท , ๏ฆ๏ง , โ1๏ถ๏ท , ๏ฆ๏ง , 0 ๏ถ๏ท , (ฯ ,1)
๏ธ ๏จ 4 ๏ธ
๏จ4 ๏ธ ๏จ2
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ2, 2] .
๏ฆ1 ๏ถ
42. Comparing y = 2 cos ๏ง x ๏ท to y = A cos (ฯ x ) ,
๏จ4 ๏ธ
1
we find A = 2 and ฯ = . Therefore, the
4
2ฯ
amplitude is 2 = 2 and the period is
= 8ฯ .
1/ 4
Because the amplitude is 2, the graph of
๏ฆ1 ๏ถ
y = 2 cos ๏ง x ๏ท will lie between โ2 and 2 on
๏จ4 ๏ธ
the y-axis. Because the period is 8ฯ , one cycle
will begin at x = 0 and end at x = 8ฯ . We
divide the interval [ 0,8ฯ ] into four subintervals,
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ1,1] .
๏ฆ1 ๏ถ
41. Comparing y = 2sin ๏ง x ๏ท to y = A sin (ฯ x ) ,
๏จ2 ๏ธ
1
we find A = 2 and ฯ = . Therefore, the
2
2ฯ
= 4ฯ .
amplitude is 2 = 2 and the period is
1/ 2
Because the amplitude is 2, the graph of
๏ฆ1 ๏ถ
y = 2sin ๏ง x ๏ท will lie between โ2 and 2 on the
๏จ2 ๏ธ
y-axis. Because the period is 4ฯ , one cycle will
begin at x = 0 and end at x = 4ฯ . We divide
the interval [ 0, 4ฯ ] into four subintervals, each
of length
each of length
8ฯ
= 2ฯ by finding the following
4
values:
0, 2ฯ , 4ฯ , 6ฯ , and 8ฯ
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
๏ฆ1 ๏ถ
y = 2 cos ๏ง x ๏ท , we multiply the y-coordinates
๏จ4 ๏ธ
of the five key points for y = cos x by
A = 2 .The five key points are
( 0, 2 ) , ( 2ฯ , 0 ) , ( 4ฯ , โ2 ) , ( 6ฯ , 0 ) , (8ฯ , 2 )
4ฯ
= ฯ by finding the following
4
values:
0, ฯ , 2ฯ , 3ฯ , and 4ฯ
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
๏ฆ1 ๏ถ
y = 2sin ๏ง x ๏ท , we multiply the y-coordinates of
๏จ2 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
168
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
direction to obtain the graph shown below.
direction to obtain the graph shown below.
y
(2, 0)
(0, 2) (8, 2)
2
(8, 2)
(2, 0)
(6, 0)
x
8 4
4 8
(4, 2)
2
(4, 2)
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ2, 2] .
๏ฉ 1 1๏น
range is ๏ช โ , ๏บ .
๏ซ 2 2๏ป
1
43. Comparing y = โ cos ( 2 x ) to y = A cos (ฯ x ) ,
2
1
we find A = โ and ฯ = 2 . Therefore, the
2
1 1
2ฯ
amplitude is โ = and the period is
=ฯ .
2 2
2
1
Because the amplitude is , the graph of
2
1
1
1
y = โ cos ( 2 x ) will lie between โ and on
2
2
2
the y-axis. Because the period is ฯ , one cycle
will begin at x = 0 and end at x = ฯ . We divide
the interval [ 0, ฯ ] into four subintervals, each of
length
ฯ
4
๏ฆ1 ๏ถ
44. Comparing y = โ4sin ๏ง x ๏ท to y = A sin (ฯ x ) ,
๏จ8 ๏ธ
1
we find A = โ4 and ฯ = . Therefore, the
8
amplitude is โ4 = 4 and the period is
2ฯ
= 16ฯ . Because the amplitude is 4, the
1/ 8
๏ฆ1 ๏ถ
graph of y = โ4sin ๏ง x ๏ท will lie between โ4
๏จ8 ๏ธ
and 4 on the y-axis. Because the period is 16ฯ ,
one cycle will begin at x = 0 and end at
x = 16ฯ . We divide the interval [ 0,16ฯ ] into
by finding the following values:
ฯ 3ฯ
, ,
, and ฯ
4 2 4
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
1
y = โ cos ( 2 x ) , we multiply the y-coordinates
2
of the five key points for y = cos x by
0,
ฯ
four subintervals, each of length
16ฯ
= 4ฯ by
4
finding the following values:
0, 4ฯ , 8ฯ , 12ฯ , and 16ฯ
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
๏ฆ1 ๏ถ
y = โ4sin ๏ง x ๏ท , we multiply the y-coordinates
๏จ8 ๏ธ
of the five key points for y = sin x by A = โ4 .
The five key points are
( 0, 0 ) , ( 4ฯ , โ4 ) , (8ฯ , 0 ) , (12ฯ , 4 ) , (16ฯ , 0 )
1
A = โ .The five key points are
2
1 ๏ถ ๏ฆ ฯ ๏ถ ๏ฆ ฯ 1 ๏ถ ๏ฆ 3ฯ ๏ถ ๏ฆ
1๏ถ
๏ฆ
๏ง 0, โ ๏ท , ๏ง , 0 ๏ท , ๏ง , ๏ท , ๏ง , 0 ๏ท , ๏ง ฯ , โ ๏ท
2๏ธ ๏จ 4 ๏ธ ๏จ 2 2๏ธ ๏จ 4 ๏ธ ๏จ
2๏ธ
๏จ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
169
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
direction to obtain the graph shown below.
direction to obtain the graph shown below.
y
5
(12, 4)
(0, 0)
16
x
(16, 0)
8
(8, 0)
5
(4, 4)
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ4, 4] .
range is [1,5] .
45. We begin by considering y = 2sin x . Comparing
y = 2sin x to y = A sin (ฯ x ) , we find A = 2
46. We begin by considering y = 3cos x . Comparing
and ฯ = 1 . Therefore, the amplitude is 2 = 2
y = 3cos x to y = A cos (ฯ x ) , we find A = 3
2ฯ
= 2ฯ . Because the
1
amplitude is 2, the graph of y = 2sin x will lie
between โ2 and 2 on the y-axis. Because the
period is 2ฯ , one cycle will begin at x = 0 and
end at x = 2ฯ . We divide the interval [ 0, 2ฯ ]
and the period is
into four subintervals, each of length
and ฯ = 1 . Therefore, the amplitude is 3 = 3
2ฯ
= 2ฯ . Because the
1
amplitude is 3, the graph of y = 3cos x will lie
between โ3 and 3 on the y-axis. Because the
period is 2ฯ , one cycle will begin at x = 0 and
end at x = 2ฯ . We divide the interval [ 0, 2ฯ ]
and the period is
2ฯ ฯ
= by
4
2
finding the following values:
ฯ
3ฯ
, and 2ฯ
0, , ฯ ,
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = 2sin x + 3 , we multiply the y-coordinates of
the five key points for y = sin x by A = 2 and
then add 3 units. Thus, the graph of
y = 2sin x + 3 will lie between 1 and 5 on the yaxis. The five key points are
ฯ
3ฯ
( 0,3) , ๏ฆ๏ง ,5 ๏ถ๏ท , (ฯ ,3) , ๏ฆ๏ง ,1๏ถ๏ท , ( 2ฯ ,3)
๏จ2 ๏ธ
๏จ 2 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
into four subintervals, each of length
2ฯ ฯ
= by
4
2
finding the following values:
ฯ
3ฯ
0, , ฯ ,
, and 2ฯ
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = 3cos x + 2 , we multiply the y-coordinates of
the five key points for y = cos x by A = 3 and
then add 2 units. Thus, the graph of
y = 3cos x + 2 will lie between โ1 and 5 on the
y-axis. The five key points are
ฯ
3ฯ
( 0,5) , ๏ฆ๏ง , 2 ๏ถ๏ท , (ฯ , โ1) , ๏ฆ๏ง , 2 ๏ถ๏ท , ( 2ฯ ,5)
๏จ2 ๏ธ
๏จ 2 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
170
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
direction to obtain the graph shown below.
y
direction to obtain the graph shown below.
3 (0, 2)
2
3
( โโ
, 3)
2
(2, 2)
2 x
3
(โโ
, 3)
2
1
(โโ
, 3)
2
(1, 8)
9
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ8, 2] .
range is [ โ1,5] .
๏ฆฯ ๏ถ
48. We begin by considering y = 4sin ๏ง x ๏ท .
๏จ2 ๏ธ
๏ฆฯ ๏ถ
Comparing y = 4sin ๏ง x ๏ท to y = A sin (ฯ x ) ,
๏จ2 ๏ธ
47. We begin by considering y = 5cos (ฯ x ) .
Comparing y = 5cos (ฯ x ) to y = A cos (ฯ x ) , we
find A = 5 and ฯ = ฯ . Therefore, the amplitude
2ฯ
is 5 = 5 and the period is
= 2 . Because the
we find A = 4 and ฯ =
ฯ
amplitude is 5, the graph of y = 5cos (ฯ x ) will
2
. Therefore, the
2ฯ
= 4.
ฯ /2
Because the amplitude is 4, the graph of
๏ฆฯ ๏ถ
y = 4sin ๏ง x ๏ท will lie between โ4 and 4 on
๏จ2 ๏ธ
the y-axis. Because the period is 4 , one cycle
will begin at x = 0 and end at x = 4 . We divide
the interval [ 0, 4] into four subintervals, each of
amplitude is 4 = 4 and the period is
lie between โ5 and 5 on the y-axis. Because the
period is 2 , one cycle will begin at x = 0 and
end at x = 2 . We divide the interval [ 0, 2] into
four subintervals, each of length
ฯ
2 1
= by
4 2
finding the following values:
1
3
0, , 1, , and 2
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = 5cos (ฯ x ) โ 3 , we multiply the y-coordinates
4
= 1 by finding the following values:
4
0, 1, 2, 3, and 4
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
๏ฆฯ ๏ถ
y = 4sin ๏ง x ๏ท โ 2 , we multiply the y๏จ2 ๏ธ
coordinates of the five key points for y = sin x
by A = 4 and then subtract 2 units. Thus, the
๏ฆฯ ๏ถ
graph of y = 4sin ๏ง x ๏ท โ 2 will lie between โ6
๏จ2 ๏ธ
and 2 on the y-axis. The five key points are
( 0, โ2 ) , (1, 2 ) , ( 2, โ2 ) , ( 3, โ6 ) , ( 4, โ2 )
length
of the five key points for y = cos x by A = 5
and then subtract 3 units. Thus, the graph of
y = 5cos (ฯ x ) โ 3 will lie between โ8 and 2 on
the y-axis. The five key points are
1
3
( 0, 2 ) , ๏ฆ๏ง , โ3 ๏ถ๏ท , (1, โ8 ) , ๏ฆ๏ง , โ3 ๏ถ๏ท , ( 2, 2 )
2
๏จ
๏ธ
๏จ2
๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
171
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
direction to obtain the graph shown below.
( 0, 4 ) , ๏ฆ๏ง , โ2 ๏ถ๏ท , ( 3, 4 ) , ๏ฆ๏ง ,10 ๏ถ๏ท , ( 6, 4 )
3
9
2
๏จ
๏ธ
๏จ2
๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ6, 2] .
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
๏ฆฯ ๏ถ
49. We begin by considering y = โ6sin ๏ง x ๏ท .
๏จ3 ๏ธ
๏ฆฯ ๏ถ
Comparing y = โ6sin ๏ง x ๏ท to y = A sin (ฯ x ) ,
๏จ3 ๏ธ
we find A = โ6 and ฯ =
ฯ
3
range is [ โ2,10] .
๏ฆฯ ๏ถ
50. We begin by considering y = โ3cos ๏ง x ๏ท .
๏จ4 ๏ธ
๏ฆฯ ๏ถ
Comparing y = โ3cos ๏ง x ๏ท to y = A cos (ฯ x ) ,
๏จ4 ๏ธ
. Therefore, the
2ฯ
= 6.
ฯ /3
Because the amplitude is 6, the graph of
๏ฆฯ ๏ถ
y = 6sin ๏ง x ๏ท will lie between โ6 and 6 on the
๏จ3 ๏ธ
y-axis. Because the period is 6, one cycle will
begin at x = 0 and end at x = 6 . We divide the
interval [ 0, 6] into four subintervals, each of
amplitude is โ6 = 6 and the period is
we find A = โ3 and ฯ =
ฯ
4
. Therefore, the
2ฯ
=8.
ฯ /4
Because the amplitude is 3, the graph of
๏ฆฯ ๏ถ
y = โ3cos ๏ง x ๏ท will lie between โ3 and 3 on
๏จ4 ๏ธ
the y-axis. Because the period is 8, one cycle
will begin at x = 0 and end at x = 8 . We divide
the interval [ 0,8] into four subintervals, each of
amplitude is โ3 = 3 and the period is
6 3
= by finding the following values:
4 2
3
9
0, , 3, , and 6
2
2
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
๏ฆฯ ๏ถ
y = โ6sin ๏ง x ๏ท + 4 , we multiply the y๏จ3 ๏ธ
coordinates of the five key points for y = sin x
by A = โ6 and then add 4 units. Thus, the graph
๏ฆฯ ๏ถ
of y = โ6sin ๏ง x ๏ท + 4 will lie between โ2 and
๏จ3 ๏ธ
10 on the y-axis. The five key points are
length
8
= 2 by finding the following values:
4
0, 2, 4, 6, and 8
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
๏ฆฯ ๏ถ
y = โ3cos ๏ง x ๏ท + 2 , we multiply the y๏จ4 ๏ธ
coordinates of the five key points for y = cos x
by A = โ3 and then add 2 units. Thus, the graph
length
172
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
on the y-axis. The five key points are
ฯ
ฯ
3ฯ
( 0,5) , ๏ฆ๏ง , 2 ๏ถ๏ท , ๏ฆ๏ง ,5 ๏ถ๏ท , ๏ฆ๏ง ,8 ๏ถ๏ท , (ฯ ,5)
๏จ4 ๏ธ ๏จ2 ๏ธ ๏จ 4 ๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
๏ฆฯ ๏ถ
of y = โ3cos ๏ง x ๏ท + 2 will lie between โ1 and
๏จ4 ๏ธ
5 on the y-axis. The five key points are
( 0, โ1) , ( 2, 2 ) , ( 4,5) , ( 6, 2 ) , (8, โ1)
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
y
10
(0,5)
๏ฆ 3ฯ ๏ถ
๏ง 4 ,8 ๏ท
๏จ
๏ธ
๏ฆฯ ๏ถ
๏ง ,5 ๏ท
๏จ2 ๏ธ
(ฯ ,5 )
๏ฆฯ ๏ถ
๏ง ,2๏ท
๏จ4 ๏ธ
โฯ
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ 2,8] .
range is [ โ1,5] .
52. y = 2 โ 4 cos ( 3x ) = โ4 cos ( 3x ) + 2
51. y = 5 โ 3sin ( 2 x ) = โ3sin ( 2 x ) + 5
We begin by considering y = โ4 cos ( 3 x ) .
We begin by considering y = โ3sin ( 2 x ) .
Comparing y = โ4 cos ( 3 x ) to y = A cos (ฯ x ) ,
Comparing y = โ3sin ( 2 x ) to y = A sin (ฯ x ) ,
we find A = โ4 and ฯ = 3 . Therefore, the
2ฯ
amplitude is โ4 = 4 and the period is
.
3
Because the amplitude is 4, the graph of
y = โ4 cos ( 3 x ) will lie between โ4 and 4 on
we find A = โ3 and ฯ = 2 . Therefore, the
2ฯ
amplitude is โ3 = 3 and the period is
=ฯ .
2
Because the amplitude is 3, the graph of
y = โ3sin ( 2 x ) will lie between โ3 and 3 on the
2ฯ
, one cycle
3
2ฯ
will begin at x = 0 and end at x =
. We
3
๏ฉ 2ฯ ๏น
divide the interval ๏ช0, ๏บ into four
๏ซ 3 ๏ป
2ฯ / 3 ฯ
=
subintervals, each of length
by
4
6
finding the following values:
ฯ ฯ ฯ
2ฯ
0, , , , and
6 3 2
3
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = โ4 cos ( 3x ) + 2 , we multiply the y-
the y-axis. Because the period is
y-axis. Because the period is ฯ , one cycle will
begin at x = 0 and end at x = ฯ . We divide the
interval [ 0, ฯ ] into four subintervals, each of
length
ฯ
4
by finding the following values:
ฯ 3ฯ
, ,
, and ฯ
4 2 4
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
y = โ3sin ( 2 x ) + 5 , we multiply the y-
0,
ฯ
ฯ
coordinates of the five key points for y = sin x
by A = โ3 and then add 5 units. Thus, the graph
of y = โ3sin ( 2 x ) + 5 will lie between 2 and 8
173
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
coordinates of the five key points for y = cos x
by A = โ4 and then adding 2 units. Thus, the
graph of y = โ4 cos ( 3x ) + 2 will lie between โ2
3 3 9
, , , and 3
4 2 4
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
5 ๏ฆ 2ฯ ๏ถ
y = โ sin ๏ง
x ๏ท , we multiply the y3 ๏จ 3 ๏ธ
0,
and 6 on the y-axis. The five key points are
ฯ
ฯ
ฯ
2ฯ
( 0, โ2 ) , ๏ฆ๏ง , 2 ๏ถ๏ท , ๏ฆ๏ง , 6 ๏ถ๏ท , ๏ฆ๏ง , 2 ๏ถ๏ท , ๏ฆ๏ง , โ2 ๏ถ๏ท
6
3
2
๏ธ
๏จ
๏ธ ๏จ
๏ธ ๏จ
๏ธ ๏จ 3
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
3
coordinates of the five key points for y = sin x
5
by A = โ .The five key points are
3
3 5
3
9 5
( 0, 0 ) , ๏ฆ๏ง , โ ๏ถ๏ท , ๏ฆ๏ง , 0 ๏ถ๏ท , ๏ฆ๏ง , ๏ถ๏ท , ( 3, 0 )
๏จ 4 3๏ธ ๏จ 2 ๏ธ ๏จ 4 3๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
3
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
range is [ โ2, 6] .
53. Since sine is an odd function, we can plot the
5 ๏ฆ 2ฯ ๏ถ
equivalent form y = โ sin ๏ง
x๏ท .
3 ๏จ 3 ๏ธ
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
5 ๏ฆ 2ฯ ๏ถ
Comparing y = โ sin ๏ง
x ๏ท to
3 ๏จ 3 ๏ธ
5
2ฯ
y = A sin (ฯ x ) , we find A = โ and ฯ =
.
3
3
5 5
Therefore, the amplitude is โ = and the
3 3
2ฯ
= 3 . Because the amplitude is
period is
2ฯ / 3
5
5 ๏ฆ 2ฯ ๏ถ
, the graph of y = โ sin ๏ง
x ๏ท will lie
3
3 ๏จ 3 ๏ธ
๏ฉ 5 5๏น
range is ๏ช โ , ๏บ .
๏ซ 3 3๏ป
54. Since cosine is an even function, we consider the
9
๏ฆ 3ฯ ๏ถ
equivalent form y = cos ๏ง
x ๏ท . Comparing
5
๏จ 2 ๏ธ
9
๏ฆ 3ฯ ๏ถ
y = cos ๏ง
x ๏ท to y = A cos (ฯ x ) , we find
5
๏จ 2 ๏ธ
9
3ฯ
and ฯ =
. Therefore, the amplitude is
5
2
2ฯ
4
9 9
= . Because
= and the period is
5 5
3ฯ / 2 3
9
the amplitude is , the graph of
5
9
9
9
๏ฆ 3ฯ ๏ถ
y = cos ๏ง
x ๏ท will lie between โ and
5
5
5
๏จ 2 ๏ธ
A=
5
5
and on the y-axis. Because the
3
3
period is 3 , one cycle will begin at x = 0 and
end at x = 3 . We divide the interval [ 0,3] into
between โ
four subintervals, each of length
3
by finding
4
the following values:
174
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
3
๏ฆฯ ๏ถ
55. We begin by considering y = โ cos ๏ง x ๏ท .
2
๏จ4 ๏ธ
3
๏ฆฯ ๏ถ
Comparing y = โ cos ๏ง x ๏ท to
2
๏จ4 ๏ธ
4
, one
3
4
cycle will begin at x = 0 and end at x = . We
3
๏ฉ 4๏น
divide the interval ๏ช0, ๏บ into four subintervals,
๏ซ 3๏ป
4/3 1
= by finding the following
each of length
4
3
values:
1 2
4
0, , , 1 , and
3 3
3
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
9
๏ฆ 3ฯ ๏ถ
y = cos ๏ง
x ๏ท , we multiply the y-coordinates
5
๏จ 2 ๏ธ
on the y-axis. Because the period is
of the five key points for y = cos x by A =
3
ฯ
and ฯ = .
4
2
3 3
Therefore, the amplitude is โ = and the
2 2
2ฯ
3
= 8 . Because the amplitude is ,
period is
ฯ /4
2
3
๏ฆฯ ๏ถ
the graph of y = โ cos ๏ง x ๏ท will lie between
2
๏จ4 ๏ธ
y = A cos (ฯ x ) , we find A = โ
3
3
and on the y-axis. Because the period is
2
2
8, one cycle will begin at x = 0 and end at
x = 8 . We divide the interval [ 0,8] into four
โ
9
.
5
8
= 2 by finding the
4
following values: 0, 2, 4, 6, and 8
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
3
๏ฆฯ ๏ถ 1
y = โ cos ๏ง x ๏ท + , we multiply the y2
๏จ4 ๏ธ 2
coordinates of the five key points for y = cos x
subintervals, each of length
9
๏ฆ 3ฯ ๏ถ
Thus, the graph of y = cos ๏ง โ
x ๏ท will lie
5
๏จ 2 ๏ธ
between โ
9
9
and on the y-axis. The five key
5
5
points are
๏ฆ 9๏ถ ๏ฆ1 ๏ถ ๏ฆ2 9๏ถ
๏ฆ4 9๏ถ
๏ง 0, ๏ท , ๏ง , 0 ๏ท , ๏ง , โ ๏ท , (1, 0 ) , ๏ง , ๏ท
5
3
3
5
๏ธ
๏จ
๏ธ ๏จ
๏ธ ๏จ
๏จ 3 5๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
3
1
and then add unit. Thus, the
2
2
3
๏ฆฯ ๏ถ 1
graph of y = โ cos ๏ง x ๏ท + will lie between
2
๏จ4 ๏ธ 2
โ1 and 2 on the y-axis. The five key points are
1
1
( 0, โ1) , ๏ฆ๏ง 2, ๏ถ๏ท , ( 4, 2 ) , ๏ฆ๏ง 6, ๏ถ๏ท , (8, โ1)
2
๏จ
๏ธ
๏จ 2๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
by A = โ
y
(4, 2)
2
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
8 4
๏ฉ 9 9๏น
range is ๏ช โ , ๏บ .
๏ซ 5 5๏ป
(8, 1)
175
Copyright ยฉ 2016 Pearson Education, Inc.
2
1
(2, โโ
)
2
(4, 2)
1
(6, โโ
)
2
x
4
8
(0, 1) (8, 1)
Chapter 2: Trigonometric Functions
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
y
2.5
range is [ โ1, 2] .
3
(0, โโ
)
2
3
(8, โโ
)
2
1 ๏ฆฯ ๏ถ
56. We begin by considering y = โ sin ๏ง x ๏ท .
2 ๏จ8 ๏ธ
1 ๏ฆฯ ๏ถ
Comparing y = โ sin ๏ง x ๏ท to y = A sin (ฯ x ) ,
2 ๏จ8 ๏ธ
(4, 1)
3
(16, โโ
)
2
x
1612 8 4
0.5
ฯ
1
and ฯ = . Therefore, the
8
2
1 1
amplitude is โ = and the period is
2 2
2ฯ
1
= 16 . Because the amplitude is , the
ฯ /8
2
1 ๏ฆฯ ๏ถ
1
graph of y = โ sin ๏ง x ๏ท will lie between โ
2 ๏จ8 ๏ธ
2
4
8 12 16
From the graph we can determine that the
domain is all real numbers, ( โโ, โ ) and the
we find A = โ
range is [1, 2] .
57.
A = 3; T = ฯ; ฯ =
2ฯ 2ฯ
=
=2
T
ฯ
y = ยฑ3sin(2 x)
1
on the y-axis. Because the period is 16,
2
one cycle will begin at x = 0 and end at x = 16 .
We divide the interval [ 0,16] into four
58.
and
subintervals, each of length
(12, 2)
(4, 2)
A = 2; T = 4ฯ; ฯ =
2ฯ 2ฯ 1
=
=
T
4ฯ 2
๏ฆ1 ๏ถ
y = ยฑ2sin ๏ง x ๏ท
๏จ2 ๏ธ
16
= 4 by finding
4
59.
the following values:
0, 4, 8, 12, and 16
These values of x determine the x-coordinates of
the five key points on the graph. To obtain the ycoordinates of the five key points for
1
๏ฆฯ ๏ถ 3
y = โ sin ๏ง x ๏ท + , we multiply the y2 ๏จ8 ๏ธ 2
A = 3; T = 2; ฯ =
2ฯ 2ฯ
=
=ฯ
T
2
y = ยฑ3sin(ฯx)
60.
A = 4; T = 1; ฯ =
2ฯ 2ฯ
=
= 2ฯ
T
1
y = ยฑ4sin(2ฯ x)
61. The graph is a cosine graph with amplitude 5 and
period 8.
2ฯ
Find ฯ : 8 =
coordinates of the five key points for y = sin x
1
3
and then add units. Thus, the
2
2
1
๏ฆฯ ๏ถ 3
graph of y = โ sin ๏ง x ๏ท + will lie between
2 ๏จ8 ๏ธ 2
1 and 2 on the y-axis. The five key points are
๏ฆ 3๏ถ
๏ฆ 3๏ถ
๏ฆ 3๏ถ
๏ง 0, ๏ท , ( 4,1) , ๏ง 8, ๏ท , (12, 2 ) , ๏ง16, ๏ท
๏จ 2๏ธ
๏จ 2๏ธ
๏จ 2๏ธ
We plot these five points and fill in the graph of
the curve. We then extend the graph in either
direction to obtain the graph shown below.
by A = โ
ฯ
8ฯ = 2ฯ
2ฯ ฯ
=
ฯ=
8
4
๏ฆฯ ๏ถ
The equation is: y = 5cos ๏ง x ๏ท .
๏จ4 ๏ธ
62. The graph is a sine graph with amplitude 4 and
period 8ฯ.
176
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
Find ฯ :
8ฯ =
67. The graph is a reflected sine graph with
4ฯ
.
amplitude 1 and period
3
4ฯ 2ฯ
=
Find ฯ :
ฯ
3
4ฯฯ = 6ฯ
6ฯ 3
ฯ=
=
4ฯ 2
๏ฆ3 ๏ถ
The equation is: y = โ sin ๏ง x ๏ท .
๏จ2 ๏ธ
2ฯ
ฯ
8ฯฯ = 2ฯ
2ฯ 1
=
ฯ=
8ฯ 4
๏ฆ1 ๏ถ
The equation is: y = 4sin ๏ง x ๏ท .
๏จ4 ๏ธ
63. The graph is a reflected cosine graph with
amplitude 3 and period 4ฯ.
2ฯ
Find ฯ : 4ฯ =
ฯ
68. The graph is a reflected cosine graph with
amplitude ฯ and period 2ฯ.
2ฯ
Find ฯ : 2ฯ =
4ฯฯ = 2ฯ
2ฯ 1
ฯ=
=
4ฯ 2
ฯ
2ฯฯ = 2ฯ
2ฯ
ฯ=
=1
2ฯ
The equation is: y = โฯ cos x .
๏ฆ1 ๏ถ
The equation is: y = โ3cos ๏ง x ๏ท .
๏จ2 ๏ธ
64. The graph is a reflected sine graph with
amplitude 2 and period 4.
2ฯ
Find ฯ : 4 =
69. The graph is a reflected cosine graph, shifted up
3
1 unit, with amplitude 1 and period .
2
3 2ฯ
Find ฯ :
=
2 ฯ
3ฯ = 4ฯ
4ฯ
ฯ=
3
๏ฆ 4ฯ ๏ถ
The equation is: y = โ cos ๏ง
x ๏ท +1 .
๏จ 3 ๏ธ
ฯ
4ฯ = 2ฯ
2ฯ ฯ
ฯ=
=
4 2
๏ฆฯ ๏ถ
The equation is: y = โ 2sin ๏ง x ๏ท .
๏จ2 ๏ธ
65. The graph is a sine graph with amplitude
3
and
4
period 1.
Find ฯ : 1 =
2ฯ
70. The graph is a reflected sine graph, shifted down
4ฯ
1
.
1 unit, with amplitude and period
3
2
4ฯ 2ฯ
Find ฯ :
=
ฯ
3
4ฯฯ = 6ฯ
6ฯ 3
ฯ=
=
4ฯ 2
1 ๏ฆ3 ๏ถ
The equation is: y = โ sin ๏ง x ๏ท โ 1 .
2 ๏จ2 ๏ธ
ฯ
ฯ = 2ฯ
3
The equation is: y = sin ( 2ฯ x ) .
4
66. The graph is a reflected cosine graph with
5
amplitude and period 2.
2
2ฯ
Find ฯ : 2 =
ฯ
2ฯ = 2ฯ
2ฯ
ฯ=
=ฯ
2
5
The equation is: y = โ cos ( ฯx ) .
2
177
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
71. The graph is a sine graph with amplitude 3 and
period 4.
2ฯ
Find ฯ : 4 =
76.
f (ฯ / 2 ) โ f ( 0 )
ฯ /2โ0
ฯ
4ฯ = 2ฯ
2ฯ ฯ
ฯ=
=
4 2
=
cos (ฯ / 2 ) โ cos ( 0 )
ฯ /2
0 โ1
2
=
=โ
ฯ /2
ฯ
The average rate of change is โ
๏ฆฯ ๏ถ
The equation is: y = 3sin ๏ง x ๏ท .
๏จ2 ๏ธ
77.
72. The graph is a reflected cosine graph with
amplitude 2 and period 2.
2ฯ
Find ฯ : 2 =
f (ฯ / 2 ) โ f ( 0 )
ฯ /2โ0
ฯ
2ฯ = 2ฯ
2ฯ
ฯ=
=ฯ
2
The equation is: y = โ 2 cos(ฯ x) .
78.
f (ฯ / 2 ) โ f ( 0 )
ฯ /2โ0
=
f ( g ( x )) = sin ( 4 x )
g ( f ( x)) = 4 (sin x ) = 4sin x
sin (ฯ / 2 ) โ sin ( 0 )
ฯ /2
1โ 0 2
=
=
ฯ /2 ฯ
The average rate of change is
2
ฯ
.
๏ฆ ฯ๏ถ
cos ๏ง 2 โ
๏ท โ cos(2 โ
0)
๏จ 2๏ธ
ฯ /2
cos(ฯ ) โ cos(0) โ1 โ 1
=
=
ฯ /2
ฯ /2
2
4
= โ2 โ
= โ
ฯ
ฯฯ = 2ฯ
2ฯ
ฯ=
=2
ฯ
The equation is: y = 4sin ( 2 x ) .
75.
2
ฯ
ฯ
The average rate of change is โ
79.
.
f (ฯ / 2 ) โ f (0)
=
ฯ /2โ0
ฯ
74. The graph is a sine graph with amplitude 4 and
period ฯ.
2ฯ
Find ฯ : ฯ =
ฯ
๏ฆ1 ฯ ๏ถ
๏ฆ1 ๏ถ
sin ๏ง โ
๏ท โ sin ๏ง โ
0 ๏ท
๏จ2 2๏ธ
๏จ2 ๏ธ
=
ฯ /2
sin (ฯ / 4 ) โ sin ( 0 )
=
ฯ /2
2
2 2
2
= 2 =
โ
=
ฯ /2 2 ฯ
ฯ
The average rate of change is
73. The graph is a reflected cosine graph with
2ฯ
.
amplitude 4 and period
3
2ฯ 2ฯ
Find ฯ :
=
ฯ
3
2ฯฯ = 6ฯ
6ฯ
ฯ=
=3
2ฯ
The equation is: y = โ 4 cos ( 3 x ) .
2
.
178
Copyright ยฉ 2016 Pearson Education, Inc.
4
ฯ
.
Section 2.4: Graphs of the Sine and Cosine Functions
80.
f ( g ( x)) = cos
g ( f ( x)) = sin ( โ3 x )
1
x
2
83.
1
1
g ( f ( x)) = ( cos x ) = cos x
2
2
81.
f ( g ( x)) = โ2 ( cos x ) = โ2 cos x
84.
g ( f ( x)) = cos ( โ2 x )
85. I ( t ) = 220sin(60ฯ t ), t โฅ 0
2ฯ
1
=
second
ฯ 60ฯ 30
Amplitude: A = 220 = 220 amperes
Period: T =
82.
f ( g ( x)) = โ3 (sin x ) = โ3sin x
179
Copyright ยฉ 2016 Pearson Education, Inc.
2ฯ
=
Chapter 2: Trigonometric Functions
c.
86. I (t ) = 120sin(30ฯ t ), t โฅ 0
2ฯ 2ฯ
1
Period: T =
=
=
second
ฯ 30ฯ 15
Amplitude: A = 120 = 120 amperes
V = IR
120sin(120ฯ t ) = 20 I
6sin(120ฯ t ) = I
I (t ) = 6sin(120ฯ t )
d.
A = 6 = 6 amperes
Amplitude:
Period: T =
2ฯ
ฯ
=
2ฯ
1
=
second
120ฯ 60
[V (t )]
2
89. a.
Amplitude:
Period: T =
A = 220 = 220 volts
2ฯ
ฯ
=
R
๏ฉV0 sin ( 2ฯft ) ๏น๏ป
=๏ซ
R
2
2
V sin ( 2ฯft )
= 0
R
2
V
= 0 sin 2 ( 2ฯft )
R
87. V (t ) = 220sin(120ฯ t )
a.
P (t ) =
2ฯ
1
=
second
120ฯ 60
b, e.
b. The graph is the reflected cosine graph
translated up a distance equivalent to the
1
, so ฯ = 4ฯ f .
amplitude. The period is
2f
The amplitude is
c.
V = IR
220sin(120ฯ t ) = 10 I
I (t ) = 22sin(120ฯ t )
Amplitude:
Period: T =
c.
A = 22 = 22 amperes
2ฯ
ฯ
=
2ฯ
1
=
second
120ฯ 60
90. a.
88. V (t ) = 120sin(120ฯ t )
a.
Amplitude: A = 120 = 120 volts
Period: T =
2ฯ
ฯ
=
1 V0 2 V0 2
.
โ
=
2 R
2R
The equation is:
V2
V2
P ( t ) = โ 0 cos ( 4ฯft ) + 0
2R
2R
2
V
= 0 ๏ฉ๏ซ1 โ cos ( 4ฯft ) ๏น๏ป
2R
22sin(120ฯ t ) = I
d.
2
2ฯ
1
=
second
120ฯ 60
b, e.
Comparing the formulas:
1
sin 2 ( 2ฯft ) = (1 โ cos ( 4ฯft ) )
2
Since the tunnel is in the shape of one-half a
sine cycle, the width of the tunnel at its base
is one-half the period. Thus,
2ฯ
ฯ
T=
= 2(28) = 56 or ฯ =
.
28
ฯ
The tunnel has a maximum height of 15 feet
so we have A = 15 . Using the form
y = A sin(ฯ x) , the equation for the sine
curve that fits the opening is
๏ฆฯx ๏ถ
y = 15sin ๏ง
๏ท.
๏จ 28 ๏ธ
b. Since the shoulders are 7 feet wide and the
road is 14 feet wide, the edges of the road
correspond to x = 7 and x = 21 .
180
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Graphs of the Sine and Cosine Functions
92. y = cos x , โ 2ฯ โค x โค 2ฯ
๏ฆ 7ฯ ๏ถ
๏ฆ ฯ ๏ถ 15 2
15sin ๏ง
โ 10.6
๏ท = 15sin ๏ง ๏ท =
2
๏จ 28 ๏ธ
๏จ4๏ธ
๏ฆ 21ฯ ๏ถ
๏ฆ 3ฯ ๏ถ 15 2
โ 10.6
15sin ๏ง
๏ท = 15sin ๏ง ๏ท =
28
2
๏จ
๏ธ
๏จ 4 ๏ธ
The tunnel is approximately 10.6 feet high
at the edge of the road.
91. a.
2ฯ
;
23
2ฯ ฯ
= ;
Emotional potential: ฯ =
28 14
2ฯ
Intellectual potential: ฯ =
33
Physical potential: ฯ =
93. y = sin x , โ 2ฯ โค x โค 2ฯ
110
b.
0
0
#1, #2, #3
33
๏ฆ 2ฯ ๏ถ
#1: P ( t ) = 50sin ๏ง t ๏ท + 50
๏จ 23 ๏ธ
๏ฆฯ ๏ถ
# 2 : P ( t ) = 50sin ๏ง t ๏ท + 50
๏จ 14 ๏ธ
94. Answers may vary.
๏ฆ 7ฯ 1 ๏ถ ๏ฆ ฯ 1 ๏ถ ๏ฆ 5ฯ 1 ๏ถ ๏ฆ 13ฯ 1 ๏ถ
, ๏ท,๏ง , ๏ท,๏ง , ๏ท,๏ง
, ๏ท
๏งโ
๏จ 6 2๏ธ ๏จ 6 2๏ธ ๏จ 6 2๏ธ ๏จ 6 2๏ธ
95. Answers may vary.
๏ฆ 2ฯ ๏ถ
#3 : P ( t ) = 50sin ๏ง t ๏ท + 50
๏จ 33 ๏ธ
c.
๏ฆ 5ฯ 1 ๏ถ ๏ฆ ฯ 1 ๏ถ ๏ฆ ฯ 1 ๏ถ ๏ฆ 5ฯ 1 ๏ถ
๏ง โ , ๏ท,๏ง โ , ๏ท,๏ง , ๏ท,๏ง , ๏ท
๏จ 3 2๏ธ ๏จ 3 2๏ธ ๏จ 3 2๏ธ ๏จ 3 2๏ธ
No.
110
d.
96. 2sin x = โ2
#2
7305
sin x = โ1
Answers may vary.
๏ฆ ฯ
๏ถ ๏ฆ 3ฯ
๏ถ ๏ฆ 7ฯ
๏ถ ๏ฆ 11ฯ
๏ถ
, โ2 ๏ท , ๏ง
, โ2 ๏ท
๏ง โ , โ2 ๏ท , ๏ง , โ2 ๏ท , ๏ง
๏จ 2
๏ธ ๏จ 2
๏ธ ๏จ 2
๏ธ ๏จ 2
๏ธ
#1
#3
7335
0
Physical potential peaks at 15 days after the
20th birthday, with minimums at the 3rd and
26th days. Emotional potential is 50% at the
17th day, with a maximum at the 10th day
and a minimum at the 24th day. Intellectual
potential starts fairly high, drops to a
minimum at the 13th day, and rises to a
maximum at the 29th day.
97. Answers may vary.
๏ฆ 3ฯ ๏ถ ๏ฆ ฯ ๏ถ ๏ฆ 5ฯ ๏ถ ๏ฆ 9ฯ ๏ถ
,1๏ท
๏ง โ ,1๏ท , ๏ง ,1๏ท , ๏ง ,1๏ท , ๏ง
๏จ 4 ๏ธ ๏จ4 ๏ธ ๏จ 4 ๏ธ ๏จ 4 ๏ธ
98 โ 102. Answers will vary.
181
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
103.
f ( x + h) โ f ( x )
h
( x + h) 2 โ 5( x + h) + 1 โ ( x 2 โ 5 x + 1)
=
h
2
2
( x + 2 xh + h ) โ (5 x + 5h) + 1 โ x 2 + 5 x โ 1
=
h
2
2
x + 2 xh + h โ 5 x โ 5h + 1 โ x 2 + 5 x โ 1
=
h
2 xh + h 2 โ 5h h(2 x + h โ 5)
=
=
= 2x + h โ 5
h
h
3. origin; x = odd multiples of
ฯ
2
4. y-axis; x = odd multiples of
ฯ
2
5. b
6. True
7. The y-intercept of y = tan x is 0.
8. y = cot x has no y-intercept.
11ฯ 5ฯ
โ
4
4
5ฯ
2
=โ
sin
4
2
105. The y-intercept is:
104. โ
9. The y-intercept of y = sec x is 1.
10. y = csc x has no y-intercept.
11. sec x = 1 when x = โ 2ฯ, 0, 2ฯ;
sec x = โ1 when x = โฯ, ฯ
y = 3 0 + 2 โ1
y = 6 โ1 = 5
3ฯ ฯ
, ;
2 2
ฯ 3ฯ
csc x = โ1 when x = โ ,
2 2
12. csc x = 1 when x = โ
(0,5)
The x-interecpts are:
0 = 3 x + 2 โ1
1
= x+2
3
1
1
= x + 2 or โ = x + 2
3
3
5
7
x=โ
or x = โ
3
3
5
7
โ ,0 , โ ,0
3
3
13. y = sec x has vertical asymptotes when
1= 3 x+2 โ
x=โ
3ฯ ฯ ฯ 3ฯ
.
,โ , ,
2
2 2 2
14. y = csc x has vertical asymptotes when
x = โ 2ฯ, โ ฯ, 0, ฯ, 2ฯ .
15. y = tan x has vertical asymptotes when
x=โ
ฯ
2ฯ
106. 40
=
180
9
1
A = r 2ฮธ
2
1 2 2ฯ
= ( 5)
2
9
25ฯ
sq. units
=
9
3ฯ ฯ ฯ 3ฯ
.
,โ , ,
2
2 2 2
16. y = cot x has vertical asymptotes when
x = โ 2ฯ, โ ฯ, 0, ฯ, 2ฯ .
17. y = 3 tan x ; The graph of y = tan x is stretched
vertically by a factor of 3.
Section 2.5
1. x = 4
2. True
182
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions
The domain is { x x โ kฯ , k is an integer} . The
๏ฌ
kฯ
๏ผ
The domain is ๏ญ x x โ
, k is an odd integer ๏ฝ .
2
๏ฎ
๏พ
The range is the set of all real number or (โโ, โ) .
range is the set of all real number or (โโ, โ) .
๏ฆฯ ๏ถ
21. y = tan ๏ง x ๏ท ; The graph of y = tan x is
๏จ2 ๏ธ
2
horizontally compressed by a factor of .
18. y = โ2 tan x ; The graph of y = tan x is stretched
vertically by a factor of 2 and reflected about the
x-axis.
ฯ
๏ฌ
kฯ
๏ผ
The domain is ๏ญ x x โ
, k is an odd integer ๏ฝ .
2
๏ฎ
๏พ
The range is the set of all real number or (โโ, โ) .
The domain is { x x does not equal an odd integer} .
The range is the set of all real number or (โโ, โ) .
19. y = 4 cot x ; The graph of y = cot x is stretched
vertically by a factor of 4.
๏ฆ1 ๏ถ
22. y = tan ๏ง x ๏ท ; The graph of y = tan x is
๏จ2 ๏ธ
horizontally stretched by a factor of 2.
The domain is { x x โ kฯ , k is an integer} . The
The domain is { x x โ kฯ , k is an integer} . The
range is the set of all real number or (โโ, โ) .
range is the set of all real number or (โโ, โ) .
๏ฆ1 ๏ถ
23. y = cot ๏ง x ๏ท ; The graph of y = cot x is
๏จ4 ๏ธ
horizontally stretched by a factor of 4.
20. y = โ3cot x ; The graph of y = cot x is stretched
vertically by a factor of 3 and reflected about the
x-axis.
183
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
The domain is { x x โ 4kฯ , k is an integer} . The
The domain is { x x โ kฯ , k is an integer} . The
range is the set of all real number or (โโ, โ) .
๏ฌ
1
1๏ผ
range is ๏ญ y y โค โ or y โฅ ๏ฝ .
2
2๏พ
๏ฎ
๏ฆฯ ๏ถ
24. y = cot ๏ง x ๏ท ; The graph of y = cot x is
๏จ4 ๏ธ
4
horizontally stretched by a factor of .
27. y = โ3csc x ; The graph of y = csc x is
vertically stretched by a factor of 3 and reflected
about the x-axis.
ฯ
The domain is { x x โ 4k , k is an integer} . The
The domain is { x x โ kฯ , k is an integer} . The
range is the set of all real number or (โโ, โ) .
range is { y y โค โ3 or y โฅ 3} .
25. y = 2sec x ; The graph of y = sec x is stretched
vertically by a factor of 2.
28. y = โ4sec x ; The graph of y = sec x is
vertically stretched by a factor of 4 and reflected
about the x-axis.
๏ฌ
kฯ
๏ผ
The domain is ๏ญ x x โ
, k is an odd integer ๏ฝ .
2
๏ฎ
๏พ
๏ฌ
kฯ
๏ผ
The domain is ๏ญ x x โ
, k is an odd integer ๏ฝ .
2
๏ฎ
๏พ
The range is { y y โค โ2 or y โฅ 2} .
The range is { y y โค โ4 or y โฅ 4} .
1
csc x ; The graph of y = csc x is vertically
2
1
compressed by a factor of .
2
26. y =
๏ฆ1 ๏ถ
29. y = 4sec ๏ง x ๏ท ; The graph of y = sec x is
๏จ2 ๏ธ
horizontally stretched by a factor of 2 and
184
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions
31. y = โ2 csc (ฯ x ) ; The graph of y = csc x is
vertically stretched by a factor of 4.
horizontally compressed by a factor of
1
ฯ
,
vertically stretched by a factor of 2, and reflected
about the x-axis.
The domain is { x x โ kฯ , k is an odd integer} .
The range is { y y โค โ4 or y โฅ 4} .
1
csc ( 2 x ) ; The graph of y = csc x is
2
1
horizontally compressed by a factor of and
2
1
vertically compressed by a factor of .
2
The domain is { x x does not equal an integer} .
30. y =
The range is { y y โค โ2 or y โฅ 2} .
๏ฆฯ ๏ถ
32. y = โ3sec ๏ง x ๏ท ; The graph of y = sec x is
๏จ2 ๏ธ
2
horizontally compressed by a factor of ,
ฯ
vertically stretched by a factor of 3, and reflected
about the x-axis.
๏ฌ
kฯ
๏ผ
The domain is ๏ญ x x โ
, k is an integer ๏ฝ . The
2
๏ฎ
๏พ
1
1๏ผ
๏ฌ
range is ๏ญ y y โค โ or y โฅ ๏ฝ .
2
2๏พ
๏ฎ
The domain is { x x does not equal an odd integer} .
The range is { y y โค โ3 or y โฅ 3} .
185
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
๏ฆ1 ๏ถ
33. y = tan ๏ง x ๏ท + 1 ; The graph of y = tan x is
๏จ4 ๏ธ
horizontally stretched by a factor of 4 and shifted
up 1 unit.
๏ฆ 2ฯ ๏ถ
35. y = sec ๏ง
x ๏ท + 2 ; The graph of y = sec x is
๏จ 3 ๏ธ
3
horizontally compressed by a factor of
and
2ฯ
shifted up 2 units.
The domain is { x x โ 2kฯ , k is an odd integer} .
๏ฌ
3
๏ผ
The domain is ๏ญ x x โ k , k is an odd integer ๏ฝ .
4
๏ฎ
๏พ
The range is the set of all real number or (โโ, โ) .
The range is { y y โค 1 or y โฅ 3} .
34. y = 2 cot x โ 1 ; The graph of y = cot x is
vertically stretched by a factor of 2 and shifted
down 1 unit.
๏ฆ 3ฯ ๏ถ
36. y = csc ๏ง
x ๏ท ; The graph of y = csc x is
๏จ 2 ๏ธ
2
horizontally compressed by a factor of
.
3ฯ
The domain is { x x โ kฯ , k is an integer} . The
range is the set of all real number or (โโ, โ) .
๏ฌ
2
๏ผ
The domain is ๏ญ x x โ k , k is an integer ๏ฝ . The
3
๏ฎ
๏พ
range is { y y โค โ1 or y โฅ 1} .
186
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions
1
๏ฆ1 ๏ถ
tan ๏ง x ๏ท โ 2 ; The graph of y = tan x is
2
๏จ4 ๏ธ
horizontally stretched by a factor of 4, vertically
1
compressed by a factor of , and shifted down 2
2
units.
37. y =
๏ฆ1 ๏ถ
39. y = 2 csc ๏ง x ๏ท โ 1 ; The graph of y = csc x is
๏จ3 ๏ธ
horizontally stretched by a factor of 3, vertically
stretched by a factor of 2, and shifted down 1 unit.
The domain is { x x โ 3ฯ k , k is an integer} .
The domain is { x x โ 2ฯ k , k is an odd integer} .
The range is { y y โค โ3 or y โฅ 1} .
The range is the set of all real number or (โโ, โ) .
๏ฆ1 ๏ถ
40. y = 3sec ๏ง x ๏ท + 1 ; The graph of y = sec x is
๏จ4 ๏ธ
horizontally stretched by a factor of 4, vertically
stretched by a factor of 3, and shifted up 1 unit.
๏ฆ1 ๏ถ
38. y = 3cot ๏ง x ๏ท โ 2 ; The graph of y = cot x is
๏จ2 ๏ธ
horizontally stretched by a factor of 2, vertically
stretched by a factor of 3, and shifted down 2
units.
The domain is { x x โ 2ฯ k , k is an odd integer} .
The range is { y y โค โ2 or y โฅ 4} .
The domain is { x x โ 2ฯ k , k is an integer} . The
๏ฆฯ ๏ถ
3
f ๏ง ๏ท โ f ( 0)
โ0
tan (ฯ / 6 ) โ tan ( 0 )
6๏ธ
๏จ
41.
=
= 3
ฯ
ฯ /6
ฯ /6
โ0
6
3 6 2 3
=
โ
=
ฯ
3 ฯ
2 3
The average rate of change is
.
range is the set of all real number or (โโ, โ) .
ฯ
187
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
42.
g ( f ( x)) = 4 ( tan x ) = 4 tan x
๏ฆฯ ๏ถ
2 3
f ๏ง ๏ท โ f ( 0)
โ1
ฯ
sec
/
6
sec
0
โ
(
)
(
)
6
๏จ ๏ธ
=
= 3
ฯ
ฯ /6
ฯ /6
โ0
6
2 3 โ3 6 2 3 2โ 3
=
โ
=
ฯ
ฯ
3
The average rate of change is
(
)
2 3 2โ 3
).
(
ฯ
๏ฆฯ ๏ถ
f ๏ง ๏ท โ f ( 0)
tan ( 2 โ
ฯ / 6 ) โ tan ( 2 โ
0 )
๏จ6๏ธ
=
43.
ฯ
ฯ /6
โ0
6
3 โ0 6 3
=
=
ฯ /6
ฯ
6 3
The average rate of change is
.
46.
f ( g ( x)) = 2sec
1
x
2
ฯ
๏ฆฯ ๏ถ
f ๏ง ๏ท โ f ( 0)
sec ( 2 โ
ฯ / 6 ) โ sec ( 2 โ
0 )
๏จ6๏ธ
44.
=
ฯ
ฯ /6
โ0
6
2 โ1 6
=
=
ฯ /6 ฯ
6
The average rate of change is .
ฯ
45.
g ( f ( x)) =
f ( g ( x)) = tan ( 4 x )
47.
1
( 2sec x ) = sec x
2
f ( g ( x)) = โ2 ( cot x ) = โ2 cot x
188
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions
g ( f ( x)) = cot ( โ2 x )
48.
f ( g ( x)) =
50.
1
( 2 csc x ) = csc x
2
51. a.
g ( f ( x)) = 2 csc
1
x
2
Consider the length of the line segment in
two sections, x, the portion across the hall
that is 3 feet wide and y, the portion across
that hall that is 4 feet wide. Then,
3
4
cos ฮธ =
and
sin ฮธ =
x
y
3
4
x=
y=
cos ฮธ
sin ฮธ
Thus,
3
4
+
= 3sec ฮธ + 4 csc ฮธ .
L = x+ y =
cos ฮธ sin ฮธ
b. Let Y1 =
25
0
c.
3
4
+
.
cos x sin x
_ฯ
2
0
Use MINIMUM to find the least value:
25
49.
0
_ฯ
2
0
L is least when ฮธ โ 0.83 .
d.
Lโ
3
4
+
โ 9.86 feet .
cos ( 0.83) sin ( 0.83)
Note that rounding up will result in a ladder
that wonโt fit around the corner. Answers
will vary.
189
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
52. a.
d ( t ) = 10 tan(ฯ t )
53.
b.
d ( t ) = 10 tan(ฯ t ) is undefined at t =
1
and
2
3
, or in general at
2
๏ฌ k
๏ผ
k is an odd integer ๏ฝ . At these
๏ญt =
2
๏ฎ
๏พ
instances, the length of the beam of light
approaches infinity. It is at these instances
in the rotation of the beacon when the beam
of light being cast on the wall changes from
one side of the beacon to the other.
t=
c.
d.
e.
t
d ( t ) = 10 tan(ฯ t )
0
0.1
0
3.2492
0.2
7.2654
0.3
13.764
0.4
30.777
Yes, the two functions are equivalent.
54. y 2 = x โ 4
Test x-axis symmetry: Let y = โ y
( โ y )2 = x โ 4
y 2 = x โ 4 same
Test y-axis symmetry: Let x = โ x
y 2 = โ x โ 4 different
d (0.1) โ d (0) 3.2492 โ 0
=
โ 32.492
0.1 โ 0
0.1 โ 0
d (0.2) โ d (0.1) 7.2654 โ 3.2492
=
โ 40.162
0.2 โ 0.1
0.2 โ 0.1
d (0.3) โ d (0.2) 13.764 โ 7.2654
=
โ 64.986
0.3 โ 0.2
0.3 โ 0.2
d (0.4) โ d (0.3) 30.777 โ 13.764
=
โ 170.13
0.4 โ 0.3
0.4 โ 0.3
Test origin symmetry: Let x = โ x and y = โ y .
( โ y )2 = โ x โ 4
y 2 = โ x โ 4 different
Therefore, the graph will have x-axis symmetry.
55.
( x โ h) 2 + ( y โ k ) 2 = r 2
( x โ ( โ3)) 2 + ( y โ 1) 2 = (3) 2
The first differences represent the average
rate of change of the beam of light against
the wall, measured in feet per second. For
example, between t = 0 seconds and t = 0.1
seconds, the average rate of change of the
beam of light against the wall is 32.492 feet
per second.
( x + 3) 2 + ( y โ 1) 2 = 9
190
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.6: Phase Shift; Sinusoidal Curve Fitting
4. y = 3sin(3 x โ ฯ)
4 โ6
(4) 2 + 10
2โ6
=
16 + 10
โ4
2
=
=โ
26
13
56. h(4) =
Amplitude:
A = 3 =3
Period:
T=
2ฯ
ฯ
ฯ ฯ
Phase Shift:
=
ฯ 3
=
2ฯ
3
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉฯ ๏น
๏ชฯ , ฯ + T ๏บ = ๏ช 3 ,ฯ ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T 2ฯ / 3 ฯ
=
=
4
4
6
57. The relation is a circle with center (0, 4) and
radius 4 so it is not a function.
Key points:
๏ฆ ฯ ๏ถ ๏ฆ ฯ ๏ถ ๏ฆ 2ฯ ๏ถ ๏ฆ 5ฯ
๏ถ
, 0 ๏ท , ๏ง , โ3 ๏ท , (ฯ , 0 )
๏ง , 0 ๏ท , ๏ง ,3 ๏ท , ๏ง
๏จ3 ๏ธ ๏จ2 ๏ธ ๏จ 3 ๏ธ ๏จ 6
๏ธ
Section 2.6
1. phase shift
2. False
3. y = 4sin(2 x โ ฯ)
Amplitude:
A = 4 =4
Period:
T=
2ฯ
ฯ
ฯ ฯ
Phase Shift:
=
ฯ 2
=
2ฯ
=ฯ
2
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉ ฯ 3ฯ ๏น
๏ชฯ , ฯ + T ๏บ = ๏ช 2 , 2 ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T ฯ
=
4 4
Key points:
๏ฆ ฯ ๏ถ ๏ฆ 3ฯ ๏ถ
๏ฆ 5ฯ
๏ถ ๏ฆ 3ฯ ๏ถ
๏ง , 0 ๏ท , ๏ง , 4 ๏ท , (ฯ , 0 ) , ๏ง , โ4 ๏ท , ๏ง , 0 ๏ท
2
4
4
๏จ
๏ธ ๏จ
๏ธ
๏จ
๏ธ ๏จ 2 ๏ธ
ฯ๏ถ
๏ฆ
5. y = 2 cos ๏ง 3 x + ๏ท
2๏ธ
๏จ
Amplitude: A = 2 = 2
2ฯ
3
ฯ
๏ฆ ฯ๏ถ
โ
ฯ
ฯ ๏ง๏จ 2 ๏ท๏ธ
Phase Shift:
=
=โ
3
6
ฯ
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉ ฯ ฯ๏น
๏ชฯ , ฯ + T ๏บ = ๏ชโ 6 , 2 ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T 2ฯ / 3 ฯ
=
=
4
4
6
Key points:
๏ฆ ฯ ๏ถ
๏ฆฯ
๏ถ ๏ฆฯ ๏ถ ๏ฆฯ ๏ถ
๏ง โ , 2 ๏ท , ( 0, 0 ) , ๏ง , โ2 ๏ท , ๏ง , 0 ๏ท , ๏ง , 2 ๏ท
6
6
๏จ
๏ธ
๏จ
๏ธ ๏จ3 ๏ธ ๏จ2 ๏ธ
Period:
191
Copyright ยฉ 2016 Pearson Education, Inc.
T=
2ฯ
=
Chapter 2: Trigonometric Functions
Subinterval width:
T ฯ
=
4 4
Key points:
๏ฆ ฯ ๏ถ
๏ฆ ฯ ๏ถ ๏ฆ ฯ ๏ถ ๏ฆ 3ฯ ๏ถ
๏ง โ , 0 ๏ท , ( 0, โ3) , ๏ง , 0 ๏ท , ๏ง ,3 ๏ท , ๏ง , 0 ๏ท
๏จ4 ๏ธ ๏จ2 ๏ธ ๏จ 4 ๏ธ
๏จ 4 ๏ธ
6. y = 3cos ( 2 x + ฯ )
Amplitude:
A = 3 =3
2ฯ
=ฯ
2
ฯ
ฯ โฯ
Phase Shift:
=
=โ
2
ฯ 2
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉ ฯ ฯ๏น
๏ชฯ , ฯ + T ๏บ = ๏ชโ 2 , 2 ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T ฯ
=
4 4
Key points:
๏ฆ ฯ ๏ถ ๏ฆ ฯ ๏ถ
๏ฆฯ ๏ถ ๏ฆฯ ๏ถ
๏ง โ ,3 ๏ท , ๏ง โ , 0 ๏ท , ( 0, โ3) , ๏ง , 0 ๏ท , ๏ง ,3 ๏ท
2
4
๏จ
๏ธ ๏จ
๏ธ
๏จ4 ๏ธ ๏จ2 ๏ธ
Period:
T=
2ฯ
ฯ
=
ฯ๏ถ
๏ฆ
8. y = โ 2 cos ๏ง 2 x โ ๏ท
2๏ธ
๏จ
Amplitude: A = โ 2 = 2
Period:
T=
2ฯ
ฯ
โ
=
2ฯ
ฯ
=
2ฯ
=ฯ
2
ฯ
ฯ 2 ฯ
Phase Shift:
= =
ฯ 2 4
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉ ฯ 5ฯ ๏น
๏ชฯ , ฯ + T ๏บ = ๏ช 4 , 4 ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T ฯ
=
4 4
Key points:
๏ฆฯ
๏ถ ๏ฆ ฯ ๏ถ ๏ฆ 3ฯ ๏ถ
๏ฆ 5ฯ
๏ถ
๏ง , โ2 ๏ท , ๏ง , 0 ๏ท , ๏ง , 2 ๏ท , (ฯ , 0 ) , ๏ง , โ2 ๏ท
๏จ4
๏ธ ๏จ2 ๏ธ ๏จ 4 ๏ธ
๏จ 4
๏ธ
ฯ๏ถ
๏ฆ
7. y = โ3sin ๏ง 2 x + ๏ท
2๏ธ
๏จ
Amplitude: A = โ 3 = 3
Period:
T=
2ฯ
=ฯ
2
ฯ
ฯ
ฯ
Phase Shift:
= 2 =โ
2
4
ฯ
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉ ฯ 3ฯ ๏น
๏ช ฯ , ฯ + T ๏บ = ๏ชโ 4 , 4 ๏บ
๏ซ
๏ป ๏ซ
๏ป
192
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.6: Phase Shift; Sinusoidal Curve Fitting
9. y = 4sin(ฯx + 2) โ 5
Amplitude:
A = 4 =4
2ฯ
=2
ฯ
ฯ
ฯ โ2
2
=
=โ
Phase Shift:
ฯ
ฯ
ฯ
Interval defining one cycle:
2๏น
๏ฉฯ ฯ
๏น ๏ฉ 2
๏ช ฯ , ฯ + T ๏บ = ๏ชโ ฯ , 2 โ ฯ ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T 2 1
= =
4 4 2
Key points:
๏ฆ 2
๏ถ ๏ฆ1 2
๏ถ ๏ฆ 2
๏ถ
๏ง โ , โ5 ๏ท , ๏ง โ , โ1๏ท , ๏ง1 โ , โ5 ๏ท ,
ฯ
ฯ
ฯ
2
๏จ
๏ธ ๏จ
๏ธ ๏จ
๏ธ
Period:
T=
2ฯ
=
11. y = 3cos(ฯx โ 2) + 5
Amplitude:
A = 3 =3
Period:
T=
2ฯ
ฯ
ฯ 2
Phase Shift:
=
ฯ ฯ
2
๏ฆ3 2
๏ถ ๏ฆ
๏ถ
๏ง โ , โ9 ๏ท , ๏ง 2 โ , โ5 ๏ท
ฯ
๏จ2 ฯ
๏ธ ๏จ
๏ธ
=
2ฯ
=2
ฯ
Interval defining one cycle:
2๏น
๏ฉฯ ฯ
๏น ๏ฉ2
๏ชฯ , ฯ + T ๏บ = ๏ชฯ , 2 + ฯ ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T 2 1
= =
4 4 2
Key points:
๏ฆ 2 ๏ถ ๏ฆ1 2 ๏ถ ๏ฆ 2 ๏ถ ๏ฆ3 2 ๏ถ
๏ง ,8 ๏ท , ๏ง + ,5 ๏ท , ๏ง1 + , 2 ๏ท , ๏ง + ,5 ๏ท ,
๏จฯ ๏ธ ๏จ 2 ฯ ๏ธ ๏จ ฯ ๏ธ ๏จ 2 ฯ ๏ธ
2 ๏ถ
๏ฆ
๏ง 2 + ,8 ๏ท
ฯ ๏ธ
๏จ
10. y = 2 cos(2ฯx + 4) + 4
Amplitude:
A = 2 =2
2ฯ
=1
2ฯ
ฯ โ4
2
Phase Shift:
=
=โ
ฯ 2ฯ
ฯ
Interval defining one cycle:
2๏น
๏ฉฯ ฯ
๏น ๏ฉ 2
๏ช ฯ , ฯ + T ๏บ = ๏ช โ ฯ ,1 โ ฯ ๏บ
๏ซ
๏ป ๏ซ
๏ป
T 1
Subinterval width: =
4 4
Key points:
๏ฆ 2 ๏ถ ๏ฆ1 2 ๏ถ ๏ฆ1 2 ๏ถ ๏ฆ3 2 ๏ถ
๏ง โ ,6๏ท , ๏ง โ , 4๏ท , ๏ง โ , 2๏ท , ๏ง โ , 4๏ท ,
๏จ ฯ ๏ธ ๏จ4 ฯ ๏ธ ๏จ2 ฯ ๏ธ ๏จ4 ฯ ๏ธ
Period:
T=
2ฯ
ฯ
=
๏ฆ 2 ๏ถ
๏ง1 โ , 6 ๏ท
๏จ ฯ ๏ธ
193
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
Key points:
๏ฆ ฯ ๏ถ ๏ฆ ฯ ๏ถ ๏ฆ 3ฯ ๏ถ
๏ฆ 5ฯ ๏ถ
๏ง , 0 ๏ท , ๏ง ,3 ๏ท , ๏ง , 0 ๏ท , (ฯ , โ3) , ๏ง , 0 ๏ท
4
2
4
๏จ
๏ธ ๏จ
๏ธ ๏จ
๏ธ
๏จ 4 ๏ธ
12. y = 2 cos(2ฯx โ 4) โ 1
Amplitude:
A = 2 =2
2ฯ
=1
ฯ 2ฯ
ฯ
4 2
=
=
Phase Shift:
ฯ 2ฯ ฯ
Interval defining one cycle:
2๏น
๏ฉฯ ฯ
๏น ๏ฉ2
๏ช ฯ , ฯ + T ๏บ = ๏ช ฯ ,1 + ฯ ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T 1
=
4 4
Key points:
๏ฆ 2 ๏ถ ๏ฆ1 2
๏ถ ๏ฆ1 2
๏ถ
๏ง ,1๏ท , ๏ง + , โ1๏ท , ๏ง + , โ3 ๏ท ,
ฯ
ฯ
ฯ
4
2
๏จ
๏ธ ๏จ
๏ธ ๏จ
๏ธ
Period:
T=
2ฯ
=
ฯ๏ถ
๏ฆ ๏ฆ
ฯ ๏ถ๏ถ
๏ฆ
14. y = โ3cos ๏ง โ 2 x + ๏ท = โ3cos ๏ง โ ๏ง 2 x โ ๏ท ๏ท
2๏ธ
2 ๏ธ๏ธ
๏จ
๏จ ๏จ
ฯ๏ถ
๏ฆ
= โ3cos ๏ง 2 x โ ๏ท
2๏ธ
๏จ
๏ฆ3 2
๏ถ ๏ฆ 2 ๏ถ
๏ง + , โ1๏ท , ๏ง1 + ,1๏ท
๏จ4 ฯ
๏ธ ๏จ ฯ ๏ธ
Amplitude:
A = โ3 = 3
Period:
T=
2ฯ
ฯ
=
2ฯ
=ฯ
2
ฯ
ฯ 2 ฯ
Phase Shift:
= =
ฯ 2 4
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉ ฯ 5ฯ ๏น
๏ชฯ , ฯ + T ๏บ = ๏ช 4 , 4 ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T ฯ
=
4 4
Key points:
๏ฆฯ
๏ถ ๏ฆ ฯ ๏ถ ๏ฆ 3ฯ ๏ถ
๏ฆ 5ฯ
๏ถ
๏ง , โ3 ๏ท , ๏ง , 0 ๏ท , ๏ง ,3 ๏ท , (ฯ , 0 ) , ๏ง , โ3 ๏ท
๏จ4
๏ธ ๏จ2 ๏ธ ๏จ 4 ๏ธ
๏จ 4
๏ธ
ฯ๏ถ
๏ฆ ๏ฆ
ฯ ๏ถ๏ถ
๏ฆ
13. y = โ3sin ๏ง โ 2 x + ๏ท = โ3sin ๏ง โ ๏ง 2 x โ ๏ท ๏ท
2๏ธ
2 ๏ธ๏ธ
๏จ
๏จ ๏จ
ฯ๏ถ
๏ฆ
= 3sin ๏ง 2 x โ ๏ท
2๏ธ
๏จ
Amplitude:
A = 3 =3
Period:
T=
2ฯ
ฯ
=
2ฯ
=ฯ
2
ฯ
ฯ 2 ฯ
Phase Shift:
= =
ฯ 2 4
Interval defining one cycle:
๏ฉฯ ฯ
๏น ๏ฉ ฯ 5ฯ ๏น
๏ชฯ , ฯ + T ๏บ = ๏ช 4 , 4 ๏บ
๏ซ
๏ป ๏ซ
๏ป
Subinterval width:
T ฯ
=
4 4
194
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.6: Phase Shift; Sinusoidal Curve Fitting
15.
19. y = 2 tan ( 4 x โ ฯ )
ฯ 1
=
ฯ 2
2ฯ 2ฯ
ฯ ฯ 1
ฯ=
= =
=
=2
ฯ 2 2
T
ฯ
ฯ =1
A = 2; T = ฯ;
Begin with the graph of y = tan x and apply the
following transformations:
1) Shift right ฯ units ๏ฉ๏ซ y = tan ( x โ ฯ ) ๏น๏ป
Assuming A is positive, we have that
y = A sin(ฯ x โ ฯ ) = 2sin(2 x โ 1)
2) Horizontally compress by a factor of
๏ฉ y = tan ( 4 x โ ฯ ) ๏น
๏ซ
๏ป
3) Vertically stretch by a factor of 2
๏ฉ y = 2 tan ( 4 x โ ฯ ) ๏น
๏ซ
๏ป
๏ฉ ๏ฆ
1 ๏ถ๏น
= 2sin ๏ช 2 ๏ง x โ ๏ท ๏บ
2 ๏ธ๏ป
๏ซ ๏จ
16.
A = 3; T =
ฯ ฯ
=2
;
2 ฯ
1
4
2ฯ 2ฯ
ฯ ฯ
= =2
=
=4
ฯ
T
ฯ 4
2
ฯ =8
Assuming A is positive, we have that
y = A sin(ฯ x โ ฯ ) = 3sin(4 x โ 8)
ฯ=
= 3sin ๏ฉ๏ซ 4 ( x โ 2 ) ๏น๏ป
17.
ฯ
1
=โ
ฯ
3
2ฯ 2ฯ 2
ฯ ฯ
1
= =โ
=
=
ฯ=
2
ฯ
3
T
3ฯ 3
A = 3; T = 3ฯ;
1
cot ( 2 x โ ฯ )
2
Begin with the graph of y = cot x and apply the
following transformations:
20. y =
3
1 2
2
3 3
9
Assuming A is positive, we have that
2๏ถ
๏ฆ2
y = A sin(ฯ x โ ฯ ) = 3sin ๏ง x + ๏ท
3
9
๏จ
๏ธ
๏ฉ2 ๏ฆ
1 ๏ถ๏น
= 3sin ๏ช ๏ง x + ๏ท ๏บ
3 ๏ธ๏ป
๏ซ3 ๏จ
ฯ =โ โ
=โ
18.
1) Shift right ฯ units ๏ฉ๏ซ y = cot ( x โ ฯ ) ๏น๏ป
2) Horizontally compress by a factor of
๏ฉ y = cot ( 2 x โ ฯ ) ๏น
๏ซ
๏ป
3) Vertically compress by a factor of
ฯ
= โ2
ฯ
2ฯ 2ฯ
ฯ ฯ
ฯ=
=
=2
= = โ2
ฯ 2
T
ฯ
ฯ = โ4
1
๏ฉ
๏น
๏ช y = 2 cot ( 2 x โ ฯ ) ๏บ
๏ซ
๏ป
A = 2; T = ฯ;
Assuming A is positive, we have that
y = A sin(ฯ x โ ฯ ) = 2sin(2 x + 4)
= 2sin ๏ฉ๏ซ 2 ( x + 2 ) ๏น๏ป
195
Copyright ยฉ 2016 Pearson Education, Inc.
1
2
1
2
Chapter 2: Trigonometric Functions
ฯ๏ถ
๏ฆ
21. y = 3csc ๏ง 2 x โ ๏ท
4๏ธ
๏จ
Begin with the graph of y = csc x and apply the
following transformations:
๏ฉ
ฯ ๏ถ๏น
๏ฆ
units ๏ช y = csc ๏ง x โ ๏ท ๏บ
4 ๏ธ ๏บ๏ป
4
๏ช๏ซ
๏จ
1
2) Horizontally compress by a factor of
2
๏ฉ
๏น
ฯ๏ถ
๏ฆ
๏ช y = csc ๏ง 2 x โ ๏ท ๏บ
4 ๏ธ ๏ป๏บ
๏จ
๏ซ๏ช
3) Vertically stretch by a factor of 3
๏ฉ
ฯ ๏ถ๏น
๏ฆ
๏ช y = 3csc ๏ง 2 x โ ๏ท ๏บ
4 ๏ธ ๏บ๏ป
๏ช๏ซ
๏จ
1) Shift right
ฯ
ฯ๏ถ
๏ฆ
23. y = โ cot ๏ง 2 x + ๏ท
2๏ธ
๏จ
Begin with the graph of y = cot x and apply the
following transformations:
1) Shift left
ฯ
2
๏ฉ
ฯ ๏ถ๏น
๏ฆ
units ๏ช y = cot ๏ง x + ๏ท ๏บ
2 ๏ธ ๏ป๏บ
๏จ
๏ซ๏ช
2) Horizontally compress by a factor of
๏ฉ
ฯ ๏ถ๏น
๏ฆ
๏ช y = cot ๏ง 2 x + ๏ท ๏บ
2 ๏ธ ๏ป๏บ
๏จ
๏ซ๏ช
3) Reflect about the x-axis
๏ฉ
ฯ ๏ถ๏น
๏ฆ
๏ช y = โ cot ๏ง 2 x + ๏ท ๏บ
2 ๏ธ ๏ป๏บ
๏จ
๏ซ๏ช
1
22. y = sec ( 3x โ ฯ )
2
Begin with the graph of y = sec x and apply the
following transformations:
1) Shift right ฯ units ๏ฉ๏ซ y = sec ( x โ ฯ ) ๏น๏ป
1
2) Horizontally compress by a factor of
3
๏ฉ y = sec ( 3 x โ ฯ ) ๏น
๏ซ
๏ป
1
3) Vertically compress by a factor of
2
1
๏ฉ
๏น
๏ช y = 2 sec ( 3 x โ ฯ ) ๏บ
๏ซ
๏ป
196
Copyright ยฉ 2016 Pearson Education, Inc.
1
2
Section 2.6: Phase Shift; Sinusoidal Curve Fitting
ฯ๏ถ
๏ฆ 1
26. y = โ csc ๏ง โ ฯ x + ๏ท
2
4๏ธ
๏จ
Begin with the graph of y = csc x and apply the
following transformations:
๏ฉ
ฯ
ฯ ๏ถ๏น
๏ฆ
1) Shift left
units ๏ช y = csc ๏ง x + ๏ท ๏บ
4 ๏ธ ๏ป๏บ
4
๏จ
๏ซ๏ช
ฯ๏ถ
๏ฆ
24. y = โ tan ๏ง 3 x + ๏ท
2๏ธ
๏จ
Begin with the graph of y = tan x and apply the
following transformations:
๏ฉ
ฯ
ฯ ๏ถ๏น
๏ฆ
1) Shift left
units ๏ช y = tan ๏ง x + ๏ท ๏บ
2 ๏ธ๏ป
2
๏จ
๏ซ
1
2) Horizontally compress by a factor of
3
๏ฉ
ฯ ๏ถ๏น
๏ฆ
2) Reflect about the y-axis ๏ช y = csc ๏ง โ x + ๏ท ๏บ
4 ๏ธ ๏บ๏ป
๏ช๏ซ
๏จ
2
3) Horizontally compress by a factor of
๏ฉ
ฯ ๏ถ๏น
๏ฆ
๏ช y = tan ๏ง 3x + ๏ท ๏บ
2 ๏ธ๏ป
๏จ
๏ซ
3) Reflect about the x-axis
๏ฉ
ฯ ๏ถ๏น
๏ฆ
๏ช y = โ tan ๏ง x + ๏ท ๏บ
2 ๏ธ๏ป
๏จ
๏ซ
ฯ
๏ฉ
ฯ ๏ถ๏น
๏ฆ 1
๏ช y = csc ๏ง โ ฯ x + ๏ท ๏บ
4 ๏ธ ๏บ๏ป
๏ช๏ซ
๏จ 2
3) Reflect about the x-axis
๏ฉ
ฯ ๏ถ๏น
๏ฆ 1
๏ช y = โ csc ๏ง โ ฯ x + ๏ท ๏บ
4 ๏ธ ๏ป๏บ
๏จ 2
๏ซ๏ช
๏ฆฯ ๏ถ
๏ง ,1๏ท
๏จ 12 ๏ธ
๏ถ
๏ฆฯ
๏ง , โ1 ๏ท
๏ธ
๏จ4
25. y = โ sec ( 2ฯ x + ฯ )
Begin with the graph of y = sec x and apply the
following transformations:
1) Shift left ฯ units ๏ฉ๏ซ y = sec ( x + ฯ ) ๏น๏ป
1
2) Horizontally compress by a factor of
2ฯ
๏ฉ y = sec ( 2ฯ x + ฯ ) ๏น
๏ซ
๏ป
3) Reflect about the x-axis
๏ฉ y = โ sec ( 2ฯ x + ฯ ) ๏น
๏ซ
๏ป
ฯ๏ถ
๏ฆ
27. I ( t ) = 120sin ๏ง 30ฯ t โ ๏ท , t โฅ 0
3๏ธ
๏จ
2ฯ 2ฯ
1
Period:
T=
=
=
second
ฯ 30ฯ 15
Amplitude: A = 120 = 120 amperes
ฯ
ฯ
1
Phase Shift:
second
= 3 =
ฯ 30ฯ 90
197
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
c.
ฯ๏ถ
๏ฆ
28. I ( t ) = 220sin ๏ง 60ฯ t โ ๏ท , t โฅ 0
6๏ธ
๏จ
2ฯ 2ฯ
1
Period:
T=
=
=
second
ฯ 60ฯ 30
Amplitude: A = 220 = 220 amperes
ฯ
d.
1
ฯ
Phase Shift:
second
= 6 =
ฯ 60ฯ 360
y = 9.46sin (1.247 x + 2.906 ) + 24.088
e.
29. a.
30. a.
b.
33 โ 16 17
=
= 8.5
2
2
33+16 49
Vertical Shift:
=
= 24.5
2
2
2ฯ 2ฯ
=
ฯ=
5
5
Phase Shift (use y = 16, x = 6):
Amplitude: A =
b.
๏ฆ 2ฯ
๏ถ
16 = 8.5sin ๏ง โ
6 โ ฯ ๏ท + 24.5
๏จ 5
๏ธ
12
ฯ
๏ฆ
๏ถ
โ8.5 = 8.5sin ๏ง
โฯ ๏ท
๏จ 5
๏ธ
79.8 โ 36.0 43.8
=
= 21.9
2
2
79.8+36.0 115.8
=
= 57.9
Vertical Shift:
2
2
2ฯ ฯ
=
ฯ=
12 6
Phase Shift (use y = 36.0, x = 1):
Amplitude: A =
36.0 = 21.9sin
๏ฆ 12ฯ
๏ถ
โ1 = sin ๏ง
โฯ ๏ท
5
๏จ
๏ธ
ฯ 12ฯ
โ =
โฯ
2
5
29ฯ
ฯ=
10
11ฯ ๏ถ
๏ฆ 2ฯ
xโ
Thus, y = 8.5sin ๏ง
๏ท + 24.5 or
10 ๏ธ
๏จ 5
โ 21.9 = 21.9sin
โ1 = sin
โ
๏ฉ 2ฯ ๏ฆ
11 ๏ถ ๏น
y = 8.5sin ๏ช ๏ง x โ ๏ท ๏บ + 24.5 .
4 ๏ธ๏ป
๏ซ5 ๏จ
ฯ
โ
1 โ ฯ + 57.9
6
ฯ
โฯ
6
ฯ
โฯ
6
ฯ ฯ
= โฯ
2 6
2ฯ
ฯ=
3
Thus, y = 21.9sin
y = 21.9sin
198
Copyright ยฉ 2016 Pearson Education, Inc.
ฯ
2ฯ
xโ
+ 57.9 or
6
3
ฯ
( x โ 4) + 57.9 .
6
Section 2.6: Phase Shift; Sinusoidal Curve Fitting
c.
c.
d.
d.
y = 24.25sin(0.493 x โ 1.927) + 51.61
y = 21.68sin ( 0.516 x โ 2.124) + 57.81
/
/
e.
90
e.
0
13
20
32. a.
31. a.
b.
b.
75.4 โ 28.1 47.3
Amplitude: A =
=
= 23.65
2
2
75.4+28.1 103.5
=
= 51.75
Vertical Shift:
2
2
2ฯ ฯ
=
ฯ=
12 6
Phase Shift (use y = 28.1, x = 1):
32.9 = 22.05sin
ฯ
โ
1 โ ฯ + 51.75
28.1 = 23.65sin
6
โ 23.65 = 23.65sin
โ1 = sin
โ 22.05 = 22.05sin
ฯ
โฯ
6
โ1 = sin
ฯ
โฯ
6
โ
ฯ ฯ
โ = โฯ
2 6
2ฯ
ฯ=
3
Thus, y = 23.65sin
y = 23.65sin
77.0 โ 32.9 44.1
=
= 22.05
2
2
77.0+32.9 109.9
=
= 54.95
Vertical Shift:
2
2
2ฯ ฯ
=
ฯ=
12 6
Phase Shift (use y = 32.9, x = 1):
Amplitude: A =
ฯ ฯ
= โฯ
2 6
2ฯ
ฯ=
3
y = 22.05sin
ฯ
( x โ 4) + 51.75 .
6
199
Copyright ยฉ 2016 Pearson Education, Inc.
ฯ
โฯ
6
ฯ
โฯ
6
Thus, y = 22.05sin
ฯ
2ฯ
xโ
+ 51.75 or
6
3
ฯ
โ
1 โ ฯ + 54.95
6
ฯ
2ฯ
xโ
+ 54.95 or
6
3
ฯ
( x โ 4) + 54.95 .
6
Chapter 2: Trigonometric Functions
34. a.
c.
b.
d.
y = 21.73sin(0.518 x โ 2.139) + 54.82
80
e.
0.10 + 12.4167 = 12.5167 hours which is at
12:31 PM.
9.97 โ (0.59) 9.38
=
= 4.69
2
2
9.97 + (0.59) 10.56
Vertical Shift:
=
= 5.28
2
2
2ฯ
24ฯ
ฯ
ฯ=
=
=
12.4167 6.20835 149
Phase Shift (use y = 9.97, x = 0.10):
Ampl: A =
9.97 = 4.69sin
24ฯ
โ
0.10 โ ฯ + 5.28
149
4.69 = 4.69sin
24ฯ
โ
0.10 โ ฯ
149
1 = sin
0
33. a.
b.
ฯ 2.4ฯ
=
โฯ
2 149
ฯ โ โ1.5202
13
20
6.5 + 12.4167 = 18.9167 hours which is at
6:55 PM.
5.86 โ ( โ0.38)
Thus, y = 4.69sin
6.24
= 3.12
2
2
5.86 + ( โ0.38) 5.48
Vertical Shift:
=
= 2.74
2
2
2ฯ
24ฯ
ฯ
ฯ=
=
=
12.4167 6.20835 149
Phase Shift (use y = 5.86, x = 6.5):
Ampl: A =
24ฯ
โ
6.5 โ ฯ + 2.74
149
3.12 = 3.12sin
24ฯ
โ
6.5 โ ฯ
149
ฯ
or y = 4.69sin
=
5.86 = 3.12sin
1 = sin
c.
35. a.
156ฯ
โฯ
2 149
ฯ โ 1.7184
=
or y = 3.12sin
c.
y = 3.12sin
y = 4.69sin
24ฯ
x + 1.5202 + 5.28
149
24ฯ
( x + 3.0042) + 5.28 .
149
24ฯ
(18) + 1.5202 + 5.28
149
โ 0.90 feet
156ฯ
โฯ
149
Thus, y = 3.12sin
2.4ฯ
โฯ
149
24ฯ
x โ 1.7184 + 2.74
149
13.75 โ 10.52
= 1.615
2
13.75 + 10.52
Vertical Shift:
= 12.135
2
2ฯ
ฯ=
365
Phase Shift (use y = 13.75, x = 172):
Amplitude: A =
13.75 = 1.615sin
2ฯ
โ
172 โ ฯ + 12.135
365
1.615 = 1.615sin
2ฯ
โ
172 โ ฯ
365
344ฯ
โฯ
365
ฯ 344ฯ
=
โฯ
2
365
ฯ โ 1.3900
1 = sin
24ฯ
( x โ 3.3959) + 2.74 .
149
24ฯ
(15) โ 1.7184 + 2.74
149
โ 1.49 feet
200
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.6: Phase Shift; Sinusoidal Curve Fitting
Thus, y = 1.615sin
y = 1.615sin
b.
c.
2ฯ
x โ 1.39 + 12.135 or
365
2ฯ
( x โ 80.75) + 12.135 .
365
2ฯ
(91 โ 80.75) + 12.135
365
โ 12.42 hours
y = 1.615sin
c.
d. The actual hours of sunlight on April 1,
2014 were 12.75 hours. This is very close to
the predicted amount of 12.71 hours.
37. a.
d. The actual hours of sunlight on April 1,
2014 were 12.43 hours. This is very close to
the predicted amount of 12.42 hours.
36. a.
15.27 โ 9.07
= 3.1
2
15.27 + 9.07
Vertical Shift:
= 12.17
2
2ฯ
ฯ=
365
Phase Shift (use y = 15.27, x = 172):
Amplitude: A =
15.27 = 3.1sin
3.1 = 3.1sin
2ฯ
โ
172 โ ฯ
365
6.96 = 6.96sin
2ฯ
โ
172 โ ฯ
365
Thus, y = 6.96sin
344ฯ
โฯ
365
ฯ 344ฯ
=
โฯ
2
365
ฯ โ 1.39
b.
2ฯ
โ
172 โ ฯ + 12.41
365
344ฯ
โฯ
365
ฯ 344ฯ
=
โฯ
2
365
ฯ โ 1.39
y = 6.96sin
1 = sin
y = 3.1sin
19.37 = 6.96sin
1 = sin
2ฯ
โ
172 โ ฯ + 12.17
365
Thus, y = 3.1sin
19.37 โ 5.45
= 6.96
2
19.37 + 5.45
Vertical Shift:
= 12.41
2
2ฯ
ฯ=
365
Phase Shift (use y = 19.37, x = 172):
Amplitude: A =
b.
2ฯ
x โ 1.39 + 12.41 or
365
2ฯ
( x โ 80.75) + 12.41 .
365
2ฯ
(91) โ 1.39 + 12.41
365
โ 13.63 hours
y = 6.96sin
2ฯ
x โ 1.39 + 12.17 or
365
2ฯ
( x โ 80.75) + 12.17 .
365
2ฯ
(91) โ 1.39 + 12.17
365
โ 12.71 hours
y = 3.1sin
201
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
c.
d. The actual hours of sunlight on April 1,
2014 were 12.38 hours. This is very close to
the predicted amount of 12.35 hours.
39 โ 40. Answers will vary.
41.
13.42 โ 10.83
= 1.295
2
13.42 + 10.83
Vertical Shift:
= 12.125
2
2ฯ
ฯ=
365
Phase Shift (use y = 13.42, x = 172):
Amplitude: A =
13.42 = 1.295sin
2ฯ
โ
172 โ ฯ + 12.125
365
1.295 = 1.295sin
2ฯ
โ
172 โ ฯ
365
344ฯ
โฯ
365
ฯ 344ฯ
=
โฯ
2
365
ฯ โ 1.39
Thus, y = 1.295sin
the
Use MAXIMUM and MINIMUM on the graph
of y1 = 2 x3 โ 3x 2 โ 8 x + 14 .
1 = sin
b.
on
interval ( โ4,5 )
d. The actual hours of sunlight on April 1,
2014 was 13.37 hours. This is close to the
predicted amount of 13.63 hours.
38. a.
f ( x ) = 2 x3 โ 3x 2 โ 8 x + 14
local maximum: f ( โ0.76) โ 17.47
local minimum:
2ฯ
x โ 1.39 + 12.125 .
365
42.
2ฯ
y = 1.295sin
(91) โ 1.39 + 12.125
365
โ 12.35 hours
f (1.76) = 1.53
โ16(2) 2 + 5(2) โ โ16( โ1)2 + 5( โ1)
2 โ ( โ1)
=
[ โ16(4) + 10] โ [ โ16 โ 5]
3
[ โ54] โ [ โ21] = โ54 + 21
=
3
โ33
=
= โ11
3
c.
43.
7ฯ 180
= 105ยฐ
12 ฯ
202
Copyright ยฉ 2016 Pearson Education, Inc.
3
Chapter 2 Review Exercises
44. x 2 โ 9 = โ5
11. sin 2 20ยบ +
2
x =4
x = ยฑ2
1
= sin 2 20ยบ + cos 2 20ยบ = 1
sec2 20ยบ
12. sec50ยบ โ
cos 50ยบ =
But only the โ2 is in the domain of the part of
the piecewise function.
โ3 x + 7 = โ5
โ3 x = โ12
x=4
Thus the values are { โ2, 4} .
1
โ
cos 50ยบ = 1
cos 50ยบ
13.
cos(โ40ยบ ) cos 40ยบ
=
=1
cos 40ยบ
cos 40ยบ
14.
sin(โ40ยบ ) โ sin 40ยบ
=
= โ1
sin 40ยบ
sin 40ยบ
15. sin 400ยบ โ
sec ( โ50ยบ ) = sin 400ยบ โ
sec 50ยบ
1
cos 50ยบ
sin 40ยบ
sin 40ยบ
=
=
cos 50ยบ sin(90ยบ โ50ยบ )
sin 40ยบ
=
=1
sin 40ยบ
= sin ( 40ยบ +360ยบ ) โ
Chapter 2 Review Exercises
1. 135ยฐ = 135 โ
2. 18ยฐ = 18 โ
3.
3ฯ
ฯ
radian =
radians
180
4
4
ฯ
and 0 < ฮธ < , so ฮธ lies in quadrant I.
5
2
Using the Pythagorean Identities:
cos 2 ฮธ = 1 โ sin 2 ฮธ
16. sin ฮธ =
ฯ
ฯ
radian =
radian
180
10
3ฯ 3ฯ 180
degrees = 135ยฐ
=
โ
4
4 ฯ
4. โ
2
16 9
๏ฆ4๏ถ
=
cos 2 ฮธ = 1 โ ๏ง ๏ท = 1 โ
25 25
๏จ5๏ธ
9
3
=ยฑ
25
5
Note that cos ฮธ must be positive since ฮธ lies in
3
quadrant I. Thus, cos ฮธ = .
5
4
sin ฮธ 5 4 5 4
= = โ
=
tan ฮธ =
cos ฮธ 53 5 3 3
5ฯ
5ฯ 180
=โ โ
degrees = โ 450ยฐ
2
2 ฯ
5. tan
cos ฮธ = ยฑ
ฯ
ฯ
1 1
โ sin = 1 โ =
4
6
2 2
6. 3sin 45ยบ โ 4 tan
7. 6 cos
ฯ
2
3 3 2 4 3
= 3โ
โ 4โ
=
โ
6
2
3
2
3
๏ฆ
3ฯ
2๏ถ
๏ฆ ฯ๏ถ
+ 2 tan ๏ง โ ๏ท = 6 ๏ง๏ง โ
๏ท๏ท + 2 โ 3
4
๏จ 3๏ธ
๏จ 2 ๏ธ
(
)
= โ3 2 โ 2 3
ฯ
5ฯ
๏ฆ ฯ๏ถ
๏ฆ 5ฯ ๏ถ
8. sec ๏ง โ ๏ท โ cot ๏ง โ ๏ท = sec + cot
= 2 +1 = 3
3
4
๏จ 3๏ธ
๏จ 4 ๏ธ
csc ฮธ =
1
1
5 5
= 4 = 1โ
=
sin ฮธ 5
4 4
sec ฮธ =
1
1
5 5
= = 1โ
=
cos ฮธ 53
3 3
cot ฮธ =
1
1
3 3
= 4 = 1โ
=
tan ฮธ 3
4 4
12
and sin ฮธ < 0 , so ฮธ lies in quadrant III.
5
Using the Pythagorean Identities:
17. tan ฮธ =
9. tan ฯ + sin ฯ = 0 + 0 = 0
10. cos 540ยบ โ tan( โ 405ยบ ) = โ1 โ ( โ1)
= โ1 + 1 = 0
203
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
12
and ฮธ lies in quadrant II.
13
Using the Pythagorean Identities:
cos 2 ฮธ = 1 โ sin 2 ฮธ
sec 2 ฮธ = tan 2 ฮธ + 1
19. sin ฮธ =
2
144
169
๏ฆ 12 ๏ถ
sec 2 ฮธ = ๏ง ๏ท + 1 =
+1 =
25
25
๏จ 5๏ธ
169
13
=ยฑ
25
5
Note that sec ฮธ must be negative since ฮธ lies in
13
quadrant III. Thus, sec ฮธ = โ .
5
1
1
5
cos ฮธ =
=
=โ
sec ฮธ โ 135
13
sec ฮธ = ยฑ
tan ฮธ =
2
144 25
๏ฆ 12 ๏ถ
cos 2 ฮธ = 1 โ ๏ง ๏ท = 1 โ
=
169 169
๏จ 13 ๏ธ
25
5
=ยฑ
169
13
Note that cos ฮธ must be negative because ฮธ lies
5
in quadrant II. Thus, cos ฮธ = โ .
13
12
sin ฮธ
12 ๏ฆ 13 ๏ถ
12
= 13 = ๏ง โ ๏ท = โ
tan ฮธ =
cos ฮธ โ 135 13 ๏จ 5 ๏ธ
5
cos ฮธ = ยฑ
sin ฮธ
, so
cos ฮธ
12 ๏ฆ 5 ๏ถ
12
๏งโ ๏ท = โ
5 ๏จ 13 ๏ธ
13
1
1
13
csc ฮธ =
=
=โ
sin ฮธ โ 12
12
13
sin ฮธ = ( tan ฮธ )( cos ฮธ ) =
cot ฮธ =
1
1
5
= =
tan ฮธ 125 12
5
and tan ฮธ < 0 , so ฮธ lies in quadrant II.
4
Using the Pythagorean Identities:
tan 2 ฮธ = sec2 ฮธ โ 1
18. sec ฮธ = โ
2
1
1
13
=
=โ
cos ฮธ โ 135
5
cot ฮธ =
1
1
5
= 12 = โ
tan ฮธ โ 5
12
2
25 144
๏ฆ 5๏ถ
cos 2 ฮธ = 1 โ ๏ง โ ๏ท = 1 โ
=
13
169
169
๏จ
๏ธ
9
3
=ยฑ
16
4
144
12
=ยฑ
169
13
Note that cos ฮธ must be positive because ฮธ lies
12
.
in quadrant IV. Thus, cos ฮธ =
13
sin ฮธ โ 135
5 ๏ฆ 13 ๏ถ
5
= 12 = โ ๏ง ๏ท = โ
tan ฮธ =
cos ฮธ
13 ๏จ 12 ๏ธ
12
13
cos ฮธ = ยฑ
3
Note that tan ฮธ < 0 , so tan ฮธ = โ .
4
1
1
4
cos ฮธ =
=
=โ
sec ฮธ โ 54
5
sin ฮธ
, so
cos ฮธ
3๏ฆ 4๏ถ 3
sin ฮธ = ( tan ฮธ )( cos ฮธ ) = โ ๏ง โ ๏ท = .
4๏จ 5๏ธ 5
1
1 5
csc ฮธ =
= =
sin ฮธ 35 3
cot ฮธ =
sec ฮธ =
5
3ฯ
and
< ฮธ < 2ฯ (quadrant IV)
13
2
Using the Pythagorean Identities:
cos 2 ฮธ = 1 โ sin 2 ฮธ
25
9
๏ฆ 5๏ถ
tan ฮธ = ๏ง โ ๏ท โ 1 =
โ1 =
4
16
16
๏จ
๏ธ
tan ฮธ =
1
1 13
= 12 =
sin ฮธ 13 12
20. sin ฮธ = โ
2
tan ฮธ = ยฑ
csc ฮธ =
1
1
4
=
=โ
tan ฮธ โ 34
3
csc ฮธ =
1
1
13
=
=โ
sin ฮธ โ 135
5
sec ฮธ =
1
1 13
= 12 =
cos ฮธ 13 12
cot ฮธ =
1
1
12
=
=โ
tan ฮธ โ 125
5
204
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Review Exercises
1
and 180ยบ < ฮธ < 270ยบ (quadrant III)
3
Using the Pythagorean Identities:
sec 2 ฮธ = tan 2 ฮธ + 1
21. tan ฮธ =
csc2 ฮธ = 1 + ( โ2 ) = 1 + 4 = 5
2
2
1
10
๏ฆ1๏ถ
sec 2 ฮธ = ๏ง ๏ท + 1 = + 1 =
9
9
๏จ3๏ธ
10
10
sec ฮธ = ยฑ
=ยฑ
9
3
Note that sec ฮธ must be negative since ฮธ lies in
quadrant III. Thus, sec ฮธ = โ
cos ฮธ =
tan ฮธ =
1
=
sec ฮธ
1
โ
10
3
=โ
3
10
ฯ
< ฮธ < ฯ (quadrant II)
2
Using the Pythagorean Identities:
csc2 ฮธ = 1 + cot 2 ฮธ
23. cot ฮธ = โ 2 and
10
.
3
10
โ
10
=โ
3 10
10
sin ฮธ
, so
cos ฮธ
1 ๏ฆ 3 10 ๏ถ
10
sin ฮธ = ( tan ฮธ )( cos ฮธ ) = ๏ง๏ง โ
๏ท๏ท = โ
3 ๏จ 10 ๏ธ
10
1
1
10
=
=โ
= โ 10
csc ฮธ =
sin ฮธ
10
10
โ
10
1
1
= =3
cot ฮธ =
tan ฮธ 13
3ฯ
< ฮธ < 2ฯ (quadrant IV)
2
Using the Pythagorean Identities:
tan 2 ฮธ = sec2 ฮธ โ 1
csc ฮธ = ยฑ 5
Note that csc ฮธ must be positive because ฮธ lies
in quadrant II. Thus, csc ฮธ = 5 .
1
1
5
5
=
โ
=
csc ฮธ
5
5 5
cos ฮธ
, so
cot ฮธ =
sin ฮธ
๏ฆ 5๏ถ
2 5
.
cos ฮธ = ( cot ฮธ )( sin ฮธ ) = โ2 ๏ง๏ง
๏ท๏ท = โ
5
๏จ 5 ๏ธ
1
1
1
=
=โ
tan ฮธ =
cot ฮธ โ2
2
sin ฮธ =
sec ฮธ =
1
1
5
5
= 2 5 =โ
=โ
cos ฮธ โ 5
2
2 5
24. y = 2sin(4 x)
The graph of y = sin x is stretched vertically by
a factor of 2 and compressed horizontally by a
1
factor of .
4
22. sec ฮธ = 3 and
tan 2 ฮธ = 32 โ 1 = 9 โ 1 = 8
tan ฮธ = ยฑ 8 = ยฑ2 2
Note that tan ฮธ must be negative since ฮธ lies in
quadrant IV. Thus,. tan ฮธ = โ2 2 .
1
1
=
cos ฮธ =
sec ฮธ 3
sin ฮธ
tan ฮธ =
, so
cos ฮธ
2 2
๏ฆ1๏ถ
.
sin ฮธ = ( tan ฮธ )( cos ฮธ ) = โ2 2 ๏ง ๏ท = โ
3
๏จ3๏ธ
csc ฮธ =
1
1
3
2
3 2
= 2 2 =โ
โ
=โ
sin ฮธ โ 3
4
2 2 2
cot ฮธ =
1
1
2
2
=
โ
=โ
tan ฮธ โ2 2 2
4
Domain: ( โโ, โ )
Range: [ โ2, 2]
205
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
27. y = โ 2 tan(3x )
The graph of y = tan x is stretched vertically by
a factor of 2, reflected across the x-axis, and
1
compressed horizontally by a factor of .
3
25. y = โ3cos(2 x)
The graph of y = cos x is stretched vertically by
a factor of 3, reflected across the x-axis, and
1
compressed horizontally by a factor of .
2
ฯ
ฯ
๏ฌ
๏ผ
Domain: ๏ญ x | x โ + k โ
, k is an integer ๏ฝ
6
3
๏ฎ
๏พ
Range: ( โโ, โ )
Domain: ( โโ, โ )
Range: [ โ3,3]
26. y = tan( x + ฯ)
The graph of y = tan x is shifted ฯ units to the
left.
ฯ๏ถ
๏ฆ
28. y = cot ๏ง x + ๏ท
4๏ธ
๏จ
The graph of y = cot x is shifted
ฯ
4
units to the
left.
kฯ
๏ฌ
๏ผ
Domain: ๏ญ x | x โ
, k is an odd integer ๏ฝ
2
๏ฎ
๏พ
Range: ( โโ, โ )
ฯ
๏ฌ
๏ผ
Domain: ๏ญ x | x โ โ + kฯ , k is an integer ๏ฝ
4
๏ฎ
๏พ
Range: ( โโ, โ )
206
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Review Exercises
29. y = 4sec ( 2 x )
31. y = 4sin ( 2 x + 4 ) โ 2
The graph of y = sec x is stretched vertically by
a factor of 4 and compressed horizontally by a
1
factor of .
2
y
4
3
2
1
(โซบโฒ, 4)
3โฒ
โซบโโโ
4
โฒ
, โซบ4
โซบ โโ
2
(
)
โฒ
โซบ โโ
4
โซบ2
โซบ3
โซบ4
โซบ5
โฒ
1
,
2
stretched vertically by a factor of 4, and shifted
down 2 units.
compressed horizontally by a factor of
(โฒ, 4)
(0, 4)
โโ
4
The graph of y = sin x is shifted left 4 units,
3โฒ
โโโ
4
x
(โโโฒ2 , โซบ4)
kฯ
๏ฌ
๏ผ
, k is an odd integer ๏ฝ
Domain: ๏ญ x | x โ
4
๏ฎ
๏พ
Range: { y | y โค โ4 or y โฅ 4}
ฯ๏ถ
๏ฆ
30. y = csc ๏ง x + ๏ท
4๏ธ
๏จ
The graph of y = csc x is shifted
ฯ
4
units to the
left.
Domain: ( โโ, โ )
Range: [ โ6, 2]
๏ฆx ฯ๏ถ
32. y = 5cot ๏ง โ ๏ท
๏จ3 4๏ธ
The graph of y = cot x is shifted right ฯ4 units,
stretched horizontally by a factor of 3, and
stretched vertically by a factor of 5.
ฯ
๏ฌ
๏ผ
Domain: ๏ญ x | x โ โ + kฯ , k is an integer ๏ฝ
4
๏ฎ
๏พ
Range: { y | y โค โ1 or y โฅ 1}
3ฯ
๏ฌ
๏ผ
Domain: ๏ญ x | x โ
+ k โ
3ฯ , k is an integer ๏ฝ
4
๏ฎ
๏พ
Range: ( โโ, โ )
33. y = sin(2 x)
Amplitude = 1 = 1 ; Period =
2ฯ
=ฯ
2
34. y = โ 2 cos(3ฯ x)
Amplitude = โ2 = 2 ; Period =
207
Copyright ยฉ 2016 Pearson Education, Inc.
2ฯ 2
=
3ฯ 3
Chapter 2: Trigonometric Functions
35. y = 4sin(3 x)
Amplitude:
A = 4 =4
Period:
T=
2ฯ
=
2ฯ
3
ฯ
ฯ 0
Phase Shift:
= =0
ฯ 3
2
38. y = โ cos ( ฯx โ 6 )
3
2
2
=
3
3
2ฯ 2ฯ
Period:
=
=2
T=
ฯ
ฯ
ฯ 6
Phase Shift:
=
ฯ ฯ
Amplitude:
ฯ๏ถ
๏ฆ1
36. y = โ cos ๏ง x + ๏ท
2
2๏ธ
๏จ
Amplitude: A = โ1 = 1
Period:
T=
2ฯ
ฯ
=
A = โ
2ฯ
= 4ฯ
1
2
ฯ
โ
ฯ
Phase Shift:
= 2 = โฯ
1
ฯ
2
39. The graph is a cosine graph with amplitude 5 and
period 8ฯ.
2ฯ
Find ฯ : 8ฯ =
ฯ
8ฯฯ = 2ฯ
2ฯ 1
ฯ=
=
8ฯ 4
1
๏ฆ3
๏ถ
37. y = sin ๏ง x โ ฯ ๏ท
2 ๏จ2
๏ธ
40. The graph is a reflected sine graph with
amplitude 7 and period 8.
2ฯ
Find ฯ : 8 =
1
1
=
2
2
2ฯ 2ฯ 4ฯ
Period:
=
=
T=
3
3
ฯ
2
ฯ ฯ 2ฯ
Phase Shift:
= =
ฯ 3 3
2
Amplitude:
A =
ฯ
8ฯ = 2ฯ
2ฯ ฯ
ฯ=
=
8
4
๏ฆฯ ๏ถ
The equation is: y = โ7 sin ๏ง x ๏ท .
๏จ4 ๏ธ
208
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Review Exercises
41. Set the calculator to radian mode: sin
ฯ
8
โ 0.38 .
47. The domain of y = sec x is
ฯ๏ผ
๏ฌ
๏ญ x x โ odd multiple of ๏ฝ .
2๏พ
๏ฎ
The range of y = sec x is { y y โค โ1 or y โฅ 1} .
The period is 2ฯ .
42. Set the calculator to degree mode:
1
sec10o =
โ 1.02 .
cos10o
32o 20 '35" = 32 +
48. a.
20
35
+
โ 32.34o
60 3600
63.18o
0.18o = (0.18)(60 ') = 10.8'
0.8' = (0.8)(60") = 48"
b.
Thus, 63.18o = 63o10 '48"
43. Terminal side of ฮธ in quadrant III implies
sin ฮธ < 0
csc ฮธ < 0
cos ฮธ < 0
sec ฮธ 0
cot ฮธ > 0
44. cos ฮธ > 0, tan ฮธ < 0 ; ฮธ lies in quadrant IV.
๏ฆ 1 2 2๏ถ
45. P = ๏ง โ ,
๏ท
๏จ 3 3 ๏ธ
2 2
1
3
2 3 2
; csc t =
=
โ
=
3
4
๏ฆ2 2๏ถ 2 2 2
๏ง 3 ๏ท
๏จ
๏ธ
1
1
cos t = โ ; sec t =
= โ3
3
๏ฆโ1๏ถ
๏ง 3๏ท
๏จ
๏ธ
๏ฆ2 2๏ถ
๏ง
๏ท
2 2 ๏ฆ 3๏ถ
tan t = ๏จ 3 ๏ธ =
โ
โ = โ2 2 ;
3 ๏ง๏จ 1 ๏ท๏ธ
๏ฆโ1๏ถ
๏ง 3๏ท
๏จ
๏ธ
1
2
2
โ
=โ
4
โ2 2 2
46. The point P = (โ2, 5) is on a circle of radius
r = (โ2) 2 + 52 = 4 + 25 = 29 with the center
at the origin. So, we have x = โ2 , y = 5 , and
r = 29 . Thus, sin t =
cos t =
ฯ
6
ฯ ฯ
= โ 1.047 feet
6 3
1
1
ฯ
2 ฯ
A = โ
r 2ฮธ = โ
( 2 ) โ
= โ 1.047 square feet
2
2
6 3
s = rฮธ = 2 โ
50. In 30 minutes: r = 8 inches, ฮธ = 180ยบ or ฮธ = ฯ
s = rฮธ = 8 โ
ฯ = 8ฯ โ 25.13 inches
sin t =
cot t =
49. r = 2 feet, ฮธ = 30ยบ or ฮธ =
y
5
5 29
=
=
;
29
r
29
y
5
x
2 29
โ2
; tan t = = โ .
=
=โ
2
r
29
x
29
In 20 minutes: r = 8 inches, ฮธ = 120ยบ or ฮธ =
s = rฮธ = 8 โ
2ฯ
3
2ฯ 16ฯ
=
โ 16.76 inches
3
3
51. v = 180 mi/hr ;
1
mile
2
1
r = = 0.25 mile
4
d=
v 180 mi/hr
=
0.25 mi
r
= 720 rad/hr
720 rad 1 rev
=
โ
hr
2ฯ rad
360 rev
=
ฯ hr
โ 114.6 rev/hr
ฯ=
52. Since there are two lights on opposite sides and
the light is seen every 5 seconds, the beacon
makes 1 revolution every 10 seconds:
1 rev 2ฯ radians ฯ
โ
= radians/second
ฯ=
10 sec
1 rev
5
209
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
ฯ๏ถ
๏ฆ
53. I (t ) = 220sin ๏ง 30ฯt + ๏ท ,
6๏ธ
๏จ
a.
Period =
tโฅ0
Thus, y = 20sin
2ฯ
1
=
30ฯ 15
y = 20sin
ฯ
( x โ 4) + 75 .
6
c.
b. The amplitude is 220.
c.
ฯ
2ฯ
xโ
+ 75 , or
6
3
The phase shift is:
ฯ
ฯ โ6
1
ฯ 1
=
=โ โ
=โ
ฯ 30ฯ
6 30ฯ
180
d.
d.
y = 19.81sin ( 0.543 x โ 2.296) + 75.66
e.
54. a.
55.
b.
95 โ 55 40
=
= 20
2
2
95+55 150
=
= 75
Vertical Shift:
2
2
2ฯ ฯ
=
ฯ=
12 6
Phase shift (use y = 55, x = 1):
Amplitude: A =
55 = 20sin
ฯ
โ
1 โ ฯ + 75
6
โ20 = 20sin
ฯ
โฯ
6
โ1 = sin
โ
ฯ
โฯ
6
ฯ ฯ
= โฯ
2 6
2ฯ
ฯ=
3
210
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Test
Chapter 2 Test
2
๏ฆ 3๏ถ
๏ฆ 2๏ถ
12. 2sin 2 60ยฐ โ 3cos 45ยฐ = 2 ๏ง
๏ท โ 3๏ง
๏ท
๏จ 2 ๏ธ
๏จ 2 ๏ธ
๏ฆ 3 ๏ถ 3 2 3 3 2 3 1โ 2
= 2๏ง ๏ท โ
= โ
=
2
2
2
2
๏จ4๏ธ
1. 260ยฐ = 260 โ
1 degree
= 260 โ
=
ฯ
(
radian
180
260ฯ
13ฯ
radian =
radian
180
9
)
13. Set the calculator to degree mode: sin17ยฐ โ 0.292
2. โ400ยฐ = โ400 โ
1 degree
= โ400 โ
=โ
ฯ
radian
180
400ฯ
20ฯ
radian = โ
radian
180
9
3. 13ยฐ = 13 โ
1 degree = 13 โ
4. โ
ฯ
radian = โ
8
=โ
5.
6.
ฯ
8
ฯ
180
radian =
13ฯ
radian
180
ฯ 180
โ
degrees = โ22.5ยฐ
8 ฯ
15. Set the calculator to degree mode:
1
sec 229ยฐ =
โ โ1.524
cos 229ยฐ
3ฯ
3ฯ
radian =
โ
1 radian
4
4
3ฯ 180
degrees = 135ยฐ
=
โ
4 ฯ
ฯ
6
=
16. Set the calculator to radian mode:
28ฯ
1
cot
=
โ 2.747
28ฯ
9
tan
9
1
2
5ฯ
2ฯ
โ 0.309
5
โ
1 radian
9ฯ
9ฯ
radian =
โ
1 radian
2
2
9ฯ 180
degrees = 810ยฐ
=
โ
2 ฯ
7. sin
14. Set the calculator to radian mode: cos
3ฯ
5ฯ
3ฯ
8. cos ๏ฆ๏ง โ ๏ถ๏ท โ cos ๏ฆ๏ง ๏ถ๏ท = cos ๏ฆ๏ง โ + 2ฯ ๏ถ๏ท โ cos ๏ฆ๏ง ๏ถ๏ท
4
4
4
4
๏จ
๏ธ
๏จ
๏ธ
๏จ
๏ธ
๏จ ๏ธ
3ฯ
3ฯ
= cos ๏ฆ๏ง ๏ถ๏ท โ cos ๏ฆ๏ง ๏ถ๏ท = 0
๏จ 4 ๏ธ
๏จ 4 ๏ธ
9. cos ( โ120ยฐ ) = cos (120ยฐ ) = โ
1
2
10. tan 330ยฐ = tan (150ยฐ + 180ยฐ ) = tan (150ยฐ ) = โ
11. sin
ฯ
2
โ tan
3
3
19ฯ
ฯ
๏ฆ 3ฯ
๏ถ
= sin โ tan ๏ง
+ 4ฯ ๏ท
4
2
๏จ 4
๏ธ
= sin
ฯ
2
17. To remember the sign of each trig function, we
primarily need to remember that sin ฮธ is
positive in quadrants I and II, while cos ฮธ is
positive in quadrants I and IV. The sign of the
other four trig functions can be determined
directly from sine and cosine by knowing
sin ฮธ
1
1
tan ฮธ =
, sec ฮธ =
, csc ฮธ =
, and
cos ฮธ
cos ฮธ
sin ฮธ
cos ฮธ
.
cot ฮธ =
sin ฮธ
๏ฆ 3ฯ ๏ถ
โ tan ๏ง ๏ท = 1 โ ( โ1) = 2
๏จ 4 ๏ธ
211
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
ฮธ in QI
ฮธ in QII
ฮธ in QIII
ฮธ in QIV
sin ฮธ cos ฮธ tan ฮธ sec ฮธ csc ฮธ cot ฮธ
+
+
+
+
+
+
+
โ
โ
โ
+
โ
+
โ
โ
โ
โ
+
+
โ
โ
+
โ
โ
18. Because f ( x) = sin x is an odd function and
since f (a) = sin a =
3
, then
5
1
1
3
5
3 5
= 5 =โ
โ
=โ
sin ฮธ โ 3
5
5 5
sec ฮธ =
1
1 3
= =
cos ฮธ 23 2
cot ฮธ =
1
1
2
5
2 5
=
=โ
โ
=โ
tan ฮธ โ 25
5
5 5
12
ฯ
and < ฮธ < ฯ (in quadrant II)
2
5
Using the Pythagorean Identities:
2
144
169
๏ฆ 12 ๏ถ
sec 2 ฮธ = tan 2 ฮธ + 1 = ๏ง โ ๏ท + 1 =
+1 =
25
25
๏จ 5๏ธ
21. tan ฮธ = โ
3
f (โa ) = sin(โa ) = โ sin a = โ .
5
5
and ฮธ in quadrant II.
7
Using the Pythagorean Identities:
2
25 24
๏ฆ5๏ถ
cos 2 ฮธ = 1 โ sin 2 ฮธ = 1 โ ๏ง ๏ท = 1 โ
=
49 49
๏จ7๏ธ
19. sin ฮธ =
169
13
=ยฑ
25
5
Note that sec ฮธ must be negative since ฮธ lies in
13
quadrant II. Thus, sec ฮธ = โ .
5
1
1
5
cos ฮธ =
=
=โ
sec ฮธ โ 135
13
sec ฮธ = ยฑ
24
2 6
=ยฑ
49
7
Note that cos ฮธ must be negative because ฮธ lies
cos ฮธ = ยฑ
in quadrant II. Thus, cos ฮธ = โ
csc ฮธ =
2 6
.
7
tan ฮธ =
sin ฮธ
, so
cos ฮธ
12 ๏ฆ 5 ๏ถ 12
๏งโ ๏ท =
5 ๏จ 13 ๏ธ 13
tan ฮธ =
5
sin ฮธ
5๏ฆ
7 ๏ถ 6
5 6
= 27 6 = ๏ง โ
=โ
๏ทโ
cos ฮธ โ 7
7๏จ 2 6 ๏ธ 6
12
csc ฮธ =
1
1 7
= =
sin ฮธ 75 5
csc ฮธ =
1
1 13
= 12 =
sin ฮธ 13 12
sec ฮธ =
1
1
7
6
7 6
=
=โ
โ
=โ
cos ฮธ โ 2 7 6
12
2 6 6
cot ฮธ =
1
1
5
=
=โ
tan ฮธ โ 125
12
cot ฮธ =
1
1
12
6
2 6
= 5 6 =โ
โ
=โ
tan ฮธ โ 12
5
5 6 6
sin ฮธ = ( tan ฮธ )( cos ฮธ ) = โ
22. The point ( 2, 7 ) lies in quadrant I with x = 2
and y = 7 . Since x 2 + y 2 = r 2 , we have
2
3ฯ
and
< ฮธ < 2ฯ (in quadrant IV).
2
3
Using the Pythagorean Identities:
2
4 5
๏ฆ2๏ถ
2
2
sin ฮธ = 1 โ cos ฮธ = 1 โ ๏ง ๏ท = 1 โ =
9 9
๏จ3๏ธ
r = 22 + 7 2 = 53 . So,
y
7
7
53 7 53
sin ฮธ = =
=
โ
=
.
53
r
53
53 53
20. cos ฮธ =
23. The point ( โ5,11) lies in quadrant II with
x = โ5 and y = 11 . Since x 2 + y 2 = r 2 , we
5
5
=ยฑ
9
3
Note that sin ฮธ must be negative because ฮธ lies
sin ฮธ = ยฑ
in quadrant IV. Thus, sin ฮธ = โ
tan ฮธ =
have r =
5
.
3
cos ฮธ =
( โ5 )2 + 112 = 146 . So,
โ5
โ5
146
5 146
x
.
=
=
โ
=โ
146
r
146
146 146
sin ฮธ โ 35
5 3
5
= 2 =โ
โ
=โ
cos ฮธ
3 2
2
3
212
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Test
24. The point ( 6, โ3) lies in quadrant IV with x = 6
2
2
2
and y = โ3 . Since x + y = r , we have
2
r = 62 + ( โ3) = 45 = 3 5 . So,
tan ฮธ =
ฯ
y โ3
1
=
=โ
x
6
2
y = A sin (ฯ x โ ฯ ) , we see that
1
ฯ
, and ฯ = . The graph is a sine
6
3
2ฯ
ฯ
=
ฯ๏ถ
๏ฆ
y = tan ๏ง x + ๏ท . Next, reflect this graph about
4๏ธ
๏จ
ฯ๏ถ
๏ฆ
the y-axis to obtain the graph of y = tan ๏ง โ x + ๏ท .
๏จ
4๏ธ
Finally, shift the graph up 2 units to obtain the
ฯ๏ถ
๏ฆ
graph of y = tan ๏ง โ x + ๏ท + 2 .
4๏ธ
๏จ
ฯ๏ถ
๏ฆ
y = tan ๏ง โ x + ๏ท + 2
4๏ธ
๏จ
curve with amplitude A = 2 , period
T=
units to the left to obtain the graph of
4
๏ฆx ฯ๏ถ
25. Comparing y = 2sin ๏ง โ ๏ท to
๏จ3 6๏ธ
A=2, ฯ =
ฯ๏ถ
๏ฆ
26. y = tan ๏ง โ x + ๏ท + 2
๏จ
4๏ธ
Begin with the graph of y = tan x , and shift it
y
2ฯ
= 6ฯ , and phase shift
1/ 3
4
ฯ
ฯ
ฯ
๏ฆx ฯ๏ถ
= 6 = . The graph of y = 2sin ๏ง โ ๏ท
ฯ 1/ 3 2
๏จ3 6๏ธ
will lie between โ2 and 2 on the y-axis. One
ฯ ฯ
period will begin at x = = and end at
ฯ 2
2ฯ ฯ
ฯ 13ฯ
x=
+ = 6ฯ + =
. We divide the
2
2
ฯ ฯ
๏ฉ ฯ 13ฯ ๏น
interval ๏ช ,
๏บ into four subintervals, each of
๏ซ2 2 ๏ป
6ฯ 3ฯ
=
.
length
=
4
2
7ฯ ๏น ๏ฉ 7ฯ
๏ฉฯ
๏น ๏ฉ
๏น ๏ฉ 13ฯ ๏น
๏ช 2 , 2ฯ ๏บ , ๏ช 2ฯ , 2 ๏บ , ๏ช 2 ,5ฯ ๏บ , ๏ช5ฯ , 2 ๏บ
๏ซ
๏ป ๏ซ
๏ป ๏ซ
๏ป ๏ซ
๏ป
The five key points on the graph are
๏ฆฯ ๏ถ
๏ฆ 7ฯ ๏ถ
๏ฆ 13ฯ ๏ถ
, 0 ๏ท , ( 5ฯ , โ2 ) , ๏ง
,0๏ท
๏ง , 0 ๏ท , ( 2ฯ , 2 ) , ๏ง
๏จ2 ๏ธ
๏จ 2 ๏ธ
๏จ 2
๏ธ
We plot these five points and fill in the graph of
the sine function. The graph can then be
extended in both directions.
2
โ2ฯ
(โซบ4โฒ, 2)
A , the period is given by
11โฒ
,
(โซบ โโโโ
2 0(
5โฒ
,
(โซบ โโโ
2 0(
(โซบโฒ, โซบ2)
ฯ
, and the phase
ฯ
. Therefore, we have A = โ3 ,
ฯ
ฯ
3ฯ
ฯ = 3 , and ฯ = 3 ๏ฆ๏ง โ ๏ถ๏ท = โ
. The equation
๏จ 4๏ธ
4
3ฯ ๏ถ
๏ฆ
.
for the graph is y = โ3sin ๏ง 3 x +
4 ๏ท๏ธ
๏จ
28. The area of the walk is the difference between
the area of the larger sector and the area of the
smaller shaded sector.
(2โฒ, 2)
( โโโฒ2 , 0(
(5โฒ, โซบ2)
7โฒ
,
( โโโ
2 0(
2ฯ
shift is given by
W
a
x
x
27. For a sinusoidal graph of the form
y = A sin (ฯ x โ ฯ ) , the amplitude is given by
y
3
2
1
ฯ
โฯ
l
k
50ยฐ
3 ft
The area of the walk is given by
1
1
A = R 2ฮธ โ r 2ฮธ ,
2
2
ฮธ
(
)
R2 โ r 2
2
where R is the radius of the larger sector and r is
=
213
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
the radius of the smaller sector. The larger radius
is 3 feet longer than the smaller radius because
the walk is to be 3 feet wide. Therefore,
R = r + 3 , and
A=
=
=
Chapter 2 Cumulative Review
( 2 x โ 1)( x + 1) = 0
( r + 3) โ r )
2(
ฮธ
ฮธ
2
ฮธ
2
2
x=
( r + 6r + 9 โ r )
2
2 x2 + x โ 1 = 0
1.
2
1
or x = โ1
2
๏ฌ 1๏ผ
The solution set is ๏ญโ1, ๏ฝ .
๏ฎ 2๏พ
( 6r + 9 )
2
The shaded sector has an arc length of 25 feet
5ฯ
radians . The
and a central angle of 50ยฐ =
18
s 25 90
feet .
radius of this sector is r = = 5ฯ =
ฮธ
18
2. Slope = โ3 , containing (โ2,5)
Using y โ y1 = m( x โ x1 )
y โ 5 = โ3 ( x โ (โ2) )
y โ 5 = โ3( x + 2)
y โ 5 = โ3 x โ 6
y = โ3 x โ 1
ฯ
Thus, the area of the walk is given by
5ฯ
๏ฆ ๏ฆ 90 ๏ถ ๏ถ 5ฯ ๏ฆ 540
๏ถ
A = 18 ๏ง 6 ๏ง ๏ท + 9 ๏ท =
+ 9๏ท
๏ง
2 ๏จ ๏จ ฯ ๏ธ ๏ธ 36 ๏จ ฯ
๏ธ
5ฯ 2
= 75 +
ft โ 78.93 ft 2
4
3. radius = 4, center (0,โ2)
Using ( x โ h ) + ( y โ k ) = r 2
2
2
( x โ 0 ) + ( y โ ( โ2 ) ) = 42
2
2
29. To throw the hammer 83.19 meters, we need
v2
s= 0
g
v0 2
83.19 m =
9.8 m/s 2
2
v0 = 815.262 m 2 / s 2
v0 = 28.553 m/s
Linear speed and angular speed are related
according to the formula v = r โ
ฯ . The radius is
r = 190 cm = 1.9 m . Thus, we have
28.553 = r โ
ฯ
28.553 = (1.9 ) ฯ
ฯ = 15.028 radians per second
radians 60 sec 1 revolution
ฯ = 15.028
โ
โ
sec
1 min 2ฯ radians
โ 143.5 revolutions per minute (rpm)
To throw the hammer 83.19 meters, Adrian must
have been swinging it at a rate of 143.5 rpm
upon release.
x 2 + ( y + 2 ) = 16
2
4. 2 x โ 3 y = 12
This equation yields a line.
2 x โ 3 y = 12
โ3 y = โ2 x + 12
2
y = xโ4
3
2
The slope is m = and the y-intercept is โ4 .
3
Let y = 0 : 2 x โ 3(0) = 12
2 x = 12
x=6
The x-intercept is 6.
214
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Cumulative Review
5. x 2 + y 2 โ 2 x + 4 y โ 4 = 0
b.
y = x3
c.
y = sin x
d.
y = tan x
x2 โ 2 x + 1 + y 2 + 4 y + 4 = 4 + 1 + 4
( x โ 1) + ( y + 2 ) = 9
2
2
( x โ 1) + ( y + 2 ) = 32
2
2
This equation yields a circle with radius 3 and
center (1,โ2).
6. y = ( x โ 3) 2 + 2
Using the graph of y = x 2 , horizontally shift to
the right 3 units, and vertically shift up 2 units.
8.
7. a.
y = x2
f ( x) = 3x โ 2
y = 3x โ 2
x = 3y โ 2
Inverse
x + 2 = 3y
x+2
=y
3
x+2 1
f โ1 ( x) =
= ( x + 2)
3
3
9. Since ( sin ฮธ ) + ( cos ฮธ ) = 1 , then
2
2
( sin14 ) + ( cos14 ) โ 3 = 1 โ 3 = โ2
o
2
215
Copyright ยฉ 2016 Pearson Education, Inc.
o
2
Chapter 2: Trigonometric Functions
10. y = 3sin(2 x)
Amplitude:
11. tan
A = 3 =3
ฯ
4
โ 3cos
ฯ
6
+ csc
2ฯ
Period:
T=
=ฯ
2
ฯ 0
Phase Shift:
= =0
ฯ 2
๏ฆ 3๏ถ
= 1 โ 3 ๏ง๏ง
๏ท๏ท + 2
6
๏จ 2 ๏ธ
ฯ
3 3
2
6โ3 3
=
2
= 3โ
12. The graph is a cosine graph with amplitude 3 and
period 12.
2ฯ
Find ฯ : 12 =
ฯ
12ฯ = 2ฯ
ฯ=
2ฯ ฯ
=
12 6
๏ฆฯ ๏ถ
The equation is: y = 3cos ๏ง x ๏ท .
๏จ6 ๏ธ
Chapter 2 Projects
Project I โ Internet Based Project
Project II
1. November 15: High tide: 11:18 am and 11:15 pm
November 19: low tide: 7:17 am and 8:38 pm
2. The low tide was below sea level. It is measured against calm water at sea level.
3.
Nov
14
0-24
15
24-48
16
48-72
17
72-96
18
96-120
19
120-144
20
144-168
Low Tide
Low Tide
High Tide
Time
Ht (ft) t
Time
Ht (ft) t
Time
Ht (ft)
t
Time
6:26a
2.0
6.43
4:38p
1.4 16.63
9:29a
2.2
9.48
11:14p 2.8
23.23
6:22a
1.6
30.37
5:34p
1.8 41.57
11:18a 2.4
35.3
11:15p 2.6
47.25
6:28a
1.2
54.47
6:25p
2.0 66.42
12:37p 2.6
60.62
11:16p 2.6
71.27
6:40a
0.8
78.67
7:12p
2.4 91.2
1:38p
2.8
85.63
11:16p 2.6
95.27
6:56a
0.4
102.93
7:57p
2.6 115.95
2:27p
3.0
110.45
11:14p 2.8
119.23
7:17a
0.0
127.28
8:38p
2.6 140.63
3:10p
3.2
135.17
11:05p 2.8
143.08
7:43a -0.2
151.72
3:52p
3.4
159.87
216
Copyright ยฉ 2016 Pearson Education, Inc.
High Tide
Ht (ft) t
Chapter 2 Projects
Low tides of 1.49 feet when t = 178.2 and
t = 190.3.
4. The data seems to take on a sinusoidal shape
(oscillates). The period is approximately 12
hours. The amplitude varies each day:
Nov 14: 0.1, 0.7
Nov 15: 0.4, 0.4
Nov 16: 0.7, 0.3
Nov 17: 1.0, 0.1
Nov 18: 1.3, 0.1
Nov 19: 1.6, 0.1
Nov 20: 1.8
5. Average of the amplitudes: 0.66
Period : 12
Average of vertical shifts: 2.15 (approximately)
There is no phase shift. However, keeping in
mind the vertical shift, the amplitude
y = A sin ( Bx ) + D
A = 0.66
12 =
B=
2ฯ
B
High tides of 2.81 feet occur when t = 172.2 and
t = 184.3.
Looking at the graph for the equation in part (6)
and using MAX/MIN for values between t = 168
and t = 192:
A low tide of 1.38 feet occurs when t = 175.7
and t = 187.8 .
D = 2.15
ฯ
โ 0.52
6
Thus, y = 0.66sin ( 0.52 x ) + 2.15
(Answers may vary)
A high tide of 3.08 feet occurs when t = 169.8
and t = 181.9 .
6. y = 0.848sin ( 0.52 x + 1.25 ) + 2.23
The two functions are not the same, but they are
similar.
8. The low and high tides vary because of the moon
phase. The moon has a gravitational pull on the
water on Earth.
7. Find the high and low tides on November 21
which are the min and max that lie between
t = 168 and t = 192 . Looking at the graph of
the equation for part (5) and using MAX/MIN
for values between t = 168 and t = 192 :
Project III
1. s (t ) = 1sin ( 2ฯ f 0 t )
2. T0 =
2ฯ
1
=
2ฯ f 0
f0
217
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Trigonometric Functions
t
1
4 f0
s (t ) 0 1
1
2 f0
3
4 f0
1
f0
0
โ1
0
2. s = rฮธ
s
65
ฮธ= =
= 0.0164
r 3960
4. Let f 0 = 1 =1. Let 0 โค x โค 12 , with ฮx = 0.5 .
Label the graph as 0 โค x โค 12T0 , and each tick
mark is at ฮx =
2
1
.
2 f0
h = 0.396 miles
0.396 ร 5280 = 2090 feet
0
12
4. Maui:
12
12T0 = __
f0
Oahu
Oahu
s
ฮธ
Maui
6. M = 0 1 0 โ P = 0 ฯ 0
10,023 ft
396
i
0m
s 110
=
= 0.0278
r 3960
3960
= cos(0.278)
3960 + h
3960 = 0.9996(3960 + h)
h = 1.584 miles
h = 1.584 ร 5280 = 8364 feet
8. [0, 4 T0 ] S0
[4 T0 , 8 T0 ] S1
[ 8 T0 , 12 T0 ] S0
2
12
Hawaii:
Oahu
ฮธ
Project IV
1. Lanai:
Oahu
s
Peak of
Lanaihale
s=
mi
i
ฮธ
}
39
60
Lanai
m
65
39
60
m
i
Oahu
3,370 ft
396
i
0m
Lanai
13,796 ft
396
0
mi
s 190
=
= 0.0480
r 3960
3960
= cos(0.480)
3960 + h
3960 = 0.9988(3960 + h)
h = 4.752 miles
h = 4.752 ร 5280 = 25, 091 feet
ฮธ=
218
Copyright ยฉ 2016 Pearson Education, Inc.
}
39
60
Hawaii
mi
39
60
m
i
s
Peak of
Mauna Kea
i
0m
19
ฮธ
Oahu
s=
โ2
ฮธ
Maui
ฮธ=
7. S0 (t ) = 1sin(2ฯ f 0 t + 0) , S1 (t ) = 1sin(2ฯ f 0 t + ฯ )
0
}
ฮธ
mi
1
5
9
45
, t=
, t=
,โฆ, t=
4 f0
4 f0
4 f0
4 f0
Peak of
Haleakala
0
11
s=
39
60
m
i
โ2
5. t =
3960
= cos(0.164)
3960 + h
3960 = 0.9999(3960 + h)
3.
39
60
m
i
3.
0
Hawaii
Chapter 2 Projects
Molokai:
Oahu
s
i
ฮธ
}
39
60
m
Molokai
mi
40
ฮธ
Peak of
Kamakou
s=
39
60
m
i
Oahu
4,961 ft
396
i
0m
Molokai
s
40
=
= 0.0101
r 3960
3960
= cos(0.0101)
3960 + h
3960 = 0.9999(3960 + h)
h = 0.346 miles
h = 0.346 x5280 = 2090 feet
ฮธ=
5. Kamakou, Haleakala, and Lanaihale are all
visible from Oahu.
Project V
Answers will vary.
219
Copyright ยฉ 2016 Pearson Education, Inc.
Copyright ยฉ 2013 Pearson Education, Inc.
P r o j e c t
a t
M o t o r o l a
Digital Transmission over the Air
Digital communications is a revolutionary technology of the century. For many years, Motorola has
been one of the leading companies to employ digital communication in wireless devices, such as cell
phones.
Figure 1 shows a simplified overview of a digital
communication transmission over the air. The information source to be transmitted can be audio, video,
or data. The information source may be formatted
into a digital sequence of symbols from a finite set
Ean F={0, 1}. So 0110100 is an example of a digital
sequence. The period of the symbols is denoted by T.
The principle of digital communication systems is
that, during the finite interval of time T, the information symbol is represented by one digital waveform from a finite set of digital waveforms before it
is sent. This technique is called modulation.
Modulation techniques use a carrier that is modulated by the information to be transmitted.The modulated carrier is transformed into an electromagnetic
field and propagated in the air through an antenna.The
unmodulated carrier can be represented in its general
form by a sinusoidal function s(t)=A sin Av0 t+f B,
where A is the amplitude, v0 is the radian frequency,
and f is the phase.
Letโs assume that A=1, f=0, and v0=2pf0
radian, where f0 is the frequency of the unmodulated
carrier.
1. Write s(t) using these assumptions.
2. What is the period, T0 , of the unmodulated carrier?
3. Evaluate s(t) for t=0, 1/A4f0 B, 1/A2f0 B, 3/A4f0 B,
and 1/f0 .
4. Graph s(t) for 0 โฑ t โฑ 12T0 . That is, graph 12
cycles of the function.
5. For what values of t does the function reach its
maximum value?
[Hint: Express t in terms of f0].
Three modulation techniques are used for transmission over the air: amplitude modulation, frequency modulation and phase modulation. In this
project, we are interested in phase modulation.
Figure 2 illustrates this process. An information
symbol is mapped onto a phase that modulates
the carrier. The modulated carrier is expressed
by Si(t)=sin A2pf0 t+ci B.
Letโs assume the following mapping scheme:
Ean F
S
Ecn F
0
c0 = 0
1
c1 = p
6. Map the binary sequence M=010 into a phase
sequence P.
7. What is the expression of the modulated carrier
S0(t) for ci=c0 and S1(t) for ci=c1 ?
8. Letโs assume that in the sequence M the period
of each symbol is T=4T0 . For each of the three
intervals C0, 4T0 D, C4T0 , 8T0 D, and C8T0 , 12T0 D, indicate which of S0(t) or S1(t) is the modulated
carrier. On the same graph, illustrate M, P, and
the modulated carrier for 0 โฑ t โฑ 12T0 .
Carrier
s (t )
Information
source
Figure 1
Format
Digital
symbols
Modulate
Digital
waveform
(Modulated
carrier) Si (t )
Transmit
Simplified Overview of a Digital Communication Transmission
Carrier
s (t ) โซฝ sin (2โฒf 0t )
Digital
symbols
{โฃn }
Mapping
Figure 2
Phase
{โบn }
Modulate
Digital waveforms
Si (t ) โซฝ sin (2โฒf 0t โซน โบi )
Principle of Phase Modulation
Copyright ยฉ 2013 Pearson Education, Inc.
2. Identifying Mountain Peaks in Hawaii
Suppose that you are standing on the southeastern shore
of Oahu and you see three mountain peaks on the horizon. You want to determine which mountains are visible
from Oahu.The possible mountain peaks that can be seen
from Oahu and the height (above sea level) of their peaks
are given in the table.
Island
Distance
(miles)
Mountain
Height
(feet)
Lanai
65
Lanaihale
3,370
Maui
110
Haleakala
10,023
Hawaii
190
Mauna Kea
13,796
Molokai
40
Kamakou
4,961
Copyright ยฉ 2013 Pearson Education, Inc.
(a) To determine which of these mountain peaks would
be visible from Oahu, consider that you are standing
on the shore and looking โstraight outโ so that your
line of sight is tangent to the surface of Earth at the
point where you are standing. Make a sketch of the
right triangle formed by your sight line, the radius
from the center of Earth to the point where you are
standing, and the line from the center of Earth
through Lanai.
(b) Assuming that the radius of Earth is 3960 miles,
determine the angle formed at the center of Earth.
(c) Determine the length of the hypotenuse of the triangle. Is Lanaihale visible from Oahu?
(d) Repeat parts (a)โ(c) for the other three islands.
(e) Which three mountains are visible from Oahu?
Copyright ยฉ 2013 Pearson Education, Inc.
.
Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com
Copyright ยฉ 2013 Pearson Education, Inc
Trigonometry A Unit Circle Approach 10th Edition Sullivan Solutions Manual
Full Download: http://testbanklive.com/download/trigonometry-a-unit-circle-approach-10th-edition-sullivan-solutions-manual/
4. CBL Experiment Using a CBL, the microphone
probe, and a tuning fork, record the amplitude, frequency, and period of the sound from the graph of the sound
created by the tuning fork over time. Repeat the experiment for different tuning forks.
Document Preview (99 of 821 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual For Trigonometry: A Unit Circle Approach, 10th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Evelyn Miller
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)