Solution Manual For Trigonometry: A Unit Circle Approach, 10th Edition

Preview Extract
Trigonometry A Unit Circle Approach 10th Edition Sullivan Solutions Manual Full Download: http://testbanklive.com/download/trigonometry-a-unit-circle-approach-10th-edition-sullivan-solutions-manual/ Chapter 2 Trigonometric Functions 16. Section 2.1 1. C = 2ฯ€ r ; A = ฯ€ r 2 1 2ฯ€ (2) = 2ฯ€ 2. A = 2 3. standard position 17. 18. 4. central angle 5. d 6. rฮธ ; 1 2 rฮธ 2 19. 7. b 8. s ฮธ ; t t 20. 9. True 10. False; ฯ… = rฯ‰ 21. 11. 12. 22. 13. 14. 15. _ 1 1 1 ๏ƒถยบ ๏ƒฆ 23. 40ยบ10 ‘ 25″ = ๏ƒง 40 + 10 โ‹… + 25 โ‹… โ‹… ๏ƒท 60 60 60 ๏ƒธ ๏ƒจ โ‰ˆ (40 + 0.1667 + 0.00694)ยบ โ‰ˆ 40.17ยบ 1 1 1 ๏ƒถยบ ๏ƒฆ 24. 61ยบ 42 ‘ 21″ = ๏ƒง 61 + 42 โ‹… + 21 โ‹… โ‹… ๏ƒท 60 60 60 ๏ƒธ ๏ƒจ โ‰ˆ (61 + 0.7000 + 0.00583)ยบ โ‰ˆ 61.71ยบ 126 Copyright ยฉ 2016 Pearson Education, Inc. Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com Section 2.1: Angles and Their Measure 32. 29.411ยบ = 29ยบ + 0.411ยบ = 29ยบ + 0.411(60 ‘) = 29ยบ +24.66 ‘ = 29ยบ +24 ‘+ 0.66 ‘ = 29ยบ +0.66(60″) = 29ยบ +24 ‘+ 39.6″ โ‰ˆ 29ยบ 24 ‘ 40″ 1 1 1 ยบ + 20 โ‹… โ‹… 60 60 60 โ‰ˆ (50 + 0.2333 + 0.00556)ยบ 25. 50ยบ14 ’20” = 50 + 14 โ‹… โ‰ˆ 50.24ยบ 1 1 1 ๏ƒถยบ ๏ƒฆ 26. 73ยบ 40 ‘ 40″ = ๏ƒง 73 + 40 โ‹… + 40 โ‹… โ‹… ๏ƒท 60 60 60 ๏ƒธ ๏ƒจ โ‰ˆ (73 + 0.6667 + 0.0111)ยบ โ‰ˆ 73.68ยบ 33. 19.99ยบ = 19ยบ + 0.99ยบ = 19ยบ + 0.99(60 ‘) = 19ยบ +59.4 ‘ = 19ยบ +59 ‘+ 0.4 ‘ = 19ยบ +59 ‘+ 0.4(60″) = 19ยบ +59 ‘+ 24″ = 19ยบ 59 ‘ 24″ 1 1 1 ๏ƒถยบ ๏ƒฆ 27. 9ยบ 9 ‘9″ = ๏ƒง 9 + 9 โ‹… + 9 โ‹… โ‹… ๏ƒท 60 60 60 ๏ƒธ ๏ƒจ = (9 + 0.15 + 0.0025)ยบ โ‰ˆ 9.15ยบ 1 1 1 ๏ƒถยบ ๏ƒฆ 28. 98ยบ 22 ‘ 45″ = ๏ƒง 98 + 22 โ‹… + 45 โ‹… โ‹… ๏ƒท 60 60 60 ๏ƒธ ๏ƒจ โ‰ˆ (98 + 0.3667 + 0.0125)ยบ โ‰ˆ 98.38ยบ 34. 44.01ยบ = 44ยบ + 0.01ยบ = 44ยบ + 0.01(60 ‘) = 44ยบ +0.6 ‘ = 44ยบ +0 ‘+ 0.6 ‘ = 44ยบ +0 ‘+ 0.6(60″) = 44ยบ +0 ‘+ 36″ = 44ยบ 0 ’36” 29. 40.32ยบ = 40ยบ + 0.32ยบ = 40ยบ + 0.32(60 ‘) = 40ยบ +19.2 ‘ = 40ยบ +19 ‘+ 0.2 ‘ = 40ยบ +19 ‘+ 0.2(60″) = 40ยบ +19 ‘+ 12″ = 40ยบ19 ’12” 35. 30ยฐ = 30 โ‹… ฯ€ ฯ€ radian = radian 180 6 ฯ€ 2ฯ€ radian = radians 180 3 30. 61.24ยบ = 61ยบ + 0.24ยบ = 61ยบ + 0.24(60 ‘) = 61ยบ +14.4 ‘ = 61ยบ +14 ‘+ 0.4 ‘ = 61ยบ +14 ‘+ 0.4(60″) = 61ยบ +14 ‘+ 24″ = 61ยบ14 ‘ 24″ 36. 120ยฐ = 120 โ‹… 31. 18.255ยบ = 18ยบ + 0.255ยบ = 18ยบ + 0.255(60 ‘) = 18ยบ +15.3′ = 18ยบ +15’+ 0.3’ = 18ยบ +15’+ 0.3(60″) = 18ยบ +15’+ 18″ = 18ยบ15’18” 39. โˆ’ 60ยฐ = โˆ’ 60 โ‹… 37. 240ยฐ = 240 โ‹… 4ฯ€ ฯ€ radian = radians 180 3 38. 330ยฐ = 330 โ‹… 11ฯ€ ฯ€ radian = radians 180 6 40. โˆ’30ยฐ = โˆ’30 โ‹… 41. 180ยฐ = 180 โ‹… Copyright ยฉ 2016 Pearson Education, Inc. ฯ€ ฯ€ radian = โˆ’ radian 180 6 ฯ€ radian = ฯ€ radians 180 42. 270ยฐ = 270 โ‹… 127 ฯ€ ฯ€ radian = โˆ’ radian 180 3 ฯ€ 3ฯ€ radian = radians 180 2 Chapter 2: Trigonometric Functions 43. โˆ’135ยฐ = โˆ’135 โ‹… ฯ€ 3ฯ€ radian = โˆ’ radians 180 4 44. โˆ’ 225ยฐ = โˆ’ 225 โ‹… 45. โˆ’ 90ยฐ = โˆ’ 90 โ‹… 5ฯ€ ฯ€ radian = โˆ’ radians 180 4 ฯ€ ฯ€ radian = โˆ’ radians 180 2 46. โˆ’180ยฐ = โˆ’180 โ‹… ฯ€ ฯ€ 180 = โ‹… degrees = 60ยฐ 3 3 ฯ€ 48. 5ฯ€ 5ฯ€ 180 degrees = 150ยฐ = โ‹… 6 6 ฯ€ 50. โˆ’ 51. 54. 2ฯ€ radian 9 โ‰ˆ โˆ’ 0.70 radian ฯ€ radian 180 17ฯ€ radian =โˆ’ 60 โ‰ˆ โˆ’ 0.89 radian 62. โˆ’ 51ยฐ = โˆ’ 51 โ‹… 63. 125ยฐ = 125 โ‹… 2ฯ€ 2ฯ€ 180 degrees = โˆ’120ยฐ =โˆ’ โ‹… 3 3 ฯ€ 25ฯ€ radians 36 โ‰ˆ 2.18 radians 64. 350ยฐ = 350 โ‹… 180 degrees = 720ยฐ ฯ€ ฯ€ radian 180 35ฯ€ radians 18 โ‰ˆ 6.11 radians = ฯ€ ฯ€ 180 degrees = 15ยฐ = โ‹… 12 12 ฯ€ 65. 3.14 radians = 3.14 โ‹… 5ฯ€ 5ฯ€ 180 degrees = 75ยฐ = โ‹… 12 12 ฯ€ 66. 0.75 radian = 0.75 โ‹… ฯ€ ฯ€ 180 =โˆ’ โ‹… degrees = โˆ’ 90ยฐ 2 2 ฯ€ 56. โˆ’ฯ€ = โˆ’ฯ€ โ‹… ฯ€ radian 180 = ฯ€ ฯ€ 180 degrees = 90ยฐ = โ‹… 2 2 ฯ€ 55. โˆ’ ฯ€ radian 180 =โˆ’ 5ฯ€ 5ฯ€ 180 =โˆ’ โ‹… degrees = โˆ’ 225ยฐ 4 4 ฯ€ 52. 4ฯ€ = 4ฯ€ โ‹… 53. 61. โˆ’ 40ยฐ = โˆ’ 40 โ‹… ฯ€ radian = โˆ’ฯ€ radians 180 47. 49. โˆ’ ฯ€ radian 180 73ฯ€ = radians 180 โ‰ˆ 1.27 radians 60. 73ยฐ = 73 โ‹… 67. 2 radians = 2 โ‹… 180 degrees = โˆ’180ยฐ ฯ€ 68. 3 radians = 3 โ‹… ฯ€ ฯ€ 180 degrees = โˆ’ 30ยฐ 57. โˆ’ = โˆ’ โ‹… 6 6 ฯ€ 180 degrees โ‰ˆ 42.97ยบ ฯ€ 180 degrees โ‰ˆ 114.59ยบ ฯ€ 180 degrees โ‰ˆ 171.89ยบ ฯ€ 69. 6.32 radians = 6.32 โ‹… 3ฯ€ 3ฯ€ 180 =โˆ’ โ‹… degrees = โˆ’ 135ยฐ 58. โˆ’ 4 4 ฯ€ 70. 17ฯ€ ฯ€ 59. 17ยฐ = 17 โ‹… radian = radian โ‰ˆ 0.30 radian 180 180 2 radians = 2 โ‹… 128 Copyright ยฉ 2016 Pearson Education, Inc. 180 degrees โ‰ˆ 179.91ยบ ฯ€ 180 degrees โ‰ˆ 362.11ยบ ฯ€ 180 degrees โ‰ˆ 81.03ยบ ฯ€ Section 2.1: Angles and Their Measure 71. r = 10 meters; ฮธ = s = rฮธ = 10 โ‹… 1 radian; A = 2 ft 2 3 1 A = r 2ฮธ 2 1 2 ๏ƒฆ1๏ƒถ 2= r ๏ƒง ๏ƒท 2 ๏ƒจ3๏ƒธ 1 2 = r2 6 12 = r 2 1 radian; 2 81. ฮธ = 1 = 5 meters 2 72. r = 6 feet; ฮธ = 2 radian; s = rฮธ = 6 โ‹… 2 = 12 feet 1 radian; s = 2 feet; 3 s = rฮธ s 2 r= = = 6 feet ฮธ (1/ 3) 73. ฮธ = r = 12 = 2 3 โ‰ˆ 3.464 feet 1 radian; A = 6 cm 2 4 1 A = r 2ฮธ 2 1 ๏ƒฆ1๏ƒถ 6 = r2 ๏ƒง ๏ƒท 2 ๏ƒจ4๏ƒธ 1 6 = r2 8 48 = r 2 82. ฮธ = 1 radian; s = 6 cm; 4 s = rฮธ s 6 r= = = 24 cm ฮธ (1/ 4 ) 74. ฮธ = 75. r = 5 miles; s = 3 miles; s = rฮธ s 3 ฮธ = = = 0.6 radian r 5 r = 48 = 4 3 โ‰ˆ 6.928 cm 83. r = 5 miles; A = 3 mi 2 1 A = r 2ฮธ 2 1 2 3 = (5) ฮธ 2 25 3= ฮธ 2 6 ฮธ= = 0.24 radian 25 76. r = 6 meters; s = 8 meters; s = rฮธ s 8 4 ฮธ = = = โ‰ˆ 1.333 radians r 6 3 77. r = 2 inches; ฮธ = 30ยบ = 30 โ‹… s = rฮธ = 2 โ‹… ฯ€ ฯ€ = radian; 180 6 ฯ€ ฯ€ = โ‰ˆ 1.047 inches 6 3 78. r = 3 meters; ฮธ = 120ยบ = 120 โ‹… s = rฮธ = 3 โ‹… 84. r = 6 meters; A = 8 m 2 1 A = r 2ฮธ 2 1 2 8 = ( 6) ฮธ 2 8 = 18ฮธ 8 4 ฮธ = = โ‰ˆ 0.444 radian 18 9 ฯ€ 2ฯ€ = radians 180 3 2ฯ€ = 2ฯ€ โ‰ˆ 6.283 meters 3 1 radian 2 1 1 100 2๏ƒฆ1๏ƒถ A = r 2ฮธ = (10 ) ๏ƒง ๏ƒท = =25 m 2 2 2 2 4 ๏ƒจ ๏ƒธ 79. r = 10 meters; ฮธ = 85. r = 2 inches; ฮธ = 30ยบ = 30 โ‹… 80. r = 6 feet; ฮธ = 2 radians A= 1 1 2 A = r 2ฮธ = ( 6 ) ( 2 ) =36 ft 2 2 2 ฯ€ ฯ€ = radian 180 6 1 2 1 ฯ€ 2 ๏ƒฆฯ€ ๏ƒถ r ฮธ = ( 2 ) ๏ƒง ๏ƒท = โ‰ˆ 1.047 in 2 2 2 ๏ƒจ6๏ƒธ 3 129 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 86. r = 3 meters; ฮธ = 120ยบ = 120 โ‹… A= ฯ€ 2ฯ€ = radians 180 3 92. r = 40 inches; ฮธ = 20ยบ = 1 2 1 2 ๏ƒฆ 2ฯ€ ๏ƒถ 2 r ฮธ = ( 3) ๏ƒง ๏ƒท =3ฯ€ โ‰ˆ 9.425 m 2 2 3 ๏ƒจ ๏ƒธ 87. r = 2 feet; ฮธ = ฯ€ s = rฮธ = 40 โ‹… ฯ€ 6 ฯ€ ฯ€ = radian 180 4 1 2 1 2 ๏ƒฆฯ€ ๏ƒถ A = r ฮธ = ( 4 ) ๏ƒง ๏ƒท = 2ฯ€ โ‰ˆ 6.28 m 2 2 2 ๏ƒจ4๏ƒธ ฯ€ ฯ€ = radians 180 3 1 1 2 ๏ƒฆ ฯ€ ๏ƒถ 3ฯ€ A = r 2ฮธ = ( 3) ๏ƒง ๏ƒท = โ‰ˆ 4.71 cm 2 2 2 3 2 ๏ƒจ ๏ƒธ 94. r = 3 cm; ฮธ = 60ยบ = 60 โ‹… radian ฯ€ 2ฯ€ = โ‰ˆ 2.094 meters 6 3 1 1 4ฯ€ 2 ๏ƒฆฯ€ ๏ƒถ A = r 2ฮธ = ( 4 ) ๏ƒง ๏ƒท = โ‰ˆ 4.189 m 2 2 2 ๏ƒจ6๏ƒธ 3 s = rฮธ = 4 โ‹… 89. r = 12 yards; ฮธ = 70ยบ = 70 โ‹… ฯ€ 3ฯ€ = radians 180 4 1 1 675ฯ€ 2 ๏ƒฆ 3ฯ€ ๏ƒถ A = r 2ฮธ = ( 30 ) ๏ƒง ๏ƒท = โ‰ˆ 1060.29 ft 2 2 2 4 2 ๏ƒจ ๏ƒธ 95. r = 30 feet; ฮธ = 135ยบ = 135 โ‹… ฯ€ 7ฯ€ = radians 180 18 96. r = 15 yards; A = 100 yd 2 1 A = r 2ฮธ 2 1 2 100 = (15 ) ฮธ 2 100 = 112.5ฮธ 100 8 = โ‰ˆ 0.89 radian ฮธ= 112.5 9 7ฯ€ โ‰ˆ 14.661 yards 18 1 1 2 ๏ƒฆ 7ฯ€ ๏ƒถ 2 A = r 2ฮธ = (12 ) ๏ƒง ๏ƒท = 28ฯ€ โ‰ˆ 87.965 yd 2 2 18 ๏ƒจ ๏ƒธ s = rฮธ = 12 โ‹… 90. r = 9 cm; ฮธ = 50ยบ = 50 โ‹… ฯ€ 40ฯ€ = โ‰ˆ 13.96 inches 9 9 93. r = 4 m; ฮธ = 45ยบ = 45 โ‹… radians 3 ฯ€ 2ฯ€ s = rฮธ = 2 โ‹… = โ‰ˆ 2.094 feet 3 3 1 1 2ฯ€ 2 ๏ƒฆฯ€ ๏ƒถ A = r 2ฮธ = ( 2 ) ๏ƒง ๏ƒท = = โ‰ˆ 2.094 ft 2 2 2 3 ๏ƒจ3๏ƒธ 88. r = 4 meters; ฮธ = ฯ€ radian 9 ฯ€ 5ฯ€ = radian 180 18 ยฐ 5ฯ€ โ‰ˆ 7.854 cm 18 1 1 2 ๏ƒฆ 5ฯ€ ๏ƒถ 45ฯ€ A = r 2ฮธ = ( 9 ) ๏ƒง โ‰ˆ 35.343 cm 2 ๏ƒท= 2 2 18 4 ๏ƒจ ๏ƒธ s = rฮธ = 9 โ‹… or 8 180 ๏ƒฆ 160 ๏ƒถ โ‹… =๏ƒง ๏ƒท โ‰ˆ 50.93ยฐ 9 ฯ€ ๏ƒจ ฯ€ ๏ƒธ 1 2 1 2ฯ€ ฮธ = 120ยฐ = r1 ฮธ โˆ’ r2 2ฮธ 2 2 3 1 2ฯ€ 1 2ฯ€ = (34) 2 โˆ’ (9) 2 2 3 2 3 97. A = 91. r = 6 inches In 15 minutes, 15 1 ฯ€ rev = โ‹… 360ยบ = 90ยบ = radians ฮธ= 60 4 2 ฯ€ s = rฮธ = 6 โ‹… = 3ฯ€ โ‰ˆ 9.42 inches 2 = 1 2ฯ€ 1 2ฯ€ (1156) โˆ’ (81) 2 3 2 3 = (1156) In 25 minutes, 25 5 5ฯ€ rev = โ‹… 360ยบ = 150ยบ = radians ฮธ= 60 12 6 5ฯ€ s = rฮธ = 6 โ‹… = 5ฯ€ โ‰ˆ 15.71 inches 6 ฯ€ 3 โˆ’ (81) ฯ€ 3 1156ฯ€ 81ฯ€ โˆ’ 3 3 1075ฯ€ = โ‰ˆ 1125.74 in 2 3 = 130 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.1: Angles and Their Measure 104. r = 5 m; ฯ‰ = 5400 rev/min = 10800ฯ€ rad/min v = rฯ‰ = (5) โ‹…10800ฯ€ m/min = 54000ฯ€ cm/min cm 1m 1km 60 min โ‹… โ‹… โ‹… v = 54000ฯ€ min 100cm 1000m 1hr โ‰ˆ 101.8 km/hr 1 2 1 25ฯ€ ฮธ = 125ยฐ = r1 ฮธ โˆ’ r2 2ฮธ 2 2 36 1 25ฯ€ 1 25ฯ€ = (30) 2 โˆ’ (6) 2 2 36 2 36 98. A = = 1 25ฯ€ 1 25ฯ€ (900) โˆ’ (36) 2 36 2 36 = (450) 105. d = 26 inches; r = 13 inches; v = 35 mi/hr 35 mi 5280 ft 12 in. 1 hr v= โ‹… โ‹… โ‹… hr mi ft 60 min = 36,960 in./min v 36,960 in./min ฯ‰= = 13 in. r โ‰ˆ 2843.08 radians/min 2843.08 rad 1 rev โ‰ˆ โ‹… min 2ฯ€ rad โ‰ˆ 452.5 rev/min 25ฯ€ 25ฯ€ โˆ’ (18) 36 36 11250ฯ€ 450ฯ€ โˆ’ 36 36 10800ฯ€ = = 300ฯ€ โ‰ˆ 942.48 in 2 36 = 99. r = 5 cm; t = 20 seconds; ฮธ = 1 radian 3 (1 / 3) 1 1 1 radian/sec = = โ‹… = 20 3 20 60 t 1 s rฮธ 5 โ‹… (1 / 3) 5 1 cm/sec v= = = = โ‹… = 20 3 20 12 t t ฯ‰= ฮธ 106. r = 15 inches; ฯ‰ = 3 rev/sec = 6ฯ€ rad/sec v = rฯ‰ = 15 โ‹… 6ฯ€ in./sec = 90ฯ€ โ‰ˆ 282.7 in/sec in. 1ft 1mi 3600sec v = 90ฯ€ โ‹… โ‹… โ‹… โ‰ˆ 16.1 mi/hr sec 12in. 5280ft 1hr 100. r = 2 meters; t = 20 seconds; s = 5 meters ฯ‰= ฮธ ( s / r ) (5 / 2) = = 20 t t s 5 1 = m/sec v= = t 20 4 107. r = 3960 miles ฮธ = 35ยบ 9 ‘โˆ’ 29ยบ 57 ‘ = 5ยบ12 ‘ = 5.2ยบ ฯ€ = 5.2 โ‹… 180 โ‰ˆ 0.09076 radian s = rฮธ = 3960(0.09076) โ‰ˆ 359 miles 5 1 1 = โ‹… = radian/sec 2 20 8 101. r = 25 feet; ฯ‰ = 13 rev/min = 26ฯ€ rad/min v = rฯ‰ = 25 โ‹… 26ฯ€ ft./min = 650ฯ€ โ‰ˆ 2042.0 ft/min ft. 1mi 60 min โ‹… โ‹… โ‰ˆ 23.2 mi/hr v = 650ฯ€ min 5280ft 1hr 108. r = 3960 miles ฮธ = 38ยบ 21’โˆ’ 30ยบ 20 ‘ = 8ยบ1′ โ‰ˆ 8.017ยบ ฯ€ = 8.017 โ‹… 180 โ‰ˆ 0.1399 radian s = rฮธ = 3960(0.1399) โ‰ˆ 554 miles 102. r = 6.5 m; ฯ‰ = 22 rev/min = 44ฯ€ rad/min v = rฯ‰ = (6.5) โ‹… 44ฯ€ m/min = 286ฯ€ โ‰ˆ 898.5 m/min m 1km 60 min โ‹… โ‹… โ‰ˆ 53.9 km/hr v = 286ฯ€ min 1000m 1hr 103. r = 4 m; ฯ‰ = 8000 rev/min = 16000ฯ€ rad/min v = rฯ‰ = (4) โ‹…16000ฯ€ m/min = 64000ฯ€ cm/min cm 1m 1km 60 min v = 64000ฯ€ โ‹… โ‹… โ‹… min 100cm 1000m 1hr โ‰ˆ 120.6 km/hr 109. r = 3429.5 miles ฯ‰ = 1 rev/day = 2ฯ€ radians/day = v = rฯ‰ = 3429.5 โ‹… 131 Copyright ยฉ 2016 Pearson Education, Inc. ฯ€ radians/hr 12 ฯ€ โ‰ˆ 898 miles/hr 12 Chapter 2: Trigonometric Functions 115. r = 4 feet; ฯ‰ = 10 rev/min = 20ฯ€ radians/min v = rฯ‰ = 4 โ‹… 20ฯ€ ft = 80ฯ€ min 80ฯ€ ft 1 mi 60 min = โ‹… โ‹… min 5280 ft hr โ‰ˆ 2.86 mi/hr 110. r = 3033.5 miles ฯ€ ฯ‰ = 1 rev/day = 2ฯ€ radians/day = radians/hr 12 ฯ€ v = rฯ‰ = 3033.5 โ‹… โ‰ˆ 794 miles/hr 12 111. r = 2.39 ร— 105 miles ฯ‰ = 1 rev/27.3 days = 2ฯ€ radians/27.3 days ฯ€ radians/hr = 12 โ‹… 27.3 ฯ€ v = rฯ‰ = ( 2.39 ร— 105 ) โ‹… โ‰ˆ 2292 miles/hr 327.6 116. d = 26 inches; r = 13 inches; ฯ‰ = 480 rev/min = 960ฯ€ radians/min v = rฯ‰ = 13 โ‹… 960ฯ€ in = 12480ฯ€ min 12480ฯ€ in 1 ft 1 mi 60 min = โ‹… โ‹… โ‹… min 12 in 5280 ft hr โ‰ˆ 37.13 mi/hr v ฯ‰= r 80 mi/hr 12 in 5280 ft 1 hr 1 rev = โ‹… โ‹… โ‹… โ‹… 13 in 1 ft 1 mi 60 min 2ฯ€ rad โ‰ˆ 1034.26 rev/min 112. r = 9.29 ร— 107 miles ฯ‰ = 1 rev/365 days = 2ฯ€ radians/365 days ฯ€ radians/hr = 12 โ‹… 365 v = rฯ‰ = ( 9.29 ร— 107 ) โ‹… ฯ€ โ‰ˆ 66, 633 miles/hr 4380 113. r1 = 2 inches; r2 = 8 inches; ฯ‰1 = 3 rev/min = 6ฯ€ radians/min Find ฯ‰2 : v1 = v2 117. d = 8.5 feet; r = 4.25 feet; v = 9.55 mi/hr v 9.55 mi/hr = 4.25 ft r 9.55 mi 1 5280 ft 1 hr 1 rev = โ‹… โ‹… โ‹… โ‹… hr 4.25 ft mi 60 min 2ฯ€ โ‰ˆ 31.47 rev/min ฯ‰= r1ฯ‰1 = r2ฯ‰2 2(6ฯ€) = 8ฯ‰2 12ฯ€ 8 = 1.5ฯ€ radians/min 1.5ฯ€ = rev/min 2ฯ€ 3 = rev/min 4 ฯ‰2 = 118. Let t represent the time for the earth to rotate 90 miles. t 24 = 90 2ฯ€(3559) 90(24) t= โ‰ˆ 0.0966 hours โ‰ˆ 5.8 minutes 2ฯ€(3559) 114. r = 30 feet 1 rev 2ฯ€ ฯ€ = = โ‰ˆ 0.09 radian/sec ฯ‰= 70 sec 70 sec 35 ฯ€ rad 6ฯ€ ft v = rฯ‰ = 30 feet โ‹… = โ‰ˆ 2.69 feet/sec 35 sec 7 sec 132 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.1: Angles and Their Measure 123. We know that the distance between Alexandria and Syene to be s = 500 miles. Since the measure of the Sunโ€™s rays in Alexandria is 7.2ยฐ , the central angle formed at the center of Earth between Alexandria and Syene must also be 7.2ยฐ . Converting to radians, we have 119. A = ฯ€ r 2 = ฯ€ (9) 2 = 81ฯ€ 3 243 ฯ€ . Now 81ฯ€ = 4 4 we calculate the small area. A = ฯ€r2 We need ยพ of this area. = ฯ€ (3) = 9ฯ€ 7.2ยฐ = 7.2ยฐ โ‹… s = rฮธ 2 500 = r โ‹… 1 9 We need ยผ of the small area. 9ฯ€ = ฯ€ 4 4 243 9 252 ฯ€+ ฯ€= ฯ€ = 63ฯ€ So the total area is: 4 4 4 square feet. r= 25 ฯ€ ฯ€ 180ยฐ = ฯ€ 25 radian . Therefore, ฯ€ 25 โ‹… 500 = 12,500 C = 2ฯ€ r = 2ฯ€ โ‹… ฯ€ โ‰ˆ 3979 miles 12,500 ฯ€ = 25, 000 miles. The radius of Earth is approximately 3979 miles, and the circumference is approximately 25,000 miles. 120. First we find the radius of the circle. C = 2ฯ€ r 8ฯ€ = 2ฯ€ r 4=r 124. a. The area of the circle is A = ฯ€ r 2 = ฯ€ (4) 2 = 16ฯ€ . The area of the sector of the circle is 4ฯ€ . Now we calculate the area of the rectangle. A = lw A = (4)(4 + 7) A = 44 The length of the outfield fence is the arc length subtended by a central angle ฮธ = 96ยฐ with r = 200 feet. s = r โ‹… ฮธ = 200 โ‹… 96ยฐ โ‹… ฯ€ โ‰ˆ 335.10 feet 180ยฐ The outfield fence is approximately 335.1 feet long. b. The area of the warning track is the difference between the areas of two sectors with central angle ฮธ = 96ยฐ . One sector with r = 200 feet and the other with r = 190 feet. 1 1 ฮธ A = R 2ฮธ โˆ’ r 2ฮธ = ( R 2 โˆ’ r 2 ) 2 2 2 96ยฐ ฯ€ 2 = โ‹… ( 200 โˆ’ 1902 ) 2 180ยฐ 4ฯ€ = ( 3900 ) โ‰ˆ 3267.26 15 The area of the warning track is about 3267.26 square feet. So the area of the rectangle that is outside of the circle is 44 โˆ’ 4ฯ€ u 2 . 121. The earth makes one full rotation in 24 hours. The distance traveled in 24 hours is the circumference of the earth. At the equator the circumference is 2ฯ€(3960) miles. Therefore, the linear velocity a person must travel to keep up with the sun is: s 2ฯ€(3960) v= = โ‰ˆ 1037 miles/hr t 24 122. Find s, when r = 3960 miles and ฮธ = 1’. 1 degree ฯ€ radians โ‹… โ‰ˆ 0.00029 radian ฮธ = 1’โ‹… 60 min 180 degrees s = rฮธ = 3960(0.00029) โ‰ˆ 1.15 miles Thus, 1 nautical mile is approximately 1.15 statute miles. 133 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 125. r1 rotates at ฯ‰1 rev/min , so v1 = r1ฯ‰1 . r2 rotates at ฯ‰2 rev/min , so v2 = r2ฯ‰2 . Since the linear speed of the belt connecting the pulleys is the same, we have: v1 = v2 135. x 2 โˆ’ 9 cannot be zero so the domain is: { x | x โ‰  ยฑ3} 136. Shift to the left 3 units would give y = x + 3 . r1ฯ‰1 = r2ฯ‰2 Reflecting about the x-axis would give y = โˆ’ x + 3 . Shifting down 4 units would result r1ฯ‰1 r2ฯ‰2 = r2ฯ‰1 r2ฯ‰1 in y = โˆ’ x + 3 โˆ’ 4 . r1 ฯ‰2 = r2 ฯ‰1 x1 + x2 y1 + y2 , 2 2 137. 126. Answers will vary. 127. If the radius of a circle is r and the length of the arc subtended by the central angle is also r, then the measure of the angle is 1 radian. Also, 180 1 radian = degrees . = 3 + ( โˆ’4) 6 + 2 , 2 2 = 1 โˆ’1 8 , = โˆ’ ,4 2 2 2 ฯ€ 1ยฐ = 1 revolution 360 Section 2.2 ๏ƒฆ ฯ€ radians ๏ƒถ 128. Note that 1ยฐ = 1ยฐ โ‹… ๏ƒง ๏ƒท โ‰ˆ 0.017 radian ๏ƒจ 180ยฐ ๏ƒธ ๏ƒฆ 180ยฐ ๏ƒถ and 1 radian โ‹… ๏ƒง ๏ƒท โ‰ˆ 57.296ยฐ . ๏ƒจ ฯ€ radians ๏ƒธ Therefore, an angle whose measure is 1 radian is larger than an angle whose measure is 1 degree. 1. c 2 = a 2 + b 2 2. 3. True 4. equal; proportional 129. Linear speed measures the distance traveled per unit time, and angular speed measures the change in a central angle per unit time. In other words, linear speed describes distance traveled by a point located on the edge of a circle, and angular speed describes the turning rate of the circle itself. ๏ƒฆ 1 3๏ƒถ 5. ๏ƒง๏ƒง โˆ’ , ๏ƒท๏ƒท ๏ƒจ 2 2 ๏ƒธ 6. โˆ’ can be rewritten as follows: s = rฮธ = 180 8. rฮธ . 10. a 11. f ( x) = 3x + 7 0 = 3x + 7 3 x = โˆ’7 โ†’ x = โˆ’ ( 0,1) ๏ƒฆ 2 2๏ƒถ 9. ๏ƒง๏ƒง , ๏ƒท๏ƒท ๏ƒจ 2 2 ๏ƒธ 131 โ€“ 133. Answers will vary. 134. 1 2 7. b 130. This is a true statement. That is, since an angle measured in degrees can be converted to radian measure by using the formula 180 degrees = ฯ€ radians , the arc length formula ฯ€ f ( 5 ) = 3 ( 5 ) โˆ’ 7 = 15 โˆ’ 7 = 8 y x ; r r 12. False 7 3 134 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.2: Trigonometric Functions: Unit Circle Approach ๏ƒฆ 2 21 ๏ƒถ 2 21 15. P = ๏ƒง โˆ’ , ๏ƒท๏ƒž x=โˆ’ , y = 5 5 ๏ƒจ 5 5 ๏ƒธ ๏ƒฆ 3 1๏ƒถ 3 1 13. P = ๏ƒง๏ƒง , ๏ƒท๏ƒท ๏ƒž x = , y= 2 2 ๏ƒจ 2 2๏ƒธ 1 sin t = y = 2 3 cos t = x = 2 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท y 1 2 1 3 3 2 = โ‹… = tan t = = ๏ƒจ ๏ƒธ = โ‹… x ๏ƒฆ 3๏ƒถ 2 3 3 3 3 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ csc t = 21 5 2 cos t = x = โˆ’ 5 ๏ƒฆ 21 ๏ƒถ y ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 21 ๏ƒฆ 5 ๏ƒถ 21 tan t = = = ๏ƒงโˆ’ ๏ƒท= โˆ’ x ๏ƒฆ 2๏ƒถ 5 ๏ƒจ 2๏ƒธ 2 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ sin t = y = 1 1 5 5 21 5 21 = = 1โ‹… = โ‹… = 21 y ๏ƒฆ 21 ๏ƒถ 21 21 21 ๏ƒง ๏ƒท ๏ƒจ 5 ๏ƒธ 1 1 5 ๏ƒฆ 5๏ƒถ sec t = = = 1๏ƒง โˆ’ ๏ƒท = โˆ’ 2 ๏ƒจ 2๏ƒธ x ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ ๏ƒฆ 2๏ƒถ โˆ’ 2 5 x ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ cot t = = =โˆ’ โ‹… y ๏ƒฆ 21 ๏ƒถ 5 21 ๏ƒง ๏ƒท ๏ƒจ 5 ๏ƒธ 1 1 2 = = 1โ‹… = 2 y ๏ƒฆ1๏ƒถ 1 ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ csc t = 1 1 2 2 3 2 3 = = 1โ‹… = โ‹… = x ๏ƒฆ 3๏ƒถ 3 3 3 3 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท x ๏ƒง 2 ๏ƒท๏ƒธ 3 2 cot t = = ๏ƒจ = โ‹… = 3 y 2 1 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ sec t = =โˆ’ ๏ƒฆ1 3๏ƒถ 1 3 14. P = ๏ƒง , โˆ’ ๏ƒท๏ƒž x= , y=โˆ’ ๏ƒจ2 2 ๏ƒธ 2 2 sin t = y = โˆ’ 3 2 2 21 โ‹… 21 21 =โˆ’ 2 21 21 ๏ƒฆ 1 2 6๏ƒถ 1 2 6 16. P = ๏ƒง โˆ’ , ๏ƒท๏ƒž x=โˆ’ , y = 5 5 ๏ƒจ 5 5 ๏ƒธ 1 2 ๏ƒฆ 3๏ƒถ โˆ’ y ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 3 2 =โˆ’ โ‹… =โˆ’ 3 tan t = = x 2 1 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ cos t = x = 2 6 5 1 cos t = x = โˆ’ 5 ๏ƒฆ2 6๏ƒถ ๏ƒท 2 6 y ๏ƒง ๏ƒฆ 5๏ƒถ tan t = = ๏ƒจ 5 ๏ƒธ = ๏ƒงโˆ’ ๏ƒท= โˆ’2 6 x 5 ๏ƒจ 1๏ƒธ ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ sin t = y = 1 1 2 2 3 2 3 = =โˆ’ =โˆ’ โ‹… =โˆ’ 3 y ๏ƒฆ 3 3 3 3๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 1 1 2 sec t = = = 1โ‹… = 2 1 x ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท x 1 2 1 3 3 cot t = = ๏ƒจ 2 ๏ƒธ = โˆ’ โ‹… =โˆ’ โ‹… =โˆ’ y ๏ƒฆ 2 3 ๏ƒถ 3 3 3 3 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ csc t = csc t = 1 1 5 5 6 5 6 = = 1โ‹… = โ‹… = y ๏ƒฆ2 6๏ƒถ 12 2 6 2 6 6 ๏ƒง ๏ƒท ๏ƒจ 5 ๏ƒธ 135 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 1 1 ๏ƒฆ 5๏ƒถ = = 1๏ƒง โˆ’ ๏ƒท = โˆ’5 x ๏ƒฆ 1๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท 1๏ƒฆ 5 ๏ƒถ x cot t = = ๏ƒจ 5 ๏ƒธ = โˆ’ ๏ƒง 5 ๏ƒจ 2 6 ๏ƒท๏ƒธ y ๏ƒฆ2 6๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 5 ๏ƒธ sec t = =โˆ’ 1 2 6 โ‹… 6 6 =โˆ’ csc t = 1 1 2 2 2 = = 1โ‹… = โ‹… = 2 x ๏ƒฆ 2๏ƒถ 2 2 2 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท x ๏ƒง 2 ๏ƒท๏ƒธ =1 cot t = = ๏ƒจ y ๏ƒฆ 2๏ƒถ ๏ƒง๏ƒง 2 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ sec t = 6 12 ๏ƒฆ 2 2๏ƒถ 2 2 17. P = ๏ƒง โˆ’ , , y= ๏ƒท๏ƒž x=โˆ’ 2 2 ๏ƒจ 2 2 ๏ƒธ sin t = 2 2 cos t = x = โˆ’ ๏ƒฆ 2 2 1๏ƒถ 2 2 1 19. P = ๏ƒง ,โˆ’ ๏ƒท๏ƒž x= , y=โˆ’ 3๏ƒธ 3 3 ๏ƒจ 3 1 sin t = y = โˆ’ 3 2 2 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท y tan t = = ๏ƒจ 2 ๏ƒธ = โˆ’1 x ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ csc t = 1 1 2 2 2 = = 1โ‹… = โ‹… = 2 y ๏ƒฆ 2๏ƒถ 2 2 2 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ cos t = x = 2 2 3 ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท y 1 3 tan t = = ๏ƒจ 3 ๏ƒธ = โˆ’ โ‹… x ๏ƒฆ2 2๏ƒถ 3 2 2 ๏ƒง ๏ƒท ๏ƒจ 3 ๏ƒธ 1 1 2 2 2 = = 1โ‹… = โ‹… = 2 y ๏ƒฆ 2๏ƒถ 2 2 2 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ =โˆ’ 1 1 2 2 ๏ƒฆ 2 ๏ƒถ sec t = = = 1๏ƒง โˆ’ =โˆ’ โ‹… =โˆ’ 2 ๏ƒท x ๏ƒฆ 2๏ƒธ 2 2 2๏ƒถ ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ csc t = ๏ƒฆ 2๏ƒถ โˆ’ x ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ cot t = = = โˆ’1 y ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 1 2 2 โ‹… 2 2 =โˆ’ 2 4 1 1 ๏ƒฆ 3๏ƒถ = = 1๏ƒง โˆ’ ๏ƒท = โˆ’3 y ๏ƒฆ 1๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ 1 1 3 2 3 2 ๏ƒฆ 3 ๏ƒถ = = 1๏ƒง โ‹… = ๏ƒท= x ๏ƒฆ2 2๏ƒถ 4 ๏ƒจ2 2๏ƒธ 2 2 2 ๏ƒง ๏ƒท ๏ƒจ 3 ๏ƒธ ๏ƒฆ2 2๏ƒถ ๏ƒท 2 2 x ๏ƒง ๏ƒฆ 3๏ƒถ cot t = = ๏ƒจ 3 ๏ƒธ = ๏ƒง โˆ’ ๏ƒท = โˆ’2 2 y 3 ๏ƒจ 1๏ƒธ ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ sec t = ๏ƒฆ 2 2๏ƒถ 2 2 , , y= 18. P = ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒž x = 2 2 ๏ƒจ 2 2 ๏ƒธ 2 2 2 cos t = x = 2 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท y ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ tan t = = =1 x ๏ƒฆ 2๏ƒถ ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ sin t = y = ๏ƒฆ 5 2๏ƒถ 5 2 20. P = ๏ƒง๏ƒง โˆ’ , โˆ’ ๏ƒท๏ƒท ๏ƒž x = โˆ’ , y=โˆ’ 3๏ƒธ 3 3 ๏ƒจ 3 2 sin t = y = โˆ’ 3 cos t = x = โˆ’ 136 Copyright ยฉ 2016 Pearson Education, Inc. 5 3 Section 2.2: Trigonometric Functions: Unit Circle Approach ๏ƒฆ 11ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ 8ฯ€ ๏ƒถ 25. csc ๏ƒง ๏ƒท = csc ๏ƒง + ๏ƒท 2 2 ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ 2 ๏ƒฆ 3ฯ€ ๏ƒถ = csc ๏ƒง + 4ฯ€ ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท y 2๏ƒฆ 3 ๏ƒถ 3๏ƒธ tan t = = ๏ƒจ = โˆ’ ๏ƒงโˆ’ ๏ƒท x ๏ƒฆ 3๏ƒจ 5๏ƒธ 5๏ƒถ ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ = 2 = ๏ƒฆ 3ฯ€ ๏ƒถ = csc ๏ƒง + 2 โ‹… 2ฯ€ ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 3ฯ€ ๏ƒถ = csc ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ = โˆ’1 2 5 5 5 1 1 3 ๏ƒฆ 3๏ƒถ = 1๏ƒง โˆ’ ๏ƒท = โˆ’ csc t = = y ๏ƒฆ 2๏ƒถ 2๏ƒธ 2 ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ sec t = 5 5 โ‹… 1 1 ๏ƒฆ 3 ๏ƒถ = = 1๏ƒง โˆ’ ๏ƒท x ๏ƒฆ ๏ƒถ 5๏ƒธ 5 ๏ƒจ โˆ’ ๏ƒง๏ƒง 3 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ =โˆ’ 3 โ‹… 5 =โˆ’ 26. sec ( 8ฯ€ ) = sec ( 0 + 8ฯ€ ) = sec ( 0 + 4 โ‹… 2ฯ€ ) = sec ( 0 ) = 1 ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ 27. cos ๏ƒง โˆ’ ๏ƒท = cos ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ ๏ƒฆ ฯ€ 4ฯ€ ๏ƒถ = cos ๏ƒง โˆ’ ๏ƒท ๏ƒจ2 2 ๏ƒธ 3 5 5 5 5 ๏ƒฆ 5๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒง 3 ๏ƒท๏ƒธ x 5 ๏ƒฆ 3๏ƒถ 5 cot t = = ๏ƒจ =โˆ’ ๏ƒงโˆ’ ๏ƒท = y 3 ๏ƒจ 2๏ƒธ 2 ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ ๏ƒฆฯ€ ๏ƒถ = cos ๏ƒง + (โˆ’1) โ‹… 2ฯ€ ๏ƒท ๏ƒจ2 ๏ƒธ ๏ƒฆฯ€๏ƒถ = cos ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ =0 ๏ƒฆ 11ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ 8ฯ€ ๏ƒถ 21. sin ๏ƒง ๏ƒท = sin ๏ƒง + ๏ƒท 2 2 ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ 2 ๏ƒฆ 3ฯ€ ๏ƒถ = sin ๏ƒง + 4ฯ€ ๏ƒท ๏ƒจ 2 ๏ƒธ 28. sin ( โˆ’3ฯ€ ) = โˆ’ sin ( 3ฯ€ ) = โˆ’ sin ( ฯ€ + 2ฯ€ ) = โˆ’ sin ( ฯ€ ) = 0 ๏ƒฆ 3ฯ€ ๏ƒถ = sin ๏ƒง + 2 โ‹… 2ฯ€ ๏ƒท 2 ๏ƒจ ๏ƒธ ๏ƒฆ 3ฯ€ ๏ƒถ = sin ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ = โˆ’1 29. sec ( โˆ’ฯ€ ) = sec ( ฯ€ ) = โˆ’1 30. tan ( โˆ’3ฯ€ ) = โˆ’ tan(3ฯ€) = โˆ’ tan ( 0 + 3ฯ€ ) = โˆ’ tan ( 0 ) = 0 22. cos ( 7ฯ€ ) = cos ( ฯ€ + 6ฯ€ ) = cos ( ฯ€ + 3 โ‹… 2ฯ€ ) = cos ( ฯ€ ) = โˆ’1 23. tan ( 6ฯ€ ) = tan(0 + 6ฯ€) = tan ( 0 ) = 0 ๏ƒฆ 7ฯ€ ๏ƒถ ๏ƒฆ ฯ€ 6ฯ€ ๏ƒถ 24. cot ๏ƒง ๏ƒท = cot ๏ƒง + ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒจ2 2 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€๏ƒถ = cot ๏ƒง + 3ฯ€ ๏ƒท = cot ๏ƒง ๏ƒท = 0 2 ๏ƒจ ๏ƒธ ๏ƒจ2๏ƒธ 31. sin 45ยบ + cos 60ยบ = 2 1 1+ 2 + = 2 2 2 32. sin 30ยบ โˆ’ cos 45ยบ = 1 2 1โˆ’ 2 โˆ’ = 2 2 2 33. sin 90ยบ + tan 45ยบ = 1 + 1 = 2 34. cos180ยบ โˆ’ sin180ยบ = โˆ’1 โˆ’ 0 = โˆ’1 35. sin 45ยบ cos 45ยบ = 137 Copyright ยฉ 2016 Pearson Education, Inc. 2 2 2 1 โ‹… = = 2 2 4 2 Chapter 2: Trigonometric Functions 36. tan 45ยบ cos 30ยบ = 1 โ‹… 2ฯ€ 1 ๏ƒฆ 2๏ƒถ = = 1๏ƒง โˆ’ ๏ƒท = โˆ’2 3 ๏ƒฆ 1๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2๏ƒธ ๏ƒฆ 1๏ƒถ โˆ’ 2ฯ€ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 1 2 1 3 3 cot = =โˆ’ โ‹… =โˆ’ โ‹… =โˆ’ 3 ๏ƒฆ 3๏ƒถ 2 3 3 3 3 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 3 3 = 2 2 cos 37. csc 45ยบ tan 60ยบ = 2 โ‹… 3 = 6 38. sec 30ยบ cot 45ยบ = 2 3 2 3 โ‹…1 = 3 3 39. 4sin 90ยบ โˆ’ 3 tan180ยบ = 4 โ‹…1 โˆ’ 3 โ‹… 0 = 4 48. The point on the unit circle that corresponds to ๏ƒฆ 3 1๏ƒถ 5ฯ€ = 150ยบ is ๏ƒง โˆ’ ฮธ= , ๏ƒท. ๏ƒจ 2 2๏ƒธ 6 5ฯ€ 1 sin = 6 2 40. 5cos 90ยบ โˆ’ 8sin 270ยบ = 5 โ‹… 0 โˆ’ 8(โˆ’1) = 8 41. 2sin ฯ€ ฯ€ 3 3 โˆ’ 3 tan = 2 โ‹… โˆ’ 3โ‹… = 3โˆ’ 3 =0 3 6 2 3 42. 2sin ฯ€ ฯ€ 2 + 3 tan = 2 โ‹… + 3 โ‹…1 = 2 + 3 4 4 2 43. 2sec ฯ€ ฯ€ 3 4 3 + 4 cot = 2 โ‹… 2 + 4 โ‹… =2 2+ 4 3 3 3 44. 3csc ฯ€ ฯ€ 2 3 + cot = 3 โ‹… +1 = 2 3 +1 3 4 3 45. csc 5ฯ€ 3 =โˆ’ 6 2 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท 5ฯ€ 1 ๏ƒฆ 2 ๏ƒถ 3 3 tan = ๏ƒจ 2 ๏ƒธ = โ‹…๏ƒง โˆ’ =โˆ’ ๏ƒทโ‹… 6 ๏ƒฆ 3 3๏ƒธ 3 3๏ƒถ 2 ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 5ฯ€ 1 2 csc = = 1โ‹… = 2 1 6 ๏ƒฆ ๏ƒถ 1 ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ cos ฯ€ ฯ€ + cot = 1 + 0 = 1 2 2 46. sec ฯ€ โˆ’ csc sec ฯ€ = โˆ’1 โˆ’ 1 = โˆ’ 2 2 ๏ƒฆ 3๏ƒถ โˆ’ ๏ƒง 5ฯ€ ๏ƒจ 2 ๏ƒท๏ƒธ 3 2 cot = =โˆ’ โ‹… =โˆ’ 3 6 2 1 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ 47. The point on the unit circle that corresponds to ๏ƒฆ 1 3๏ƒถ 2ฯ€ = 120ยบ is ๏ƒง โˆ’ , ฮธ= ๏ƒท. 3 ๏ƒจ 2 2 ๏ƒธ 49. The point on the unit circle that corresponds to ๏ƒฆ 7ฯ€ 3 1๏ƒถ ฮธ = 210ยบ = is ๏ƒง โˆ’ ,โˆ’ ๏ƒท. 6 ๏ƒจ 2 2๏ƒธ 1 sin 210ยบ = โˆ’ 2 3 cos 210ยบ = โˆ’ 2 ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท 1 ๏ƒฆ 2 ๏ƒถ 3 3 2๏ƒธ = โˆ’ โ‹…๏ƒง โˆ’ = tan 210ยบ = ๏ƒจ ๏ƒทโ‹… 2 3 ๏ƒฆ ๏ƒถ 3 3 3 ๏ƒจ ๏ƒธ ๏ƒง๏ƒง โˆ’ 2 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ 1 ๏ƒฆ 2๏ƒถ csc 210ยบ = = 1โ‹… ๏ƒง โˆ’ ๏ƒท = โˆ’ 2 ๏ƒฆ 1๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท 2 ๏ƒจ ๏ƒธ 2ฯ€ 3 = 3 2 2ฯ€ 1 cos =โˆ’ 3 2 sin ๏ƒฆ 3๏ƒถ 2ฯ€ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 3 ๏ƒฆ 2๏ƒถ tan = = โ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ 3 3 ๏ƒฆ 1๏ƒถ 2 ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2๏ƒธ csc ๏ƒฆ 2 ๏ƒถ 3 5ฯ€ 1 2 3 = = 1โ‹… ๏ƒง โˆ’ =โˆ’ ๏ƒทโ‹… 6 ๏ƒฆ 3 3๏ƒธ 3 3๏ƒถ ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 2ฯ€ 1 2 3 2 3 = = โ‹… = 3 ๏ƒฆ 3๏ƒถ 3 3 3 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 138 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.2: Trigonometric Functions: Unit Circle Approach ๏ƒฆ 2 ๏ƒถ 3 2 3 = 1โ‹… ๏ƒง โˆ’ =โˆ’ ๏ƒทโ‹… 3 ๏ƒฆ 3๏ƒธ 3 3๏ƒถ ๏ƒจ ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง๏ƒง โˆ’ ๏ƒท 2 ๏ƒท๏ƒธ 3 ๏ƒฆ 2๏ƒถ ๏ƒจ cot 210ยบ = =โˆ’ โ‹…๏ƒง โˆ’ ๏ƒท = 3 2 ๏ƒจ 1๏ƒธ ๏ƒฆ 1๏ƒถ โˆ’ ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ sec 210ยบ = 1 csc sec 3ฯ€ 1 2 2 ๏ƒฆ 2 ๏ƒถ 2 = = 1โ‹… ๏ƒง โˆ’ =โˆ’ =โˆ’ 2 ๏ƒทโ‹… 4 ๏ƒฆ 2 ๏ƒถ 2 2 ๏ƒจ ๏ƒธ 2 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 2๏ƒถ โˆ’ 3ฯ€ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 2 2 = =โˆ’ โ‹… = โˆ’1 cot 4 2 ๏ƒฆ 2๏ƒถ 2 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 50. The point on the unit circle that corresponds to ๏ƒฆ 1 4ฯ€ 3๏ƒถ ฮธ = 240ยบ = is ๏ƒง โˆ’ , โˆ’ ๏ƒท. 3 ๏ƒจ 2 2 ๏ƒธ 52. The point on the unit circle that corresponds to ๏ƒฆ 2 2๏ƒถ 11ฯ€ ฮธ= , = 495ยบ is ๏ƒง โˆ’ ๏ƒท. ๏ƒจ 2 2 ๏ƒธ 4 3 2 1 cos 240ยบ = โˆ’ 2 ๏ƒฆ 3๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ = โˆ’ 3 โ‹…๏ƒฆ โˆ’ 2 ๏ƒถ = 3 tan 240ยบ = ๏ƒง ๏ƒท 1 2 ๏ƒจ 1๏ƒธ ๏ƒฆ ๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2๏ƒธ sin 240ยบ = โˆ’ 11ฯ€ 2 = 4 2 11ฯ€ 2 cos =โˆ’ 4 2 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท 11ฯ€ 2 ๏ƒฆ 2 ๏ƒถ = ๏ƒจ 2 ๏ƒธ = โ‹…๏ƒง โˆ’ tan ๏ƒท = โˆ’1 4 2 ๏ƒฆ ๏ƒถ 2๏ƒธ ๏ƒจ 2 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ sin ๏ƒฆ 2 ๏ƒถ 3 2 3 = 1โ‹… ๏ƒง โˆ’ =โˆ’ ๏ƒทโ‹… 3 ๏ƒฆ 3๏ƒธ 3 3๏ƒถ ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ 2๏ƒถ sec 240ยบ = = 1โ‹… ๏ƒง โˆ’ ๏ƒท = โˆ’ 2 1 ๏ƒฆ ๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2๏ƒธ ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท 1 ๏ƒฆ 2 ๏ƒถ 3 3 cot 240ยบ = ๏ƒจ 2 ๏ƒธ = โˆ’ โ‹… ๏ƒง โˆ’ = ๏ƒทโ‹… 2 ๏ƒจ 3 ๏ƒฆ 3๏ƒธ 3 3๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ csc 240ยบ = 3ฯ€ 1 2 2 2 2 = = 1โ‹… โ‹… = = 2 4 ๏ƒฆ 2๏ƒถ 2 2 2 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 1 csc sec 11ฯ€ 1 2 2 2 2 = = 1โ‹… โ‹… = = 2 4 2 ๏ƒฆ 2๏ƒถ 2 2 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 11ฯ€ 1 2 2 ๏ƒฆ 2 ๏ƒถ 2 = = 1โ‹… ๏ƒง โˆ’ =โˆ’ =โˆ’ 2 ๏ƒทโ‹… 4 2 ๏ƒฆ ๏ƒถ 2 2 2 ๏ƒจ ๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 2๏ƒถ โˆ’ 11ฯ€ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 2 2 = =โˆ’ โ‹… = โˆ’1 cot 4 2 ๏ƒฆ 2๏ƒถ 2 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 51. The point on the unit circle that corresponds to ๏ƒฆ 2 2๏ƒถ 3ฯ€ ฮธ= , = 135ยบ is ๏ƒง โˆ’ ๏ƒท. ๏ƒจ 2 2 ๏ƒธ 4 3ฯ€ 2 = 4 2 3ฯ€ 2 cos =โˆ’ 4 2 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท 3ฯ€ 2 ๏ƒฆ 2 ๏ƒถ = ๏ƒจ 2 ๏ƒธ = โ‹…๏ƒง โˆ’ tan ๏ƒท = โˆ’1 4 ๏ƒฆ 2 ๏ƒจ 2๏ƒธ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ sin 53. The point on the unit circle that corresponds to ๏ƒฆ 1 3๏ƒถ 8ฯ€ ฮธ= = 480ยบ is ๏ƒง โˆ’ , ๏ƒท. 3 ๏ƒจ 2 2 ๏ƒธ 8ฯ€ 3 = 3 2 8ฯ€ 1 cos =โˆ’ 3 2 sin 139 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 55. The point on the unit circle that corresponds to ๏ƒฆ 2 2๏ƒถ 9ฯ€ , ฮธ = 405ยบ = is ๏ƒง ๏ƒท. ๏ƒจ 2 2 ๏ƒธ 4 ๏ƒฆ 3๏ƒถ 8ฯ€ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 3 ๏ƒฆ 2๏ƒถ = = โ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ 3 tan 3 ๏ƒฆ 1๏ƒถ 2 ๏ƒจ 1๏ƒธ โˆ’ ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ 2 2 2 cos 405ยบ = 2 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท 2 2 tan 405ยบ = ๏ƒจ 2 ๏ƒธ = โ‹… =1 2 ๏ƒฆ 2๏ƒถ 2 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ sin 405ยบ = 8ฯ€ 1 2 3 2 3 csc = = 1โ‹… โ‹… = 3 ๏ƒฆ 3๏ƒถ 3 3 3 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 8ฯ€ 1 ๏ƒฆ 2๏ƒถ sec = = 1 โ‹… ๏ƒง โˆ’ ๏ƒท = โˆ’2 3 ๏ƒฆ 1๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2๏ƒธ ๏ƒฆ 1๏ƒถ โˆ’ 8ฯ€ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 1 2 3 3 = =โˆ’ โ‹… โ‹… =โˆ’ cot 3 ๏ƒฆ 3๏ƒถ 2 3 3 3 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ csc 405ยบ = sec 405ยบ = 54. The point on the unit circle that corresponds to ๏ƒฆ 3 1๏ƒถ 13ฯ€ = 390ยบ is ๏ƒง ฮธ= , ๏ƒท. ๏ƒจ 2 2๏ƒธ 6 13ฯ€ 1 sin = 6 2 1 2 2 = 1โ‹… โ‹… = 2 ๏ƒฆ 2๏ƒถ 2 2 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ = 1โ‹… 2 2 โ‹… 2 2 = 2 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท cot 405ยบ = ๏ƒจ 2 ๏ƒธ = 1 ๏ƒฆ 2๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 13ฯ€ 3 = 6 2 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท 13ฯ€ 1 2 3 3 2 = ๏ƒจ ๏ƒธ = โ‹… โ‹… = tan 6 3 ๏ƒฆ 3๏ƒถ 2 3 3 ๏ƒง๏ƒง 2 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ 13ฯ€ 1 2 csc = = 1โ‹… = 2 6 1 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท 2 ๏ƒจ ๏ƒธ cos 56. The point on the unit circle that corresponds to ๏ƒฆ 3 1๏ƒถ 13ฯ€ , ๏ƒท. ฮธ = 390ยบ = is ๏ƒง 6 ๏ƒจ 2 2๏ƒธ 1 sin 390ยบ = 2 3 cos 390ยบ = 2 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท 1 2 3 3 tan 390ยบ = ๏ƒจ 2 ๏ƒธ = โ‹… โ‹… = 3 ๏ƒฆ 3๏ƒถ 2 3 3 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 1 2 csc 390ยบ = = 1โ‹… = 2 1 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ 13ฯ€ 1 2 3 2 3 = = 1โ‹… โ‹… = 6 3 ๏ƒฆ 3๏ƒถ 3 3 ๏ƒง๏ƒง 2 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท 13ฯ€ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 3 2 cot = = โ‹… = 3 1 6 2 1 ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ sec sec 390ยบ = 1 ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ = 1โ‹… 2 3 โ‹… 3 3 = ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท 3 2 cot 390ยบ = ๏ƒจ 2 ๏ƒธ = โ‹… = 3 2 1 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ 140 Copyright ยฉ 2016 Pearson Education, Inc. 2 3 3 Section 2.2: Trigonometric Functions: Unit Circle Approach 57. The point on the unit circle that corresponds to ๏ƒฆ 3 1๏ƒถ ฯ€ ฮธ = โˆ’ = โˆ’ 30ยบ is ๏ƒง , โˆ’ ๏ƒท . ๏ƒจ 2 2๏ƒธ 6 1 ๏ƒฆ ฯ€๏ƒถ sin ๏ƒง โˆ’ ๏ƒท = โˆ’ 2 ๏ƒจ 6๏ƒธ 59. The point on the unit circle that corresponds to ๏ƒฆ 2 2๏ƒถ 3ฯ€ ฮธ = โˆ’135ยบ = โˆ’ is ๏ƒง โˆ’ ,โˆ’ ๏ƒท. ๏ƒจ 2 2 ๏ƒธ 4 2 2 2 cos ( โˆ’135ยบ ) = โˆ’ 2 ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท 2 ๏ƒฆ 2 ๏ƒถ tan ( โˆ’135ยบ ) = ๏ƒจ 2 ๏ƒธ = โˆ’ โ‹…๏ƒง โˆ’ ๏ƒท =1 2 ๏ƒจ ๏ƒฆ 2๏ƒธ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ sin ( โˆ’135ยบ ) = โˆ’ 3 ๏ƒฆ ฯ€๏ƒถ cos ๏ƒง โˆ’ ๏ƒท = 6 2 ๏ƒจ ๏ƒธ ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท 1 2 3 3 2๏ƒธ ๏ƒฆ ฯ€๏ƒถ tan ๏ƒง โˆ’ ๏ƒท = ๏ƒจ =โˆ’ โ‹… โ‹… =โˆ’ 2 3 3 3 ๏ƒจ 6๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ ฯ€๏ƒถ โˆ’2 csc ๏ƒง โˆ’ ๏ƒท = ๏ƒจ 6 ๏ƒธ ๏ƒฆโˆ’ 1 ๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ 1 2 3 2 3 ๏ƒฆ ฯ€๏ƒถ = โ‹… = sec ๏ƒง โˆ’ ๏ƒท = 6 3 ๏ƒฆ ๏ƒถ 3 3 ๏ƒจ ๏ƒธ 3 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท ๏ƒฆ 3๏ƒถ ๏ƒฆ ฯ€๏ƒถ ๏ƒฆ 2๏ƒถ cot ๏ƒง โˆ’ ๏ƒท = ๏ƒจ 2 ๏ƒธ = ๏ƒง๏ƒง ๏ƒทโ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ 3 ๏ƒจ 6 ๏ƒธ ๏ƒฆ โˆ’ 1 ๏ƒถ ๏ƒจ 2 ๏ƒท๏ƒธ ๏ƒจ 1 ๏ƒธ ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ csc ( โˆ’135ยบ ) = 1 ๏ƒฆ 2 ๏ƒถ 2 = 1โ‹… ๏ƒง โˆ’ =โˆ’ 2 ๏ƒทโ‹… ๏ƒฆ ๏ƒถ 2๏ƒธ 2 2 ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ sec ( โˆ’135ยบ ) = ๏ƒฆ 2 ๏ƒถ 2 = 1โ‹… ๏ƒง โˆ’ = 2 ๏ƒทโ‹… ๏ƒฆ 2๏ƒธ 2 2๏ƒถ ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท 2 ๏ƒจ ๏ƒธ =1 cot ( โˆ’135ยบ ) = ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 58. The point on the unit circle that corresponds to ๏ƒฆ1 ฯ€ 3๏ƒถ ฮธ = โˆ’ = โˆ’ 60ยบ is ๏ƒง , โˆ’ ๏ƒท. 3 ๏ƒจ2 2 ๏ƒธ 60. The point on the unit circle that corresponds to ๏ƒฆ 1 3๏ƒถ 4ฯ€ is ๏ƒง โˆ’ , ฮธ = โˆ’ 240ยบ = โˆ’ ๏ƒท. 3 ๏ƒจ 2 2 ๏ƒธ 3 ๏ƒฆ ฯ€๏ƒถ sin ๏ƒง โˆ’ ๏ƒท = โˆ’ 2 ๏ƒจ 3๏ƒธ ๏ƒฆ ฯ€๏ƒถ 1 cos ๏ƒง โˆ’ ๏ƒท = ๏ƒจ 3๏ƒธ 2 ๏ƒฆ 3๏ƒถ โˆ’ ๏ƒง ๏ƒท 3 2 ๏ƒฆ ฯ€๏ƒถ โ‹… =โˆ’ 3 tan ๏ƒง โˆ’ ๏ƒท = ๏ƒจ 2 ๏ƒธ = โˆ’ 1 3 2 1 ๏ƒฆ ๏ƒถ ๏ƒจ ๏ƒธ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ 3 2 1 cos ( โˆ’ 240ยบ ) = โˆ’ 2 ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท 3 ๏ƒฆ 2๏ƒถ โ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ 3 tan ( โˆ’ 240ยบ ) = ๏ƒจ 2 ๏ƒธ = 2 ๏ƒจ 1๏ƒธ ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2๏ƒธ 1 ๏ƒฆ 2 ๏ƒถ 3 2 3 ๏ƒฆ ฯ€๏ƒถ csc ๏ƒง โˆ’ ๏ƒท = = 1โ‹… ๏ƒง โˆ’ =โˆ’ ๏ƒทโ‹… 3 3๏ƒธ 3 ๏ƒจ 3๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 1 2 ๏ƒฆ ฯ€๏ƒถ = 1โ‹… = 2 sec ๏ƒง โˆ’ ๏ƒท = 1 ๏ƒจ 3๏ƒธ ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ฯ€ 1 ๏ƒฆ 2 ๏ƒถ 3 3 2 ๏ƒฆ ๏ƒถ =โˆ’ cot ๏ƒง โˆ’ ๏ƒท = ๏ƒจ ๏ƒธ = โ‹… ๏ƒง โˆ’ ๏ƒทโ‹… 3 3๏ƒธ 3 ๏ƒจ 3๏ƒธ ๏ƒฆ 3๏ƒถ 2 ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ 2 ๏ƒถ 3 2 3 = 1โ‹… ๏ƒง = ๏ƒทโ‹… 3 ๏ƒฆ 3๏ƒถ ๏ƒจ 3๏ƒธ 3 ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ 2๏ƒถ = 1 โ‹… ๏ƒง โˆ’ ๏ƒท = โˆ’2 sec ( โˆ’ 240ยบ ) = ๏ƒฆ 1๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2๏ƒธ ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท 1 ๏ƒฆ 2 ๏ƒถ 3 3 =โˆ’ cot ( โˆ’240ยบ ) = ๏ƒจ 2 ๏ƒธ = โˆ’ โ‹… ๏ƒง ๏ƒทโ‹… 2 ๏ƒจ 3๏ƒธ 3 3 ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ sin ( โˆ’240ยบ ) = csc ( โˆ’240ยบ ) = 141 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 61. The point on the unit circle that corresponds to 5ฯ€ ฮธ= = 450ยบ is ( 0, 1) . 2 5ฯ€ 5ฯ€ 1 =1 = =1 sin csc 2 2 1 5ฯ€ 5ฯ€ 1 sec =0 = = undefined cos 2 0 2 5ฯ€ 1 5ฯ€ 0 tan = = undefined cot = =0 2 0 2 1 64. The point on the unit circle that corresponds to ๏ƒฆ 3 1๏ƒถ 13ฯ€ ฮธ =โˆ’ = โˆ’390ยฐ is ๏ƒง๏ƒง , โˆ’ ๏ƒท๏ƒท . 6 2๏ƒธ ๏ƒจ 2 1 3 ๏ƒฆ 13ฯ€ ๏ƒถ ๏ƒฆ 13ฯ€ ๏ƒถ sin ๏ƒง โˆ’ cos ๏ƒง โˆ’ ๏ƒท=โˆ’ ๏ƒท= 2 ๏ƒจ 6 ๏ƒธ ๏ƒจ 6 ๏ƒธ 2 ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท 1 2 3 3 ๏ƒฆ 13ฯ€ ๏ƒถ ๏ƒจ 2 ๏ƒธ =โˆ’ โ‹… โ‹… =โˆ’ tan ๏ƒง โˆ’ ๏ƒท= 2 3 3 3 ๏ƒจ 6 ๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ 13ฯ€ ๏ƒถ csc ๏ƒง โˆ’ ๏ƒท= 1 โˆ’ 2 ๏ƒจ 6 ๏ƒธ ๏ƒฆโˆ’ ๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ 62. The point on the unit circle that corresponds to ฮธ = 5ฯ€ = 900ยบ is ( โˆ’1, 0 ) . sin 5ฯ€ = 0 cos 5ฯ€ = โˆ’1 tan 5ฯ€ = 0 =0 โˆ’1 1 = undefined 0 1 = โˆ’1 sec 5ฯ€ = โˆ’1 โˆ’1 cot 5ฯ€ = = undefined 0 csc 5ฯ€ = 1 2 3 2 3 ๏ƒฆ 13ฯ€ ๏ƒถ sec ๏ƒง โˆ’ = โ‹… = ๏ƒท= 3 3 3 ๏ƒจ 6 ๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท ๏ƒฆ 13ฯ€ ๏ƒถ ๏ƒจ 2 ๏ƒธ ๏ƒฆ 3 ๏ƒถ ๏ƒฆ 2 ๏ƒถ cot ๏ƒง โˆ’ =๏ƒง ๏ƒทโ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ 3 ๏ƒท= ๏ƒจ 6 ๏ƒธ ๏ƒฆ โˆ’ 1 ๏ƒถ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ ๏ƒจ 1 ๏ƒธ ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ 63. The point on the unit circle that corresponds to ๏ƒฆ 1 3๏ƒถ 14ฯ€ ฮธ =โˆ’ = โˆ’840ยฐ is ๏ƒง๏ƒง โˆ’ , โˆ’ ๏ƒท. 2 ๏ƒท๏ƒธ 3 ๏ƒจ 2 65. Set the calculator to degree mode: sin 28ยบ โ‰ˆ 0.47 . 3 1 ๏ƒฆ 14ฯ€ ๏ƒถ ๏ƒฆ 14ฯ€ ๏ƒถ sin ๏ƒง โˆ’ cos ๏ƒง โˆ’ ๏ƒท=โˆ’ ๏ƒท=โˆ’ 2 2 ๏ƒจ 3 ๏ƒธ ๏ƒจ 3 ๏ƒธ ๏ƒฆ 3๏ƒถ โˆ’ ๏ƒง ๏ƒท 3 ๏ƒฆ 2๏ƒถ ๏ƒฆ 14ฯ€ ๏ƒถ ๏ƒจ 2 ๏ƒธ tan ๏ƒง โˆ’ = =โˆ’ โ‹…๏ƒง โˆ’ ๏ƒท = 3 ๏ƒท 2 ๏ƒจ 1๏ƒธ ๏ƒจ 3 ๏ƒธ ๏ƒฆโˆ’ 1 ๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ 66. Set the calculator to degree mode: cos14ยบ โ‰ˆ 0.97 . 1 ๏ƒฆ 2 ๏ƒถ 3 2 3 ๏ƒฆ 14ฯ€ ๏ƒถ csc ๏ƒง โˆ’ = 1โ‹… ๏ƒง โˆ’ =โˆ’ ๏ƒทโ‹… ๏ƒท= 3 ๏ƒถ 3 3 ๏ƒจ 3 ๏ƒธ ๏ƒฆ 3 ๏ƒจ ๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 1 ๏ƒฆ 14ฯ€ ๏ƒถ ๏ƒฆ 2๏ƒถ = 1โ‹… ๏ƒง โˆ’ ๏ƒท = โˆ’ 2 sec ๏ƒง โˆ’ ๏ƒท= ๏ƒจ 3 ๏ƒธ ๏ƒฆโˆ’ 1 ๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒง ๏ƒท 2 ๏ƒจ ๏ƒธ 1 ๏ƒฆ ๏ƒถ ๏ƒงโˆ’ ๏ƒท 1 ๏ƒฆ 2 ๏ƒถ 3 3 ๏ƒฆ 14ฯ€ ๏ƒถ ๏ƒจ 2 ๏ƒธ cot ๏ƒง โˆ’ = โˆ’ โ‹…๏ƒง โˆ’ = ๏ƒทโ‹… ๏ƒท 2 ๏ƒจ 3 3๏ƒธ 3 ๏ƒจ 3 ๏ƒธ๏ƒฆ 3๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 67. Set the calculator to degree mode: 1 sec 21ยบ = โ‰ˆ 1.07 . cos 21ยฐ 142 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.2: Trigonometric Functions: Unit Circle Approach 74. Set the calculator to radian mode: tan 1 โ‰ˆ 1.56 . 68. Set the calculator to degree mode: 1 cot 70ยบ = โ‰ˆ 0.36 . tan 70ยบ 75. Set the calculator to degree mode: sin1ยบ โ‰ˆ 0.02 . 69. Set the calculator to radian mode: tan ฯ€ โ‰ˆ 0.32 . 10 76. Set the calculator to degree mode: tan1ยบ โ‰ˆ 0.02 . 70. Set the calculator to radian mode: sin ฯ€ โ‰ˆ 0.38 . 8 77. For the point (โˆ’3, 4) , x = โˆ’3 , y = 4 , r = x 2 + y 2 = 9 + 16 = 25 = 5 sin ฮธ = 4 5 csc ฮธ = 3 5 4 tan ฮธ = โˆ’ 3 5 3 3 cot ฮธ = โˆ’ 4 cos ฮธ = โˆ’ 71. Set the calculator to radian mode: ฯ€ 1 cot = โ‰ˆ 3.73 . 12 tan ฯ€ 12 5 4 sec ฮธ = โˆ’ 78. For the point (5, โˆ’12) , x = 5 , y = โˆ’12 , r = x 2 + y 2 = 25 + 144 = 169 = 13 12 13 5 cos ฮธ = 13 12 tan ฮธ = โˆ’ 5 13 12 13 sec ฮธ = 5 5 cot ฮธ = โˆ’ 12 sin ฮธ = โˆ’ 72. Set the calculator to radian mode: 5ฯ€ 1 csc = โ‰ˆ 1.07 . 13 sin 5ฯ€ 13 csc ฮธ = โˆ’ 79. For the point (2, โˆ’3) , x = 2 , y = โˆ’3 , r = x 2 + y 2 = 4 + 9 = 13 73. Set the calculator to radian mode: sin 1 โ‰ˆ 0.84 . sin ฮธ = cos ฮธ = โˆ’3 13 2 13 3 tan ฮธ = โˆ’ 2 143 Copyright ยฉ 2016 Pearson Education, Inc. โ‹… โ‹… 13 13 13 13 3 13 13 csc ฮธ = โˆ’ 2 13 13 sec ฮธ = =โˆ’ = 13 3 13 2 2 cot ฮธ = โˆ’ 3 Chapter 2: Trigonometric Functions 84. For the point (0.3, 0.4) , x = 0.3 , y = 0.4 , 80. For the point (โˆ’1, โˆ’2) , x = โˆ’1 , y = โˆ’ 2 , 2 2 r = x 2 + y 2 = 0.09 + 0.16 = 0.25 = 0.5 r = x + y = 1+ 4 = 5 โˆ’2 sin ฮธ = 5 cos ฮธ = 5 โ‹… โˆ’1 5 5 โ‹… 5 5 โˆ’2 tan ฮธ = =2 โˆ’1 =โˆ’ 2 5 5 =โˆ’ 5 5 csc ฮธ = 0.4 4 = 0.5 5 0.3 3 cos ฮธ = = 0.5 5 0.4 4 tan ฮธ = = 0.3 3 5 5 =โˆ’ โˆ’2 2 5 =โˆ’ 5 โˆ’1 โˆ’1 1 cot ฮธ = = โˆ’2 2 sec ฮธ = = r = x2 + y 2 = 4 + 4 = 8 = 2 2 โˆ’2 โ‹… 2 2 cos ฮธ = tan ฮธ = โˆ’2 โ‹… 2 2 โˆ’2 โˆ’2 2 2 2 2 =โˆ’ 2 2 =โˆ’ 2 2 csc ฮธ = sec ฮธ = cot ฮธ = =1 2 2 โˆ’2 2 2 โˆ’2 โˆ’2 โˆ’2 ๏ƒฆ 3๏ƒถ 86. tan 60ยบ + tan150ยบ = 3 + ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ =โˆ’ 2 = =1 cos ฮธ = 2 โˆ’1 2 โ‹… โ‹… 2 2 2 2 1 tan ฮธ = = โˆ’1 โˆ’1 = 2 2 =โˆ’ csc ฮธ = 2 2 3 3โˆ’ 3 2 3 = 3 3 87. sin 40ยบ + sin130ยบ + sin 220ยบ + sin 310ยบ = sin 40ยบ + sin130ยบ + sin ( 40ยบ +180ยบ ) + r = x2 + y 2 = 1 + 1 = 2 1 2 2 ๏ƒฆ 2๏ƒถ ๏ƒฆ 2๏ƒถ + + ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท + ๏ƒง๏ƒง โˆ’ ๏ƒท 2 2 ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒท๏ƒธ =0 =โˆ’ 2 82. For the point (โˆ’1, 1) , x = โˆ’1 , y = 1 , sin ฮธ = csc ฮธ = 85. sin 45ยบ + sin135ยบ + sin 225ยบ + sin 315ยบ 81. For the point (โˆ’2, โˆ’2) , x = โˆ’ 2 , y = โˆ’ 2 , sin ฮธ = 0.5 5 = 0.4 4 0.5 5 sec ฮธ = = 0.3 3 0.3 3 cot ฮธ = = 0.4 4 sin ฮธ = sin (130ยบ +180ยบ ) 2 = 2 1 = sin 40ยบ + sin130ยบ โˆ’ sin 40ยบ โˆ’ sin130ยบ =0 2 =โˆ’ 2 โˆ’1 โˆ’1 cot ฮธ = = โˆ’1 1 sec ฮธ = 88. tan 40ยบ + tan140ยบ = tan 40ยบ + tan (180ยบ โˆ’40ยบ ) = tan 40ยบ โˆ’ tan 40ยบ =0 1 1 ๏ƒฆ1 1๏ƒถ 83. For the point ๏ƒง , ๏ƒท , x = , y = , 3 4 3 4 ๏ƒจ ๏ƒธ 89. If f (ฮธ ) = sin ฮธ = 0.1 , then f (ฮธ + ฯ€ ) = sin(ฮธ + ฯ€) = โˆ’ 0.1 . 1 1 25 5 + = = 9 16 144 12 1 5 1 12 3 5 4 5 4 12 sin ฮธ = csc ฮธ = = โ‹… = = โ‹… = 5 4 5 5 1 12 1 3 12 4 1 5 5 3 5 1 12 4 sec ฮธ = 12 = โ‹… = cos ฮธ = 3 = โ‹… = 1 12 1 4 5 3 5 5 3 12 1 1 1 3 3 1 4 4 tan ฮธ = 4 = โ‹… = cot ฮธ = 3 = โ‹… = 1 4 1 4 1 3 1 3 3 4 r = x2 + y 2 = 90. If f (ฮธ ) = cos ฮธ = 0.3 , then f (ฮธ + ฯ€ ) = cos(ฮธ + ฯ€) = โˆ’ 0.3 . 91. If f (ฮธ ) = tan ฮธ = 3 , then f (ฮธ + ฯ€ ) = tan(ฮธ + ฯ€) = 3 . 92. If f (ฮธ ) = cot ฮธ = โˆ’ 2 , then f (ฮธ + ฯ€ ) = cot(ฮธ + ฯ€) = โˆ’2 . 144 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.2: Trigonometric Functions: Unit Circle Approach 93. If sin ฮธ = 94. If cos ฮธ = 1 1 5 , then csc ฮธ = = 1โ‹… = 5 . 1 5 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ 3 2 96. g ( 60ยบ ) = cos ( 60ยบ ) = 1 2 97. f h ฯ€ 6 ฯ€ = sin 2 = sin 2 1 3 3 = 1โ‹… = . , then sec ฮธ = 2 3 2 2 ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒจ3๏ƒธ f ( 60ยบ ) = sin ( 60ยบ ) = 95. 107. 108. g ( p (60ยฐ) ) = cos 6 ฯ€ 3 3 2 = 60ยฐ 2 = cos 30ยฐ = 3 2 cos 315ยฐ 2 1 = cos 315ยฐ 2 1 2 2 = โ‹… = 2 2 4 109. p ( g (315ยฐ) ) = 1 ๏ƒฆ 60ยบ ๏ƒถ ๏ƒฆ 60ยบ ๏ƒถ f๏ƒง ๏ƒท = sin ๏ƒง ๏ƒท = sin ( 30ยบ ) = 2 ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ 3 ๏ƒฆ 60ยบ ๏ƒถ ๏ƒฆ 60ยบ ๏ƒถ 98. g ๏ƒง ๏ƒท = cos ๏ƒง ๏ƒท = cos ( 30ยบ ) = 2 ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ 110. h f 5ฯ€ 6 = 2 sin 5ฯ€ 6 = 2โ‹… 1 =1 2 2 ๏ƒฆ 3๏ƒถ 3 99. ๏ƒฉ๏ƒซ f ( 60ยบ ) ๏ƒน๏ƒป = ( sin 60ยบ ) = ๏ƒง๏ƒง ๏ƒท๏ƒท = 4 ๏ƒจ 2 ๏ƒธ 2 2 111. a. 2 2 1 2 ๏ƒฆ1๏ƒถ 100. ๏ƒซ๏ƒฉ g ( 60ยบ ) ๏ƒป๏ƒน = ( cos 60ยบ ) = ๏ƒง ๏ƒท = 2 4 ๏ƒจ ๏ƒธ 101. 103. 2 f ( 60ยบ ) = 2sin ( 60ยบ ) = 2 โ‹… 3 = 3 2 104. 2 g ( 60ยบ ) = 2 cos ( 60ยบ ) = 2 โ‹… 1 =1 2 105. ๏ƒฆ 2 ฯ€๏ƒถ , ๏ƒท is on the graph of f โˆ’1 . b. The point ๏ƒง ๏ƒจ 2 4๏ƒธ 3 f ( 2 โ‹… 60ยบ ) = sin ( 2 โ‹… 60ยบ ) = sin (120ยบ ) = 2 102. g ( 2 โ‹… 60ยบ ) = cos ( 2 โ‹… 60ยบ ) = cos (120ยบ ) = โˆ’ f ( โˆ’ 60ยบ ) = sin ( โˆ’ 60ยบ ) = sin ( 300ยบ ) = โˆ’ 106. g ( โˆ’ 60ยบ ) = cos ( โˆ’ 60ยบ ) = cos ( 300ยบ ) = 2 ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ f ๏ƒง ๏ƒท = sin ๏ƒง ๏ƒท = 2 ๏ƒจ4๏ƒธ ๏ƒจ4๏ƒธ ๏ƒฆฯ€ 2๏ƒถ The point ๏ƒง , ๏ƒท is on the graph of f. ๏ƒจ4 2 ๏ƒธ c. 1 2 ๏ƒฆฯ€ ฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ f ๏ƒง + ๏ƒทโˆ’3 = f ๏ƒง ๏ƒทโˆ’3 ๏ƒจ4 4๏ƒธ ๏ƒจ2๏ƒธ ๏ƒฆฯ€ ๏ƒถ = sin ๏ƒง ๏ƒท โˆ’ 3 ๏ƒจ2๏ƒธ = 1โˆ’ 3 = โˆ’2 ๏ƒฆฯ€ ๏ƒถ The point ๏ƒง , โˆ’ 2 ๏ƒท is on the graph of ๏ƒจ4 ๏ƒธ ฯ€๏ƒถ ๏ƒฆ y = f ๏ƒงx + ๏ƒทโˆ’3 . ๏ƒจ 4๏ƒธ 3 2 1 2 145 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 112. a. 3 ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ g ๏ƒง ๏ƒท = cos ๏ƒง ๏ƒท = ๏ƒจ6๏ƒธ ๏ƒจ6๏ƒธ 2 ๏ƒฆฯ€ 3๏ƒถ The point ๏ƒง , ๏ƒท is on the graph of g. ๏ƒจ6 2 ๏ƒธ 116. ๏ƒฆ 3 ฯ€๏ƒถ , ๏ƒท is on the graph of g โˆ’1 . b. The point ๏ƒง ๏ƒจ 2 6๏ƒธ c. ๏ƒฆฯ€ ฯ€ ๏ƒถ 2 g ๏ƒง โˆ’ ๏ƒท = 2 g (0) ๏ƒจ6 6๏ƒธ = 2 cos(0) = 2 โ‹…1 0.5 โˆ’0.1224 0.4 โˆ’0.0789 โˆ’0.1973 0.2 โˆ’0.0199 โˆ’0.0997 0.1 โˆ’0.0050 โˆ’0.0050 0.01 โˆ’0.00005 โˆ’0.0050 ฮธ โˆ’0.2448 0.001 0.0000 โˆ’0.0005 0.0001 0.0000 โˆ’0.00005 0.00001 0.0000 โˆ’0.000005 cos ฮธ โˆ’ 1 ฮธ approaches 0 as ฮธ approaches 0. 117. Use the formula R (ฮธ ) = v0 2 sin ( 2ฮธ ) g with g = 32.2ft/sec 2 ; ฮธ = 45ยบ ; v0 = 100 ft/sec : 113. Answers will vary. One set of possible answers 11ฯ€ 5ฯ€ ฯ€ 7ฯ€ 13ฯ€ ,โˆ’ , , , is โˆ’ . 3 3 3 3 3 R ( 45ยบ ) = (100) 2 sin(2 โ‹… 45ยบ ) โ‰ˆ 310.56 feet 32.2 Use the formula H (ฮธ ) = 114. Answers will vary. One ser of possible answers 13ฯ€ 5ฯ€ 3ฯ€ 11ฯ€ 19ฯ€ is โˆ’ ,โˆ’ , , , 4 4 4 4 4 115. cos ฮธ โˆ’ 1 g (ฮธ ) = =2 ๏ƒฆฯ€ ๏ƒถ Thus, the point ๏ƒง , 2 ๏ƒท is on the graph of ๏ƒจ6 ๏ƒธ ฯ€ ๏ƒฆ ๏ƒถ y = 2g ๏ƒง x โˆ’ ๏ƒท . 6๏ƒธ ๏ƒจ cos ฮธ โˆ’ 1 ฮธ v0 2 ( sin ฮธ ) 2 with 2g g = 32.2ft/sec 2 ; ฮธ = 45ยบ ; v0 = 100 ft/sec : H ( 45ยบ ) = sin ฮธ 1002 (sin 45ยบ ) 2 โ‰ˆ 77.64 feet 2(32.2) ฮธ sin ฮธ 0.5 0.4794 0.9589 0.4 0.3894 0.9735 0.2 0.1987 0.9933 g = 9.8 m/sec 2 ; ฮธ = 30ยบ ; v0 = 150 m/sec : 0.1 0.0998 0.9983 R ( 30ยบ ) = ฮธ 0.01 0.0100 1.0000 0.001 0.0010 1.0000 0.0001 0.0001 1.0000 118. Use the formula R (ฮธ ) = f (ฮธ ) = sin ฮธ ฮธ g with 1502 sin(2 โ‹… 30ยบ ) โ‰ˆ 1988.32 m 9.8 Use the formula H (ฮธ ) = 0.00001 0.00001 1.0000 v0 2 sin ( 2ฮธ ) v0 2 ( sin ฮธ ) 2 with 2g g = 9.8 m/sec 2 ; ฮธ = 30ยบ ; v0 = 150 m/sec : approaches 1 as ฮธ approaches 0. H ( 30ยบ ) = 1502 (sin 30ยบ ) 2 โ‰ˆ 286.99 m 2(9.8) 119. Use the formula R (ฮธ ) = v0 2 sin ( 2ฮธ ) g with g = 9.8 m/sec 2 ; ฮธ = 25ยบ ; v0 = 500 m/sec : R ( 25ยบ ) = 146 Copyright ยฉ 2016 Pearson Education, Inc. 5002 sin(2 โ‹… 25ยบ ) โ‰ˆ 19, 541.95 m 9.8 Section 2.2: Trigonometric Functions: Unit Circle Approach Use the formula H (ฮธ ) = v0 2 ( sin ฮธ ) 2 distance on road rate on road 8 โˆ’ 2x = 8 x = 1โˆ’ 4 1 = 1 โˆ’ tan ฮธ 4 1 = 1โˆ’ 4 tan ฮธ 123. Note: time on road = with 2g g = 9.8 m/sec ; ฮธ = 25ยบ ; v0 = 500 m/sec : 2 H ( 25ยบ ) = 5002 (sin 25ยบ ) 2 โ‰ˆ 2278.14 m 2(9.8) 120. Use the formula R (ฮธ ) = v0 2 sin ( 2ฮธ ) g with g = 32.2ft/sec 2 ; ฮธ = 50ยบ ; v0 = 200 ft/sec : R ( 50ยบ ) = 2002 sin(2 โ‹… 50ยบ ) โ‰ˆ 1223.36 ft 32.2 Use the formula H (ฮธ ) = v0 2 ( sin ฮธ ) a. 2 2g 2 1 โˆ’ 3sin 30ยบ 4 tan 30ยบ 2 1 = 1+ โˆ’ 1 1 3โ‹… 4โ‹… 2 3 T (30ยบ ) = 1 + with g = 32.2ft/sec 2 ; ฮธ = 50ยบ ; v0 = 200 ft/sec : H ( 50ยบ ) = 2002 (sin 50ยบ ) 2 โ‰ˆ 364.49 ft 2(32.2) 121. Use the formula t (ฮธ ) = = 1+ Sally is on the paved road for 1 1โˆ’ โ‰ˆ 0.57 hr . 4 tan 30ยบ 2a with g sin ฮธ cos ฮธ g = 32 ft/sec 2 and a = 10 feet : a. t ( 30 ) = b. t ( 45 ) = c. t ( 60 ) = 2 (10 ) 32sin 30ยบ โ‹… cos 30ยบ 2 (10 ) 32sin 45ยบ โ‹… cos 45ยบ 2 (10 ) 32sin 60ยบ โ‹… cos 60ยบ 4 3 โˆ’ โ‰ˆ 1.9 hr 3 4 b. โ‰ˆ 1.20 seconds 2 1 โˆ’ 3sin 45ยบ 4 tan 45ยบ 2 1 = 1+ โˆ’ 1 4 โ‹…1 3โ‹… 2 T (45ยบ ) = 1 + โ‰ˆ 1.12 seconds 2 2 1 โˆ’ โ‰ˆ 1.69 hr 3 4 Sally is on the paved road for 1 1โˆ’ = 0.75 hr . 4 tan 45o = 1+ โ‰ˆ 1.20 seconds 122. Use the formula x (ฮธ ) = cos ฮธ + 16 + 0.5cos(2ฮธ ) . x ( 30 ) = cos ( 30ยบ ) + 16 + 0.5cos(2 โ‹… 30ยบ ) c. 2 1 โˆ’ o 3sin 60 4 tan 60o 2 1 = 1+ โˆ’ 3 4โ‹… 3 3โ‹… 2 4 1 = 1+ โˆ’ 3 3 4 3 โ‰ˆ 1.63 hr T (60ยบ ) = 1 + = cos ( 30ยบ ) + 16 + 0.5cos ( 60ยบ ) โ‰ˆ 4.90 cm x ( 45 ) = cos ( 45ยบ ) + 16 + 0.5cos(2 โ‹… 45ยบ ) = cos ( 45ยบ ) + 16 + 0.5cos ( 90ยบ ) โ‰ˆ 4.71 cm Sally is on the paved road for 1 1โˆ’ โ‰ˆ 0.86 hr . 4 tan 60o 147 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions d. 2 1 . โˆ’ 3sin 90ยบ 4 tan 90ยบ But tan 90ยบ is undefined, so we cannot use the function formula for this path. However, the distance would be 2 miles in the sand and 8 miles on the road. The total 2 5 time would be: + 1 = โ‰ˆ 1.67 hours. The 3 3 path would be to leave the first house walking 1 mile in the sand straight to the road. Then turn and walk 8 miles on the road. Finally, turn and walk 1 mile in the sand to the second house. T (90ยบ ) = 1 + 127. H โ‰ˆ 71 The tree is approximately 71 feet tall. 128. 124. When ฮธ = 30ยบ : (1 + sec 30ยบ ) 1 V ( 30ยบ ) = ฯ€ (2)3 โ‰ˆ 251.42 cm3 2 3 ( tan 30ยบ ) 3 (1 + sec 60ยบ ) 1 V ( 60ยบ ) = ฯ€ (2)3 โ‰ˆ 75.40 cm3 2 3 ( tan 60ยบ ) 3 H 2 2D 22ยฐ 6 tan = 2 2D 2 D tan11ยฐ = 6 2 0.52ยฐ H tan = 2 2(384400) H = 768800 tan 0.26ยฐ x + (1 โˆ’ x 2 ) = = 41 49 8 =0 49 Using the quadratic formula: 8 a = 1, b = โˆ’1, c = โˆ’ 49 x2 โˆ’ x โˆ’ 3 = 15.4 tan11ยฐ x= Arletha is 15.4 feet from the car. ฮธ H 126. tan = 2 2D 8ยฐ 555 tan = 2 2D 2 D tan 4ยฐ = 555 D= H 2D 129. cos ฮธ + sin 2 ฮธ = When ฮธ = 60ยบ : D= = 41 ; cos 2 ฮธ + sin 2 ฮธ = 1 49 Substitute x = cos ฮธ ; y = sin ฮธ and solve these simultaneous equations for y. 41 2 ; x + y2 = 1 x + y2 = 49 y 2 = 1 โˆ’ x2 3 ฮธ ฮธ The moon has a radius of 1744 km. (1 + sec 45ยบ ) 1 V ( 45ยบ ) = ฯ€ (2)3 โ‰ˆ 117.88 cm3 2 3 ( tan 45ยบ ) tan tan H = 3488 When ฮธ = 45ยบ : 125. ฮธ H = 2 2D 20ยฐ H tan = 2 2(200) H = 400 tan10ยฐ tan = โˆ’ ( โˆ’1) ยฑ ( โˆ’1) 2 โˆ’ 4(1)( โˆ’ 498 ) 2 1ยฑ 1+ 2 32 49 = 1ยฑ 81 49 2 = 1 ยฑ 97 8 1 = or โˆ’ 2 7 7 Since the point is in quadrant III then x = โˆ’ and y 2 = 1 โˆ’ โˆ’ 555 = 3968 2 tan 4ยฐ y=โˆ’ The tourist is 3968 feet from the monument. 148 Copyright ยฉ 2016 Pearson Education, Inc. 1 7 2 = 1โˆ’ 48 4 3 =โˆ’ 49 7 1 48 = 49 49 1 7 Section 2.2: Trigonometric Functions: Unit Circle Approach c. 1 130. cos 2 ฮธ โˆ’ sin ฮธ = โˆ’ ;cos 2 ฮธ + sin 2 ฮธ = 1 9 Substitute x = cos ฮธ ; y = sin ฮธ and solve these simultaneous equations for y. 1 x2 โˆ’ y = โˆ’ ; x2 + y 2 = 1 9 2 2 x = 1โˆ’ y 1 (1 โˆ’ y 2 ) โˆ’ y = โˆ’ 9 10 y2 + y โˆ’ = 0 9 2 9 y + 9 y โˆ’ 10 = 0 Using the quadratic formula: a = 9, b = 9, c = โˆ’10 y= 0 90ยฐ R is largest when ฮธ = 67.5ยบ . sin ฮธ โˆ’ 0 sin ฮธ = = tan ฮธ . cos ฮธ โˆ’ 0 cos ฮธ Since L is parallel to M, the slope of L is equal to the slope of M. Thus, the slope of L = tan ฮธ . 132. Slope of M = 133. a. When t = 1 , the coordinate on the unit circle is approximately (0.5, 0.8) . Thus, 1 โ‰ˆ 1.3 0.8 1 sec1 โ‰ˆ = 2.0 cos1 โ‰ˆ 0.5 0.5 0.8 0.5 tan1 โ‰ˆ = 1.6 cot1 โ‰ˆ โ‰ˆ 0.6 0.5 0.8 Set the calculator on RADIAN mode: sin1 โ‰ˆ 0.8 โˆ’9 ยฑ 81 + 360 โˆ’9 ยฑ 441 โˆ’9 ยฑ 21 = = 18 18 18 Since the point is in quadrant II then โˆ’3 + 21 12 2 y= = = and 18 18 3 2 2 4 5 x2 = 1 โˆ’ = 1โˆ’ = 3 9 9 = 131. a. 20 45ยฐ โˆ’(9) ยฑ (9) 2 โˆ’ 4(9)( โˆ’10) 18 x=โˆ’ Using the MAXIMUM feature, we find: csc1 โ‰ˆ 5 5 =โˆ’ 9 3 R ( 60 ) = = 32 2 2 [sin ( 2 โ‹… 60ยบ ) โˆ’ cos ( 2 โ‹… 60ยบ ) โˆ’ 1] 2 [sin (120ยบ ) โˆ’ cos (120ยบ ) โˆ’ 1] 32 32 2 32 b. When t = 5.1 , the coordinate on the unit circle is approximately (0.4, โˆ’0.9) . Thus, 1 โ‰ˆ โˆ’1.1 โˆ’0.9 1 cos 5.1 โ‰ˆ 0.4 sec 5.1 โ‰ˆ = 2.5 0.4 โˆ’0.9 0.4 tan 5.1 โ‰ˆ โ‰ˆ โˆ’2.3 cot 5.1 โ‰ˆ โ‰ˆ โˆ’0.4 0.4 โˆ’0.9 sin 5.1 โ‰ˆ โˆ’0.9 ๏ƒฆ 3 ๏ƒฆ 1๏ƒถ ๏ƒถ โˆ’ ๏ƒง โˆ’ ๏ƒท โˆ’ 1๏ƒท ๏ƒจ 2 ๏ƒจ 2๏ƒธ ๏ƒธ โ‰ˆ 32 2 ๏ƒง โ‰ˆ 16.56 ft b. Let Y1 = 20 45ยฐ 0 322 2 ๏ƒฉsin ( 2 x ) โˆ’ cos ( 2 x ) โˆ’ 1๏ƒป๏ƒน 32 ๏ƒซ csc 5.1 โ‰ˆ Set the calculator on RADIAN mode: 90ยฐ 149 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 134. a. When t = 2 , the coordinate on the unit circle is approximately (โˆ’0.4, 0.9) . Thus, 138. 1 โ‰ˆ 1.1 0.9 1 sec 2 โ‰ˆ = โˆ’2.5 cos 2 โ‰ˆ โˆ’0.4 โˆ’0.4 0.9 โˆ’0.4 tan 2 โ‰ˆ = โˆ’2.3 cot 2 โ‰ˆ โ‰ˆ โˆ’0.4 โˆ’0.4 0.9 Set the calculator on RADIAN mode: sin 2 โ‰ˆ 0.9 csc 2 โ‰ˆ b. When t = 4 , the coordinate on the unit circle is approximately (โˆ’0.7, โˆ’0.8) . Thus, 1 โ‰ˆ โˆ’1.3 โˆ’0.8 1 cos 4 โ‰ˆ โˆ’0.7 sec 4 โ‰ˆ โ‰ˆ โˆ’1.4 โˆ’0.7 โˆ’0.8 โˆ’0.7 tan 4 โ‰ˆ cot 4 โ‰ˆ โ‰ˆ 1.1 โ‰ˆ 0.9 โˆ’0.7 โˆ’0.8 Set the calculator on RADIAN mode: sin 4 โ‰ˆ โˆ’0.8 csc 4 โ‰ˆ Answers will vary. 139. 135 โ€“ 137. Answers will vary. 2 xโˆ’7 2 x= yโˆ’7 x( y โˆ’ 7) = 2 xy โˆ’ 7 x = 2 y= xy = 7 x + 2 7x + 2 2 = 7+ x x 2 f 1 ( x) = 7 + x y= 140. 180 141. โˆ’13ฯ€ = โˆ’780ยฐ 3 f ( x + 3) = = = 150 Copyright ยฉ 2016 Pearson Education, Inc. ( x + 3) โˆ’ 1 ( x + 3) 2 + 2 x+2 x2 + 6 x + 9 + 2 x+2 x 2 + 6 x + 11 is Section 2.3: Properties of the Trigonometric Functions 142. d = (1 โˆ’ 3) 2 + (0 โˆ’ ( โˆ’6)) 2 19. cos = ( โˆ’2) 2 + (6) 2 = 4 + 36 = 40 = 2 10 Section 2.3 20. sin 1 ๏ƒฌ 1๏ƒผ 1. All real numbers except โˆ’ ; ๏ƒญ x | x โ‰  โˆ’ ๏ƒฝ 2๏ƒพ 2 ๏ƒฎ 22. csc 3. False 4. True 5. 2ฯ€ , ฯ€ ฯ€ 23. sec 2 7. b. 8. a 9. 1 10. False; sec ฮธ = 24. cot 1 cos ฮธ 11. sin 405ยบ = sin(360ยบ + 45ยบ ) = sin 45ยบ = 2 2 1 12. cos 420ยบ = cos(360ยบ + 60ยบ ) = cos 60ยบ = 2 25. tan 13. tan 405ยบ = tan(180ยบ + 180ยบ + 45ยบ ) = tan 45ยบ = 1 26. sec 14. sin 390ยบ = sin(360ยบ + 30ยบ ) = sin 30ยบ = 9ฯ€ ฯ€ 2 ๏ƒฆฯ€ ๏ƒถ = sin ๏ƒง + 2ฯ€ ๏ƒท = sin = 4 4 4 2 ๏ƒจ ๏ƒธ 21. tan ( 21ฯ€ ) = tan(0 + 21ฯ€) = tan ( 0 ) = 0 2. even 6. All real number, except odd multiples of 33ฯ€ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = cos ๏ƒง + 8ฯ€ ๏ƒท = cos ๏ƒง + 4 โ‹… 2ฯ€ ๏ƒท 4 4 4 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ฯ€ = cos 4 2 = 2 1 2 9ฯ€ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = csc ๏ƒง + 4ฯ€ ๏ƒท = csc ๏ƒง + 2 โ‹… 2ฯ€ ๏ƒท 2 ๏ƒจ2 ๏ƒธ ๏ƒจ2 ๏ƒธ ฯ€ = csc 2 =1 17 ฯ€ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = sec ๏ƒง + 4ฯ€ ๏ƒท = sec ๏ƒง + 2 โ‹… 2ฯ€ ๏ƒท 4 ๏ƒจ4 ๏ƒธ ๏ƒจ4 ๏ƒธ ฯ€ = sec 4 = 2 17 ฯ€ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = cot ๏ƒง + 4ฯ€ ๏ƒท = cot ๏ƒง + 2 โ‹… 2ฯ€ ๏ƒท 4 ๏ƒจ4 ๏ƒธ ๏ƒจ4 ๏ƒธ ฯ€ = cot 4 =1 19ฯ€ ฯ€ 3 ๏ƒฆฯ€ ๏ƒถ = tan ๏ƒง + 3ฯ€ ๏ƒท = tan = 6 6 6 3 ๏ƒจ ๏ƒธ 25ฯ€ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = sec ๏ƒง + 4ฯ€ ๏ƒท = sec ๏ƒง + 2 โ‹… 2ฯ€ ๏ƒท 6 6 6 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ฯ€ = sec 6 = 15. csc 450ยบ = csc(360ยบ + 90ยบ ) = csc 90ยบ = 1 16. sec 540ยบ = sec(360ยบ + 180ยบ ) = sec180ยบ = โˆ’1 2 3 3 27. Since sin ฮธ > 0 for points in quadrants I and II, and cos ฮธ < 0 for points in quadrants II and III, the angle ฮธ lies in quadrant II. 17. cot 390ยบ = cot(180ยบ + 180ยบ + 30ยบ ) = cot 30ยบ = 3 28. Since sin ฮธ 0 for points in quadrants I and IV, the angle ฮธ lies in quadrant IV. 18. sec 420ยบ = sec(360ยบ + 60ยบ ) = sec 60ยบ = 2 151 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 29. Since sin ฮธ < 0 for points in quadrants III and IV, and tan ฮธ 0 for points in quadrants I and IV, and tan ฮธ > 0 for points in quadrants I and III, the angle ฮธ lies in quadrant I. 2 5 5 , cos ฮธ = 5 5 ๏ƒฆ2 5๏ƒถ ๏ƒง ๏ƒท sin ฮธ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 2 5 5 tan ฮธ = = = โ‹… =2 cos ฮธ 5 ๏ƒฆ 5๏ƒถ 5 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 5 ๏ƒธ 37. sin ฮธ = 31. Since cos ฮธ > 0 for points in quadrants I and IV, and tan ฮธ < 0 for points in quadrants II and IV, the angle ฮธ lies in quadrant IV. 32. Since cos ฮธ 0 for points in quadrants I and III, the angle ฮธ lies in quadrant III. 33. Since sec ฮธ 0 for points in quadrants I and II, the angle ฮธ lies in quadrant II. csc ฮธ = 34. Since csc ฮธ > 0 for points in quadrants I and II, and cos ฮธ < 0 for points in quadrants II and III, the angle ฮธ lies in quadrant II. sec ฮธ = 1 1 5 5 5 = = 1โ‹… โ‹… = sin ฮธ ๏ƒฆ 2 5 ๏ƒถ 2 2 5 5 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 5 ๏ƒธ 1 1 5 5 = = โ‹… = 5 cos ฮธ ๏ƒฆ 5 ๏ƒถ 5 5 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 5 ๏ƒธ 1 1 cot ฮธ = = tan ฮธ 2 3 4 35. sin ฮธ = โˆ’ , cos ฮธ = 5 5 ๏ƒฆ 3๏ƒถ โˆ’ sin ฮธ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 3 5 3 tan ฮธ = = =โˆ’ โ‹… =โˆ’ 4 cos ฮธ 5 4 4 ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ 1 1 5 csc ฮธ = = =โˆ’ sin ฮธ ๏ƒฆ 3 ๏ƒถ 3 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ 1 1 5 sec ฮธ = = = cos ฮธ ๏ƒฆ 4 ๏ƒถ 4 ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ 1 4 cot ฮธ = =โˆ’ tan ฮธ 3 5 2 5 , cos ฮธ = โˆ’ 5 5 ๏ƒฆ ๏ƒถ 5 ๏ƒงโˆ’ ๏ƒท 5 sin ฮธ ๏ƒธ = ๏ƒฆ โˆ’ 5 ๏ƒถโ‹…๏ƒฆ โˆ’ 5 ๏ƒถ = 1 tan ฮธ = = ๏ƒจ ๏ƒง ๏ƒท cos ฮธ ๏ƒฆ 2 5 ๏ƒถ ๏ƒจ 5 ๏ƒธ ๏ƒง๏ƒจ 2 5 ๏ƒท๏ƒธ 2 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5 ๏ƒธ 38. sin ฮธ = โˆ’ csc ฮธ = 1 1 ๏ƒฆ 5 ๏ƒถ 5 = = 1โ‹… ๏ƒง โˆ’ =โˆ’ 5 ๏ƒทโ‹… sin ฮธ ๏ƒฆ 5๏ƒธ 5 5๏ƒถ ๏ƒจ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5 ๏ƒธ 1 1 ๏ƒฆ 5 ๏ƒถ 5 5 = = ๏ƒงโˆ’ =โˆ’ ๏ƒทโ‹… cos ฮธ ๏ƒฆ 2 5 ๏ƒถ ๏ƒจ 2 5 ๏ƒธ 5 2 ๏ƒงโˆ’ ๏ƒท 5 ๏ƒธ ๏ƒจ 1 1 2 cot ฮธ = = = 1โ‹… = 2 tan ฮธ ๏ƒฆ 1 ๏ƒถ 1 ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ sec ฮธ = 4 3 36. sin ฮธ = , cos ฮธ = โˆ’ 5 5 ๏ƒฆ4๏ƒถ ๏ƒง ๏ƒท sin ฮธ 4 ๏ƒฆ 5๏ƒถ 4 5 tan ฮธ = = ๏ƒจ ๏ƒธ = โ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ cos ฮธ ๏ƒฆ 3 ๏ƒถ 5 ๏ƒจ 3 ๏ƒธ 3 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ 1 1 5 csc ฮธ = = = 4 sin ฮธ ๏ƒฆ ๏ƒถ 4 ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ 152 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.3: Properties of the Trigonometric Functions 1 3 39. sin ฮธ = , cos ฮธ = 2 2 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท sin ฮธ 1 2 3 3 2 = ๏ƒจ ๏ƒธ = โ‹… โ‹… = tan ฮธ = cos ฮธ ๏ƒฆ 3 ๏ƒถ 2 3 3 3 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ 1 1 2 csc ฮธ = = = 1โ‹… = 2 sin ฮธ ๏ƒฆ 1 ๏ƒถ 1 ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ sec ฮธ = cot ฮธ = sec ฮธ = cot ฮธ = 1 1 4 2 = =โˆ’ โ‹… = โˆ’2 2 tan ฮธ ๏ƒฆ 2 2 2๏ƒถ ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 4 ๏ƒธ 2 2 1 , cos ฮธ = โˆ’ 3 3 ๏ƒฆ2 2๏ƒถ ๏ƒง ๏ƒท sin ฮธ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ 2 2 3 tan ฮธ = = = โ‹…โˆ’ = โˆ’2 2 cos ฮธ 3 1 ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ 42. sin ฮธ = 1 1 2 3 2 3 = = โ‹… = cos ฮธ ๏ƒฆ 3 ๏ƒถ 3 3 3 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ 1 1 3 3 = = โ‹… = 3 tan ฮธ ๏ƒฆ 3 ๏ƒถ 3 3 ๏ƒง๏ƒง 3 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ 1 1 3 2 3 2 = = 1โ‹… โ‹… = sin ฮธ ๏ƒฆ 2 2 ๏ƒถ 4 2 2 2 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ 1 1 ๏ƒฆ 3๏ƒถ = = 1 โ‹… ๏ƒง โˆ’ ๏ƒท = โˆ’3 sec ฮธ = cos ฮธ ๏ƒฆ 1 ๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ csc ฮธ = 3 1 , cos ฮธ = 2 2 ๏ƒฆ 3๏ƒถ ๏ƒง ๏ƒท sin ฮธ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 3 2 tan ฮธ = = = โ‹… = 3 cos ฮธ 2 1 ๏ƒฆ1๏ƒถ ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ 40. sin ฮธ = cot ฮธ = 1 1 2 3 2 3 = = 1โ‹… โ‹… = sin ฮธ ๏ƒฆ 3 ๏ƒถ 3 3 3 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 2 ๏ƒธ 1 1 2 sec ฮธ = = = 1โ‹… = 2 cos ฮธ ๏ƒฆ 1 ๏ƒถ 1 ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ 1 1 1 2 2 = =โˆ’ โ‹… =โˆ’ tan ฮธ โˆ’ 2 2 4 2 2 2 12 , ฮธ in quadrant II 13 Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 csc ฮธ = cot ฮธ = 1 1 3 2 3 2 = = โ‹… = cos ฮธ ๏ƒฆ 2 2 ๏ƒถ 2 2 2 4 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ 43. sin ฮธ = cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ cos ฮธ = ยฑ 1 โˆ’ sin 2 ฮธ Since ฮธ is in quadrant II, cos ฮธ < 0 . 1 1 1 3 3 = = โ‹… = tan ฮธ 3 3 3 3 cos ฮธ = โˆ’ 1 โˆ’ sin 2 ฮธ 2 144 25 5 ๏ƒฆ 12 ๏ƒถ = โˆ’ 1โˆ’ ๏ƒง ๏ƒท = โˆ’ 1โˆ’ =โˆ’ =โˆ’ 169 169 13 ๏ƒจ 13 ๏ƒธ ๏ƒฆ 12 ๏ƒถ ๏ƒง ๏ƒท 12 sin ฮธ 12 13 ๏ƒฆ 13 ๏ƒถ = ๏ƒจ ๏ƒธ = โ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ tan ฮธ = cos ฮธ ๏ƒฆ 5 ๏ƒถ 13 ๏ƒจ 5 ๏ƒธ 5 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 13 = = csc ฮธ = sin ฮธ ๏ƒฆ 12 ๏ƒถ 12 ๏ƒง ๏ƒท ๏ƒจ 13 ๏ƒธ 1 2 2 41. sin ฮธ = โˆ’ , cos ฮธ = 3 3 ๏ƒฆ 1๏ƒถ ๏ƒงโˆ’ ๏ƒท sin ฮธ 1 3 2 2 3๏ƒธ tan ฮธ = = ๏ƒจ =โˆ’ โ‹… โ‹… =โˆ’ cos ฮธ ๏ƒฆ 2 2 ๏ƒถ 3 2 2 2 4 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ 1 1 ๏ƒฆ 3๏ƒถ csc ฮธ = = = 1 โ‹… ๏ƒง โˆ’ ๏ƒท = โˆ’3 sin ฮธ ๏ƒฆ 1 ๏ƒถ ๏ƒจ 1๏ƒธ ๏ƒงโˆ’ ๏ƒท 3 ๏ƒจ ๏ƒธ 153 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 1 1 13 = =โˆ’ cos ฮธ ๏ƒฆ 5 ๏ƒถ 5 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 5 = =โˆ’ cot ฮธ = tan ฮธ ๏ƒฆ 12 ๏ƒถ 12 ๏ƒงโˆ’ ๏ƒท 5 ๏ƒจ ๏ƒธ 1 1 5 = =โˆ’ sin ฮธ ๏ƒฆ 3 ๏ƒถ 3 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ 1 1 5 = =โˆ’ sec ฮธ = cos ฮธ ๏ƒฆ 4 ๏ƒถ 4 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ 1 1 4 = = cot ฮธ = tan ฮธ ๏ƒฆ 3 ๏ƒถ 3 ๏ƒง ๏ƒท ๏ƒจ4๏ƒธ csc ฮธ = sec ฮธ = 3 44. cos ฮธ = , ฮธ in quadrant IV 5 Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 5 , ฮธ in quadrant III 13 Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 46. sin ฮธ = โˆ’ sin 2 ฮธ = 1 โˆ’ cos 2 ฮธ sin ฮธ = ยฑ 1 โˆ’ cos 2 ฮธ Since ฮธ is in quadrant IV, sin ฮธ < 0 . cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ 2 16 4 ๏ƒฆ3๏ƒถ sin ฮธ = โˆ’ 1 โˆ’ cos 2 ฮธ = โˆ’ 1 โˆ’ ๏ƒง ๏ƒท = โˆ’ =โˆ’ 25 5 ๏ƒจ5๏ƒธ cos ฮธ = ยฑ 1 โˆ’ sin 2 ฮธ Since ฮธ is in quadrant III, cos ฮธ < 0 . ๏ƒฆ 5๏ƒถ cos ฮธ = โˆ’ 1 โˆ’ sin 2 ฮธ = โˆ’ 1 โˆ’ ๏ƒง โˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ ๏ƒฆ 4๏ƒถ โˆ’ sin ฮธ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 4 5 4 tan ฮธ = = =โˆ’ โ‹… =โˆ’ cos ฮธ 5 3 3 ๏ƒฆ3๏ƒถ ๏ƒง ๏ƒท 5 ๏ƒจ ๏ƒธ 1 1 5 = =โˆ’ csc ฮธ = sin ฮธ ๏ƒฆ 4 ๏ƒถ 4 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ 1 1 5 = = sec ฮธ = 3 cos ฮธ ๏ƒฆ ๏ƒถ 3 ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ 1 1 3 = =โˆ’ cot ฮธ = tan ฮธ ๏ƒฆ 4 ๏ƒถ 4 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ 2 144 12 =โˆ’ 169 13 ๏ƒฆ 5๏ƒถ โˆ’ sin ฮธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ 5 ๏ƒฆ 13 ๏ƒถ 5 = = โˆ’ โ‹…๏ƒง โˆ’ ๏ƒท = tan ฮธ = cos ฮธ ๏ƒฆ 12 ๏ƒถ 13 ๏ƒจ 12 ๏ƒธ 12 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 13 = =โˆ’ csc ฮธ = sin ฮธ ๏ƒฆ 5 ๏ƒถ 5 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 13 = =โˆ’ sec ฮธ = cos ฮธ ๏ƒฆ 12 ๏ƒถ 12 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 12 = = cot ฮธ = tan ฮธ ๏ƒฆ 5 ๏ƒถ 5 ๏ƒง ๏ƒท ๏ƒจ 12 ๏ƒธ =โˆ’ 4 45. cos ฮธ = โˆ’ , ฮธ in quadrant III 5 Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 sin 2 ฮธ = 1 โˆ’ cos 2 ฮธ 5 , 90ยบ < ฮธ < 180ยบ , ฮธ in quadrant II 13 Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 47. sin ฮธ = sin ฮธ = ยฑ 1 โˆ’ cos 2 ฮธ Since ฮธ is in quadrant III, sin ฮธ < 0 . cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ sin ฮธ = โˆ’ 1 โˆ’ cos 2 ฮธ cos ฮธ = ยฑ 1 โˆ’ sin 2 ฮธ Since ฮธ is in quadrant II, cos ฮธ < 0 . 2 16 9 3 ๏ƒฆ 4๏ƒถ = โˆ’ 1โˆ’ ๏ƒง โˆ’ ๏ƒท = โˆ’ 1โˆ’ =โˆ’ =โˆ’ 25 25 5 ๏ƒจ 5๏ƒธ ๏ƒฆ 3๏ƒถ โˆ’ sin ฮธ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 3 ๏ƒฆ 5๏ƒถ 3 = = โˆ’ โ‹…๏ƒง โˆ’ ๏ƒท = tan ฮธ = cos ฮธ ๏ƒฆ 4 ๏ƒถ 5 ๏ƒจ 4๏ƒธ 4 ๏ƒงโˆ’ ๏ƒท 5 ๏ƒจ ๏ƒธ ๏ƒฆ5๏ƒถ cos ฮธ = โˆ’ 1 โˆ’ sin 2 ฮธ = โˆ’ 1 โˆ’ ๏ƒง ๏ƒท ๏ƒจ 13 ๏ƒธ = โˆ’ 1โˆ’ 154 Copyright ยฉ 2016 Pearson Education, Inc. 2 25 144 12 =โˆ’ =โˆ’ 169 169 13 Section 2.3: Properties of the Trigonometric Functions ๏ƒฆ5๏ƒถ ๏ƒง ๏ƒท sin ฮธ 5 ๏ƒฆ 13 ๏ƒถ 5 13 tan ฮธ = = ๏ƒจ ๏ƒธ = โ‹…๏ƒง โˆ’ ๏ƒท = โˆ’ cos ฮธ ๏ƒฆ 12 ๏ƒถ 13 ๏ƒจ 12 ๏ƒธ 12 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 13 = = csc ฮธ = sin ฮธ ๏ƒฆ 5 ๏ƒถ 5 ๏ƒง ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 13 = =โˆ’ sec ฮธ = cos ฮธ ๏ƒฆ 12 ๏ƒถ 12 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 13 ๏ƒธ 1 1 12 = =โˆ’ cot ฮธ = tan ฮธ ๏ƒฆ 5 ๏ƒถ 5 ๏ƒงโˆ’ ๏ƒท 12 ๏ƒจ ๏ƒธ sin ฮธ = 1 โˆ’ cos 2 ฮธ 2 1 8 2 2 ๏ƒฆ 1๏ƒถ = 1โˆ’ ๏ƒง โˆ’ ๏ƒท = 1โˆ’ = = 9 9 3 ๏ƒจ 3๏ƒธ ๏ƒฆ2 2๏ƒถ ๏ƒง ๏ƒท sin ฮธ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ 2 2 ๏ƒฆ 3 ๏ƒถ = = โ‹…๏ƒงโˆ’ ๏ƒท = โˆ’2 2 tan ฮธ = cos ฮธ 3 ๏ƒจ 1๏ƒธ ๏ƒฆ 1๏ƒถ โˆ’ ๏ƒง ๏ƒท ๏ƒจ 3๏ƒธ 1 1 3 2 3 2 = = โ‹… = sin ฮธ ๏ƒฆ 2 2 ๏ƒถ 2 2 2 4 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ 1 1 = = โˆ’3 sec ฮธ = cos ฮธ ๏ƒฆ 1 ๏ƒถ โˆ’ ๏ƒง ๏ƒท ๏ƒจ 3๏ƒธ csc ฮธ = 4 , 270ยบ < ฮธ < 360ยบ ; ฮธ in quadrant IV 5 Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 48. cos ฮธ = cot ฮธ = 1 1 2 2 = โ‹… =โˆ’ tan ฮธ โˆ’ 2 2 2 4 2 3ฯ€ 50. sin ฮธ = โˆ’ , ฯ€ < ฮธ < , ฮธ in quadrant III 3 2 Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 sin ฮธ = ยฑ 1 โˆ’ cos 2 ฮธ Since ฮธ is in quadrant IV, sin ฮธ < 0 . 2 9 3 ๏ƒฆ4๏ƒถ sin ฮธ = โˆ’ 1 โˆ’ cos 2 ฮธ = โˆ’ 1 โˆ’ ๏ƒง ๏ƒท = โˆ’ =โˆ’ 25 5 ๏ƒจ5๏ƒธ cos ฮธ = ยฑ 1 โˆ’ sin 2 ฮธ Since ฮธ is in quadrant III, cos ฮธ < 0 . ๏ƒฆ 3๏ƒถ โˆ’ sin ฮธ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 3 5 3 = =โˆ’ โ‹… =โˆ’ tan ฮธ = cos ฮธ 5 4 4 ๏ƒฆ4๏ƒถ ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ 1 1 5 csc ฮธ = = =โˆ’ sin ฮธ ๏ƒฆ 3 ๏ƒถ 3 ๏ƒงโˆ’ ๏ƒท 5 ๏ƒจ ๏ƒธ 1 1 5 sec ฮธ = = = cos ฮธ ๏ƒฆ 4 ๏ƒถ 4 ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ 1 1 4 cot ฮธ = = =โˆ’ tan ฮธ ๏ƒฆ 3 ๏ƒถ 3 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 4๏ƒธ ๏ƒฆ 2๏ƒถ cos ฮธ = โˆ’ 1 โˆ’ sin 2 ฮธ = โˆ’ 1 โˆ’ ๏ƒง โˆ’ ๏ƒท ๏ƒจ 3๏ƒธ 2 5 5 =โˆ’ 9 3 ๏ƒฆ 2๏ƒถ ๏ƒงโˆ’ ๏ƒท sin ฮธ 3๏ƒธ = ๏ƒจ tan ฮธ = cos ฮธ ๏ƒฆ 5๏ƒถ ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ =โˆ’ 2 ๏ƒฆ 3 ๏ƒถ 5 2 5 = โˆ’ โ‹…๏ƒง โˆ’ = ๏ƒทโ‹… 3 ๏ƒจ 5 5๏ƒธ 5 1 1 3 csc ฮธ = = =โˆ’ sin ฮธ ๏ƒฆ 2 ๏ƒถ 2 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 3๏ƒธ 1 ฯ€ < ฮธ 0 . cot ฮธ = 1 1 3 5 3 5 = =โˆ’ โ‹… =โˆ’ 5 cos ฮธ ๏ƒฆ 5 5 5๏ƒถ ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ 1 1 5 5 5 = โ‹… = = tan ฮธ ๏ƒฆ 2 5 ๏ƒถ 2 5 5 2 ๏ƒง๏ƒง 5 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ 155 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 2 51. sin ฮธ = , tan ฮธ < 0, so ฮธ is in quadrant II 3 Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 sec ฮธ = cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ cot ฮธ = cos ฮธ = ยฑ 1 โˆ’ sin ฮธ Since ฮธ is in quadrant II, cos ฮธ < 0 . 2 1 1 15 15 = โ‹… = tan ฮธ 15 15 15 53. sec ฮธ = 2, sin ฮธ < 0, so ฮธ is in quadrant IV cos ฮธ = โˆ’ 1 โˆ’ sin ฮธ 2 1 1 = sec ฮธ 2 Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 Solve for cos ฮธ : cos ฮธ = 2 4 5 5 ๏ƒฆ2๏ƒถ = โˆ’ 1โˆ’ ๏ƒง ๏ƒท = โˆ’ 1โˆ’ = โˆ’ =โˆ’ 9 9 3 ๏ƒจ3๏ƒธ ๏ƒฆ2๏ƒถ ๏ƒง ๏ƒท sin ฮธ 2 ๏ƒฆ 3 ๏ƒถ 2 5 3 = ๏ƒจ ๏ƒธ = โ‹…๏ƒง โˆ’ tan ฮธ = ๏ƒท=โˆ’ cos ฮธ ๏ƒฆ 5 5๏ƒธ 5๏ƒถ 3 ๏ƒจ ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ 1 1 3 csc ฮธ = = = 2 sin ฮธ ๏ƒฆ ๏ƒถ 2 ๏ƒง ๏ƒท ๏ƒจ3๏ƒธ sin 2 ฮธ = 1 โˆ’ cos 2 ฮธ sin ฮธ = ยฑ 1 โˆ’ cos 2 ฮธ Since ฮธ is in quadrant IV, sin ฮธ 0 4 sin ฮธ Since tan ฮธ = > 0 and cos ฮธ < 0 , sin ฮธ < 0 . cos ฮธ Solve for sin ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 54. csc ฮธ = 3, cot ฮธ < 0, so ฮธ is in quadrant II 1 1 = csc ฮธ 3 Solve for cos ฮธ : sin 2 ฮธ + cos 2 ฮธ = 1 Solve for sin ฮธ : sin ฮธ = sin ฮธ = ยฑ 1 โˆ’ cos 2 ฮธ sin ฮธ = โˆ’ 1 โˆ’ cos 2 ฮธ cos ฮธ = ยฑ 1 โˆ’ sin 2 ฮธ Since ฮธ is in quadrant II, cos ฮธ 0, so ฮธ is in quadrant II 3 Solve for sec ฮธ : sec2 ฮธ = 1 + tan 2 ฮธ 3 , sin ฮธ < 0, so ฮธ is in quadrant III 4 Solve for sec ฮธ : sec2 ฮธ = 1 + tan 2 ฮธ 55. tan ฮธ = sec ฮธ = ยฑ 1 + tan 2 ฮธ Since ฮธ is in quadrant III, sec ฮธ < 0 . sec ฮธ = ยฑ 1 + tan 2 ฮธ Since ฮธ is in quadrant II, sec ฮธ < 0 . sec ฮธ = โˆ’ 1 + tan 2 ฮธ sec ฮธ = โˆ’ 1 + tan 2 ฮธ 2 1 10 10 ๏ƒฆ 1๏ƒถ = โˆ’ 1+ ๏ƒง โˆ’ ๏ƒท = โˆ’ 1+ = โˆ’ =โˆ’ 9 9 3 ๏ƒจ 3๏ƒธ 2 9 25 5 ๏ƒฆ3๏ƒถ = โˆ’ 1+ ๏ƒง ๏ƒท = โˆ’ 1+ =โˆ’ =โˆ’ 16 16 4 ๏ƒจ4๏ƒธ 1 4 =โˆ’ cos ฮธ = sec ฮธ 5 cos ฮธ = sin ฮธ = โˆ’ 1 โˆ’ cos 2 ฮธ 1 1 3 3 10 = =โˆ’ =โˆ’ sec ฮธ ๏ƒฆ 10 ๏ƒถ 10 10 ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท ๏ƒจ 3 ๏ƒธ sin ฮธ = 1 โˆ’ cos 2 ฮธ 2 16 9 3 ๏ƒฆ 4๏ƒถ = โˆ’ 1โˆ’ ๏ƒง โˆ’ ๏ƒท = โˆ’ 1โˆ’ =โˆ’ =โˆ’ 25 25 5 ๏ƒจ 5๏ƒธ 1 1 5 = =โˆ’ csc ฮธ = sin ฮธ ๏ƒฆ 3 ๏ƒถ 3 ๏ƒงโˆ’ ๏ƒท ๏ƒจ 5๏ƒธ 1 1 4 = = cot ฮธ = tan ฮธ ๏ƒฆ 3 ๏ƒถ 3 ๏ƒง ๏ƒท ๏ƒจ4๏ƒธ 2 ๏ƒฆ 3 10 ๏ƒถ 90 = 1 โˆ’ ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท = 1 โˆ’ 100 ๏ƒจ 10 ๏ƒธ 10 10 = 100 10 1 1 = = 10 csc ฮธ = sin ฮธ ๏ƒฆ 10 ๏ƒถ ๏ƒง๏ƒง 10 ๏ƒท๏ƒท ๏ƒจ ๏ƒธ 1 1 = = โˆ’3 cot ฮธ = tan ฮธ ๏ƒฆ 1 ๏ƒถ โˆ’ ๏ƒง ๏ƒท ๏ƒจ 3๏ƒธ = 4 , cos ฮธ 0, so ฮธ is in quadrant III Solve for tan ฮธ : sec2 ฮธ = 1 + tan 2 ฮธ sec ฮธ = ยฑ 1 + tan 2 ฮธ Since ฮธ is in quadrant III, sec ฮธ < 0 . tan ฮธ = ยฑ sec 2 ฮธ โˆ’ 1 tan ฮธ = sec 2 ฮธ โˆ’ 1 = (โˆ’ 2) 2 โˆ’ 1 = 4 โˆ’ 1 = 3 sec ฮธ = โˆ’ 1 + tan 2 ฮธ 2 9 25 5 ๏ƒฆ3๏ƒถ = โˆ’ 1+ ๏ƒง ๏ƒท = โˆ’ 1+ =โˆ’ =โˆ’ 16 16 4 ๏ƒจ4๏ƒธ 1 4 cos ฮธ = =โˆ’ sec ฮธ 5 cos ฮธ = 1 1 =โˆ’ sec ฮธ 2 cot ฮธ = 1 1 3 3 = โ‹… = tan ฮธ 3 3 3 157 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions ฯ€ 2 3 ๏ƒฆ ฯ€๏ƒถ 75. sec ๏ƒง โˆ’ ๏ƒท = sec = 6 3 ๏ƒจ 6๏ƒธ sin ฮธ = โˆ’ 1 โˆ’ cos 2 ฮธ 2 1 3 3 ๏ƒฆ 1๏ƒถ = โˆ’ 1โˆ’ ๏ƒง โˆ’ ๏ƒท = โˆ’ 1โˆ’ = โˆ’ =โˆ’ 4 4 2 ๏ƒจ 2๏ƒธ ฯ€ 2 3 ๏ƒฆ ฯ€๏ƒถ 76. csc ๏ƒง โˆ’ ๏ƒท = โˆ’ csc = โˆ’ 3 3 3 ๏ƒจ ๏ƒธ 1 1 2 3 2 3 csc ฮธ = = =โˆ’ โ‹… =โˆ’ sin ฮธ ๏ƒฆ 3 3 3 3๏ƒถ ๏ƒงโˆ’ ๏ƒท ๏ƒจ 2 ๏ƒธ 77. sin 2 ( 40ยบ ) + cos 2 ( 40ยบ ) = 1 78. sec 2 (18ยบ ) โˆ’ tan 2 (18ยบ ) = 1 3 59. sin(โˆ’ 60ยบ ) = โˆ’ sin 60ยบ = โˆ’ 2 60. cos(โˆ’30ยบ ) = cos 30ยบ = 3 2 61. tan(โˆ’30ยบ ) = โˆ’ tan 30ยบ = โˆ’ 3 3 79. sin ( 80ยบ ) csc ( 80ยบ ) = sin ( 80ยบ ) โ‹… 1 =1 sin ( 80ยบ ) 80. tan (10ยบ ) cot (10ยบ ) = tan (10ยบ ) โ‹… 1 =1 tan (10ยบ ) 81. tan ( 40ยบ ) โˆ’ 2 62. sin(โˆ’135ยบ ) = โˆ’ sin135ยบ = โˆ’ 2 sin ( 40ยบ ) cos ( 40ยบ ) cos ( 20ยบ ) = tan ( 40ยบ ) โˆ’ tan ( 40ยบ ) = 0 63. sec(โˆ’ 60ยบ ) = sec 60ยบ = 2 82. cot ( 20ยบ ) โˆ’ 64. csc(โˆ’30ยบ ) = โˆ’ csc 30ยบ = โˆ’ 2 83. cos ( 400ยบ ) โ‹… sec ( 40ยบ ) = cos ( 40ยบ +360ยบ ) โ‹… sec ( 40ยบ ) sin ( 20ยบ ) = cot ( 20ยบ ) โˆ’ cot ( 20ยบ ) = 0 = cos ( 40ยบ ) โ‹… sec ( 40ยบ ) 65. sin(โˆ’90ยบ ) = โˆ’ sin 90ยบ = โˆ’1 = cos ( 40ยบ ) โ‹… 66. cos(โˆ’ 270ยบ ) = cos 270ยบ = 0 1 =1 cos ( 40ยบ ) 84. tan ( 200ยบ ) โ‹… cot ( 20ยบ ) = tan ( 20ยบ +180ยบ ) โ‹… cot ( 20ยบ ) ฯ€ ๏ƒฆ ฯ€๏ƒถ 67. tan ๏ƒง โˆ’ ๏ƒท = โˆ’ tan = โˆ’1 ๏ƒจ 4๏ƒธ 4 = tan ( 20ยบ ) โ‹… cot ( 20ยบ ) = tan ( 20ยบ ) โ‹… 68. sin(โˆ’ฯ€) = โˆ’ sin ฯ€ = 0 ฯ€ 2 ๏ƒฆ ฯ€๏ƒถ 69. cos ๏ƒง โˆ’ ๏ƒท = cos = 4 2 ๏ƒจ 4๏ƒธ 1 =1 tan ( 20ยบ ) ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 25ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 25ฯ€ ๏ƒถ 85. sin ๏ƒง โˆ’ ๏ƒท csc ๏ƒง ๏ƒท = โˆ’ sin ๏ƒง ๏ƒท csc ๏ƒง ๏ƒท ๏ƒจ 12 ๏ƒธ ๏ƒจ 12 ๏ƒธ ๏ƒจ 12 ๏ƒธ ๏ƒจ 12 ๏ƒธ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ ฯ€ 24ฯ€ ๏ƒถ = โˆ’ sin ๏ƒง ๏ƒท csc ๏ƒง + ๏ƒท ๏ƒจ 12 ๏ƒธ ๏ƒจ 12 12 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = โˆ’ sin ๏ƒง ๏ƒท csc ๏ƒง + 2ฯ€ ๏ƒท ๏ƒจ 12 ๏ƒธ ๏ƒจ 12 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = โˆ’ sin ๏ƒง ๏ƒท csc ๏ƒง ๏ƒท ๏ƒจ 12 ๏ƒธ ๏ƒจ 12 ๏ƒธ 1 ๏ƒฆฯ€ ๏ƒถ = โˆ’ sin ๏ƒง ๏ƒท โ‹… = โˆ’1 ๏ƒจ 12 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ sin ๏ƒง ๏ƒท ๏ƒจ 12 ๏ƒธ ฯ€ 3 ๏ƒฆ ฯ€๏ƒถ 70. sin ๏ƒง โˆ’ ๏ƒท = โˆ’ sin = โˆ’ 3 2 ๏ƒจ 3๏ƒธ 71. tan(โˆ’ฯ€) = โˆ’ tan ฯ€ = 0 3ฯ€ ๏ƒฆ 3ฯ€ ๏ƒถ 72. sin ๏ƒง โˆ’ ๏ƒท = โˆ’ sin = โˆ’(โˆ’1) = 1 2 ๏ƒจ 2 ๏ƒธ ฯ€ ๏ƒฆ ฯ€๏ƒถ 73. csc ๏ƒง โˆ’ ๏ƒท = โˆ’ csc = โˆ’ 2 4 4 ๏ƒจ ๏ƒธ 74. sec ( โˆ’ฯ€ ) = sec ฯ€ = โˆ’1 158 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.3: Properties of the Trigonometric Functions 92. If cot ฮธ = โˆ’ 2 , then ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 37ฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆ 37ฯ€ ๏ƒถ 86. sec ๏ƒง โˆ’ ๏ƒท cos ๏ƒง ๏ƒท = sec ๏ƒง ๏ƒท cos ๏ƒง ๏ƒท 18 18 18 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ 18 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆ ฯ€ 36ฯ€ ๏ƒถ = sec ๏ƒง ๏ƒท cos ๏ƒง + ๏ƒท 18 ๏ƒจ ๏ƒธ ๏ƒจ 18 18 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = sec ๏ƒง ๏ƒท cos ๏ƒง + 2ฯ€ ๏ƒท ๏ƒจ 18 ๏ƒธ ๏ƒจ 18 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ = sec ๏ƒง ๏ƒท cos ๏ƒง ๏ƒท 18 ๏ƒจ ๏ƒธ ๏ƒจ 18 ๏ƒธ 1 ๏ƒฆฯ€ ๏ƒถ = sec ๏ƒง ๏ƒท โ‹… =1 ๏ƒจ 18 ๏ƒธ sec ๏ƒฆ ฯ€ ๏ƒถ ๏ƒง ๏ƒท ๏ƒจ 18 ๏ƒธ 87. sin ( โˆ’20ยบ ) cos ( 380ยบ ) = = cot ฮธ + cot (ฮธ โˆ’ ฯ€ ) + cot (ฮธ โˆ’ 2ฯ€ ) = โˆ’ 2 + ( โˆ’2 ) + ( โˆ’2 ) = โˆ’6 93. sin1ยบ + sin 2ยบ + sin 3ยบ +… + sin 357ยบ + sin 358ยบ + sin 359ยบ = sin1ยบ + sin 2ยบ + sin 3ยบ + โ‹…โ‹…โ‹… + sin(360ยบ โˆ’3ยบ ) + sin(360ยบ โˆ’ 2ยบ ) + sin(360ยบ โˆ’1ยบ ) = sin1ยบ + sin 2ยบ + sin 3ยบ + โ‹…โ‹…โ‹… + sin(โˆ’3ยบ ) + sin( โˆ’ 2ยบ ) + sin(โˆ’1ยบ ) = sin1ยบ + sin 2ยบ + sin 3ยบ + โ‹…โ‹…โ‹… โˆ’ sin 3ยบ โˆ’ sin 2ยบ โˆ’ sin1ยบ = sin (180ยบ ) = 0 + tan ( 200ยบ ) โˆ’ sin ( 20ยบ ) cos ( 20ยบ +360ยบ ) โˆ’ sin ( 20ยบ ) cos ( 20ยบ ) 94. cos1ยบ + cos 2ยบ + cos 3ยบ + โ‹…โ‹…โ‹… + cos 357ยบ + cos 358ยบ + cos 359ยบ = cos1ยบ + cos 2ยบ + cos 3ยบ +… + cos(360ยบ โˆ’3ยบ ) + cos(360ยบ โˆ’ 2ยบ ) + cos(360ยบ โˆ’1ยบ ) = cos1ยบ + cos 2ยบ + cos 3ยบ +… + cos(โˆ’3ยบ ) + cos(โˆ’ 2ยบ ) + cos(โˆ’1ยบ ) = cos1ยบ + cos 2ยบ + cos 3ยบ +… + cos 3ยบ + cos 2ยบ + cos1ยบ = 2 cos1ยบ +2 cos 2ยบ +2 cos 3ยบ +… + 2 cos178ยบ + 2 cos179ยบ + cos180ยบ = 2 cos1ยบ +2 cos 2ยบ +2 cos 3ยบ +… + 2 cos(180ยบ โˆ’ 2ยบ ) + tan ( 20ยบ +180ยบ ) + tan ( 20ยบ ) = โˆ’ tan ( 20ยบ ) + tan ( 20ยบ ) = 0 88. sin ( 70ยบ ) cos ( โˆ’430ยบ ) = = = sin ( 70ยบ ) + tan ( โˆ’70ยบ ) cos ( 430ยบ ) โˆ’ tan ( 70ยบ ) sin ( 70ยบ ) cos ( 70ยบ +360ยบ ) sin ( 70ยบ ) cos ( 70ยบ ) + 2 cos(180ยบ โˆ’1ยบ ) + cos (180ยบ ) = 2 cos1ยบ +2 cos 2ยบ +2 cos 3ยบ +… โˆ’ 2 cos 2ยบ โˆ’ 2 cos1ยบ + cos180ยบ = cos180ยบ = โˆ’1 โˆ’ tan ( 70ยบ ) โˆ’ tan ( 70ยบ ) 95. The domain of the sine function is the set of all real numbers. = tan ( 70ยบ ) โˆ’ tan ( 70ยบ ) = 0 96. The domain of the cosine function is the set of all real numbers. 89. If sin ฮธ = 0.3 , then sin ฮธ + sin (ฮธ + 2ฯ€ ) + sin (ฮธ + 4ฯ€ ) = 0.3 + 0.3 + 0.3 = 0.9 97. 90. If cos ฮธ = 0.2 , then cos ฮธ + cos (ฮธ + 2ฯ€ ) + cos (ฮธ + 4ฯ€ ) f (ฮธ ) = tan ฮธ is not defined for numbers that are odd multiples of = โˆ’0.2 + 0.2 + 0.2 = 0.6 91. If tan ฮธ = 3 , then tan ฮธ + tan (ฮธ + ฯ€ ) + tan (ฮธ + 2ฯ€ ) = 3+3+3 = 9 ฯ€ . 2 98. f (ฮธ ) = cot ฮธ is not defined for numbers that are multiples of ฯ€ . 99. f (ฮธ ) = sec ฮธ is not defined for numbers that are odd multiples of 159 Copyright ยฉ 2016 Pearson Education, Inc. ฯ€ . 2 Chapter 2: Trigonometric Functions 100. f (ฮธ ) = csc ฮธ is not defined for numbers that are multiples of ฯ€ . 114. a. b. 101. The range of the sine function is the set of all real numbers between โˆ’1 and 1, inclusive. f (โˆ’a) = f (a) = f (a) + f (a + 2ฯ€) + f (a โˆ’ 2ฯ€) = f (a ) + f (a ) + f (a) 1 1 1 + + 4 4 4 3 = 4 = 102. The range of the cosine function is the set of all real numbers between โˆ’1 and 1, inclusive. 103. The range of the tangent function is the set of all real numbers. 115. a. 104. The range of the cotangent function is the set of all real numbers. b. 105. The range of the secant function is the set of all real numbers greater than or equal to 1 and all real numbers less than or equal to โˆ’1 . f (โˆ’a ) = โˆ’ f (a ) = โˆ’ 2 f ( a ) + f ( a + ฯ€) + f ( a + 2 ฯ€) = f (a) + f (a) + f (a) = 2+2+2 = 6 106. The range of the cosecant function is the set of all real number greater than or equal to 1 and all real numbers less than or equal to โˆ’1 . 107. The sine function is odd because sin(โˆ’ฮธ ) = โˆ’ sin ฮธ . Its graph is symmetric with respect to the origin. 116. a. f (โˆ’a ) = โˆ’ f (a ) = โˆ’ (โˆ’3) = 3 b. f ( a ) + f ( a + ฯ€) + f ( a + 4 ฯ€) = f (a) + f (a) + f (a) = โˆ’3 + (โˆ’3) + (โˆ’3) = โˆ’9 117. a. b. 108. The cosine function is even because cos(โˆ’ฮธ ) = cos ฮธ . Its graph is symmetric with respect to the y-axis. 109. The tangent function is odd because tan(โˆ’ฮธ ) = โˆ’ tan ฮธ . Its graph is symmetric with respect to the origin. 118. a. b. 110. The cotangent function is odd because cot(โˆ’ฮธ ) = โˆ’ cot ฮธ . Its graph is symmetric with respect to the origin. f (โˆ’a) = f (a) = โˆ’ 4 f (a) + f (a + 2ฯ€) + f (a + 4ฯ€) = f (a ) + f (a ) + f (a) = โˆ’ 4 + (โˆ’ 4) + (โˆ’ 4) = โˆ’12 f (โˆ’a ) = โˆ’ f (a ) = โˆ’ 2 f (a) + f (a + 2ฯ€) + f (a + 4ฯ€) = f (a ) + f (a ) + f (a) = 2+2+2 =6 111. The secant function is even because sec(โˆ’ฮธ ) = sec ฮธ . Its graph is symmetric with respect to the y-axis. 119. Since tan ฮธ = 112. The cosecant function is odd because csc(โˆ’ฮธ ) = โˆ’ csc ฮธ . Its graph is symmetric with respect to the origin. r = 10 113. a. b. f (โˆ’a) = โˆ’ f (a) = โˆ’ 1 4 500 1 y = = , then 1500 3 x r 2 = x 2 + y 2 = 9 + 1 = 10 sin ฮธ = 1 = 1 . 1+ 9 10 5 5 T = 5โˆ’ + ๏ƒฆ 1๏ƒถ ๏ƒฆ 1 ๏ƒถ ๏ƒง3โ‹… ๏ƒท ๏ƒง ๏ƒท ๏ƒจ 3 ๏ƒธ ๏ƒจ 10 ๏ƒธ 1 3 f (a) + f (a + 2ฯ€) + f (a + 4ฯ€) = f (a ) + f (a ) + f (a) = 5 โˆ’ 5 + 5 10 1 1 1 = + + =1 3 3 3 = 5 10 โ‰ˆ 15.8 minutes 160 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.3: Properties of the Trigonometric Functions 120. a. 123. Suppose there is a number p, 0 < p < 2ฯ€ for 1 y ฯ€ = for 0 < ฮธ < . 4 x 2 2 2 2 r = x + y = 16 + 1 = 17 tan ฮธ = which sin(ฮธ + p ) = sin ฮธ for all ฮธ . If ฮธ = 0 , then sin ( 0 + p ) = sin p = sin 0 = 0 ; so that r = 17 Thus, sin ฮธ = 1 . 17 2 1 T (ฮธ ) = 1 + โˆ’ 1 ๏ƒถ ๏ƒฆ 1๏ƒถ ๏ƒฆ ๏ƒง 3โ‹… ๏ƒท ๏ƒง4โ‹… ๏ƒท 17 ๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ = 1+ 2 17 2 17 โˆ’1 = โ‰ˆ 2.75 hours 3 3 124. Suppose there is a number p, 0 < p < 2ฯ€ , for 1 b. Since tan ฮธ = , x = 4 . Sally heads 4 directly across the sand to the bridge, crosses the bridge, and heads directly across the sand to the other house. c. which cos(ฮธ + p) = cos ฮธ for all ฮธ . If ฮธ = p = ฯ€ . Thus cos ( ฯ€ ) = โˆ’1 = cos ( 0 ) = 1 , or not be reached and she cannot get across the river. โˆ’1 = 1 . This is impossible. The smallest positive number p for which cos(ฮธ + p) = cos ฮธ for all ฮธ must then be p = 2ฯ€ . 121. Let P = ( x, y ) be the point on the unit circle that corresponds to an angle t. Consider the equation y tan t = = a . Then y = ax . Now x 2 + y 2 = 1 , x 1 2 and so x + a 2 x 2 = 1 . Thus, x = ยฑ 1 + a2 a . That is, for any real number a , y=ยฑ 1 + a2 there is a point P = ( x, y ) on the unit circle for which tan t = a . In other words, โˆ’โˆž < tan t < โˆž , and the range of the tangent function is the set of all real numbers. 1 : Since cos ฮธ has period 2ฯ€ , so cos ฮธ does sec ฮธ . 125. sec ฮธ = 1 : Since sin ฮธ has period 2ฯ€ , so sin ฮธ does csc ฮธ . 126. csc ฮธ = 127. If P = (a, b) is the point on the unit circle corresponding to ฮธ , then Q = (โˆ’a, โˆ’b) is the point on the unit circle corresponding to ฮธ + ฯ€ . โˆ’b b Thus, tan(ฮธ + ฯ€) = = = tan ฮธ . If there โˆ’a a exists a number p, 0 < p < ฯ€ , for which 122. Let P = ( x, y ) be the point on the unit circle that corresponds to an angle t. Consider the equation x cot t = = a . Then x = ay . Now x 2 + y 2 = 1 , y x=ยฑ 1 1 + a2 ฯ€ , 2 ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€๏ƒถ then cos ๏ƒง + p ๏ƒท = cos ๏ƒง ๏ƒท = 0 ; so that p = ฯ€ . 2 ๏ƒจ ๏ƒธ ๏ƒจ2๏ƒธ If ฮธ = 0 , then cos ( 0 + p ) = cos ( 0 ) . But ฮธ must be larger than 14ยบ , or the road will so a 2 y 2 + y 2 = 1 . Thus, y = ยฑ ฯ€ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€๏ƒถ then sin ๏ƒง + p ๏ƒท = sin ๏ƒง ๏ƒท . 2 ๏ƒจ2 ๏ƒธ ๏ƒจ2๏ƒธ ฯ€ 3 ๏ƒฆ ๏ƒถ ๏ƒฆฯ€๏ƒถ But p = ฯ€ . Thus, sin ๏ƒง ๏ƒท = โˆ’1 = sin ๏ƒง ๏ƒท = 1 , ๏ƒจ 2 ๏ƒธ ๏ƒจ2๏ƒธ or โˆ’1 = 1 . This is impossible. The smallest positive number p for which sin(ฮธ + p ) = sin ฮธ for all ฮธ must then be p = 2ฯ€ . p = ฯ€ . If ฮธ = tan(ฮธ + p ) = tan ฮธ for all ฮธ , then if ฮธ = 0 , tan ( p ) = tan ( 0 ) = 0. But this means that p is a and multiple of ฯ€ . Since no multiple of ฯ€ exists in the interval ( 0, ฯ€ ) , this is impossible. Therefore, a . That is, for any real number a , 1 + a2 there is a point P = ( x, y ) on the unit circle for which cot t = a . In other words, โˆ’โˆž < cot t < โˆž , and the range of the tangent function is the set of all real numbers. the fundamental period of f (ฮธ ) = tan ฮธ is ฯ€ . 161 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions The graph would be shifted horizontally to the right 3 units, stretched by a factor of 2, reflected about the x-axis and then shifted vertically up by 5 units. So the graph would be: 1 : Since tan ฮธ has period ฯ€ , so tanฮธ does cot ฮธ . 128. cot ฮธ = 129. Let P = (a, b) be the point on the unit circle corresponding to ฮธ . Then csc ฮธ = 1 1 = b sin ฮธ 1 1 = a cos ฮธ a 1 1 cot ฮธ = = = b b ๏ƒฆ ๏ƒถ tan ฮธ ๏ƒง ๏ƒท ๏ƒจa๏ƒธ sec ฮธ = 130. Let P = (a, b) be the point on the unit circle corresponding to ฮธ . Then b sin ฮธ tan ฮธ = = a cos ฮธ a cos ฮธ cot ฮธ = = b sin ฮธ 139. f (25) = 3 25 โˆ’ 9 + 6 = 3 16 + 6 = 12 + 6 = 18 So the point (25,18) is on the graph. 140. y = (0)3 โˆ’ 9(0) 2 + 3(0) โˆ’ 27 = โˆ’27 Thus the y-intercept is (0, โˆ’27) . 131. (sin ฮธ cos ฯ† ) 2 + (sin ฮธ sin ฯ† ) 2 + cos 2 ฮธ = sin 2 ฮธ cos 2 ฯ† + sin 2 ฮธ sin 2 ฯ† + cos 2 ฮธ = sin 2 ฮธ (cos 2 ฯ† + sin 2 ฯ† ) + cos 2 ฮธ = sin 2 ฮธ + cos 2 ฮธ =1 132 โ€“ 136. Answers will vary. Section 2.4 ( โˆ’ x)4 + 3 x 4 + 3 = = f ( x) . Thus, ( โˆ’ x) 2 โˆ’ 5 x 2 โˆ’ 5 f ( x) is even. 138. We need to use completing the square to put the function in the form f ( x ) = a ( x โˆ’ h) 2 + k 137. 1. y = 3x 2 f ( โˆ’ x) = Using the graph of y = x 2 , vertically stretch the graph by a factor of 3. f ( x) = โˆ’2 x 2 + 12 x โˆ’ 13 = โˆ’2( x 2 โˆ’ 6 x) โˆ’ 13 = โˆ’2 x 2 โˆ’ 6 x + 144 4( 2) 2 โˆ’ 13 + 2 144 4( 2) 2 = โˆ’2( x 2 โˆ’ 6 x + 9) โˆ’ 13 + 18 = โˆ’2( x 2 โˆ’ 6 x + 9) + 5 = โˆ’2( x โˆ’ 3) 2 + 5 162 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions g. 2. y = 2 x Using the graph of y = x , compress horizontally by a factor of 1 . 2 The graph of y = cos x crosses the y-axis at the point (0, 1), so the y-intercept is 1. b. The graph of y = cos x is decreasing for 0< x<ฯ€. c. The smallest value of y = cos x is โˆ’1 . 12. a. d. e. ฯ€ 3ฯ€ , 2 2 cos x = 1 when x = โˆ’ 2ฯ€, 0, 2ฯ€; cos x = 0 when x = cos x = โˆ’1 when x = โˆ’ฯ€, ฯ€. ฯ€ 3. 1; 2 3 11ฯ€ ฯ€ ฯ€ 11ฯ€ when x = โˆ’ ,โˆ’ , , 2 6 6 6 6 g. The x-intercepts of cos x are ๏ƒฌ๏ƒฏ ๏ƒผ๏ƒฏ ( 2k + 1) ฯ€ , k an integer ๏ƒฝ ๏ƒญx | x = 2 ๏ƒฏ๏ƒฎ ๏ƒพ๏ƒฏ 13. y = 2sin x cos x = f. 4. 3; ฯ€ 5. 3; The x-intercepts of sin x are { x | x = kฯ€ , k an integer} 2ฯ€ ฯ€ = 6 3 This is in the form y = A sin(ฯ‰ x) where A = 2 6. True 7. False; The period is 2ฯ€ ฯ€ and ฯ‰ = 1 . Thus, the amplitude is A = 2 = 2 = 2. and the period is T = 8. True 2ฯ€ ฯ‰ = 2ฯ€ = 2ฯ€ . 1 14. y = 3cos x 9. d This is in the form y = A cos(ฯ‰ x) where A = 3 10. d and ฯ‰ = 1 . Thus, the amplitude is A = 3 = 3 11. a. and the period is T = The graph of y = sin x crosses the y-axis at the point (0, 0), so the y-intercept is 0. ฯ€ ฯ€ <x< . 2 2 The largest value of y = sin x is 1. d. sin x = 0 when x = 0, ฯ€, 2ฯ€ . e. sin x = 1 when x = โˆ’ T= 2ฯ€ = 2ฯ€ . 1 2ฯ€ ฯ‰ = 2ฯ€ = ฯ€. 2 ๏ƒฆ1 ๏ƒถ 16. y = โˆ’ sin ๏ƒง x ๏ƒท ๏ƒจ2 ๏ƒธ This is in the form y = A sin(ฯ‰ x) where A = โˆ’1 3ฯ€ ฯ€ , ; 2 2 ฯ€ 3ฯ€ sin x = โˆ’1 when x = โˆ’ , . 2 2 sin x = โˆ’ = A = โˆ’ 4 = 4 and the period is c. f. ฯ‰ 15. y = โˆ’ 4 cos(2 x) This is in the form y = A cos(ฯ‰ x) where A = โˆ’ 4 and ฯ‰ = 2 . Thus, the amplitude is b. The graph of y = sin x is increasing for โˆ’ 2ฯ€ 1 . Thus, the amplitude is A = โˆ’ 1 = 1 2 2ฯ€ 2ฯ€ = 1 = 4ฯ€ . and the period is T = and ฯ‰ = 1 5ฯ€ ฯ€ 7ฯ€ 11ฯ€ when x = โˆ’ ,โˆ’ , , 2 6 6 6 6 ฯ‰ 163 Copyright ยฉ 2016 Pearson Education, Inc. 2 Chapter 2: Trigonometric Functions 17. y = 6sin(ฯ€ x) This is in the form y = A sin(ฯ‰ x) where A = 6 9 ๏ƒฆ 3ฯ€ ๏ƒถ 9 ๏ƒฆ 3ฯ€ ๏ƒถ x ๏ƒท = cos ๏ƒง x๏ƒท 22. y = cos ๏ƒง โˆ’ 5 2 5 ๏ƒจ ๏ƒธ ๏ƒจ 2 ๏ƒธ and ฯ‰ = ฯ€ . Thus, the amplitude is A = 6 = 6 and the period is T = 2ฯ€ ฯ‰ = This is in the form y = A cos(ฯ‰ x) where A = 2ฯ€ =2. ฯ€ 3ฯ€ . Thus, the amplitude is 2 9 9 A = = and the period is 5 5 2ฯ€ 2ฯ€ 4 = = . T= ฯ‰ 3ฯ€ 3 and ฯ‰ = 18. y = โˆ’ 3cos(3x) This is in the form y = A cos(ฯ‰ x) where A = โˆ’ 3 and ฯ‰ = 3 . Thus, the amplitude is A = โˆ’ 3 = 3 and the period is T = 2ฯ€ ฯ‰ = 2ฯ€ . 3 2 23. F 1 ๏ƒฆ3 ๏ƒถ 19. y = โˆ’ cos ๏ƒง x ๏ƒท 2 ๏ƒจ2 ๏ƒธ This is in the form y = A cos(ฯ‰ x) where 24. E 25. A 1 3 and ฯ‰ = . Thus, the amplitude is 2 2 1 1 A = โˆ’ = and the period is 2 2 2ฯ€ 2ฯ€ 4ฯ€ = 3 = . T= ฯ‰ 3 2 A=โˆ’ 26. I 27. H 28. B 29. C 4 ๏ƒฆ2 ๏ƒถ 20. y = sin ๏ƒง x ๏ƒท 3 ๏ƒจ3 ๏ƒธ 30. G This is in the form y = A sin(ฯ‰ x) where A = 4 3 31. J 32. D 2 4 4 . Thus, the amplitude is A = = 3 3 3 2ฯ€ 2ฯ€ = 2 = 3ฯ€ . and the period is T = and ฯ‰ = ฯ‰ 33. Comparing y = 4 cos x to y = A cos (ฯ‰ x ) , we find A = 4 and ฯ‰ = 1 . Therefore, the amplitude 2ฯ€ is 4 = 4 and the period is = 2ฯ€ . Because 1 the amplitude is 4, the graph of y = 4 cos x will lie between โˆ’4 and 4 on the y-axis. Because the period is 2ฯ€ , one cycle will begin at x = 0 and end at x = 2ฯ€ . We divide the interval [ 0, 2ฯ€ ] 3 5 ๏ƒฆ 2ฯ€ ๏ƒถ 5 ๏ƒฆ 2ฯ€ ๏ƒถ x ๏ƒท = โˆ’ sin ๏ƒง x๏ƒท 21. y = sin ๏ƒง โˆ’ 3 ๏ƒจ 3 ๏ƒธ 3 ๏ƒจ 3 ๏ƒธ This is in the form y = A sin(ฯ‰ x) where A = โˆ’ 5 3 2ฯ€ . Thus, the amplitude is 3 5 5 A = โˆ’ = and the period is 3 3 2ฯ€ 2ฯ€ = = 3. T= and ฯ‰ = ฯ‰ 9 5 into four subintervals, each of length 2ฯ€ ฯ€ = by 4 2 finding the following values: ฯ€ 3ฯ€ , and 2ฯ€ 0, , ฯ€ , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = 4 cos x , we multiply the y-coordinates of the five key points for y = cos x by A = 4 . The five key points are 2ฯ€ 3 164 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions direction to obtain the graph shown below. ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ , 0 ๏ƒท , (ฯ€ , โˆ’4 ) , ๏ƒง , 0 ๏ƒท , ( 2ฯ€ , 4 ) 2 ๏ƒจ ๏ƒธ ๏ƒจ 2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. ( 0, 4 ) , ๏ƒฆ๏ƒง ฯ€ From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’3,3] . 35. Comparing y = โˆ’4sin x to y = A sin (ฯ‰ x ) , we From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the find A = โˆ’4 and ฯ‰ = 1 . Therefore, the amplitude 2ฯ€ is โˆ’4 = 4 and the period is = 2ฯ€ . Because 1 the amplitude is 4, the graph of y = โˆ’4sin x will lie between โˆ’4 and 4 on the y-axis. Because the period is 2ฯ€ , one cycle will begin at x = 0 and end at x = 2ฯ€ . We divide the interval [ 0, 2ฯ€ ] range is [ โˆ’4, 4] . 34. Comparing y = 3sin x to y = A sin (ฯ‰ x ) , we find A = 3 and ฯ‰ = 1 . Therefore, the amplitude 2ฯ€ is 3 = 3 and the period is = 2ฯ€ . Because 1 the amplitude is 3, the graph of y = 3sin x will lie between โˆ’3 and 3 on the y-axis. Because the period is 2ฯ€ , one cycle will begin at x = 0 and end at x = 2ฯ€ . We divide the interval [ 0, 2ฯ€ ] into four subintervals, each of length 2ฯ€ ฯ€ = by 4 2 ฯ€ 3ฯ€ finding the following values: 0, , ฯ€ , , 2ฯ€ 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = โˆ’4sin x , we multiply the y-coordinates of into four subintervals, each of length 2ฯ€ ฯ€ = by 4 2 finding the following values: ฯ€ 3ฯ€ 0, , ฯ€ , , and 2ฯ€ 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = 3sin x , we multiply the y-coordinates of the five key points for y = sin x by A = 3 . The five key the five key points for y = sin x by A = โˆ’4 . The five key points are ฯ€ 3ฯ€ ( 0, 0 ) , ๏ƒฆ๏ƒง , โˆ’4 ๏ƒถ๏ƒท , (ฯ€ , 0 ) , ๏ƒฆ๏ƒง , 4 ๏ƒถ๏ƒท , ( 2ฯ€ , 0 ) 2 ๏ƒจ ๏ƒธ ๏ƒจ 2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. ๏ƒฆฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ points are ( 0, 0 ) , ๏ƒง ,3 ๏ƒท , (ฯ€ , 0 ) , ๏ƒง , โˆ’3 ๏ƒท , 2 2 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ( 2ฯ€ , 0 ) We plot these five points and fill in the graph of the curve. We then extend the graph in either 165 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 37. Comparing y = cos ( 4 x ) to y = A cos (ฯ‰ x ) , we From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the find A = 1 and ฯ‰ = 4 . Therefore, the amplitude 2ฯ€ ฯ€ = . Because the is 1 = 1 and the period is 4 2 amplitude is 1, the graph of y = cos ( 4 x ) will lie range is [ โˆ’4, 4] . 36. Comparing y = โˆ’3cos x to y = A cos (ฯ‰ x ) , we find A = โˆ’3 and ฯ‰ = 1 . Therefore, the amplitude 2ฯ€ = 2ฯ€ . Because is โˆ’3 = 3 and the period is 1 the amplitude is 3, the graph of y = โˆ’3cos x will lie between โˆ’3 and 3 on the y-axis. Because the period is 2ฯ€ , one cycle will begin at x = 0 and end at x = 2ฯ€ . We divide the interval [ 0, 2ฯ€ ] into four subintervals, each of length between โˆ’1 and 1 on the y-axis. Because the period is ฯ€ 2 , one cycle will begin at x = 0 and ฯ€ ๏ƒฉ ฯ€๏ƒน . We divide the interval ๏ƒช 0, ๏ƒบ ๏ƒซ 2๏ƒป ฯ€ /2 ฯ€ = into four subintervals, each of length 4 8 by finding the following values: ฯ€ ฯ€ 3ฯ€ ฯ€ , and 0, , , 8 4 8 2 These values of x determine the x-coordinates of the five key points on the graph. The five key points are ฯ€ ฯ€ 3ฯ€ ฯ€ ( 0,1) , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , โˆ’1๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง ,1๏ƒถ๏ƒท ๏ƒธ ๏ƒจ 8 ๏ƒธ ๏ƒจ2 ๏ƒธ ๏ƒจ8 ๏ƒธ ๏ƒจ4 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. end at x = 2ฯ€ ฯ€ = by 4 2 finding the following values: ฯ€ 3ฯ€ 0, , ฯ€ , , and 2ฯ€ 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = โˆ’3cos x , we multiply the y-coordinates of the five key points for y = cos x by A = โˆ’3 . The five key points are ฯ€ 3ฯ€ ( 0, โˆ’3) , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , (ฯ€ ,3) , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , ( 2ฯ€ , โˆ’3) 2 ๏ƒจ ๏ƒธ ๏ƒจ 2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. y 5 (, 3) (, 3) 3 ( โ€“โ€“โ€“ , 0) 2 x 2 2 , 0) ( โ€“โ€“ 2 (0, 3) (2, 3) 5 2 From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’1,1] . From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’3,3] . 166 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions y-axis. Because the period is ฯ€ , one cycle will begin at x = 0 and end at x = ฯ€ . We divide the interval [ 0, ฯ€ ] into four subintervals, each of 38. Comparing y = sin ( 3x ) to y = A sin (ฯ‰ x ) , we find A = 1 and ฯ‰ = 3 . Therefore, the amplitude 2ฯ€ . Because the is 1 = 1 and the period is 3 amplitude is 1, the graph of y = sin ( 3x ) will lie length ฯ€ 4 by finding the following values: ฯ€ 3ฯ€ , , , and ฯ€ 4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = โˆ’ sin ( 2 x ) , we multiply the y-coordinates of between โˆ’1 and 1 on the y-axis. Because the 2ฯ€ period is , one cycle will begin at x = 0 and 3 2ฯ€ ๏ƒฉ 2ฯ€ ๏ƒน . We divide the interval ๏ƒช 0, ๏ƒบ end at x = 3 ๏ƒซ 3 ๏ƒป 2ฯ€ / 3 ฯ€ = into four subintervals, each of length 4 6 by finding the following values: ฯ€ ฯ€ ฯ€ 2ฯ€ 0, , , , and 6 3 2 3 These values of x determine the x-coordinates of the five key points on the graph. The five key points are ฯ€ ฯ€ ฯ€ 2ฯ€ ( 0, 0 ) , ๏ƒฆ๏ƒง ,1๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , โˆ’1๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท 6 3 2 ๏ƒธ ๏ƒจ 3 ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. 0, ฯ€ the five key points for y = sin x by A = โˆ’1 .The five key points are ฯ€ ฯ€ 3ฯ€ ( 0, 0 ) , ๏ƒฆ๏ƒง , โˆ’1๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง ,1๏ƒถ๏ƒท , (ฯ€ , 0 ) ๏ƒจ4 ๏ƒธ ๏ƒจ2 ๏ƒธ ๏ƒจ 4 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. y 2 3 , 1) (, 0) โ€“โ€“โ€“ , 1) ( โ€“โ€“โ€“ ( 4 4 2 2 x (0, 0) , 0) (โ€“โ€“ 2 , 1) 2 (โ€“โ€“ 4 From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’1,1] . 40. Since cosine is an even function, we can plot the equivalent form y = cos ( 2 x ) . Comparing y = cos ( 2 x ) to y = A cos (ฯ‰ x ) , we From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the find A = 1 and ฯ‰ = 2 . Therefore, the amplitude 2ฯ€ is 1 = 1 and the period is = ฯ€ . Because the 2 amplitude is 1, the graph of y = cos ( 2 x ) will lie range is [ โˆ’1,1] . 39. Since sine is an odd function, we can plot the equivalent form y = โˆ’ sin ( 2 x ) . between โˆ’1 and 1 on the y-axis. Because the period is ฯ€ , one cycle will begin at x = 0 and end at x = ฯ€ . We divide the interval [ 0, ฯ€ ] into Comparing y = โˆ’ sin ( 2 x ) to y = A sin (ฯ‰ x ) , we find A = โˆ’1 and ฯ‰ = 2 . Therefore, the 2ฯ€ amplitude is โˆ’1 = 1 and the period is =ฯ€ . 2 Because the amplitude is 1, the graph of y = โˆ’ sin ( 2 x ) will lie between โˆ’1 and 1 on the four subintervals, each of length the following values: ฯ€ ฯ€ 3ฯ€ , and ฯ€ 0, , , 4 2 4 167 Copyright ยฉ 2016 Pearson Education, Inc. ฯ€ 4 by finding Chapter 2: Trigonometric Functions These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = cos ( 2 x ) , we multiply the y-coordinates of the five key points for y = sin x by A = 2 . The five key points are ( 0, 0 ) , (ฯ€ , 2 ) , ( 2ฯ€ , 0 ) , ( 3ฯ€ , โˆ’2 ) , ( 4ฯ€ , 0 ) We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. the five key points for y = cos x by A = 1 .The five key points are ฯ€ ฯ€ 3ฯ€ ( 0,1) , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , โˆ’1๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , (ฯ€ ,1) ๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ4 ๏ƒธ ๏ƒจ2 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’2, 2] . ๏ƒฆ1 ๏ƒถ 42. Comparing y = 2 cos ๏ƒง x ๏ƒท to y = A cos (ฯ‰ x ) , ๏ƒจ4 ๏ƒธ 1 we find A = 2 and ฯ‰ = . Therefore, the 4 2ฯ€ amplitude is 2 = 2 and the period is = 8ฯ€ . 1/ 4 Because the amplitude is 2, the graph of ๏ƒฆ1 ๏ƒถ y = 2 cos ๏ƒง x ๏ƒท will lie between โˆ’2 and 2 on ๏ƒจ4 ๏ƒธ the y-axis. Because the period is 8ฯ€ , one cycle will begin at x = 0 and end at x = 8ฯ€ . We divide the interval [ 0,8ฯ€ ] into four subintervals, From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’1,1] . ๏ƒฆ1 ๏ƒถ 41. Comparing y = 2sin ๏ƒง x ๏ƒท to y = A sin (ฯ‰ x ) , ๏ƒจ2 ๏ƒธ 1 we find A = 2 and ฯ‰ = . Therefore, the 2 2ฯ€ = 4ฯ€ . amplitude is 2 = 2 and the period is 1/ 2 Because the amplitude is 2, the graph of ๏ƒฆ1 ๏ƒถ y = 2sin ๏ƒง x ๏ƒท will lie between โˆ’2 and 2 on the ๏ƒจ2 ๏ƒธ y-axis. Because the period is 4ฯ€ , one cycle will begin at x = 0 and end at x = 4ฯ€ . We divide the interval [ 0, 4ฯ€ ] into four subintervals, each of length each of length 8ฯ€ = 2ฯ€ by finding the following 4 values: 0, 2ฯ€ , 4ฯ€ , 6ฯ€ , and 8ฯ€ These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for ๏ƒฆ1 ๏ƒถ y = 2 cos ๏ƒง x ๏ƒท , we multiply the y-coordinates ๏ƒจ4 ๏ƒธ of the five key points for y = cos x by A = 2 .The five key points are ( 0, 2 ) , ( 2ฯ€ , 0 ) , ( 4ฯ€ , โˆ’2 ) , ( 6ฯ€ , 0 ) , (8ฯ€ , 2 ) 4ฯ€ = ฯ€ by finding the following 4 values: 0, ฯ€ , 2ฯ€ , 3ฯ€ , and 4ฯ€ These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for ๏ƒฆ1 ๏ƒถ y = 2sin ๏ƒง x ๏ƒท , we multiply the y-coordinates of ๏ƒจ2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either 168 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions direction to obtain the graph shown below. direction to obtain the graph shown below. y (2, 0) (0, 2) (8, 2) 2 (8, 2) (2, 0) (6, 0) x 8 4 4 8 (4, 2) 2 (4, 2) From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’2, 2] . ๏ƒฉ 1 1๏ƒน range is ๏ƒช โˆ’ , ๏ƒบ . ๏ƒซ 2 2๏ƒป 1 43. Comparing y = โˆ’ cos ( 2 x ) to y = A cos (ฯ‰ x ) , 2 1 we find A = โˆ’ and ฯ‰ = 2 . Therefore, the 2 1 1 2ฯ€ amplitude is โˆ’ = and the period is =ฯ€ . 2 2 2 1 Because the amplitude is , the graph of 2 1 1 1 y = โˆ’ cos ( 2 x ) will lie between โˆ’ and on 2 2 2 the y-axis. Because the period is ฯ€ , one cycle will begin at x = 0 and end at x = ฯ€ . We divide the interval [ 0, ฯ€ ] into four subintervals, each of length ฯ€ 4 ๏ƒฆ1 ๏ƒถ 44. Comparing y = โˆ’4sin ๏ƒง x ๏ƒท to y = A sin (ฯ‰ x ) , ๏ƒจ8 ๏ƒธ 1 we find A = โˆ’4 and ฯ‰ = . Therefore, the 8 amplitude is โˆ’4 = 4 and the period is 2ฯ€ = 16ฯ€ . Because the amplitude is 4, the 1/ 8 ๏ƒฆ1 ๏ƒถ graph of y = โˆ’4sin ๏ƒง x ๏ƒท will lie between โˆ’4 ๏ƒจ8 ๏ƒธ and 4 on the y-axis. Because the period is 16ฯ€ , one cycle will begin at x = 0 and end at x = 16ฯ€ . We divide the interval [ 0,16ฯ€ ] into by finding the following values: ฯ€ 3ฯ€ , , , and ฯ€ 4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 1 y = โˆ’ cos ( 2 x ) , we multiply the y-coordinates 2 of the five key points for y = cos x by 0, ฯ€ four subintervals, each of length 16ฯ€ = 4ฯ€ by 4 finding the following values: 0, 4ฯ€ , 8ฯ€ , 12ฯ€ , and 16ฯ€ These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for ๏ƒฆ1 ๏ƒถ y = โˆ’4sin ๏ƒง x ๏ƒท , we multiply the y-coordinates ๏ƒจ8 ๏ƒธ of the five key points for y = sin x by A = โˆ’4 . The five key points are ( 0, 0 ) , ( 4ฯ€ , โˆ’4 ) , (8ฯ€ , 0 ) , (12ฯ€ , 4 ) , (16ฯ€ , 0 ) 1 A = โˆ’ .The five key points are 2 1 ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ ฯ€ 1 ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ 1๏ƒถ ๏ƒฆ ๏ƒง 0, โˆ’ ๏ƒท , ๏ƒง , 0 ๏ƒท , ๏ƒง , ๏ƒท , ๏ƒง , 0 ๏ƒท , ๏ƒง ฯ€ , โˆ’ ๏ƒท 2๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ 2 2๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ 2๏ƒธ ๏ƒจ We plot these five points and fill in the graph of the curve. We then extend the graph in either We plot these five points and fill in the graph of the curve. We then extend the graph in either 169 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions direction to obtain the graph shown below. direction to obtain the graph shown below. y 5 (12, 4) (0, 0) 16 x (16, 0) 8 (8, 0) 5 (4, 4) From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’4, 4] . range is [1,5] . 45. We begin by considering y = 2sin x . Comparing y = 2sin x to y = A sin (ฯ‰ x ) , we find A = 2 46. We begin by considering y = 3cos x . Comparing and ฯ‰ = 1 . Therefore, the amplitude is 2 = 2 y = 3cos x to y = A cos (ฯ‰ x ) , we find A = 3 2ฯ€ = 2ฯ€ . Because the 1 amplitude is 2, the graph of y = 2sin x will lie between โˆ’2 and 2 on the y-axis. Because the period is 2ฯ€ , one cycle will begin at x = 0 and end at x = 2ฯ€ . We divide the interval [ 0, 2ฯ€ ] and the period is into four subintervals, each of length and ฯ‰ = 1 . Therefore, the amplitude is 3 = 3 2ฯ€ = 2ฯ€ . Because the 1 amplitude is 3, the graph of y = 3cos x will lie between โˆ’3 and 3 on the y-axis. Because the period is 2ฯ€ , one cycle will begin at x = 0 and end at x = 2ฯ€ . We divide the interval [ 0, 2ฯ€ ] and the period is 2ฯ€ ฯ€ = by 4 2 finding the following values: ฯ€ 3ฯ€ , and 2ฯ€ 0, , ฯ€ , 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = 2sin x + 3 , we multiply the y-coordinates of the five key points for y = sin x by A = 2 and then add 3 units. Thus, the graph of y = 2sin x + 3 will lie between 1 and 5 on the yaxis. The five key points are ฯ€ 3ฯ€ ( 0,3) , ๏ƒฆ๏ƒง ,5 ๏ƒถ๏ƒท , (ฯ€ ,3) , ๏ƒฆ๏ƒง ,1๏ƒถ๏ƒท , ( 2ฯ€ ,3) ๏ƒจ2 ๏ƒธ ๏ƒจ 2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either into four subintervals, each of length 2ฯ€ ฯ€ = by 4 2 finding the following values: ฯ€ 3ฯ€ 0, , ฯ€ , , and 2ฯ€ 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = 3cos x + 2 , we multiply the y-coordinates of the five key points for y = cos x by A = 3 and then add 2 units. Thus, the graph of y = 3cos x + 2 will lie between โˆ’1 and 5 on the y-axis. The five key points are ฯ€ 3ฯ€ ( 0,5) , ๏ƒฆ๏ƒง , 2 ๏ƒถ๏ƒท , (ฯ€ , โˆ’1) , ๏ƒฆ๏ƒง , 2 ๏ƒถ๏ƒท , ( 2ฯ€ ,5) ๏ƒจ2 ๏ƒธ ๏ƒจ 2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either 170 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions direction to obtain the graph shown below. y direction to obtain the graph shown below. 3 (0, 2) 2 3 ( โ€“โ€“ , 3) 2 (2, 2) 2 x 3 (โ€“โ€“ , 3) 2 1 (โ€“โ€“ , 3) 2 (1, 8) 9 From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’8, 2] . range is [ โˆ’1,5] . ๏ƒฆฯ€ ๏ƒถ 48. We begin by considering y = 4sin ๏ƒง x ๏ƒท . ๏ƒจ2 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ Comparing y = 4sin ๏ƒง x ๏ƒท to y = A sin (ฯ‰ x ) , ๏ƒจ2 ๏ƒธ 47. We begin by considering y = 5cos (ฯ€ x ) . Comparing y = 5cos (ฯ€ x ) to y = A cos (ฯ‰ x ) , we find A = 5 and ฯ‰ = ฯ€ . Therefore, the amplitude 2ฯ€ is 5 = 5 and the period is = 2 . Because the we find A = 4 and ฯ‰ = ฯ€ amplitude is 5, the graph of y = 5cos (ฯ€ x ) will 2 . Therefore, the 2ฯ€ = 4. ฯ€ /2 Because the amplitude is 4, the graph of ๏ƒฆฯ€ ๏ƒถ y = 4sin ๏ƒง x ๏ƒท will lie between โˆ’4 and 4 on ๏ƒจ2 ๏ƒธ the y-axis. Because the period is 4 , one cycle will begin at x = 0 and end at x = 4 . We divide the interval [ 0, 4] into four subintervals, each of amplitude is 4 = 4 and the period is lie between โˆ’5 and 5 on the y-axis. Because the period is 2 , one cycle will begin at x = 0 and end at x = 2 . We divide the interval [ 0, 2] into four subintervals, each of length ฯ€ 2 1 = by 4 2 finding the following values: 1 3 0, , 1, , and 2 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = 5cos (ฯ€ x ) โˆ’ 3 , we multiply the y-coordinates 4 = 1 by finding the following values: 4 0, 1, 2, 3, and 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for ๏ƒฆฯ€ ๏ƒถ y = 4sin ๏ƒง x ๏ƒท โˆ’ 2 , we multiply the y๏ƒจ2 ๏ƒธ coordinates of the five key points for y = sin x by A = 4 and then subtract 2 units. Thus, the ๏ƒฆฯ€ ๏ƒถ graph of y = 4sin ๏ƒง x ๏ƒท โˆ’ 2 will lie between โˆ’6 ๏ƒจ2 ๏ƒธ and 2 on the y-axis. The five key points are ( 0, โˆ’2 ) , (1, 2 ) , ( 2, โˆ’2 ) , ( 3, โˆ’6 ) , ( 4, โˆ’2 ) length of the five key points for y = cos x by A = 5 and then subtract 3 units. Thus, the graph of y = 5cos (ฯ€ x ) โˆ’ 3 will lie between โˆ’8 and 2 on the y-axis. The five key points are 1 3 ( 0, 2 ) , ๏ƒฆ๏ƒง , โˆ’3 ๏ƒถ๏ƒท , (1, โˆ’8 ) , ๏ƒฆ๏ƒง , โˆ’3 ๏ƒถ๏ƒท , ( 2, 2 ) 2 ๏ƒจ ๏ƒธ ๏ƒจ2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either We plot these five points and fill in the graph of the curve. We then extend the graph in either 171 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions direction to obtain the graph shown below. ( 0, 4 ) , ๏ƒฆ๏ƒง , โˆ’2 ๏ƒถ๏ƒท , ( 3, 4 ) , ๏ƒฆ๏ƒง ,10 ๏ƒถ๏ƒท , ( 6, 4 ) 3 9 2 ๏ƒจ ๏ƒธ ๏ƒจ2 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’6, 2] . From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the ๏ƒฆฯ€ ๏ƒถ 49. We begin by considering y = โˆ’6sin ๏ƒง x ๏ƒท . ๏ƒจ3 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ Comparing y = โˆ’6sin ๏ƒง x ๏ƒท to y = A sin (ฯ‰ x ) , ๏ƒจ3 ๏ƒธ we find A = โˆ’6 and ฯ‰ = ฯ€ 3 range is [ โˆ’2,10] . ๏ƒฆฯ€ ๏ƒถ 50. We begin by considering y = โˆ’3cos ๏ƒง x ๏ƒท . ๏ƒจ4 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ Comparing y = โˆ’3cos ๏ƒง x ๏ƒท to y = A cos (ฯ‰ x ) , ๏ƒจ4 ๏ƒธ . Therefore, the 2ฯ€ = 6. ฯ€ /3 Because the amplitude is 6, the graph of ๏ƒฆฯ€ ๏ƒถ y = 6sin ๏ƒง x ๏ƒท will lie between โˆ’6 and 6 on the ๏ƒจ3 ๏ƒธ y-axis. Because the period is 6, one cycle will begin at x = 0 and end at x = 6 . We divide the interval [ 0, 6] into four subintervals, each of amplitude is โˆ’6 = 6 and the period is we find A = โˆ’3 and ฯ‰ = ฯ€ 4 . Therefore, the 2ฯ€ =8. ฯ€ /4 Because the amplitude is 3, the graph of ๏ƒฆฯ€ ๏ƒถ y = โˆ’3cos ๏ƒง x ๏ƒท will lie between โˆ’3 and 3 on ๏ƒจ4 ๏ƒธ the y-axis. Because the period is 8, one cycle will begin at x = 0 and end at x = 8 . We divide the interval [ 0,8] into four subintervals, each of amplitude is โˆ’3 = 3 and the period is 6 3 = by finding the following values: 4 2 3 9 0, , 3, , and 6 2 2 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for ๏ƒฆฯ€ ๏ƒถ y = โˆ’6sin ๏ƒง x ๏ƒท + 4 , we multiply the y๏ƒจ3 ๏ƒธ coordinates of the five key points for y = sin x by A = โˆ’6 and then add 4 units. Thus, the graph ๏ƒฆฯ€ ๏ƒถ of y = โˆ’6sin ๏ƒง x ๏ƒท + 4 will lie between โˆ’2 and ๏ƒจ3 ๏ƒธ 10 on the y-axis. The five key points are length 8 = 2 by finding the following values: 4 0, 2, 4, 6, and 8 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for ๏ƒฆฯ€ ๏ƒถ y = โˆ’3cos ๏ƒง x ๏ƒท + 2 , we multiply the y๏ƒจ4 ๏ƒธ coordinates of the five key points for y = cos x by A = โˆ’3 and then add 2 units. Thus, the graph length 172 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions on the y-axis. The five key points are ฯ€ ฯ€ 3ฯ€ ( 0,5) , ๏ƒฆ๏ƒง , 2 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง ,5 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง ,8 ๏ƒถ๏ƒท , (ฯ€ ,5) ๏ƒจ4 ๏ƒธ ๏ƒจ2 ๏ƒธ ๏ƒจ 4 ๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. ๏ƒฆฯ€ ๏ƒถ of y = โˆ’3cos ๏ƒง x ๏ƒท + 2 will lie between โˆ’1 and ๏ƒจ4 ๏ƒธ 5 on the y-axis. The five key points are ( 0, โˆ’1) , ( 2, 2 ) , ( 4,5) , ( 6, 2 ) , (8, โˆ’1) We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. y 10 (0,5) ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒง 4 ,8 ๏ƒท ๏ƒจ ๏ƒธ ๏ƒฆฯ€ ๏ƒถ ๏ƒง ,5 ๏ƒท ๏ƒจ2 ๏ƒธ (ฯ€ ,5 ) ๏ƒฆฯ€ ๏ƒถ ๏ƒง ,2๏ƒท ๏ƒจ4 ๏ƒธ โˆ’ฯ€ From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ 2,8] . range is [ โˆ’1,5] . 52. y = 2 โˆ’ 4 cos ( 3x ) = โˆ’4 cos ( 3x ) + 2 51. y = 5 โˆ’ 3sin ( 2 x ) = โˆ’3sin ( 2 x ) + 5 We begin by considering y = โˆ’4 cos ( 3 x ) . We begin by considering y = โˆ’3sin ( 2 x ) . Comparing y = โˆ’4 cos ( 3 x ) to y = A cos (ฯ‰ x ) , Comparing y = โˆ’3sin ( 2 x ) to y = A sin (ฯ‰ x ) , we find A = โˆ’4 and ฯ‰ = 3 . Therefore, the 2ฯ€ amplitude is โˆ’4 = 4 and the period is . 3 Because the amplitude is 4, the graph of y = โˆ’4 cos ( 3 x ) will lie between โˆ’4 and 4 on we find A = โˆ’3 and ฯ‰ = 2 . Therefore, the 2ฯ€ amplitude is โˆ’3 = 3 and the period is =ฯ€ . 2 Because the amplitude is 3, the graph of y = โˆ’3sin ( 2 x ) will lie between โˆ’3 and 3 on the 2ฯ€ , one cycle 3 2ฯ€ will begin at x = 0 and end at x = . We 3 ๏ƒฉ 2ฯ€ ๏ƒน divide the interval ๏ƒช0, ๏ƒบ into four ๏ƒซ 3 ๏ƒป 2ฯ€ / 3 ฯ€ = subintervals, each of length by 4 6 finding the following values: ฯ€ ฯ€ ฯ€ 2ฯ€ 0, , , , and 6 3 2 3 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = โˆ’4 cos ( 3x ) + 2 , we multiply the y- the y-axis. Because the period is y-axis. Because the period is ฯ€ , one cycle will begin at x = 0 and end at x = ฯ€ . We divide the interval [ 0, ฯ€ ] into four subintervals, each of length ฯ€ 4 by finding the following values: ฯ€ 3ฯ€ , , , and ฯ€ 4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for y = โˆ’3sin ( 2 x ) + 5 , we multiply the y- 0, ฯ€ ฯ€ coordinates of the five key points for y = sin x by A = โˆ’3 and then add 5 units. Thus, the graph of y = โˆ’3sin ( 2 x ) + 5 will lie between 2 and 8 173 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions coordinates of the five key points for y = cos x by A = โˆ’4 and then adding 2 units. Thus, the graph of y = โˆ’4 cos ( 3x ) + 2 will lie between โˆ’2 3 3 9 , , , and 3 4 2 4 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 5 ๏ƒฆ 2ฯ€ ๏ƒถ y = โˆ’ sin ๏ƒง x ๏ƒท , we multiply the y3 ๏ƒจ 3 ๏ƒธ 0, and 6 on the y-axis. The five key points are ฯ€ ฯ€ ฯ€ 2ฯ€ ( 0, โˆ’2 ) , ๏ƒฆ๏ƒง , 2 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 6 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 2 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , โˆ’2 ๏ƒถ๏ƒท 6 3 2 ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ 3 We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. 3 coordinates of the five key points for y = sin x 5 by A = โˆ’ .The five key points are 3 3 5 3 9 5 ( 0, 0 ) , ๏ƒฆ๏ƒง , โˆ’ ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , 0 ๏ƒถ๏ƒท , ๏ƒฆ๏ƒง , ๏ƒถ๏ƒท , ( 3, 0 ) ๏ƒจ 4 3๏ƒธ ๏ƒจ 2 ๏ƒธ ๏ƒจ 4 3๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. 3 From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the range is [ โˆ’2, 6] . 53. Since sine is an odd function, we can plot the 5 ๏ƒฆ 2ฯ€ ๏ƒถ equivalent form y = โˆ’ sin ๏ƒง x๏ƒท . 3 ๏ƒจ 3 ๏ƒธ From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the 5 ๏ƒฆ 2ฯ€ ๏ƒถ Comparing y = โˆ’ sin ๏ƒง x ๏ƒท to 3 ๏ƒจ 3 ๏ƒธ 5 2ฯ€ y = A sin (ฯ‰ x ) , we find A = โˆ’ and ฯ‰ = . 3 3 5 5 Therefore, the amplitude is โˆ’ = and the 3 3 2ฯ€ = 3 . Because the amplitude is period is 2ฯ€ / 3 5 5 ๏ƒฆ 2ฯ€ ๏ƒถ , the graph of y = โˆ’ sin ๏ƒง x ๏ƒท will lie 3 3 ๏ƒจ 3 ๏ƒธ ๏ƒฉ 5 5๏ƒน range is ๏ƒช โˆ’ , ๏ƒบ . ๏ƒซ 3 3๏ƒป 54. Since cosine is an even function, we consider the 9 ๏ƒฆ 3ฯ€ ๏ƒถ equivalent form y = cos ๏ƒง x ๏ƒท . Comparing 5 ๏ƒจ 2 ๏ƒธ 9 ๏ƒฆ 3ฯ€ ๏ƒถ y = cos ๏ƒง x ๏ƒท to y = A cos (ฯ‰ x ) , we find 5 ๏ƒจ 2 ๏ƒธ 9 3ฯ€ and ฯ‰ = . Therefore, the amplitude is 5 2 2ฯ€ 4 9 9 = . Because = and the period is 5 5 3ฯ€ / 2 3 9 the amplitude is , the graph of 5 9 9 9 ๏ƒฆ 3ฯ€ ๏ƒถ y = cos ๏ƒง x ๏ƒท will lie between โˆ’ and 5 5 5 ๏ƒจ 2 ๏ƒธ A= 5 5 and on the y-axis. Because the 3 3 period is 3 , one cycle will begin at x = 0 and end at x = 3 . We divide the interval [ 0,3] into between โˆ’ four subintervals, each of length 3 by finding 4 the following values: 174 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions 3 ๏ƒฆฯ€ ๏ƒถ 55. We begin by considering y = โˆ’ cos ๏ƒง x ๏ƒท . 2 ๏ƒจ4 ๏ƒธ 3 ๏ƒฆฯ€ ๏ƒถ Comparing y = โˆ’ cos ๏ƒง x ๏ƒท to 2 ๏ƒจ4 ๏ƒธ 4 , one 3 4 cycle will begin at x = 0 and end at x = . We 3 ๏ƒฉ 4๏ƒน divide the interval ๏ƒช0, ๏ƒบ into four subintervals, ๏ƒซ 3๏ƒป 4/3 1 = by finding the following each of length 4 3 values: 1 2 4 0, , , 1 , and 3 3 3 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 9 ๏ƒฆ 3ฯ€ ๏ƒถ y = cos ๏ƒง x ๏ƒท , we multiply the y-coordinates 5 ๏ƒจ 2 ๏ƒธ on the y-axis. Because the period is of the five key points for y = cos x by A = 3 ฯ€ and ฯ‰ = . 4 2 3 3 Therefore, the amplitude is โˆ’ = and the 2 2 2ฯ€ 3 = 8 . Because the amplitude is , period is ฯ€ /4 2 3 ๏ƒฆฯ€ ๏ƒถ the graph of y = โˆ’ cos ๏ƒง x ๏ƒท will lie between 2 ๏ƒจ4 ๏ƒธ y = A cos (ฯ‰ x ) , we find A = โˆ’ 3 3 and on the y-axis. Because the period is 2 2 8, one cycle will begin at x = 0 and end at x = 8 . We divide the interval [ 0,8] into four โˆ’ 9 . 5 8 = 2 by finding the 4 following values: 0, 2, 4, 6, and 8 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 3 ๏ƒฆฯ€ ๏ƒถ 1 y = โˆ’ cos ๏ƒง x ๏ƒท + , we multiply the y2 ๏ƒจ4 ๏ƒธ 2 coordinates of the five key points for y = cos x subintervals, each of length 9 ๏ƒฆ 3ฯ€ ๏ƒถ Thus, the graph of y = cos ๏ƒง โˆ’ x ๏ƒท will lie 5 ๏ƒจ 2 ๏ƒธ between โˆ’ 9 9 and on the y-axis. The five key 5 5 points are ๏ƒฆ 9๏ƒถ ๏ƒฆ1 ๏ƒถ ๏ƒฆ2 9๏ƒถ ๏ƒฆ4 9๏ƒถ ๏ƒง 0, ๏ƒท , ๏ƒง , 0 ๏ƒท , ๏ƒง , โˆ’ ๏ƒท , (1, 0 ) , ๏ƒง , ๏ƒท 5 3 3 5 ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒจ 3 5๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. 3 1 and then add unit. Thus, the 2 2 3 ๏ƒฆฯ€ ๏ƒถ 1 graph of y = โˆ’ cos ๏ƒง x ๏ƒท + will lie between 2 ๏ƒจ4 ๏ƒธ 2 โˆ’1 and 2 on the y-axis. The five key points are 1 1 ( 0, โˆ’1) , ๏ƒฆ๏ƒง 2, ๏ƒถ๏ƒท , ( 4, 2 ) , ๏ƒฆ๏ƒง 6, ๏ƒถ๏ƒท , (8, โˆ’1) 2 ๏ƒจ ๏ƒธ ๏ƒจ 2๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. by A = โˆ’ y (4, 2) 2 From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the 8 4 ๏ƒฉ 9 9๏ƒน range is ๏ƒช โˆ’ , ๏ƒบ . ๏ƒซ 5 5๏ƒป (8, 1) 175 Copyright ยฉ 2016 Pearson Education, Inc. 2 1 (2, โ€“โ€“ ) 2 (4, 2) 1 (6, โ€“โ€“ ) 2 x 4 8 (0, 1) (8, 1) Chapter 2: Trigonometric Functions From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the y 2.5 range is [ โˆ’1, 2] . 3 (0, โ€“โ€“ ) 2 3 (8, โ€“โ€“ ) 2 1 ๏ƒฆฯ€ ๏ƒถ 56. We begin by considering y = โˆ’ sin ๏ƒง x ๏ƒท . 2 ๏ƒจ8 ๏ƒธ 1 ๏ƒฆฯ€ ๏ƒถ Comparing y = โˆ’ sin ๏ƒง x ๏ƒท to y = A sin (ฯ‰ x ) , 2 ๏ƒจ8 ๏ƒธ (4, 1) 3 (16, โ€“โ€“ ) 2 x 1612 8 4 0.5 ฯ€ 1 and ฯ‰ = . Therefore, the 8 2 1 1 amplitude is โˆ’ = and the period is 2 2 2ฯ€ 1 = 16 . Because the amplitude is , the ฯ€ /8 2 1 ๏ƒฆฯ€ ๏ƒถ 1 graph of y = โˆ’ sin ๏ƒง x ๏ƒท will lie between โˆ’ 2 ๏ƒจ8 ๏ƒธ 2 4 8 12 16 From the graph we can determine that the domain is all real numbers, ( โˆ’โˆž, โˆž ) and the we find A = โˆ’ range is [1, 2] . 57. A = 3; T = ฯ€; ฯ‰ = 2ฯ€ 2ฯ€ = =2 T ฯ€ y = ยฑ3sin(2 x) 1 on the y-axis. Because the period is 16, 2 one cycle will begin at x = 0 and end at x = 16 . We divide the interval [ 0,16] into four 58. and subintervals, each of length (12, 2) (4, 2) A = 2; T = 4ฯ€; ฯ‰ = 2ฯ€ 2ฯ€ 1 = = T 4ฯ€ 2 ๏ƒฆ1 ๏ƒถ y = ยฑ2sin ๏ƒง x ๏ƒท ๏ƒจ2 ๏ƒธ 16 = 4 by finding 4 59. the following values: 0, 4, 8, 12, and 16 These values of x determine the x-coordinates of the five key points on the graph. To obtain the ycoordinates of the five key points for 1 ๏ƒฆฯ€ ๏ƒถ 3 y = โˆ’ sin ๏ƒง x ๏ƒท + , we multiply the y2 ๏ƒจ8 ๏ƒธ 2 A = 3; T = 2; ฯ‰ = 2ฯ€ 2ฯ€ = =ฯ€ T 2 y = ยฑ3sin(ฯ€x) 60. A = 4; T = 1; ฯ‰ = 2ฯ€ 2ฯ€ = = 2ฯ€ T 1 y = ยฑ4sin(2ฯ€ x) 61. The graph is a cosine graph with amplitude 5 and period 8. 2ฯ€ Find ฯ‰ : 8 = coordinates of the five key points for y = sin x 1 3 and then add units. Thus, the 2 2 1 ๏ƒฆฯ€ ๏ƒถ 3 graph of y = โˆ’ sin ๏ƒง x ๏ƒท + will lie between 2 ๏ƒจ8 ๏ƒธ 2 1 and 2 on the y-axis. The five key points are ๏ƒฆ 3๏ƒถ ๏ƒฆ 3๏ƒถ ๏ƒฆ 3๏ƒถ ๏ƒง 0, ๏ƒท , ( 4,1) , ๏ƒง 8, ๏ƒท , (12, 2 ) , ๏ƒง16, ๏ƒท ๏ƒจ 2๏ƒธ ๏ƒจ 2๏ƒธ ๏ƒจ 2๏ƒธ We plot these five points and fill in the graph of the curve. We then extend the graph in either direction to obtain the graph shown below. by A = โˆ’ ฯ‰ 8ฯ‰ = 2ฯ€ 2ฯ€ ฯ€ = ฯ‰= 8 4 ๏ƒฆฯ€ ๏ƒถ The equation is: y = 5cos ๏ƒง x ๏ƒท . ๏ƒจ4 ๏ƒธ 62. The graph is a sine graph with amplitude 4 and period 8ฯ€. 176 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions Find ฯ‰ : 8ฯ€ = 67. The graph is a reflected sine graph with 4ฯ€ . amplitude 1 and period 3 4ฯ€ 2ฯ€ = Find ฯ‰ : ฯ‰ 3 4ฯ€ฯ‰ = 6ฯ€ 6ฯ€ 3 ฯ‰= = 4ฯ€ 2 ๏ƒฆ3 ๏ƒถ The equation is: y = โˆ’ sin ๏ƒง x ๏ƒท . ๏ƒจ2 ๏ƒธ 2ฯ€ ฯ‰ 8ฯ€ฯ‰ = 2ฯ€ 2ฯ€ 1 = ฯ‰= 8ฯ€ 4 ๏ƒฆ1 ๏ƒถ The equation is: y = 4sin ๏ƒง x ๏ƒท . ๏ƒจ4 ๏ƒธ 63. The graph is a reflected cosine graph with amplitude 3 and period 4ฯ€. 2ฯ€ Find ฯ‰ : 4ฯ€ = ฯ‰ 68. The graph is a reflected cosine graph with amplitude ฯ€ and period 2ฯ€. 2ฯ€ Find ฯ‰ : 2ฯ€ = 4ฯ€ฯ‰ = 2ฯ€ 2ฯ€ 1 ฯ‰= = 4ฯ€ 2 ฯ‰ 2ฯ€ฯ‰ = 2ฯ€ 2ฯ€ ฯ‰= =1 2ฯ€ The equation is: y = โˆ’ฯ€ cos x . ๏ƒฆ1 ๏ƒถ The equation is: y = โˆ’3cos ๏ƒง x ๏ƒท . ๏ƒจ2 ๏ƒธ 64. The graph is a reflected sine graph with amplitude 2 and period 4. 2ฯ€ Find ฯ‰ : 4 = 69. The graph is a reflected cosine graph, shifted up 3 1 unit, with amplitude 1 and period . 2 3 2ฯ€ Find ฯ‰ : = 2 ฯ‰ 3ฯ‰ = 4ฯ€ 4ฯ€ ฯ‰= 3 ๏ƒฆ 4ฯ€ ๏ƒถ The equation is: y = โˆ’ cos ๏ƒง x ๏ƒท +1 . ๏ƒจ 3 ๏ƒธ ฯ‰ 4ฯ‰ = 2ฯ€ 2ฯ€ ฯ€ ฯ‰= = 4 2 ๏ƒฆฯ€ ๏ƒถ The equation is: y = โˆ’ 2sin ๏ƒง x ๏ƒท . ๏ƒจ2 ๏ƒธ 65. The graph is a sine graph with amplitude 3 and 4 period 1. Find ฯ‰ : 1 = 2ฯ€ 70. The graph is a reflected sine graph, shifted down 4ฯ€ 1 . 1 unit, with amplitude and period 3 2 4ฯ€ 2ฯ€ Find ฯ‰ : = ฯ‰ 3 4ฯ€ฯ‰ = 6ฯ€ 6ฯ€ 3 ฯ‰= = 4ฯ€ 2 1 ๏ƒฆ3 ๏ƒถ The equation is: y = โˆ’ sin ๏ƒง x ๏ƒท โˆ’ 1 . 2 ๏ƒจ2 ๏ƒธ ฯ‰ ฯ‰ = 2ฯ€ 3 The equation is: y = sin ( 2ฯ€ x ) . 4 66. The graph is a reflected cosine graph with 5 amplitude and period 2. 2 2ฯ€ Find ฯ‰ : 2 = ฯ‰ 2ฯ‰ = 2ฯ€ 2ฯ€ ฯ‰= =ฯ€ 2 5 The equation is: y = โˆ’ cos ( ฯ€x ) . 2 177 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 71. The graph is a sine graph with amplitude 3 and period 4. 2ฯ€ Find ฯ‰ : 4 = 76. f (ฯ€ / 2 ) โˆ’ f ( 0 ) ฯ€ /2โˆ’0 ฯ‰ 4ฯ‰ = 2ฯ€ 2ฯ€ ฯ€ ฯ‰= = 4 2 = cos (ฯ€ / 2 ) โˆ’ cos ( 0 ) ฯ€ /2 0 โˆ’1 2 = =โˆ’ ฯ€ /2 ฯ€ The average rate of change is โˆ’ ๏ƒฆฯ€ ๏ƒถ The equation is: y = 3sin ๏ƒง x ๏ƒท . ๏ƒจ2 ๏ƒธ 77. 72. The graph is a reflected cosine graph with amplitude 2 and period 2. 2ฯ€ Find ฯ‰ : 2 = f (ฯ€ / 2 ) โˆ’ f ( 0 ) ฯ€ /2โˆ’0 ฯ‰ 2ฯ‰ = 2ฯ€ 2ฯ€ ฯ‰= =ฯ€ 2 The equation is: y = โˆ’ 2 cos(ฯ€ x) . 78. f (ฯ€ / 2 ) โˆ’ f ( 0 ) ฯ€ /2โˆ’0 = f ( g ( x )) = sin ( 4 x ) g ( f ( x)) = 4 (sin x ) = 4sin x sin (ฯ€ / 2 ) โˆ’ sin ( 0 ) ฯ€ /2 1โˆ’ 0 2 = = ฯ€ /2 ฯ€ The average rate of change is 2 ฯ€ . ๏ƒฆ ฯ€๏ƒถ cos ๏ƒง 2 โ‹… ๏ƒท โˆ’ cos(2 โ‹… 0) ๏ƒจ 2๏ƒธ ฯ€ /2 cos(ฯ€ ) โˆ’ cos(0) โˆ’1 โˆ’ 1 = = ฯ€ /2 ฯ€ /2 2 4 = โˆ’2 โ‹… = โˆ’ ฯ‰ ฯ€ฯ‰ = 2ฯ€ 2ฯ€ ฯ‰= =2 ฯ€ The equation is: y = 4sin ( 2 x ) . 75. 2 ฯ€ ฯ€ The average rate of change is โˆ’ 79. . f (ฯ€ / 2 ) โˆ’ f (0) = ฯ€ /2โˆ’0 ฯ€ 74. The graph is a sine graph with amplitude 4 and period ฯ€. 2ฯ€ Find ฯ‰ : ฯ€ = ฯ€ ๏ƒฆ1 ฯ€ ๏ƒถ ๏ƒฆ1 ๏ƒถ sin ๏ƒง โ‹… ๏ƒท โˆ’ sin ๏ƒง โ‹… 0 ๏ƒท ๏ƒจ2 2๏ƒธ ๏ƒจ2 ๏ƒธ = ฯ€ /2 sin (ฯ€ / 4 ) โˆ’ sin ( 0 ) = ฯ€ /2 2 2 2 2 = 2 = โ‹… = ฯ€ /2 2 ฯ€ ฯ€ The average rate of change is 73. The graph is a reflected cosine graph with 2ฯ€ . amplitude 4 and period 3 2ฯ€ 2ฯ€ Find ฯ‰ : = ฯ‰ 3 2ฯ€ฯ‰ = 6ฯ€ 6ฯ€ ฯ‰= =3 2ฯ€ The equation is: y = โˆ’ 4 cos ( 3 x ) . 2 . 178 Copyright ยฉ 2016 Pearson Education, Inc. 4 ฯ€ . Section 2.4: Graphs of the Sine and Cosine Functions 80. f ( g ( x)) = cos g ( f ( x)) = sin ( โˆ’3 x ) 1 x 2 83. 1 1 g ( f ( x)) = ( cos x ) = cos x 2 2 81. f ( g ( x)) = โˆ’2 ( cos x ) = โˆ’2 cos x 84. g ( f ( x)) = cos ( โˆ’2 x ) 85. I ( t ) = 220sin(60ฯ€ t ), t โ‰ฅ 0 2ฯ€ 1 = second ฯ‰ 60ฯ€ 30 Amplitude: A = 220 = 220 amperes Period: T = 82. f ( g ( x)) = โˆ’3 (sin x ) = โˆ’3sin x 179 Copyright ยฉ 2016 Pearson Education, Inc. 2ฯ€ = Chapter 2: Trigonometric Functions c. 86. I (t ) = 120sin(30ฯ€ t ), t โ‰ฅ 0 2ฯ€ 2ฯ€ 1 Period: T = = = second ฯ‰ 30ฯ€ 15 Amplitude: A = 120 = 120 amperes V = IR 120sin(120ฯ€ t ) = 20 I 6sin(120ฯ€ t ) = I I (t ) = 6sin(120ฯ€ t ) d. A = 6 = 6 amperes Amplitude: Period: T = 2ฯ€ ฯ‰ = 2ฯ€ 1 = second 120ฯ€ 60 [V (t )] 2 89. a. Amplitude: Period: T = A = 220 = 220 volts 2ฯ€ ฯ‰ = R ๏ƒฉV0 sin ( 2ฯ€ft ) ๏ƒน๏ƒป =๏ƒซ R 2 2 V sin ( 2ฯ€ft ) = 0 R 2 V = 0 sin 2 ( 2ฯ€ft ) R 87. V (t ) = 220sin(120ฯ€ t ) a. P (t ) = 2ฯ€ 1 = second 120ฯ€ 60 b, e. b. The graph is the reflected cosine graph translated up a distance equivalent to the 1 , so ฯ‰ = 4ฯ€ f . amplitude. The period is 2f The amplitude is c. V = IR 220sin(120ฯ€ t ) = 10 I I (t ) = 22sin(120ฯ€ t ) Amplitude: Period: T = c. A = 22 = 22 amperes 2ฯ€ ฯ‰ = 2ฯ€ 1 = second 120ฯ€ 60 90. a. 88. V (t ) = 120sin(120ฯ€ t ) a. Amplitude: A = 120 = 120 volts Period: T = 2ฯ€ ฯ‰ = 1 V0 2 V0 2 . โ‹… = 2 R 2R The equation is: V2 V2 P ( t ) = โˆ’ 0 cos ( 4ฯ€ft ) + 0 2R 2R 2 V = 0 ๏ƒฉ๏ƒซ1 โˆ’ cos ( 4ฯ€ft ) ๏ƒน๏ƒป 2R 22sin(120ฯ€ t ) = I d. 2 2ฯ€ 1 = second 120ฯ€ 60 b, e. Comparing the formulas: 1 sin 2 ( 2ฯ€ft ) = (1 โˆ’ cos ( 4ฯ€ft ) ) 2 Since the tunnel is in the shape of one-half a sine cycle, the width of the tunnel at its base is one-half the period. Thus, 2ฯ€ ฯ€ T= = 2(28) = 56 or ฯ‰ = . 28 ฯ‰ The tunnel has a maximum height of 15 feet so we have A = 15 . Using the form y = A sin(ฯ‰ x) , the equation for the sine curve that fits the opening is ๏ƒฆฯ€x ๏ƒถ y = 15sin ๏ƒง ๏ƒท. ๏ƒจ 28 ๏ƒธ b. Since the shoulders are 7 feet wide and the road is 14 feet wide, the edges of the road correspond to x = 7 and x = 21 . 180 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.4: Graphs of the Sine and Cosine Functions 92. y = cos x , โˆ’ 2ฯ€ โ‰ค x โ‰ค 2ฯ€ ๏ƒฆ 7ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ 15 2 15sin ๏ƒง โ‰ˆ 10.6 ๏ƒท = 15sin ๏ƒง ๏ƒท = 2 ๏ƒจ 28 ๏ƒธ ๏ƒจ4๏ƒธ ๏ƒฆ 21ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ 15 2 โ‰ˆ 10.6 15sin ๏ƒง ๏ƒท = 15sin ๏ƒง ๏ƒท = 28 2 ๏ƒจ ๏ƒธ ๏ƒจ 4 ๏ƒธ The tunnel is approximately 10.6 feet high at the edge of the road. 91. a. 2ฯ€ ; 23 2ฯ€ ฯ€ = ; Emotional potential: ฯ‰ = 28 14 2ฯ€ Intellectual potential: ฯ‰ = 33 Physical potential: ฯ‰ = 93. y = sin x , โˆ’ 2ฯ€ โ‰ค x โ‰ค 2ฯ€ 110 b. 0 0 #1, #2, #3 33 ๏ƒฆ 2ฯ€ ๏ƒถ #1: P ( t ) = 50sin ๏ƒง t ๏ƒท + 50 ๏ƒจ 23 ๏ƒธ ๏ƒฆฯ€ ๏ƒถ # 2 : P ( t ) = 50sin ๏ƒง t ๏ƒท + 50 ๏ƒจ 14 ๏ƒธ 94. Answers may vary. ๏ƒฆ 7ฯ€ 1 ๏ƒถ ๏ƒฆ ฯ€ 1 ๏ƒถ ๏ƒฆ 5ฯ€ 1 ๏ƒถ ๏ƒฆ 13ฯ€ 1 ๏ƒถ , ๏ƒท,๏ƒง , ๏ƒท,๏ƒง , ๏ƒท,๏ƒง , ๏ƒท ๏ƒงโˆ’ ๏ƒจ 6 2๏ƒธ ๏ƒจ 6 2๏ƒธ ๏ƒจ 6 2๏ƒธ ๏ƒจ 6 2๏ƒธ 95. Answers may vary. ๏ƒฆ 2ฯ€ ๏ƒถ #3 : P ( t ) = 50sin ๏ƒง t ๏ƒท + 50 ๏ƒจ 33 ๏ƒธ c. ๏ƒฆ 5ฯ€ 1 ๏ƒถ ๏ƒฆ ฯ€ 1 ๏ƒถ ๏ƒฆ ฯ€ 1 ๏ƒถ ๏ƒฆ 5ฯ€ 1 ๏ƒถ ๏ƒง โˆ’ , ๏ƒท,๏ƒง โˆ’ , ๏ƒท,๏ƒง , ๏ƒท,๏ƒง , ๏ƒท ๏ƒจ 3 2๏ƒธ ๏ƒจ 3 2๏ƒธ ๏ƒจ 3 2๏ƒธ ๏ƒจ 3 2๏ƒธ No. 110 d. 96. 2sin x = โˆ’2 #2 7305 sin x = โˆ’1 Answers may vary. ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ 7ฯ€ ๏ƒถ ๏ƒฆ 11ฯ€ ๏ƒถ , โˆ’2 ๏ƒท , ๏ƒง , โˆ’2 ๏ƒท ๏ƒง โˆ’ , โˆ’2 ๏ƒท , ๏ƒง , โˆ’2 ๏ƒท , ๏ƒง ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ #1 #3 7335 0 Physical potential peaks at 15 days after the 20th birthday, with minimums at the 3rd and 26th days. Emotional potential is 50% at the 17th day, with a maximum at the 10th day and a minimum at the 24th day. Intellectual potential starts fairly high, drops to a minimum at the 13th day, and rises to a maximum at the 29th day. 97. Answers may vary. ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 5ฯ€ ๏ƒถ ๏ƒฆ 9ฯ€ ๏ƒถ ,1๏ƒท ๏ƒง โˆ’ ,1๏ƒท , ๏ƒง ,1๏ƒท , ๏ƒง ,1๏ƒท , ๏ƒง ๏ƒจ 4 ๏ƒธ ๏ƒจ4 ๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ 4 ๏ƒธ 98 โ€“ 102. Answers will vary. 181 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 103. f ( x + h) โˆ’ f ( x ) h ( x + h) 2 โˆ’ 5( x + h) + 1 โˆ’ ( x 2 โˆ’ 5 x + 1) = h 2 2 ( x + 2 xh + h ) โˆ’ (5 x + 5h) + 1 โˆ’ x 2 + 5 x โˆ’ 1 = h 2 2 x + 2 xh + h โˆ’ 5 x โˆ’ 5h + 1 โˆ’ x 2 + 5 x โˆ’ 1 = h 2 xh + h 2 โˆ’ 5h h(2 x + h โˆ’ 5) = = = 2x + h โˆ’ 5 h h 3. origin; x = odd multiples of ฯ€ 2 4. y-axis; x = odd multiples of ฯ€ 2 5. b 6. True 7. The y-intercept of y = tan x is 0. 8. y = cot x has no y-intercept. 11ฯ€ 5ฯ€ โ‰… 4 4 5ฯ€ 2 =โˆ’ sin 4 2 105. The y-intercept is: 104. โˆ’ 9. The y-intercept of y = sec x is 1. 10. y = csc x has no y-intercept. 11. sec x = 1 when x = โˆ’ 2ฯ€, 0, 2ฯ€; sec x = โˆ’1 when x = โˆ’ฯ€, ฯ€ y = 3 0 + 2 โˆ’1 y = 6 โˆ’1 = 5 3ฯ€ ฯ€ , ; 2 2 ฯ€ 3ฯ€ csc x = โˆ’1 when x = โˆ’ , 2 2 12. csc x = 1 when x = โˆ’ (0,5) The x-interecpts are: 0 = 3 x + 2 โˆ’1 1 = x+2 3 1 1 = x + 2 or โˆ’ = x + 2 3 3 5 7 x=โˆ’ or x = โˆ’ 3 3 5 7 โˆ’ ,0 , โˆ’ ,0 3 3 13. y = sec x has vertical asymptotes when 1= 3 x+2 โ†’ x=โˆ’ 3ฯ€ ฯ€ ฯ€ 3ฯ€ . ,โˆ’ , , 2 2 2 2 14. y = csc x has vertical asymptotes when x = โˆ’ 2ฯ€, โˆ’ ฯ€, 0, ฯ€, 2ฯ€ . 15. y = tan x has vertical asymptotes when x=โˆ’ ฯ€ 2ฯ€ 106. 40 = 180 9 1 A = r 2ฮธ 2 1 2 2ฯ€ = ( 5) 2 9 25ฯ€ sq. units = 9 3ฯ€ ฯ€ ฯ€ 3ฯ€ . ,โˆ’ , , 2 2 2 2 16. y = cot x has vertical asymptotes when x = โˆ’ 2ฯ€, โˆ’ ฯ€, 0, ฯ€, 2ฯ€ . 17. y = 3 tan x ; The graph of y = tan x is stretched vertically by a factor of 3. Section 2.5 1. x = 4 2. True 182 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions The domain is { x x โ‰  kฯ€ , k is an integer} . The ๏ƒฌ kฯ€ ๏ƒผ The domain is ๏ƒญ x x โ‰  , k is an odd integer ๏ƒฝ . 2 ๏ƒฎ ๏ƒพ The range is the set of all real number or (โˆ’โˆž, โˆž) . range is the set of all real number or (โˆ’โˆž, โˆž) . ๏ƒฆฯ€ ๏ƒถ 21. y = tan ๏ƒง x ๏ƒท ; The graph of y = tan x is ๏ƒจ2 ๏ƒธ 2 horizontally compressed by a factor of . 18. y = โˆ’2 tan x ; The graph of y = tan x is stretched vertically by a factor of 2 and reflected about the x-axis. ฯ€ ๏ƒฌ kฯ€ ๏ƒผ The domain is ๏ƒญ x x โ‰  , k is an odd integer ๏ƒฝ . 2 ๏ƒฎ ๏ƒพ The range is the set of all real number or (โˆ’โˆž, โˆž) . The domain is { x x does not equal an odd integer} . The range is the set of all real number or (โˆ’โˆž, โˆž) . 19. y = 4 cot x ; The graph of y = cot x is stretched vertically by a factor of 4. ๏ƒฆ1 ๏ƒถ 22. y = tan ๏ƒง x ๏ƒท ; The graph of y = tan x is ๏ƒจ2 ๏ƒธ horizontally stretched by a factor of 2. The domain is { x x โ‰  kฯ€ , k is an integer} . The The domain is { x x โ‰  kฯ€ , k is an integer} . The range is the set of all real number or (โˆ’โˆž, โˆž) . range is the set of all real number or (โˆ’โˆž, โˆž) . ๏ƒฆ1 ๏ƒถ 23. y = cot ๏ƒง x ๏ƒท ; The graph of y = cot x is ๏ƒจ4 ๏ƒธ horizontally stretched by a factor of 4. 20. y = โˆ’3cot x ; The graph of y = cot x is stretched vertically by a factor of 3 and reflected about the x-axis. 183 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions The domain is { x x โ‰  4kฯ€ , k is an integer} . The The domain is { x x โ‰  kฯ€ , k is an integer} . The range is the set of all real number or (โˆ’โˆž, โˆž) . ๏ƒฌ 1 1๏ƒผ range is ๏ƒญ y y โ‰ค โˆ’ or y โ‰ฅ ๏ƒฝ . 2 2๏ƒพ ๏ƒฎ ๏ƒฆฯ€ ๏ƒถ 24. y = cot ๏ƒง x ๏ƒท ; The graph of y = cot x is ๏ƒจ4 ๏ƒธ 4 horizontally stretched by a factor of . 27. y = โˆ’3csc x ; The graph of y = csc x is vertically stretched by a factor of 3 and reflected about the x-axis. ฯ€ The domain is { x x โ‰  4k , k is an integer} . The The domain is { x x โ‰  kฯ€ , k is an integer} . The range is the set of all real number or (โˆ’โˆž, โˆž) . range is { y y โ‰ค โˆ’3 or y โ‰ฅ 3} . 25. y = 2sec x ; The graph of y = sec x is stretched vertically by a factor of 2. 28. y = โˆ’4sec x ; The graph of y = sec x is vertically stretched by a factor of 4 and reflected about the x-axis. ๏ƒฌ kฯ€ ๏ƒผ The domain is ๏ƒญ x x โ‰  , k is an odd integer ๏ƒฝ . 2 ๏ƒฎ ๏ƒพ ๏ƒฌ kฯ€ ๏ƒผ The domain is ๏ƒญ x x โ‰  , k is an odd integer ๏ƒฝ . 2 ๏ƒฎ ๏ƒพ The range is { y y โ‰ค โˆ’2 or y โ‰ฅ 2} . The range is { y y โ‰ค โˆ’4 or y โ‰ฅ 4} . 1 csc x ; The graph of y = csc x is vertically 2 1 compressed by a factor of . 2 26. y = ๏ƒฆ1 ๏ƒถ 29. y = 4sec ๏ƒง x ๏ƒท ; The graph of y = sec x is ๏ƒจ2 ๏ƒธ horizontally stretched by a factor of 2 and 184 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 31. y = โˆ’2 csc (ฯ€ x ) ; The graph of y = csc x is vertically stretched by a factor of 4. horizontally compressed by a factor of 1 ฯ€ , vertically stretched by a factor of 2, and reflected about the x-axis. The domain is { x x โ‰  kฯ€ , k is an odd integer} . The range is { y y โ‰ค โˆ’4 or y โ‰ฅ 4} . 1 csc ( 2 x ) ; The graph of y = csc x is 2 1 horizontally compressed by a factor of and 2 1 vertically compressed by a factor of . 2 The domain is { x x does not equal an integer} . 30. y = The range is { y y โ‰ค โˆ’2 or y โ‰ฅ 2} . ๏ƒฆฯ€ ๏ƒถ 32. y = โˆ’3sec ๏ƒง x ๏ƒท ; The graph of y = sec x is ๏ƒจ2 ๏ƒธ 2 horizontally compressed by a factor of , ฯ€ vertically stretched by a factor of 3, and reflected about the x-axis. ๏ƒฌ kฯ€ ๏ƒผ The domain is ๏ƒญ x x โ‰  , k is an integer ๏ƒฝ . The 2 ๏ƒฎ ๏ƒพ 1 1๏ƒผ ๏ƒฌ range is ๏ƒญ y y โ‰ค โˆ’ or y โ‰ฅ ๏ƒฝ . 2 2๏ƒพ ๏ƒฎ The domain is { x x does not equal an odd integer} . The range is { y y โ‰ค โˆ’3 or y โ‰ฅ 3} . 185 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions ๏ƒฆ1 ๏ƒถ 33. y = tan ๏ƒง x ๏ƒท + 1 ; The graph of y = tan x is ๏ƒจ4 ๏ƒธ horizontally stretched by a factor of 4 and shifted up 1 unit. ๏ƒฆ 2ฯ€ ๏ƒถ 35. y = sec ๏ƒง x ๏ƒท + 2 ; The graph of y = sec x is ๏ƒจ 3 ๏ƒธ 3 horizontally compressed by a factor of and 2ฯ€ shifted up 2 units. The domain is { x x โ‰  2kฯ€ , k is an odd integer} . ๏ƒฌ 3 ๏ƒผ The domain is ๏ƒญ x x โ‰  k , k is an odd integer ๏ƒฝ . 4 ๏ƒฎ ๏ƒพ The range is the set of all real number or (โˆ’โˆž, โˆž) . The range is { y y โ‰ค 1 or y โ‰ฅ 3} . 34. y = 2 cot x โˆ’ 1 ; The graph of y = cot x is vertically stretched by a factor of 2 and shifted down 1 unit. ๏ƒฆ 3ฯ€ ๏ƒถ 36. y = csc ๏ƒง x ๏ƒท ; The graph of y = csc x is ๏ƒจ 2 ๏ƒธ 2 horizontally compressed by a factor of . 3ฯ€ The domain is { x x โ‰  kฯ€ , k is an integer} . The range is the set of all real number or (โˆ’โˆž, โˆž) . ๏ƒฌ 2 ๏ƒผ The domain is ๏ƒญ x x โ‰  k , k is an integer ๏ƒฝ . The 3 ๏ƒฎ ๏ƒพ range is { y y โ‰ค โˆ’1 or y โ‰ฅ 1} . 186 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions 1 ๏ƒฆ1 ๏ƒถ tan ๏ƒง x ๏ƒท โˆ’ 2 ; The graph of y = tan x is 2 ๏ƒจ4 ๏ƒธ horizontally stretched by a factor of 4, vertically 1 compressed by a factor of , and shifted down 2 2 units. 37. y = ๏ƒฆ1 ๏ƒถ 39. y = 2 csc ๏ƒง x ๏ƒท โˆ’ 1 ; The graph of y = csc x is ๏ƒจ3 ๏ƒธ horizontally stretched by a factor of 3, vertically stretched by a factor of 2, and shifted down 1 unit. The domain is { x x โ‰  3ฯ€ k , k is an integer} . The domain is { x x โ‰  2ฯ€ k , k is an odd integer} . The range is { y y โ‰ค โˆ’3 or y โ‰ฅ 1} . The range is the set of all real number or (โˆ’โˆž, โˆž) . ๏ƒฆ1 ๏ƒถ 40. y = 3sec ๏ƒง x ๏ƒท + 1 ; The graph of y = sec x is ๏ƒจ4 ๏ƒธ horizontally stretched by a factor of 4, vertically stretched by a factor of 3, and shifted up 1 unit. ๏ƒฆ1 ๏ƒถ 38. y = 3cot ๏ƒง x ๏ƒท โˆ’ 2 ; The graph of y = cot x is ๏ƒจ2 ๏ƒธ horizontally stretched by a factor of 2, vertically stretched by a factor of 3, and shifted down 2 units. The domain is { x x โ‰  2ฯ€ k , k is an odd integer} . The range is { y y โ‰ค โˆ’2 or y โ‰ฅ 4} . The domain is { x x โ‰  2ฯ€ k , k is an integer} . The ๏ƒฆฯ€ ๏ƒถ 3 f ๏ƒง ๏ƒท โˆ’ f ( 0) โˆ’0 tan (ฯ€ / 6 ) โˆ’ tan ( 0 ) 6๏ƒธ ๏ƒจ 41. = = 3 ฯ€ ฯ€ /6 ฯ€ /6 โˆ’0 6 3 6 2 3 = โ‹… = ฯ€ 3 ฯ€ 2 3 The average rate of change is . range is the set of all real number or (โˆ’โˆž, โˆž) . ฯ€ 187 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 42. g ( f ( x)) = 4 ( tan x ) = 4 tan x ๏ƒฆฯ€ ๏ƒถ 2 3 f ๏ƒง ๏ƒท โˆ’ f ( 0) โˆ’1 ฯ€ sec / 6 sec 0 โˆ’ ( ) ( ) 6 ๏ƒจ ๏ƒธ = = 3 ฯ€ ฯ€ /6 ฯ€ /6 โˆ’0 6 2 3 โˆ’3 6 2 3 2โˆ’ 3 = โ‹… = ฯ€ ฯ€ 3 The average rate of change is ( ) 2 3 2โˆ’ 3 ). ( ฯ€ ๏ƒฆฯ€ ๏ƒถ f ๏ƒง ๏ƒท โˆ’ f ( 0) tan ( 2 โ‹… ฯ€ / 6 ) โˆ’ tan ( 2 โ‹… 0 ) ๏ƒจ6๏ƒธ = 43. ฯ€ ฯ€ /6 โˆ’0 6 3 โˆ’0 6 3 = = ฯ€ /6 ฯ€ 6 3 The average rate of change is . 46. f ( g ( x)) = 2sec 1 x 2 ฯ€ ๏ƒฆฯ€ ๏ƒถ f ๏ƒง ๏ƒท โˆ’ f ( 0) sec ( 2 โ‹… ฯ€ / 6 ) โˆ’ sec ( 2 โ‹… 0 ) ๏ƒจ6๏ƒธ 44. = ฯ€ ฯ€ /6 โˆ’0 6 2 โˆ’1 6 = = ฯ€ /6 ฯ€ 6 The average rate of change is . ฯ€ 45. g ( f ( x)) = f ( g ( x)) = tan ( 4 x ) 47. 1 ( 2sec x ) = sec x 2 f ( g ( x)) = โˆ’2 ( cot x ) = โˆ’2 cot x 188 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.5: Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions g ( f ( x)) = cot ( โˆ’2 x ) 48. f ( g ( x)) = 50. 1 ( 2 csc x ) = csc x 2 51. a. g ( f ( x)) = 2 csc 1 x 2 Consider the length of the line segment in two sections, x, the portion across the hall that is 3 feet wide and y, the portion across that hall that is 4 feet wide. Then, 3 4 cos ฮธ = and sin ฮธ = x y 3 4 x= y= cos ฮธ sin ฮธ Thus, 3 4 + = 3sec ฮธ + 4 csc ฮธ . L = x+ y = cos ฮธ sin ฮธ b. Let Y1 = 25 0 c. 3 4 + . cos x sin x _ฯ€ 2 0 Use MINIMUM to find the least value: 25 49. 0 _ฯ€ 2 0 L is least when ฮธ โ‰ˆ 0.83 . d. Lโ‰ˆ 3 4 + โ‰ˆ 9.86 feet . cos ( 0.83) sin ( 0.83) Note that rounding up will result in a ladder that wonโ€™t fit around the corner. Answers will vary. 189 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 52. a. d ( t ) = 10 tan(ฯ€ t ) 53. b. d ( t ) = 10 tan(ฯ€ t ) is undefined at t = 1 and 2 3 , or in general at 2 ๏ƒฌ k ๏ƒผ k is an odd integer ๏ƒฝ . At these ๏ƒญt = 2 ๏ƒฎ ๏ƒพ instances, the length of the beam of light approaches infinity. It is at these instances in the rotation of the beacon when the beam of light being cast on the wall changes from one side of the beacon to the other. t= c. d. e. t d ( t ) = 10 tan(ฯ€ t ) 0 0.1 0 3.2492 0.2 7.2654 0.3 13.764 0.4 30.777 Yes, the two functions are equivalent. 54. y 2 = x โˆ’ 4 Test x-axis symmetry: Let y = โˆ’ y ( โˆ’ y )2 = x โˆ’ 4 y 2 = x โˆ’ 4 same Test y-axis symmetry: Let x = โˆ’ x y 2 = โˆ’ x โˆ’ 4 different d (0.1) โˆ’ d (0) 3.2492 โˆ’ 0 = โ‰ˆ 32.492 0.1 โˆ’ 0 0.1 โˆ’ 0 d (0.2) โˆ’ d (0.1) 7.2654 โˆ’ 3.2492 = โ‰ˆ 40.162 0.2 โˆ’ 0.1 0.2 โˆ’ 0.1 d (0.3) โˆ’ d (0.2) 13.764 โˆ’ 7.2654 = โ‰ˆ 64.986 0.3 โˆ’ 0.2 0.3 โˆ’ 0.2 d (0.4) โˆ’ d (0.3) 30.777 โˆ’ 13.764 = โ‰ˆ 170.13 0.4 โˆ’ 0.3 0.4 โˆ’ 0.3 Test origin symmetry: Let x = โˆ’ x and y = โˆ’ y . ( โˆ’ y )2 = โˆ’ x โˆ’ 4 y 2 = โˆ’ x โˆ’ 4 different Therefore, the graph will have x-axis symmetry. 55. ( x โˆ’ h) 2 + ( y โˆ’ k ) 2 = r 2 ( x โˆ’ ( โˆ’3)) 2 + ( y โˆ’ 1) 2 = (3) 2 The first differences represent the average rate of change of the beam of light against the wall, measured in feet per second. For example, between t = 0 seconds and t = 0.1 seconds, the average rate of change of the beam of light against the wall is 32.492 feet per second. ( x + 3) 2 + ( y โˆ’ 1) 2 = 9 190 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.6: Phase Shift; Sinusoidal Curve Fitting 4. y = 3sin(3 x โˆ’ ฯ€) 4 โˆ’6 (4) 2 + 10 2โˆ’6 = 16 + 10 โˆ’4 2 = =โˆ’ 26 13 56. h(4) = Amplitude: A = 3 =3 Period: T= 2ฯ€ ฯ‰ ฯ† ฯ€ Phase Shift: = ฯ‰ 3 = 2ฯ€ 3 Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉฯ€ ๏ƒน ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒช 3 ,ฯ€ ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T 2ฯ€ / 3 ฯ€ = = 4 4 6 57. The relation is a circle with center (0, 4) and radius 4 so it is not a function. Key points: ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 2ฯ€ ๏ƒถ ๏ƒฆ 5ฯ€ ๏ƒถ , 0 ๏ƒท , ๏ƒง , โˆ’3 ๏ƒท , (ฯ€ , 0 ) ๏ƒง , 0 ๏ƒท , ๏ƒง ,3 ๏ƒท , ๏ƒง ๏ƒจ3 ๏ƒธ ๏ƒจ2 ๏ƒธ ๏ƒจ 3 ๏ƒธ ๏ƒจ 6 ๏ƒธ Section 2.6 1. phase shift 2. False 3. y = 4sin(2 x โˆ’ ฯ€) Amplitude: A = 4 =4 Period: T= 2ฯ€ ฯ‰ ฯ† ฯ€ Phase Shift: = ฯ‰ 2 = 2ฯ€ =ฯ€ 2 Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ ฯ€ 3ฯ€ ๏ƒน ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒช 2 , 2 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T ฯ€ = 4 4 Key points: ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ 5ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒง , 0 ๏ƒท , ๏ƒง , 4 ๏ƒท , (ฯ€ , 0 ) , ๏ƒง , โˆ’4 ๏ƒท , ๏ƒง , 0 ๏ƒท 2 4 4 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ 2 ๏ƒธ ฯ€๏ƒถ ๏ƒฆ 5. y = 2 cos ๏ƒง 3 x + ๏ƒท 2๏ƒธ ๏ƒจ Amplitude: A = 2 = 2 2ฯ€ 3 ฯ‰ ๏ƒฆ ฯ€๏ƒถ โˆ’ ฯ€ ฯ† ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ Phase Shift: = =โˆ’ 3 6 ฯ‰ Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ ฯ€ ฯ€๏ƒน ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒชโˆ’ 6 , 2 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T 2ฯ€ / 3 ฯ€ = = 4 4 6 Key points: ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ ๏ƒง โˆ’ , 2 ๏ƒท , ( 0, 0 ) , ๏ƒง , โˆ’2 ๏ƒท , ๏ƒง , 0 ๏ƒท , ๏ƒง , 2 ๏ƒท 6 6 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ3 ๏ƒธ ๏ƒจ2 ๏ƒธ Period: 191 Copyright ยฉ 2016 Pearson Education, Inc. T= 2ฯ€ = Chapter 2: Trigonometric Functions Subinterval width: T ฯ€ = 4 4 Key points: ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒง โˆ’ , 0 ๏ƒท , ( 0, โˆ’3) , ๏ƒง , 0 ๏ƒท , ๏ƒง ,3 ๏ƒท , ๏ƒง , 0 ๏ƒท ๏ƒจ4 ๏ƒธ ๏ƒจ2 ๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ 4 ๏ƒธ 6. y = 3cos ( 2 x + ฯ€ ) Amplitude: A = 3 =3 2ฯ€ =ฯ€ 2 ฯ€ ฯ† โˆ’ฯ€ Phase Shift: = =โˆ’ 2 ฯ‰ 2 Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ ฯ€ ฯ€๏ƒน ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒชโˆ’ 2 , 2 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T ฯ€ = 4 4 Key points: ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ ๏ƒฆฯ€ ๏ƒถ ๏ƒง โˆ’ ,3 ๏ƒท , ๏ƒง โˆ’ , 0 ๏ƒท , ( 0, โˆ’3) , ๏ƒง , 0 ๏ƒท , ๏ƒง ,3 ๏ƒท 2 4 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ4 ๏ƒธ ๏ƒจ2 ๏ƒธ Period: T= 2ฯ€ ฯ‰ = ฯ€๏ƒถ ๏ƒฆ 8. y = โˆ’ 2 cos ๏ƒง 2 x โˆ’ ๏ƒท 2๏ƒธ ๏ƒจ Amplitude: A = โˆ’ 2 = 2 Period: T= 2ฯ€ ฯ‰ โˆ’ = 2ฯ€ ฯ‰ = 2ฯ€ =ฯ€ 2 ฯ€ ฯ† 2 ฯ€ Phase Shift: = = ฯ‰ 2 4 Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ ฯ€ 5ฯ€ ๏ƒน ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒช 4 , 4 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T ฯ€ = 4 4 Key points: ๏ƒฆฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ 5ฯ€ ๏ƒถ ๏ƒง , โˆ’2 ๏ƒท , ๏ƒง , 0 ๏ƒท , ๏ƒง , 2 ๏ƒท , (ฯ€ , 0 ) , ๏ƒง , โˆ’2 ๏ƒท ๏ƒจ4 ๏ƒธ ๏ƒจ2 ๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ 4 ๏ƒธ ฯ€๏ƒถ ๏ƒฆ 7. y = โˆ’3sin ๏ƒง 2 x + ๏ƒท 2๏ƒธ ๏ƒจ Amplitude: A = โˆ’ 3 = 3 Period: T= 2ฯ€ =ฯ€ 2 ฯ€ ฯ€ ฯ† Phase Shift: = 2 =โˆ’ 2 4 ฯ‰ Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ ฯ€ 3ฯ€ ๏ƒน ๏ƒช ฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒชโˆ’ 4 , 4 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป 192 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.6: Phase Shift; Sinusoidal Curve Fitting 9. y = 4sin(ฯ€x + 2) โˆ’ 5 Amplitude: A = 4 =4 2ฯ€ =2 ฯ€ ฯ‰ ฯ† โˆ’2 2 = =โˆ’ Phase Shift: ฯ€ ฯ€ ฯ‰ Interval defining one cycle: 2๏ƒน ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ 2 ๏ƒช ฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒชโˆ’ ฯ€ , 2 โˆ’ ฯ€ ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T 2 1 = = 4 4 2 Key points: ๏ƒฆ 2 ๏ƒถ ๏ƒฆ1 2 ๏ƒถ ๏ƒฆ 2 ๏ƒถ ๏ƒง โˆ’ , โˆ’5 ๏ƒท , ๏ƒง โˆ’ , โˆ’1๏ƒท , ๏ƒง1 โˆ’ , โˆ’5 ๏ƒท , ฯ€ ฯ€ ฯ€ 2 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ Period: T= 2ฯ€ = 11. y = 3cos(ฯ€x โˆ’ 2) + 5 Amplitude: A = 3 =3 Period: T= 2ฯ€ ฯ‰ ฯ† 2 Phase Shift: = ฯ‰ ฯ€ 2 ๏ƒฆ3 2 ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒง โˆ’ , โˆ’9 ๏ƒท , ๏ƒง 2 โˆ’ , โˆ’5 ๏ƒท ฯ€ ๏ƒจ2 ฯ€ ๏ƒธ ๏ƒจ ๏ƒธ = 2ฯ€ =2 ฯ€ Interval defining one cycle: 2๏ƒน ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ2 ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒชฯ€ , 2 + ฯ€ ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T 2 1 = = 4 4 2 Key points: ๏ƒฆ 2 ๏ƒถ ๏ƒฆ1 2 ๏ƒถ ๏ƒฆ 2 ๏ƒถ ๏ƒฆ3 2 ๏ƒถ ๏ƒง ,8 ๏ƒท , ๏ƒง + ,5 ๏ƒท , ๏ƒง1 + , 2 ๏ƒท , ๏ƒง + ,5 ๏ƒท , ๏ƒจฯ€ ๏ƒธ ๏ƒจ 2 ฯ€ ๏ƒธ ๏ƒจ ฯ€ ๏ƒธ ๏ƒจ 2 ฯ€ ๏ƒธ 2 ๏ƒถ ๏ƒฆ ๏ƒง 2 + ,8 ๏ƒท ฯ€ ๏ƒธ ๏ƒจ 10. y = 2 cos(2ฯ€x + 4) + 4 Amplitude: A = 2 =2 2ฯ€ =1 2ฯ€ ฯ† โˆ’4 2 Phase Shift: = =โˆ’ ฯ‰ 2ฯ€ ฯ€ Interval defining one cycle: 2๏ƒน ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ 2 ๏ƒช ฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒช โˆ’ ฯ€ ,1 โˆ’ ฯ€ ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป T 1 Subinterval width: = 4 4 Key points: ๏ƒฆ 2 ๏ƒถ ๏ƒฆ1 2 ๏ƒถ ๏ƒฆ1 2 ๏ƒถ ๏ƒฆ3 2 ๏ƒถ ๏ƒง โˆ’ ,6๏ƒท , ๏ƒง โˆ’ , 4๏ƒท , ๏ƒง โˆ’ , 2๏ƒท , ๏ƒง โˆ’ , 4๏ƒท , ๏ƒจ ฯ€ ๏ƒธ ๏ƒจ4 ฯ€ ๏ƒธ ๏ƒจ2 ฯ€ ๏ƒธ ๏ƒจ4 ฯ€ ๏ƒธ Period: T= 2ฯ€ ฯ‰ = ๏ƒฆ 2 ๏ƒถ ๏ƒง1 โˆ’ , 6 ๏ƒท ๏ƒจ ฯ€ ๏ƒธ 193 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions Key points: ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ 5ฯ€ ๏ƒถ ๏ƒง , 0 ๏ƒท , ๏ƒง ,3 ๏ƒท , ๏ƒง , 0 ๏ƒท , (ฯ€ , โˆ’3) , ๏ƒง , 0 ๏ƒท 4 2 4 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ 4 ๏ƒธ 12. y = 2 cos(2ฯ€x โˆ’ 4) โˆ’ 1 Amplitude: A = 2 =2 2ฯ€ =1 ฯ‰ 2ฯ€ ฯ† 4 2 = = Phase Shift: ฯ‰ 2ฯ€ ฯ€ Interval defining one cycle: 2๏ƒน ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ2 ๏ƒช ฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒช ฯ€ ,1 + ฯ€ ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T 1 = 4 4 Key points: ๏ƒฆ 2 ๏ƒถ ๏ƒฆ1 2 ๏ƒถ ๏ƒฆ1 2 ๏ƒถ ๏ƒง ,1๏ƒท , ๏ƒง + , โˆ’1๏ƒท , ๏ƒง + , โˆ’3 ๏ƒท , ฯ€ ฯ€ ฯ€ 4 2 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ Period: T= 2ฯ€ = ฯ€๏ƒถ ๏ƒฆ ๏ƒฆ ฯ€ ๏ƒถ๏ƒถ ๏ƒฆ 14. y = โˆ’3cos ๏ƒง โˆ’ 2 x + ๏ƒท = โˆ’3cos ๏ƒง โˆ’ ๏ƒง 2 x โˆ’ ๏ƒท ๏ƒท 2๏ƒธ 2 ๏ƒธ๏ƒธ ๏ƒจ ๏ƒจ ๏ƒจ ฯ€๏ƒถ ๏ƒฆ = โˆ’3cos ๏ƒง 2 x โˆ’ ๏ƒท 2๏ƒธ ๏ƒจ ๏ƒฆ3 2 ๏ƒถ ๏ƒฆ 2 ๏ƒถ ๏ƒง + , โˆ’1๏ƒท , ๏ƒง1 + ,1๏ƒท ๏ƒจ4 ฯ€ ๏ƒธ ๏ƒจ ฯ€ ๏ƒธ Amplitude: A = โˆ’3 = 3 Period: T= 2ฯ€ ฯ‰ = 2ฯ€ =ฯ€ 2 ฯ€ ฯ† 2 ฯ€ Phase Shift: = = ฯ‰ 2 4 Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ ฯ€ 5ฯ€ ๏ƒน ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒช 4 , 4 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T ฯ€ = 4 4 Key points: ๏ƒฆฯ€ ๏ƒถ ๏ƒฆ ฯ€ ๏ƒถ ๏ƒฆ 3ฯ€ ๏ƒถ ๏ƒฆ 5ฯ€ ๏ƒถ ๏ƒง , โˆ’3 ๏ƒท , ๏ƒง , 0 ๏ƒท , ๏ƒง ,3 ๏ƒท , (ฯ€ , 0 ) , ๏ƒง , โˆ’3 ๏ƒท ๏ƒจ4 ๏ƒธ ๏ƒจ2 ๏ƒธ ๏ƒจ 4 ๏ƒธ ๏ƒจ 4 ๏ƒธ ฯ€๏ƒถ ๏ƒฆ ๏ƒฆ ฯ€ ๏ƒถ๏ƒถ ๏ƒฆ 13. y = โˆ’3sin ๏ƒง โˆ’ 2 x + ๏ƒท = โˆ’3sin ๏ƒง โˆ’ ๏ƒง 2 x โˆ’ ๏ƒท ๏ƒท 2๏ƒธ 2 ๏ƒธ๏ƒธ ๏ƒจ ๏ƒจ ๏ƒจ ฯ€๏ƒถ ๏ƒฆ = 3sin ๏ƒง 2 x โˆ’ ๏ƒท 2๏ƒธ ๏ƒจ Amplitude: A = 3 =3 Period: T= 2ฯ€ ฯ‰ = 2ฯ€ =ฯ€ 2 ฯ€ ฯ† 2 ฯ€ Phase Shift: = = ฯ‰ 2 4 Interval defining one cycle: ๏ƒฉฯ† ฯ† ๏ƒน ๏ƒฉ ฯ€ 5ฯ€ ๏ƒน ๏ƒชฯ‰ , ฯ‰ + T ๏ƒบ = ๏ƒช 4 , 4 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป Subinterval width: T ฯ€ = 4 4 194 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.6: Phase Shift; Sinusoidal Curve Fitting 15. 19. y = 2 tan ( 4 x โˆ’ ฯ€ ) ฯ† 1 = ฯ‰ 2 2ฯ€ 2ฯ€ ฯ† ฯ† 1 ฯ‰= = = = =2 ฯ‰ 2 2 T ฯ€ ฯ† =1 A = 2; T = ฯ€; Begin with the graph of y = tan x and apply the following transformations: 1) Shift right ฯ€ units ๏ƒฉ๏ƒซ y = tan ( x โˆ’ ฯ€ ) ๏ƒน๏ƒป Assuming A is positive, we have that y = A sin(ฯ‰ x โˆ’ ฯ† ) = 2sin(2 x โˆ’ 1) 2) Horizontally compress by a factor of ๏ƒฉ y = tan ( 4 x โˆ’ ฯ€ ) ๏ƒน ๏ƒซ ๏ƒป 3) Vertically stretch by a factor of 2 ๏ƒฉ y = 2 tan ( 4 x โˆ’ ฯ€ ) ๏ƒน ๏ƒซ ๏ƒป ๏ƒฉ ๏ƒฆ 1 ๏ƒถ๏ƒน = 2sin ๏ƒช 2 ๏ƒง x โˆ’ ๏ƒท ๏ƒบ 2 ๏ƒธ๏ƒป ๏ƒซ ๏ƒจ 16. A = 3; T = ฯ€ ฯ† =2 ; 2 ฯ‰ 1 4 2ฯ€ 2ฯ€ ฯ† ฯ† = =2 = =4 ฯ€ T ฯ‰ 4 2 ฯ† =8 Assuming A is positive, we have that y = A sin(ฯ‰ x โˆ’ ฯ† ) = 3sin(4 x โˆ’ 8) ฯ‰= = 3sin ๏ƒฉ๏ƒซ 4 ( x โˆ’ 2 ) ๏ƒน๏ƒป 17. ฯ† 1 =โˆ’ ฯ‰ 3 2ฯ€ 2ฯ€ 2 ฯ† ฯ† 1 = =โˆ’ = = ฯ‰= 2 ฯ‰ 3 T 3ฯ€ 3 A = 3; T = 3ฯ€; 1 cot ( 2 x โˆ’ ฯ€ ) 2 Begin with the graph of y = cot x and apply the following transformations: 20. y = 3 1 2 2 3 3 9 Assuming A is positive, we have that 2๏ƒถ ๏ƒฆ2 y = A sin(ฯ‰ x โˆ’ ฯ† ) = 3sin ๏ƒง x + ๏ƒท 3 9 ๏ƒจ ๏ƒธ ๏ƒฉ2 ๏ƒฆ 1 ๏ƒถ๏ƒน = 3sin ๏ƒช ๏ƒง x + ๏ƒท ๏ƒบ 3 ๏ƒธ๏ƒป ๏ƒซ3 ๏ƒจ ฯ† =โˆ’ โ‹… =โˆ’ 18. 1) Shift right ฯ€ units ๏ƒฉ๏ƒซ y = cot ( x โˆ’ ฯ€ ) ๏ƒน๏ƒป 2) Horizontally compress by a factor of ๏ƒฉ y = cot ( 2 x โˆ’ ฯ€ ) ๏ƒน ๏ƒซ ๏ƒป 3) Vertically compress by a factor of ฯ† = โˆ’2 ฯ‰ 2ฯ€ 2ฯ€ ฯ† ฯ† ฯ‰= = =2 = = โˆ’2 ฯ‰ 2 T ฯ€ ฯ† = โˆ’4 1 ๏ƒฉ ๏ƒน ๏ƒช y = 2 cot ( 2 x โˆ’ ฯ€ ) ๏ƒบ ๏ƒซ ๏ƒป A = 2; T = ฯ€; Assuming A is positive, we have that y = A sin(ฯ‰ x โˆ’ ฯ† ) = 2sin(2 x + 4) = 2sin ๏ƒฉ๏ƒซ 2 ( x + 2 ) ๏ƒน๏ƒป 195 Copyright ยฉ 2016 Pearson Education, Inc. 1 2 1 2 Chapter 2: Trigonometric Functions ฯ€๏ƒถ ๏ƒฆ 21. y = 3csc ๏ƒง 2 x โˆ’ ๏ƒท 4๏ƒธ ๏ƒจ Begin with the graph of y = csc x and apply the following transformations: ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ units ๏ƒช y = csc ๏ƒง x โˆ’ ๏ƒท ๏ƒบ 4 ๏ƒธ ๏ƒบ๏ƒป 4 ๏ƒช๏ƒซ ๏ƒจ 1 2) Horizontally compress by a factor of 2 ๏ƒฉ ๏ƒน ฯ€๏ƒถ ๏ƒฆ ๏ƒช y = csc ๏ƒง 2 x โˆ’ ๏ƒท ๏ƒบ 4 ๏ƒธ ๏ƒป๏ƒบ ๏ƒจ ๏ƒซ๏ƒช 3) Vertically stretch by a factor of 3 ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ ๏ƒช y = 3csc ๏ƒง 2 x โˆ’ ๏ƒท ๏ƒบ 4 ๏ƒธ ๏ƒบ๏ƒป ๏ƒช๏ƒซ ๏ƒจ 1) Shift right ฯ€ ฯ€๏ƒถ ๏ƒฆ 23. y = โˆ’ cot ๏ƒง 2 x + ๏ƒท 2๏ƒธ ๏ƒจ Begin with the graph of y = cot x and apply the following transformations: 1) Shift left ฯ€ 2 ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ units ๏ƒช y = cot ๏ƒง x + ๏ƒท ๏ƒบ 2 ๏ƒธ ๏ƒป๏ƒบ ๏ƒจ ๏ƒซ๏ƒช 2) Horizontally compress by a factor of ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ ๏ƒช y = cot ๏ƒง 2 x + ๏ƒท ๏ƒบ 2 ๏ƒธ ๏ƒป๏ƒบ ๏ƒจ ๏ƒซ๏ƒช 3) Reflect about the x-axis ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ ๏ƒช y = โˆ’ cot ๏ƒง 2 x + ๏ƒท ๏ƒบ 2 ๏ƒธ ๏ƒป๏ƒบ ๏ƒจ ๏ƒซ๏ƒช 1 22. y = sec ( 3x โˆ’ ฯ€ ) 2 Begin with the graph of y = sec x and apply the following transformations: 1) Shift right ฯ€ units ๏ƒฉ๏ƒซ y = sec ( x โˆ’ ฯ€ ) ๏ƒน๏ƒป 1 2) Horizontally compress by a factor of 3 ๏ƒฉ y = sec ( 3 x โˆ’ ฯ€ ) ๏ƒน ๏ƒซ ๏ƒป 1 3) Vertically compress by a factor of 2 1 ๏ƒฉ ๏ƒน ๏ƒช y = 2 sec ( 3 x โˆ’ ฯ€ ) ๏ƒบ ๏ƒซ ๏ƒป 196 Copyright ยฉ 2016 Pearson Education, Inc. 1 2 Section 2.6: Phase Shift; Sinusoidal Curve Fitting ฯ€๏ƒถ ๏ƒฆ 1 26. y = โˆ’ csc ๏ƒง โˆ’ ฯ€ x + ๏ƒท 2 4๏ƒธ ๏ƒจ Begin with the graph of y = csc x and apply the following transformations: ๏ƒฉ ฯ€ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ 1) Shift left units ๏ƒช y = csc ๏ƒง x + ๏ƒท ๏ƒบ 4 ๏ƒธ ๏ƒป๏ƒบ 4 ๏ƒจ ๏ƒซ๏ƒช ฯ€๏ƒถ ๏ƒฆ 24. y = โˆ’ tan ๏ƒง 3 x + ๏ƒท 2๏ƒธ ๏ƒจ Begin with the graph of y = tan x and apply the following transformations: ๏ƒฉ ฯ€ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ 1) Shift left units ๏ƒช y = tan ๏ƒง x + ๏ƒท ๏ƒบ 2 ๏ƒธ๏ƒป 2 ๏ƒจ ๏ƒซ 1 2) Horizontally compress by a factor of 3 ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ 2) Reflect about the y-axis ๏ƒช y = csc ๏ƒง โˆ’ x + ๏ƒท ๏ƒบ 4 ๏ƒธ ๏ƒบ๏ƒป ๏ƒช๏ƒซ ๏ƒจ 2 3) Horizontally compress by a factor of ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ ๏ƒช y = tan ๏ƒง 3x + ๏ƒท ๏ƒบ 2 ๏ƒธ๏ƒป ๏ƒจ ๏ƒซ 3) Reflect about the x-axis ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ ๏ƒช y = โˆ’ tan ๏ƒง x + ๏ƒท ๏ƒบ 2 ๏ƒธ๏ƒป ๏ƒจ ๏ƒซ ฯ€ ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ 1 ๏ƒช y = csc ๏ƒง โˆ’ ฯ€ x + ๏ƒท ๏ƒบ 4 ๏ƒธ ๏ƒบ๏ƒป ๏ƒช๏ƒซ ๏ƒจ 2 3) Reflect about the x-axis ๏ƒฉ ฯ€ ๏ƒถ๏ƒน ๏ƒฆ 1 ๏ƒช y = โˆ’ csc ๏ƒง โˆ’ ฯ€ x + ๏ƒท ๏ƒบ 4 ๏ƒธ ๏ƒป๏ƒบ ๏ƒจ 2 ๏ƒซ๏ƒช ๏ƒฆฯ€ ๏ƒถ ๏ƒง ,1๏ƒท ๏ƒจ 12 ๏ƒธ ๏ƒถ ๏ƒฆฯ€ ๏ƒง , โˆ’1 ๏ƒท ๏ƒธ ๏ƒจ4 25. y = โˆ’ sec ( 2ฯ€ x + ฯ€ ) Begin with the graph of y = sec x and apply the following transformations: 1) Shift left ฯ€ units ๏ƒฉ๏ƒซ y = sec ( x + ฯ€ ) ๏ƒน๏ƒป 1 2) Horizontally compress by a factor of 2ฯ€ ๏ƒฉ y = sec ( 2ฯ€ x + ฯ€ ) ๏ƒน ๏ƒซ ๏ƒป 3) Reflect about the x-axis ๏ƒฉ y = โˆ’ sec ( 2ฯ€ x + ฯ€ ) ๏ƒน ๏ƒซ ๏ƒป ฯ€๏ƒถ ๏ƒฆ 27. I ( t ) = 120sin ๏ƒง 30ฯ€ t โˆ’ ๏ƒท , t โ‰ฅ 0 3๏ƒธ ๏ƒจ 2ฯ€ 2ฯ€ 1 Period: T= = = second ฯ‰ 30ฯ€ 15 Amplitude: A = 120 = 120 amperes ฯ€ ฯ† 1 Phase Shift: second = 3 = ฯ‰ 30ฯ€ 90 197 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions c. ฯ€๏ƒถ ๏ƒฆ 28. I ( t ) = 220sin ๏ƒง 60ฯ€ t โˆ’ ๏ƒท , t โ‰ฅ 0 6๏ƒธ ๏ƒจ 2ฯ€ 2ฯ€ 1 Period: T= = = second ฯ‰ 60ฯ€ 30 Amplitude: A = 220 = 220 amperes ฯ€ d. 1 ฯ† Phase Shift: second = 6 = ฯ‰ 60ฯ€ 360 y = 9.46sin (1.247 x + 2.906 ) + 24.088 e. 29. a. 30. a. b. 33 โˆ’ 16 17 = = 8.5 2 2 33+16 49 Vertical Shift: = = 24.5 2 2 2ฯ€ 2ฯ€ = ฯ‰= 5 5 Phase Shift (use y = 16, x = 6): Amplitude: A = b. ๏ƒฆ 2ฯ€ ๏ƒถ 16 = 8.5sin ๏ƒง โ‹… 6 โˆ’ ฯ† ๏ƒท + 24.5 ๏ƒจ 5 ๏ƒธ 12 ฯ€ ๏ƒฆ ๏ƒถ โˆ’8.5 = 8.5sin ๏ƒง โˆ’ฯ† ๏ƒท ๏ƒจ 5 ๏ƒธ 79.8 โˆ’ 36.0 43.8 = = 21.9 2 2 79.8+36.0 115.8 = = 57.9 Vertical Shift: 2 2 2ฯ€ ฯ€ = ฯ‰= 12 6 Phase Shift (use y = 36.0, x = 1): Amplitude: A = 36.0 = 21.9sin ๏ƒฆ 12ฯ€ ๏ƒถ โˆ’1 = sin ๏ƒง โˆ’ฯ† ๏ƒท 5 ๏ƒจ ๏ƒธ ฯ€ 12ฯ€ โˆ’ = โˆ’ฯ† 2 5 29ฯ€ ฯ†= 10 11ฯ€ ๏ƒถ ๏ƒฆ 2ฯ€ xโˆ’ Thus, y = 8.5sin ๏ƒง ๏ƒท + 24.5 or 10 ๏ƒธ ๏ƒจ 5 โˆ’ 21.9 = 21.9sin โˆ’1 = sin โˆ’ ๏ƒฉ 2ฯ€ ๏ƒฆ 11 ๏ƒถ ๏ƒน y = 8.5sin ๏ƒช ๏ƒง x โˆ’ ๏ƒท ๏ƒบ + 24.5 . 4 ๏ƒธ๏ƒป ๏ƒซ5 ๏ƒจ ฯ€ โ‹…1 โˆ’ ฯ† + 57.9 6 ฯ€ โˆ’ฯ† 6 ฯ€ โˆ’ฯ† 6 ฯ€ ฯ€ = โˆ’ฯ† 2 6 2ฯ€ ฯ†= 3 Thus, y = 21.9sin y = 21.9sin 198 Copyright ยฉ 2016 Pearson Education, Inc. ฯ€ 2ฯ€ xโˆ’ + 57.9 or 6 3 ฯ€ ( x โˆ’ 4) + 57.9 . 6 Section 2.6: Phase Shift; Sinusoidal Curve Fitting c. c. d. d. y = 24.25sin(0.493 x โˆ’ 1.927) + 51.61 y = 21.68sin ( 0.516 x โˆ’ 2.124) + 57.81 / / e. 90 e. 0 13 20 32. a. 31. a. b. b. 75.4 โˆ’ 28.1 47.3 Amplitude: A = = = 23.65 2 2 75.4+28.1 103.5 = = 51.75 Vertical Shift: 2 2 2ฯ€ ฯ€ = ฯ‰= 12 6 Phase Shift (use y = 28.1, x = 1): 32.9 = 22.05sin ฯ€ โ‹…1 โˆ’ ฯ† + 51.75 28.1 = 23.65sin 6 โˆ’ 23.65 = 23.65sin โˆ’1 = sin โˆ’ 22.05 = 22.05sin ฯ€ โˆ’ฯ† 6 โˆ’1 = sin ฯ€ โˆ’ฯ† 6 โˆ’ ฯ€ ฯ€ โˆ’ = โˆ’ฯ† 2 6 2ฯ€ ฯ†= 3 Thus, y = 23.65sin y = 23.65sin 77.0 โˆ’ 32.9 44.1 = = 22.05 2 2 77.0+32.9 109.9 = = 54.95 Vertical Shift: 2 2 2ฯ€ ฯ€ = ฯ‰= 12 6 Phase Shift (use y = 32.9, x = 1): Amplitude: A = ฯ€ ฯ€ = โˆ’ฯ† 2 6 2ฯ€ ฯ†= 3 y = 22.05sin ฯ€ ( x โˆ’ 4) + 51.75 . 6 199 Copyright ยฉ 2016 Pearson Education, Inc. ฯ€ โˆ’ฯ† 6 ฯ€ โˆ’ฯ† 6 Thus, y = 22.05sin ฯ€ 2ฯ€ xโˆ’ + 51.75 or 6 3 ฯ€ โ‹…1 โˆ’ ฯ† + 54.95 6 ฯ€ 2ฯ€ xโˆ’ + 54.95 or 6 3 ฯ€ ( x โˆ’ 4) + 54.95 . 6 Chapter 2: Trigonometric Functions 34. a. c. b. d. y = 21.73sin(0.518 x โˆ’ 2.139) + 54.82 80 e. 0.10 + 12.4167 = 12.5167 hours which is at 12:31 PM. 9.97 โˆ’ (0.59) 9.38 = = 4.69 2 2 9.97 + (0.59) 10.56 Vertical Shift: = = 5.28 2 2 2ฯ€ 24ฯ€ ฯ€ ฯ‰= = = 12.4167 6.20835 149 Phase Shift (use y = 9.97, x = 0.10): Ampl: A = 9.97 = 4.69sin 24ฯ€ โ‹… 0.10 โˆ’ ฯ† + 5.28 149 4.69 = 4.69sin 24ฯ€ โ‹… 0.10 โˆ’ ฯ† 149 1 = sin 0 33. a. b. ฯ€ 2.4ฯ€ = โˆ’ฯ† 2 149 ฯ† โ‰ˆ โˆ’1.5202 13 20 6.5 + 12.4167 = 18.9167 hours which is at 6:55 PM. 5.86 โˆ’ ( โˆ’0.38) Thus, y = 4.69sin 6.24 = 3.12 2 2 5.86 + ( โˆ’0.38) 5.48 Vertical Shift: = = 2.74 2 2 2ฯ€ 24ฯ€ ฯ€ ฯ‰= = = 12.4167 6.20835 149 Phase Shift (use y = 5.86, x = 6.5): Ampl: A = 24ฯ€ โ‹… 6.5 โˆ’ ฯ† + 2.74 149 3.12 = 3.12sin 24ฯ€ โ‹… 6.5 โˆ’ ฯ† 149 ฯ€ or y = 4.69sin = 5.86 = 3.12sin 1 = sin c. 35. a. 156ฯ€ โˆ’ฯ† 2 149 ฯ† โ‰ˆ 1.7184 = or y = 3.12sin c. y = 3.12sin y = 4.69sin 24ฯ€ x + 1.5202 + 5.28 149 24ฯ€ ( x + 3.0042) + 5.28 . 149 24ฯ€ (18) + 1.5202 + 5.28 149 โ‰ˆ 0.90 feet 156ฯ€ โˆ’ฯ† 149 Thus, y = 3.12sin 2.4ฯ€ โˆ’ฯ† 149 24ฯ€ x โˆ’ 1.7184 + 2.74 149 13.75 โˆ’ 10.52 = 1.615 2 13.75 + 10.52 Vertical Shift: = 12.135 2 2ฯ€ ฯ‰= 365 Phase Shift (use y = 13.75, x = 172): Amplitude: A = 13.75 = 1.615sin 2ฯ€ โ‹…172 โˆ’ ฯ† + 12.135 365 1.615 = 1.615sin 2ฯ€ โ‹…172 โˆ’ ฯ† 365 344ฯ€ โˆ’ฯ† 365 ฯ€ 344ฯ€ = โˆ’ฯ† 2 365 ฯ† โ‰ˆ 1.3900 1 = sin 24ฯ€ ( x โˆ’ 3.3959) + 2.74 . 149 24ฯ€ (15) โˆ’ 1.7184 + 2.74 149 โ‰ˆ 1.49 feet 200 Copyright ยฉ 2016 Pearson Education, Inc. Section 2.6: Phase Shift; Sinusoidal Curve Fitting Thus, y = 1.615sin y = 1.615sin b. c. 2ฯ€ x โˆ’ 1.39 + 12.135 or 365 2ฯ€ ( x โˆ’ 80.75) + 12.135 . 365 2ฯ€ (91 โˆ’ 80.75) + 12.135 365 โ‰ˆ 12.42 hours y = 1.615sin c. d. The actual hours of sunlight on April 1, 2014 were 12.75 hours. This is very close to the predicted amount of 12.71 hours. 37. a. d. The actual hours of sunlight on April 1, 2014 were 12.43 hours. This is very close to the predicted amount of 12.42 hours. 36. a. 15.27 โˆ’ 9.07 = 3.1 2 15.27 + 9.07 Vertical Shift: = 12.17 2 2ฯ€ ฯ‰= 365 Phase Shift (use y = 15.27, x = 172): Amplitude: A = 15.27 = 3.1sin 3.1 = 3.1sin 2ฯ€ โ‹…172 โˆ’ ฯ† 365 6.96 = 6.96sin 2ฯ€ โ‹…172 โˆ’ ฯ† 365 Thus, y = 6.96sin 344ฯ€ โˆ’ฯ† 365 ฯ€ 344ฯ€ = โˆ’ฯ† 2 365 ฯ† โ‰ˆ 1.39 b. 2ฯ€ โ‹…172 โˆ’ ฯ† + 12.41 365 344ฯ€ โˆ’ฯ† 365 ฯ€ 344ฯ€ = โˆ’ฯ† 2 365 ฯ† โ‰ˆ 1.39 y = 6.96sin 1 = sin y = 3.1sin 19.37 = 6.96sin 1 = sin 2ฯ€ โ‹…172 โˆ’ ฯ† + 12.17 365 Thus, y = 3.1sin 19.37 โˆ’ 5.45 = 6.96 2 19.37 + 5.45 Vertical Shift: = 12.41 2 2ฯ€ ฯ‰= 365 Phase Shift (use y = 19.37, x = 172): Amplitude: A = b. 2ฯ€ x โˆ’ 1.39 + 12.41 or 365 2ฯ€ ( x โˆ’ 80.75) + 12.41 . 365 2ฯ€ (91) โˆ’ 1.39 + 12.41 365 โ‰ˆ 13.63 hours y = 6.96sin 2ฯ€ x โˆ’ 1.39 + 12.17 or 365 2ฯ€ ( x โˆ’ 80.75) + 12.17 . 365 2ฯ€ (91) โˆ’ 1.39 + 12.17 365 โ‰ˆ 12.71 hours y = 3.1sin 201 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions c. d. The actual hours of sunlight on April 1, 2014 were 12.38 hours. This is very close to the predicted amount of 12.35 hours. 39 โ€“ 40. Answers will vary. 41. 13.42 โˆ’ 10.83 = 1.295 2 13.42 + 10.83 Vertical Shift: = 12.125 2 2ฯ€ ฯ‰= 365 Phase Shift (use y = 13.42, x = 172): Amplitude: A = 13.42 = 1.295sin 2ฯ€ โ‹…172 โˆ’ ฯ† + 12.125 365 1.295 = 1.295sin 2ฯ€ โ‹…172 โˆ’ ฯ† 365 344ฯ€ โˆ’ฯ† 365 ฯ€ 344ฯ€ = โˆ’ฯ† 2 365 ฯ† โ‰ˆ 1.39 Thus, y = 1.295sin the Use MAXIMUM and MINIMUM on the graph of y1 = 2 x3 โˆ’ 3x 2 โˆ’ 8 x + 14 . 1 = sin b. on interval ( โˆ’4,5 ) d. The actual hours of sunlight on April 1, 2014 was 13.37 hours. This is close to the predicted amount of 13.63 hours. 38. a. f ( x ) = 2 x3 โˆ’ 3x 2 โˆ’ 8 x + 14 local maximum: f ( โˆ’0.76) โ‰ˆ 17.47 local minimum: 2ฯ€ x โˆ’ 1.39 + 12.125 . 365 42. 2ฯ€ y = 1.295sin (91) โˆ’ 1.39 + 12.125 365 โ‰ˆ 12.35 hours f (1.76) = 1.53 โˆ’16(2) 2 + 5(2) โˆ’ โˆ’16( โˆ’1)2 + 5( โˆ’1) 2 โˆ’ ( โˆ’1) = [ โˆ’16(4) + 10] โˆ’ [ โˆ’16 โˆ’ 5] 3 [ โˆ’54] โˆ’ [ โˆ’21] = โˆ’54 + 21 = 3 โˆ’33 = = โˆ’11 3 c. 43. 7ฯ€ 180 = 105ยฐ 12 ฯ€ 202 Copyright ยฉ 2016 Pearson Education, Inc. 3 Chapter 2 Review Exercises 44. x 2 โˆ’ 9 = โˆ’5 11. sin 2 20ยบ + 2 x =4 x = ยฑ2 1 = sin 2 20ยบ + cos 2 20ยบ = 1 sec2 20ยบ 12. sec50ยบ โ‹… cos 50ยบ = But only the โˆ’2 is in the domain of the part of the piecewise function. โˆ’3 x + 7 = โˆ’5 โˆ’3 x = โˆ’12 x=4 Thus the values are { โˆ’2, 4} . 1 โ‹… cos 50ยบ = 1 cos 50ยบ 13. cos(โˆ’40ยบ ) cos 40ยบ = =1 cos 40ยบ cos 40ยบ 14. sin(โˆ’40ยบ ) โˆ’ sin 40ยบ = = โˆ’1 sin 40ยบ sin 40ยบ 15. sin 400ยบ โ‹… sec ( โˆ’50ยบ ) = sin 400ยบ โ‹… sec 50ยบ 1 cos 50ยบ sin 40ยบ sin 40ยบ = = cos 50ยบ sin(90ยบ โˆ’50ยบ ) sin 40ยบ = =1 sin 40ยบ = sin ( 40ยบ +360ยบ ) โ‹… Chapter 2 Review Exercises 1. 135ยฐ = 135 โ‹… 2. 18ยฐ = 18 โ‹… 3. 3ฯ€ ฯ€ radian = radians 180 4 4 ฯ€ and 0 < ฮธ < , so ฮธ lies in quadrant I. 5 2 Using the Pythagorean Identities: cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ 16. sin ฮธ = ฯ€ ฯ€ radian = radian 180 10 3ฯ€ 3ฯ€ 180 degrees = 135ยฐ = โ‹… 4 4 ฯ€ 4. โˆ’ 2 16 9 ๏ƒฆ4๏ƒถ = cos 2 ฮธ = 1 โˆ’ ๏ƒง ๏ƒท = 1 โˆ’ 25 25 ๏ƒจ5๏ƒธ 9 3 =ยฑ 25 5 Note that cos ฮธ must be positive since ฮธ lies in 3 quadrant I. Thus, cos ฮธ = . 5 4 sin ฮธ 5 4 5 4 = = โ‹… = tan ฮธ = cos ฮธ 53 5 3 3 5ฯ€ 5ฯ€ 180 =โˆ’ โ‹… degrees = โˆ’ 450ยฐ 2 2 ฯ€ 5. tan cos ฮธ = ยฑ ฯ€ ฯ€ 1 1 โˆ’ sin = 1 โˆ’ = 4 6 2 2 6. 3sin 45ยบ โˆ’ 4 tan 7. 6 cos ฯ€ 2 3 3 2 4 3 = 3โ‹… โˆ’ 4โ‹… = โˆ’ 6 2 3 2 3 ๏ƒฆ 3ฯ€ 2๏ƒถ ๏ƒฆ ฯ€๏ƒถ + 2 tan ๏ƒง โˆ’ ๏ƒท = 6 ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท + 2 โˆ’ 3 4 ๏ƒจ 3๏ƒธ ๏ƒจ 2 ๏ƒธ ( ) = โˆ’3 2 โˆ’ 2 3 ฯ€ 5ฯ€ ๏ƒฆ ฯ€๏ƒถ ๏ƒฆ 5ฯ€ ๏ƒถ 8. sec ๏ƒง โˆ’ ๏ƒท โˆ’ cot ๏ƒง โˆ’ ๏ƒท = sec + cot = 2 +1 = 3 3 4 ๏ƒจ 3๏ƒธ ๏ƒจ 4 ๏ƒธ csc ฮธ = 1 1 5 5 = 4 = 1โ‹… = sin ฮธ 5 4 4 sec ฮธ = 1 1 5 5 = = 1โ‹… = cos ฮธ 53 3 3 cot ฮธ = 1 1 3 3 = 4 = 1โ‹… = tan ฮธ 3 4 4 12 and sin ฮธ < 0 , so ฮธ lies in quadrant III. 5 Using the Pythagorean Identities: 17. tan ฮธ = 9. tan ฯ€ + sin ฯ€ = 0 + 0 = 0 10. cos 540ยบ โˆ’ tan( โˆ’ 405ยบ ) = โˆ’1 โˆ’ ( โˆ’1) = โˆ’1 + 1 = 0 203 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 12 and ฮธ lies in quadrant II. 13 Using the Pythagorean Identities: cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ sec 2 ฮธ = tan 2 ฮธ + 1 19. sin ฮธ = 2 144 169 ๏ƒฆ 12 ๏ƒถ sec 2 ฮธ = ๏ƒง ๏ƒท + 1 = +1 = 25 25 ๏ƒจ 5๏ƒธ 169 13 =ยฑ 25 5 Note that sec ฮธ must be negative since ฮธ lies in 13 quadrant III. Thus, sec ฮธ = โˆ’ . 5 1 1 5 cos ฮธ = = =โˆ’ sec ฮธ โˆ’ 135 13 sec ฮธ = ยฑ tan ฮธ = 2 144 25 ๏ƒฆ 12 ๏ƒถ cos 2 ฮธ = 1 โˆ’ ๏ƒง ๏ƒท = 1 โˆ’ = 169 169 ๏ƒจ 13 ๏ƒธ 25 5 =ยฑ 169 13 Note that cos ฮธ must be negative because ฮธ lies 5 in quadrant II. Thus, cos ฮธ = โˆ’ . 13 12 sin ฮธ 12 ๏ƒฆ 13 ๏ƒถ 12 = 13 = ๏ƒง โˆ’ ๏ƒท = โˆ’ tan ฮธ = cos ฮธ โˆ’ 135 13 ๏ƒจ 5 ๏ƒธ 5 cos ฮธ = ยฑ sin ฮธ , so cos ฮธ 12 ๏ƒฆ 5 ๏ƒถ 12 ๏ƒงโˆ’ ๏ƒท = โˆ’ 5 ๏ƒจ 13 ๏ƒธ 13 1 1 13 csc ฮธ = = =โˆ’ sin ฮธ โˆ’ 12 12 13 sin ฮธ = ( tan ฮธ )( cos ฮธ ) = cot ฮธ = 1 1 5 = = tan ฮธ 125 12 5 and tan ฮธ < 0 , so ฮธ lies in quadrant II. 4 Using the Pythagorean Identities: tan 2 ฮธ = sec2 ฮธ โˆ’ 1 18. sec ฮธ = โˆ’ 2 1 1 13 = =โˆ’ cos ฮธ โˆ’ 135 5 cot ฮธ = 1 1 5 = 12 = โˆ’ tan ฮธ โˆ’ 5 12 2 25 144 ๏ƒฆ 5๏ƒถ cos 2 ฮธ = 1 โˆ’ ๏ƒง โˆ’ ๏ƒท = 1 โˆ’ = 13 169 169 ๏ƒจ ๏ƒธ 9 3 =ยฑ 16 4 144 12 =ยฑ 169 13 Note that cos ฮธ must be positive because ฮธ lies 12 . in quadrant IV. Thus, cos ฮธ = 13 sin ฮธ โˆ’ 135 5 ๏ƒฆ 13 ๏ƒถ 5 = 12 = โˆ’ ๏ƒง ๏ƒท = โˆ’ tan ฮธ = cos ฮธ 13 ๏ƒจ 12 ๏ƒธ 12 13 cos ฮธ = ยฑ 3 Note that tan ฮธ < 0 , so tan ฮธ = โˆ’ . 4 1 1 4 cos ฮธ = = =โˆ’ sec ฮธ โˆ’ 54 5 sin ฮธ , so cos ฮธ 3๏ƒฆ 4๏ƒถ 3 sin ฮธ = ( tan ฮธ )( cos ฮธ ) = โˆ’ ๏ƒง โˆ’ ๏ƒท = . 4๏ƒจ 5๏ƒธ 5 1 1 5 csc ฮธ = = = sin ฮธ 35 3 cot ฮธ = sec ฮธ = 5 3ฯ€ and < ฮธ < 2ฯ€ (quadrant IV) 13 2 Using the Pythagorean Identities: cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ 25 9 ๏ƒฆ 5๏ƒถ tan ฮธ = ๏ƒง โˆ’ ๏ƒท โˆ’ 1 = โˆ’1 = 4 16 16 ๏ƒจ ๏ƒธ tan ฮธ = 1 1 13 = 12 = sin ฮธ 13 12 20. sin ฮธ = โˆ’ 2 tan ฮธ = ยฑ csc ฮธ = 1 1 4 = =โˆ’ tan ฮธ โˆ’ 34 3 csc ฮธ = 1 1 13 = =โˆ’ sin ฮธ โˆ’ 135 5 sec ฮธ = 1 1 13 = 12 = cos ฮธ 13 12 cot ฮธ = 1 1 12 = =โˆ’ tan ฮธ โˆ’ 125 5 204 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2 Review Exercises 1 and 180ยบ < ฮธ < 270ยบ (quadrant III) 3 Using the Pythagorean Identities: sec 2 ฮธ = tan 2 ฮธ + 1 21. tan ฮธ = csc2 ฮธ = 1 + ( โˆ’2 ) = 1 + 4 = 5 2 2 1 10 ๏ƒฆ1๏ƒถ sec 2 ฮธ = ๏ƒง ๏ƒท + 1 = + 1 = 9 9 ๏ƒจ3๏ƒธ 10 10 sec ฮธ = ยฑ =ยฑ 9 3 Note that sec ฮธ must be negative since ฮธ lies in quadrant III. Thus, sec ฮธ = โˆ’ cos ฮธ = tan ฮธ = 1 = sec ฮธ 1 โˆ’ 10 3 =โˆ’ 3 10 ฯ€ < ฮธ < ฯ€ (quadrant II) 2 Using the Pythagorean Identities: csc2 ฮธ = 1 + cot 2 ฮธ 23. cot ฮธ = โˆ’ 2 and 10 . 3 10 โ‹… 10 =โˆ’ 3 10 10 sin ฮธ , so cos ฮธ 1 ๏ƒฆ 3 10 ๏ƒถ 10 sin ฮธ = ( tan ฮธ )( cos ฮธ ) = ๏ƒง๏ƒง โˆ’ ๏ƒท๏ƒท = โˆ’ 3 ๏ƒจ 10 ๏ƒธ 10 1 1 10 = =โˆ’ = โˆ’ 10 csc ฮธ = sin ฮธ 10 10 โˆ’ 10 1 1 = =3 cot ฮธ = tan ฮธ 13 3ฯ€ < ฮธ < 2ฯ€ (quadrant IV) 2 Using the Pythagorean Identities: tan 2 ฮธ = sec2 ฮธ โˆ’ 1 csc ฮธ = ยฑ 5 Note that csc ฮธ must be positive because ฮธ lies in quadrant II. Thus, csc ฮธ = 5 . 1 1 5 5 = โ‹… = csc ฮธ 5 5 5 cos ฮธ , so cot ฮธ = sin ฮธ ๏ƒฆ 5๏ƒถ 2 5 . cos ฮธ = ( cot ฮธ )( sin ฮธ ) = โˆ’2 ๏ƒง๏ƒง ๏ƒท๏ƒท = โˆ’ 5 ๏ƒจ 5 ๏ƒธ 1 1 1 = =โˆ’ tan ฮธ = cot ฮธ โˆ’2 2 sin ฮธ = sec ฮธ = 1 1 5 5 = 2 5 =โˆ’ =โˆ’ cos ฮธ โˆ’ 5 2 2 5 24. y = 2sin(4 x) The graph of y = sin x is stretched vertically by a factor of 2 and compressed horizontally by a 1 factor of . 4 22. sec ฮธ = 3 and tan 2 ฮธ = 32 โˆ’ 1 = 9 โˆ’ 1 = 8 tan ฮธ = ยฑ 8 = ยฑ2 2 Note that tan ฮธ must be negative since ฮธ lies in quadrant IV. Thus,. tan ฮธ = โˆ’2 2 . 1 1 = cos ฮธ = sec ฮธ 3 sin ฮธ tan ฮธ = , so cos ฮธ 2 2 ๏ƒฆ1๏ƒถ . sin ฮธ = ( tan ฮธ )( cos ฮธ ) = โˆ’2 2 ๏ƒง ๏ƒท = โˆ’ 3 ๏ƒจ3๏ƒธ csc ฮธ = 1 1 3 2 3 2 = 2 2 =โˆ’ โ‹… =โˆ’ sin ฮธ โˆ’ 3 4 2 2 2 cot ฮธ = 1 1 2 2 = โ‹… =โˆ’ tan ฮธ โˆ’2 2 2 4 Domain: ( โˆ’โˆž, โˆž ) Range: [ โˆ’2, 2] 205 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions 27. y = โˆ’ 2 tan(3x ) The graph of y = tan x is stretched vertically by a factor of 2, reflected across the x-axis, and 1 compressed horizontally by a factor of . 3 25. y = โˆ’3cos(2 x) The graph of y = cos x is stretched vertically by a factor of 3, reflected across the x-axis, and 1 compressed horizontally by a factor of . 2 ฯ€ ฯ€ ๏ƒฌ ๏ƒผ Domain: ๏ƒญ x | x โ‰  + k โ‹… , k is an integer ๏ƒฝ 6 3 ๏ƒฎ ๏ƒพ Range: ( โˆ’โˆž, โˆž ) Domain: ( โˆ’โˆž, โˆž ) Range: [ โˆ’3,3] 26. y = tan( x + ฯ€) The graph of y = tan x is shifted ฯ€ units to the left. ฯ€๏ƒถ ๏ƒฆ 28. y = cot ๏ƒง x + ๏ƒท 4๏ƒธ ๏ƒจ The graph of y = cot x is shifted ฯ€ 4 units to the left. kฯ€ ๏ƒฌ ๏ƒผ Domain: ๏ƒญ x | x โ‰  , k is an odd integer ๏ƒฝ 2 ๏ƒฎ ๏ƒพ Range: ( โˆ’โˆž, โˆž ) ฯ€ ๏ƒฌ ๏ƒผ Domain: ๏ƒญ x | x โ‰  โˆ’ + kฯ€ , k is an integer ๏ƒฝ 4 ๏ƒฎ ๏ƒพ Range: ( โˆ’โˆž, โˆž ) 206 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2 Review Exercises 29. y = 4sec ( 2 x ) 31. y = 4sin ( 2 x + 4 ) โˆ’ 2 The graph of y = sec x is stretched vertically by a factor of 4 and compressed horizontally by a 1 factor of . 2 y 4 3 2 1 (โซบโฒ, 4) 3โฒ โซบโ€“โ€“โ€“ 4 โฒ , โซบ4 โซบ โ€“โ€“ 2 ( ) โฒ โซบ โ€“โ€“ 4 โซบ2 โซบ3 โซบ4 โซบ5 โฒ 1 , 2 stretched vertically by a factor of 4, and shifted down 2 units. compressed horizontally by a factor of (โฒ, 4) (0, 4) โ€“โ€“ 4 The graph of y = sin x is shifted left 4 units, 3โฒ โ€“โ€“โ€“ 4 x (โ€“โ€“โฒ2 , โซบ4) kฯ€ ๏ƒฌ ๏ƒผ , k is an odd integer ๏ƒฝ Domain: ๏ƒญ x | x โ‰  4 ๏ƒฎ ๏ƒพ Range: { y | y โ‰ค โˆ’4 or y โ‰ฅ 4} ฯ€๏ƒถ ๏ƒฆ 30. y = csc ๏ƒง x + ๏ƒท 4๏ƒธ ๏ƒจ The graph of y = csc x is shifted ฯ€ 4 units to the left. Domain: ( โˆ’โˆž, โˆž ) Range: [ โˆ’6, 2] ๏ƒฆx ฯ€๏ƒถ 32. y = 5cot ๏ƒง โˆ’ ๏ƒท ๏ƒจ3 4๏ƒธ The graph of y = cot x is shifted right ฯ€4 units, stretched horizontally by a factor of 3, and stretched vertically by a factor of 5. ฯ€ ๏ƒฌ ๏ƒผ Domain: ๏ƒญ x | x โ‰  โˆ’ + kฯ€ , k is an integer ๏ƒฝ 4 ๏ƒฎ ๏ƒพ Range: { y | y โ‰ค โˆ’1 or y โ‰ฅ 1} 3ฯ€ ๏ƒฌ ๏ƒผ Domain: ๏ƒญ x | x โ‰  + k โ‹… 3ฯ€ , k is an integer ๏ƒฝ 4 ๏ƒฎ ๏ƒพ Range: ( โˆ’โˆž, โˆž ) 33. y = sin(2 x) Amplitude = 1 = 1 ; Period = 2ฯ€ =ฯ€ 2 34. y = โˆ’ 2 cos(3ฯ€ x) Amplitude = โˆ’2 = 2 ; Period = 207 Copyright ยฉ 2016 Pearson Education, Inc. 2ฯ€ 2 = 3ฯ€ 3 Chapter 2: Trigonometric Functions 35. y = 4sin(3 x) Amplitude: A = 4 =4 Period: T= 2ฯ€ = 2ฯ€ 3 ฯ‰ ฯ† 0 Phase Shift: = =0 ฯ‰ 3 2 38. y = โˆ’ cos ( ฯ€x โˆ’ 6 ) 3 2 2 = 3 3 2ฯ€ 2ฯ€ Period: = =2 T= ฯ‰ ฯ€ ฯ† 6 Phase Shift: = ฯ‰ ฯ€ Amplitude: ฯ€๏ƒถ ๏ƒฆ1 36. y = โˆ’ cos ๏ƒง x + ๏ƒท 2 2๏ƒธ ๏ƒจ Amplitude: A = โˆ’1 = 1 Period: T= 2ฯ€ ฯ‰ = A = โˆ’ 2ฯ€ = 4ฯ€ 1 2 ฯ€ โˆ’ ฯ† Phase Shift: = 2 = โˆ’ฯ€ 1 ฯ‰ 2 39. The graph is a cosine graph with amplitude 5 and period 8ฯ€. 2ฯ€ Find ฯ‰ : 8ฯ€ = ฯ‰ 8ฯ€ฯ‰ = 2ฯ€ 2ฯ€ 1 ฯ‰= = 8ฯ€ 4 1 ๏ƒฆ3 ๏ƒถ 37. y = sin ๏ƒง x โˆ’ ฯ€ ๏ƒท 2 ๏ƒจ2 ๏ƒธ 40. The graph is a reflected sine graph with amplitude 7 and period 8. 2ฯ€ Find ฯ‰ : 8 = 1 1 = 2 2 2ฯ€ 2ฯ€ 4ฯ€ Period: = = T= 3 3 ฯ‰ 2 ฯ† ฯ€ 2ฯ€ Phase Shift: = = ฯ‰ 3 3 2 Amplitude: A = ฯ‰ 8ฯ‰ = 2ฯ€ 2ฯ€ ฯ€ ฯ‰= = 8 4 ๏ƒฆฯ€ ๏ƒถ The equation is: y = โˆ’7 sin ๏ƒง x ๏ƒท . ๏ƒจ4 ๏ƒธ 208 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2 Review Exercises 41. Set the calculator to radian mode: sin ฯ€ 8 โ‰ˆ 0.38 . 47. The domain of y = sec x is ฯ€๏ƒผ ๏ƒฌ ๏ƒญ x x โ‰  odd multiple of ๏ƒฝ . 2๏ƒพ ๏ƒฎ The range of y = sec x is { y y โ‰ค โˆ’1 or y โ‰ฅ 1} . The period is 2ฯ€ . 42. Set the calculator to degree mode: 1 sec10o = โ‰ˆ 1.02 . cos10o 32o 20 '35" = 32 + 48. a. 20 35 + โ‰ˆ 32.34o 60 3600 63.18o 0.18o = (0.18)(60 ') = 10.8' 0.8' = (0.8)(60") = 48" b. Thus, 63.18o = 63o10 '48" 43. Terminal side of ฮธ in quadrant III implies sin ฮธ < 0 csc ฮธ < 0 cos ฮธ < 0 sec ฮธ 0 cot ฮธ > 0 44. cos ฮธ > 0, tan ฮธ < 0 ; ฮธ lies in quadrant IV. ๏ƒฆ 1 2 2๏ƒถ 45. P = ๏ƒง โˆ’ , ๏ƒท ๏ƒจ 3 3 ๏ƒธ 2 2 1 3 2 3 2 ; csc t = = โ‹… = 3 4 ๏ƒฆ2 2๏ƒถ 2 2 2 ๏ƒง 3 ๏ƒท ๏ƒจ ๏ƒธ 1 1 cos t = โˆ’ ; sec t = = โˆ’3 3 ๏ƒฆโˆ’1๏ƒถ ๏ƒง 3๏ƒท ๏ƒจ ๏ƒธ ๏ƒฆ2 2๏ƒถ ๏ƒง ๏ƒท 2 2 ๏ƒฆ 3๏ƒถ tan t = ๏ƒจ 3 ๏ƒธ = โ‹… โˆ’ = โˆ’2 2 ; 3 ๏ƒง๏ƒจ 1 ๏ƒท๏ƒธ ๏ƒฆโˆ’1๏ƒถ ๏ƒง 3๏ƒท ๏ƒจ ๏ƒธ 1 2 2 โ‹… =โˆ’ 4 โˆ’2 2 2 46. The point P = (โˆ’2, 5) is on a circle of radius r = (โˆ’2) 2 + 52 = 4 + 25 = 29 with the center at the origin. So, we have x = โˆ’2 , y = 5 , and r = 29 . Thus, sin t = cos t = ฯ€ 6 ฯ€ ฯ€ = โ‰ˆ 1.047 feet 6 3 1 1 ฯ€ 2 ฯ€ A = โ‹… r 2ฮธ = โ‹… ( 2 ) โ‹… = โ‰ˆ 1.047 square feet 2 2 6 3 s = rฮธ = 2 โ‹… 50. In 30 minutes: r = 8 inches, ฮธ = 180ยบ or ฮธ = ฯ€ s = rฮธ = 8 โ‹… ฯ€ = 8ฯ€ โ‰ˆ 25.13 inches sin t = cot t = 49. r = 2 feet, ฮธ = 30ยบ or ฮธ = y 5 5 29 = = ; 29 r 29 y 5 x 2 29 โˆ’2 ; tan t = = โˆ’ . = =โˆ’ 2 r 29 x 29 In 20 minutes: r = 8 inches, ฮธ = 120ยบ or ฮธ = s = rฮธ = 8 โ‹… 2ฯ€ 3 2ฯ€ 16ฯ€ = โ‰ˆ 16.76 inches 3 3 51. v = 180 mi/hr ; 1 mile 2 1 r = = 0.25 mile 4 d= v 180 mi/hr = 0.25 mi r = 720 rad/hr 720 rad 1 rev = โ‹… hr 2ฯ€ rad 360 rev = ฯ€ hr โ‰ˆ 114.6 rev/hr ฯ‰= 52. Since there are two lights on opposite sides and the light is seen every 5 seconds, the beacon makes 1 revolution every 10 seconds: 1 rev 2ฯ€ radians ฯ€ โ‹… = radians/second ฯ‰= 10 sec 1 rev 5 209 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions ฯ€๏ƒถ ๏ƒฆ 53. I (t ) = 220sin ๏ƒง 30ฯ€t + ๏ƒท , 6๏ƒธ ๏ƒจ a. Period = tโ‰ฅ0 Thus, y = 20sin 2ฯ€ 1 = 30ฯ€ 15 y = 20sin ฯ€ ( x โˆ’ 4) + 75 . 6 c. b. The amplitude is 220. c. ฯ€ 2ฯ€ xโˆ’ + 75 , or 6 3 The phase shift is: ฯ€ ฯ† โˆ’6 1 ฯ€ 1 = =โˆ’ โ‹… =โˆ’ ฯ‰ 30ฯ€ 6 30ฯ€ 180 d. d. y = 19.81sin ( 0.543 x โˆ’ 2.296) + 75.66 e. 54. a. 55. b. 95 โˆ’ 55 40 = = 20 2 2 95+55 150 = = 75 Vertical Shift: 2 2 2ฯ€ ฯ€ = ฯ‰= 12 6 Phase shift (use y = 55, x = 1): Amplitude: A = 55 = 20sin ฯ€ โ‹…1 โˆ’ ฯ† + 75 6 โˆ’20 = 20sin ฯ€ โˆ’ฯ† 6 โˆ’1 = sin โˆ’ ฯ€ โˆ’ฯ† 6 ฯ€ ฯ€ = โˆ’ฯ† 2 6 2ฯ€ ฯ†= 3 210 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2 Test Chapter 2 Test 2 ๏ƒฆ 3๏ƒถ ๏ƒฆ 2๏ƒถ 12. 2sin 2 60ยฐ โˆ’ 3cos 45ยฐ = 2 ๏ƒง ๏ƒท โˆ’ 3๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ ๏ƒฆ 3 ๏ƒถ 3 2 3 3 2 3 1โˆ’ 2 = 2๏ƒง ๏ƒท โˆ’ = โˆ’ = 2 2 2 2 ๏ƒจ4๏ƒธ 1. 260ยฐ = 260 โ‹…1 degree = 260 โ‹… = ฯ€ ( radian 180 260ฯ€ 13ฯ€ radian = radian 180 9 ) 13. Set the calculator to degree mode: sin17ยฐ โ‰ˆ 0.292 2. โˆ’400ยฐ = โˆ’400 โ‹…1 degree = โˆ’400 โ‹… =โˆ’ ฯ€ radian 180 400ฯ€ 20ฯ€ radian = โˆ’ radian 180 9 3. 13ยฐ = 13 โ‹…1 degree = 13 โ‹… 4. โˆ’ ฯ€ radian = โˆ’ 8 =โˆ’ 5. 6. ฯ€ 8 ฯ€ 180 radian = 13ฯ€ radian 180 ฯ€ 180 โ‹… degrees = โˆ’22.5ยฐ 8 ฯ€ 15. Set the calculator to degree mode: 1 sec 229ยฐ = โ‰ˆ โˆ’1.524 cos 229ยฐ 3ฯ€ 3ฯ€ radian = โ‹…1 radian 4 4 3ฯ€ 180 degrees = 135ยฐ = โ‹… 4 ฯ€ ฯ€ 6 = 16. Set the calculator to radian mode: 28ฯ€ 1 cot = โ‰ˆ 2.747 28ฯ€ 9 tan 9 1 2 5ฯ€ 2ฯ€ โ‰ˆ 0.309 5 โ‹…1 radian 9ฯ€ 9ฯ€ radian = โ‹…1 radian 2 2 9ฯ€ 180 degrees = 810ยฐ = โ‹… 2 ฯ€ 7. sin 14. Set the calculator to radian mode: cos 3ฯ€ 5ฯ€ 3ฯ€ 8. cos ๏ƒฆ๏ƒง โˆ’ ๏ƒถ๏ƒท โˆ’ cos ๏ƒฆ๏ƒง ๏ƒถ๏ƒท = cos ๏ƒฆ๏ƒง โˆ’ + 2ฯ€ ๏ƒถ๏ƒท โˆ’ cos ๏ƒฆ๏ƒง ๏ƒถ๏ƒท 4 4 4 4 ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ 3ฯ€ 3ฯ€ = cos ๏ƒฆ๏ƒง ๏ƒถ๏ƒท โˆ’ cos ๏ƒฆ๏ƒง ๏ƒถ๏ƒท = 0 ๏ƒจ 4 ๏ƒธ ๏ƒจ 4 ๏ƒธ 9. cos ( โˆ’120ยฐ ) = cos (120ยฐ ) = โˆ’ 1 2 10. tan 330ยฐ = tan (150ยฐ + 180ยฐ ) = tan (150ยฐ ) = โˆ’ 11. sin ฯ€ 2 โˆ’ tan 3 3 19ฯ€ ฯ€ ๏ƒฆ 3ฯ€ ๏ƒถ = sin โˆ’ tan ๏ƒง + 4ฯ€ ๏ƒท 4 2 ๏ƒจ 4 ๏ƒธ = sin ฯ€ 2 17. To remember the sign of each trig function, we primarily need to remember that sin ฮธ is positive in quadrants I and II, while cos ฮธ is positive in quadrants I and IV. The sign of the other four trig functions can be determined directly from sine and cosine by knowing sin ฮธ 1 1 tan ฮธ = , sec ฮธ = , csc ฮธ = , and cos ฮธ cos ฮธ sin ฮธ cos ฮธ . cot ฮธ = sin ฮธ ๏ƒฆ 3ฯ€ ๏ƒถ โˆ’ tan ๏ƒง ๏ƒท = 1 โˆ’ ( โˆ’1) = 2 ๏ƒจ 4 ๏ƒธ 211 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions ฮธ in QI ฮธ in QII ฮธ in QIII ฮธ in QIV sin ฮธ cos ฮธ tan ฮธ sec ฮธ csc ฮธ cot ฮธ + + + + + + + โˆ’ โˆ’ โˆ’ + โˆ’ + โˆ’ โˆ’ โˆ’ โˆ’ + + โˆ’ โˆ’ + โˆ’ โˆ’ 18. Because f ( x) = sin x is an odd function and since f (a) = sin a = 3 , then 5 1 1 3 5 3 5 = 5 =โˆ’ โ‹… =โˆ’ sin ฮธ โˆ’ 3 5 5 5 sec ฮธ = 1 1 3 = = cos ฮธ 23 2 cot ฮธ = 1 1 2 5 2 5 = =โˆ’ โ‹… =โˆ’ tan ฮธ โˆ’ 25 5 5 5 12 ฯ€ and < ฮธ < ฯ€ (in quadrant II) 2 5 Using the Pythagorean Identities: 2 144 169 ๏ƒฆ 12 ๏ƒถ sec 2 ฮธ = tan 2 ฮธ + 1 = ๏ƒง โˆ’ ๏ƒท + 1 = +1 = 25 25 ๏ƒจ 5๏ƒธ 21. tan ฮธ = โˆ’ 3 f (โˆ’a ) = sin(โˆ’a ) = โˆ’ sin a = โˆ’ . 5 5 and ฮธ in quadrant II. 7 Using the Pythagorean Identities: 2 25 24 ๏ƒฆ5๏ƒถ cos 2 ฮธ = 1 โˆ’ sin 2 ฮธ = 1 โˆ’ ๏ƒง ๏ƒท = 1 โˆ’ = 49 49 ๏ƒจ7๏ƒธ 19. sin ฮธ = 169 13 =ยฑ 25 5 Note that sec ฮธ must be negative since ฮธ lies in 13 quadrant II. Thus, sec ฮธ = โˆ’ . 5 1 1 5 cos ฮธ = = =โˆ’ sec ฮธ โˆ’ 135 13 sec ฮธ = ยฑ 24 2 6 =ยฑ 49 7 Note that cos ฮธ must be negative because ฮธ lies cos ฮธ = ยฑ in quadrant II. Thus, cos ฮธ = โˆ’ csc ฮธ = 2 6 . 7 tan ฮธ = sin ฮธ , so cos ฮธ 12 ๏ƒฆ 5 ๏ƒถ 12 ๏ƒงโˆ’ ๏ƒท = 5 ๏ƒจ 13 ๏ƒธ 13 tan ฮธ = 5 sin ฮธ 5๏ƒฆ 7 ๏ƒถ 6 5 6 = 27 6 = ๏ƒง โˆ’ =โˆ’ ๏ƒทโ‹… cos ฮธ โˆ’ 7 7๏ƒจ 2 6 ๏ƒธ 6 12 csc ฮธ = 1 1 7 = = sin ฮธ 75 5 csc ฮธ = 1 1 13 = 12 = sin ฮธ 13 12 sec ฮธ = 1 1 7 6 7 6 = =โˆ’ โ‹… =โˆ’ cos ฮธ โˆ’ 2 7 6 12 2 6 6 cot ฮธ = 1 1 5 = =โˆ’ tan ฮธ โˆ’ 125 12 cot ฮธ = 1 1 12 6 2 6 = 5 6 =โˆ’ โ‹… =โˆ’ tan ฮธ โˆ’ 12 5 5 6 6 sin ฮธ = ( tan ฮธ )( cos ฮธ ) = โˆ’ 22. The point ( 2, 7 ) lies in quadrant I with x = 2 and y = 7 . Since x 2 + y 2 = r 2 , we have 2 3ฯ€ and < ฮธ < 2ฯ€ (in quadrant IV). 2 3 Using the Pythagorean Identities: 2 4 5 ๏ƒฆ2๏ƒถ 2 2 sin ฮธ = 1 โˆ’ cos ฮธ = 1 โˆ’ ๏ƒง ๏ƒท = 1 โˆ’ = 9 9 ๏ƒจ3๏ƒธ r = 22 + 7 2 = 53 . So, y 7 7 53 7 53 sin ฮธ = = = โ‹… = . 53 r 53 53 53 20. cos ฮธ = 23. The point ( โˆ’5,11) lies in quadrant II with x = โˆ’5 and y = 11 . Since x 2 + y 2 = r 2 , we 5 5 =ยฑ 9 3 Note that sin ฮธ must be negative because ฮธ lies sin ฮธ = ยฑ in quadrant IV. Thus, sin ฮธ = โˆ’ tan ฮธ = have r = 5 . 3 cos ฮธ = ( โˆ’5 )2 + 112 = 146 . So, โˆ’5 โˆ’5 146 5 146 x . = = โ‹… =โˆ’ 146 r 146 146 146 sin ฮธ โˆ’ 35 5 3 5 = 2 =โˆ’ โ‹… =โˆ’ cos ฮธ 3 2 2 3 212 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2 Test 24. The point ( 6, โˆ’3) lies in quadrant IV with x = 6 2 2 2 and y = โˆ’3 . Since x + y = r , we have 2 r = 62 + ( โˆ’3) = 45 = 3 5 . So, tan ฮธ = ฯ€ y โˆ’3 1 = =โˆ’ x 6 2 y = A sin (ฯ‰ x โˆ’ ฯ† ) , we see that 1 ฯ€ , and ฯ† = . The graph is a sine 6 3 2ฯ€ ฯ‰ = ฯ€๏ƒถ ๏ƒฆ y = tan ๏ƒง x + ๏ƒท . Next, reflect this graph about 4๏ƒธ ๏ƒจ ฯ€๏ƒถ ๏ƒฆ the y-axis to obtain the graph of y = tan ๏ƒง โˆ’ x + ๏ƒท . ๏ƒจ 4๏ƒธ Finally, shift the graph up 2 units to obtain the ฯ€๏ƒถ ๏ƒฆ graph of y = tan ๏ƒง โˆ’ x + ๏ƒท + 2 . 4๏ƒธ ๏ƒจ ฯ€๏ƒถ ๏ƒฆ y = tan ๏ƒง โˆ’ x + ๏ƒท + 2 4๏ƒธ ๏ƒจ curve with amplitude A = 2 , period T= units to the left to obtain the graph of 4 ๏ƒฆx ฯ€๏ƒถ 25. Comparing y = 2sin ๏ƒง โˆ’ ๏ƒท to ๏ƒจ3 6๏ƒธ A=2, ฯ‰ = ฯ€๏ƒถ ๏ƒฆ 26. y = tan ๏ƒง โˆ’ x + ๏ƒท + 2 ๏ƒจ 4๏ƒธ Begin with the graph of y = tan x , and shift it y 2ฯ€ = 6ฯ€ , and phase shift 1/ 3 4 ฯ€ ฯ† ฯ€ ๏ƒฆx ฯ€๏ƒถ = 6 = . The graph of y = 2sin ๏ƒง โˆ’ ๏ƒท ฯ‰ 1/ 3 2 ๏ƒจ3 6๏ƒธ will lie between โˆ’2 and 2 on the y-axis. One ฯ† ฯ€ period will begin at x = = and end at ฯ‰ 2 2ฯ€ ฯ† ฯ€ 13ฯ€ x= + = 6ฯ€ + = . We divide the 2 2 ฯ‰ ฯ‰ ๏ƒฉ ฯ€ 13ฯ€ ๏ƒน interval ๏ƒช , ๏ƒบ into four subintervals, each of ๏ƒซ2 2 ๏ƒป 6ฯ€ 3ฯ€ = . length = 4 2 7ฯ€ ๏ƒน ๏ƒฉ 7ฯ€ ๏ƒฉฯ€ ๏ƒน ๏ƒฉ ๏ƒน ๏ƒฉ 13ฯ€ ๏ƒน ๏ƒช 2 , 2ฯ€ ๏ƒบ , ๏ƒช 2ฯ€ , 2 ๏ƒบ , ๏ƒช 2 ,5ฯ€ ๏ƒบ , ๏ƒช5ฯ€ , 2 ๏ƒบ ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป The five key points on the graph are ๏ƒฆฯ€ ๏ƒถ ๏ƒฆ 7ฯ€ ๏ƒถ ๏ƒฆ 13ฯ€ ๏ƒถ , 0 ๏ƒท , ( 5ฯ€ , โˆ’2 ) , ๏ƒง ,0๏ƒท ๏ƒง , 0 ๏ƒท , ( 2ฯ€ , 2 ) , ๏ƒง ๏ƒจ2 ๏ƒธ ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒธ We plot these five points and fill in the graph of the sine function. The graph can then be extended in both directions. 2 โˆ’2ฯ€ (โซบ4โฒ, 2) A , the period is given by 11โฒ , (โซบ โ€“โ€“โ€“โ€“ 2 0( 5โฒ , (โซบ โ€“โ€“โ€“ 2 0( (โซบโฒ, โซบ2) ฯ‰ , and the phase ฯ† . Therefore, we have A = โˆ’3 , ฯ‰ ฯ€ 3ฯ€ ฯ‰ = 3 , and ฯ† = 3 ๏ƒฆ๏ƒง โˆ’ ๏ƒถ๏ƒท = โˆ’ . The equation ๏ƒจ 4๏ƒธ 4 3ฯ€ ๏ƒถ ๏ƒฆ . for the graph is y = โˆ’3sin ๏ƒง 3 x + 4 ๏ƒท๏ƒธ ๏ƒจ 28. The area of the walk is the difference between the area of the larger sector and the area of the smaller shaded sector. (2โฒ, 2) ( โ€“โ€“โฒ2 , 0( (5โฒ, โซบ2) 7โฒ , ( โ€“โ€“โ€“ 2 0( 2ฯ€ shift is given by W a x x 27. For a sinusoidal graph of the form y = A sin (ฯ‰ x โˆ’ ฯ† ) , the amplitude is given by y 3 2 1 ฯ€ โˆ’ฯ€ l k 50ยฐ 3 ft The area of the walk is given by 1 1 A = R 2ฮธ โˆ’ r 2ฮธ , 2 2 ฮธ ( ) R2 โˆ’ r 2 2 where R is the radius of the larger sector and r is = 213 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions the radius of the smaller sector. The larger radius is 3 feet longer than the smaller radius because the walk is to be 3 feet wide. Therefore, R = r + 3 , and A= = = Chapter 2 Cumulative Review ( 2 x โˆ’ 1)( x + 1) = 0 ( r + 3) โˆ’ r ) 2( ฮธ ฮธ 2 ฮธ 2 2 x= ( r + 6r + 9 โˆ’ r ) 2 2 x2 + x โˆ’ 1 = 0 1. 2 1 or x = โˆ’1 2 ๏ƒฌ 1๏ƒผ The solution set is ๏ƒญโˆ’1, ๏ƒฝ . ๏ƒฎ 2๏ƒพ ( 6r + 9 ) 2 The shaded sector has an arc length of 25 feet 5ฯ€ radians . The and a central angle of 50ยฐ = 18 s 25 90 feet . radius of this sector is r = = 5ฯ€ = ฮธ 18 2. Slope = โˆ’3 , containing (โ€“2,5) Using y โˆ’ y1 = m( x โˆ’ x1 ) y โˆ’ 5 = โˆ’3 ( x โˆ’ (โˆ’2) ) y โˆ’ 5 = โˆ’3( x + 2) y โˆ’ 5 = โˆ’3 x โˆ’ 6 y = โˆ’3 x โˆ’ 1 ฯ€ Thus, the area of the walk is given by 5ฯ€ ๏ƒฆ ๏ƒฆ 90 ๏ƒถ ๏ƒถ 5ฯ€ ๏ƒฆ 540 ๏ƒถ A = 18 ๏ƒง 6 ๏ƒง ๏ƒท + 9 ๏ƒท = + 9๏ƒท ๏ƒง 2 ๏ƒจ ๏ƒจ ฯ€ ๏ƒธ ๏ƒธ 36 ๏ƒจ ฯ€ ๏ƒธ 5ฯ€ 2 = 75 + ft โ‰ˆ 78.93 ft 2 4 3. radius = 4, center (0,โ€“2) Using ( x โˆ’ h ) + ( y โˆ’ k ) = r 2 2 2 ( x โˆ’ 0 ) + ( y โˆ’ ( โˆ’2 ) ) = 42 2 2 29. To throw the hammer 83.19 meters, we need v2 s= 0 g v0 2 83.19 m = 9.8 m/s 2 2 v0 = 815.262 m 2 / s 2 v0 = 28.553 m/s Linear speed and angular speed are related according to the formula v = r โ‹… ฯ‰ . The radius is r = 190 cm = 1.9 m . Thus, we have 28.553 = r โ‹… ฯ‰ 28.553 = (1.9 ) ฯ‰ ฯ‰ = 15.028 radians per second radians 60 sec 1 revolution ฯ‰ = 15.028 โ‹… โ‹… sec 1 min 2ฯ€ radians โ‰ˆ 143.5 revolutions per minute (rpm) To throw the hammer 83.19 meters, Adrian must have been swinging it at a rate of 143.5 rpm upon release. x 2 + ( y + 2 ) = 16 2 4. 2 x โˆ’ 3 y = 12 This equation yields a line. 2 x โˆ’ 3 y = 12 โˆ’3 y = โˆ’2 x + 12 2 y = xโˆ’4 3 2 The slope is m = and the y-intercept is โˆ’4 . 3 Let y = 0 : 2 x โˆ’ 3(0) = 12 2 x = 12 x=6 The x-intercept is 6. 214 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2 Cumulative Review 5. x 2 + y 2 โˆ’ 2 x + 4 y โˆ’ 4 = 0 b. y = x3 c. y = sin x d. y = tan x x2 โˆ’ 2 x + 1 + y 2 + 4 y + 4 = 4 + 1 + 4 ( x โˆ’ 1) + ( y + 2 ) = 9 2 2 ( x โˆ’ 1) + ( y + 2 ) = 32 2 2 This equation yields a circle with radius 3 and center (1,โ€“2). 6. y = ( x โˆ’ 3) 2 + 2 Using the graph of y = x 2 , horizontally shift to the right 3 units, and vertically shift up 2 units. 8. 7. a. y = x2 f ( x) = 3x โˆ’ 2 y = 3x โˆ’ 2 x = 3y โˆ’ 2 Inverse x + 2 = 3y x+2 =y 3 x+2 1 f โˆ’1 ( x) = = ( x + 2) 3 3 9. Since ( sin ฮธ ) + ( cos ฮธ ) = 1 , then 2 2 ( sin14 ) + ( cos14 ) โˆ’ 3 = 1 โˆ’ 3 = โˆ’2 o 2 215 Copyright ยฉ 2016 Pearson Education, Inc. o 2 Chapter 2: Trigonometric Functions 10. y = 3sin(2 x) Amplitude: 11. tan A = 3 =3 ฯ€ 4 โˆ’ 3cos ฯ€ 6 + csc 2ฯ€ Period: T= =ฯ€ 2 ฯ† 0 Phase Shift: = =0 ฯ‰ 2 ๏ƒฆ 3๏ƒถ = 1 โˆ’ 3 ๏ƒง๏ƒง ๏ƒท๏ƒท + 2 6 ๏ƒจ 2 ๏ƒธ ฯ€ 3 3 2 6โˆ’3 3 = 2 = 3โˆ’ 12. The graph is a cosine graph with amplitude 3 and period 12. 2ฯ€ Find ฯ‰ : 12 = ฯ‰ 12ฯ‰ = 2ฯ€ ฯ‰= 2ฯ€ ฯ€ = 12 6 ๏ƒฆฯ€ ๏ƒถ The equation is: y = 3cos ๏ƒง x ๏ƒท . ๏ƒจ6 ๏ƒธ Chapter 2 Projects Project I โ€“ Internet Based Project Project II 1. November 15: High tide: 11:18 am and 11:15 pm November 19: low tide: 7:17 am and 8:38 pm 2. The low tide was below sea level. It is measured against calm water at sea level. 3. Nov 14 0-24 15 24-48 16 48-72 17 72-96 18 96-120 19 120-144 20 144-168 Low Tide Low Tide High Tide Time Ht (ft) t Time Ht (ft) t Time Ht (ft) t Time 6:26a 2.0 6.43 4:38p 1.4 16.63 9:29a 2.2 9.48 11:14p 2.8 23.23 6:22a 1.6 30.37 5:34p 1.8 41.57 11:18a 2.4 35.3 11:15p 2.6 47.25 6:28a 1.2 54.47 6:25p 2.0 66.42 12:37p 2.6 60.62 11:16p 2.6 71.27 6:40a 0.8 78.67 7:12p 2.4 91.2 1:38p 2.8 85.63 11:16p 2.6 95.27 6:56a 0.4 102.93 7:57p 2.6 115.95 2:27p 3.0 110.45 11:14p 2.8 119.23 7:17a 0.0 127.28 8:38p 2.6 140.63 3:10p 3.2 135.17 11:05p 2.8 143.08 7:43a -0.2 151.72 3:52p 3.4 159.87 216 Copyright ยฉ 2016 Pearson Education, Inc. High Tide Ht (ft) t Chapter 2 Projects Low tides of 1.49 feet when t = 178.2 and t = 190.3. 4. The data seems to take on a sinusoidal shape (oscillates). The period is approximately 12 hours. The amplitude varies each day: Nov 14: 0.1, 0.7 Nov 15: 0.4, 0.4 Nov 16: 0.7, 0.3 Nov 17: 1.0, 0.1 Nov 18: 1.3, 0.1 Nov 19: 1.6, 0.1 Nov 20: 1.8 5. Average of the amplitudes: 0.66 Period : 12 Average of vertical shifts: 2.15 (approximately) There is no phase shift. However, keeping in mind the vertical shift, the amplitude y = A sin ( Bx ) + D A = 0.66 12 = B= 2ฯ€ B High tides of 2.81 feet occur when t = 172.2 and t = 184.3. Looking at the graph for the equation in part (6) and using MAX/MIN for values between t = 168 and t = 192: A low tide of 1.38 feet occurs when t = 175.7 and t = 187.8 . D = 2.15 ฯ€ โ‰ˆ 0.52 6 Thus, y = 0.66sin ( 0.52 x ) + 2.15 (Answers may vary) A high tide of 3.08 feet occurs when t = 169.8 and t = 181.9 . 6. y = 0.848sin ( 0.52 x + 1.25 ) + 2.23 The two functions are not the same, but they are similar. 8. The low and high tides vary because of the moon phase. The moon has a gravitational pull on the water on Earth. 7. Find the high and low tides on November 21 which are the min and max that lie between t = 168 and t = 192 . Looking at the graph of the equation for part (5) and using MAX/MIN for values between t = 168 and t = 192 : Project III 1. s (t ) = 1sin ( 2ฯ€ f 0 t ) 2. T0 = 2ฯ€ 1 = 2ฯ€ f 0 f0 217 Copyright ยฉ 2016 Pearson Education, Inc. Chapter 2: Trigonometric Functions t 1 4 f0 s (t ) 0 1 1 2 f0 3 4 f0 1 f0 0 โˆ’1 0 2. s = rฮธ s 65 ฮธ= = = 0.0164 r 3960 4. Let f 0 = 1 =1. Let 0 โ‰ค x โ‰ค 12 , with ฮ”x = 0.5 . Label the graph as 0 โ‰ค x โ‰ค 12T0 , and each tick mark is at ฮ”x = 2 1 . 2 f0 h = 0.396 miles 0.396 ร— 5280 = 2090 feet 0 12 4. Maui: 12 12T0 = __ f0 Oahu Oahu s ฮธ Maui 6. M = 0 1 0 โ†’ P = 0 ฯ€ 0 10,023 ft 396 i 0m s 110 = = 0.0278 r 3960 3960 = cos(0.278) 3960 + h 3960 = 0.9996(3960 + h) h = 1.584 miles h = 1.584 ร— 5280 = 8364 feet 8. [0, 4 T0 ] S0 [4 T0 , 8 T0 ] S1 [ 8 T0 , 12 T0 ] S0 2 12 Hawaii: Oahu ฮธ Project IV 1. Lanai: Oahu s Peak of Lanaihale s= mi i ฮธ } 39 60 Lanai m 65 39 60 m i Oahu 3,370 ft 396 i 0m Lanai 13,796 ft 396 0 mi s 190 = = 0.0480 r 3960 3960 = cos(0.480) 3960 + h 3960 = 0.9988(3960 + h) h = 4.752 miles h = 4.752 ร— 5280 = 25, 091 feet ฮธ= 218 Copyright ยฉ 2016 Pearson Education, Inc. } 39 60 Hawaii mi 39 60 m i s Peak of Mauna Kea i 0m 19 ฮธ Oahu s= โˆ’2 ฮธ Maui ฮธ= 7. S0 (t ) = 1sin(2ฯ€ f 0 t + 0) , S1 (t ) = 1sin(2ฯ€ f 0 t + ฯ€ ) 0 } ฮธ mi 1 5 9 45 , t= , t= ,โ€ฆ, t= 4 f0 4 f0 4 f0 4 f0 Peak of Haleakala 0 11 s= 39 60 m i โˆ’2 5. t = 3960 = cos(0.164) 3960 + h 3960 = 0.9999(3960 + h) 3. 39 60 m i 3. 0 Hawaii Chapter 2 Projects Molokai: Oahu s i ฮธ } 39 60 m Molokai mi 40 ฮธ Peak of Kamakou s= 39 60 m i Oahu 4,961 ft 396 i 0m Molokai s 40 = = 0.0101 r 3960 3960 = cos(0.0101) 3960 + h 3960 = 0.9999(3960 + h) h = 0.346 miles h = 0.346 x5280 = 2090 feet ฮธ= 5. Kamakou, Haleakala, and Lanaihale are all visible from Oahu. Project V Answers will vary. 219 Copyright ยฉ 2016 Pearson Education, Inc. Copyright ยฉ 2013 Pearson Education, Inc. P r o j e c t a t M o t o r o l a Digital Transmission over the Air Digital communications is a revolutionary technology of the century. For many years, Motorola has been one of the leading companies to employ digital communication in wireless devices, such as cell phones. Figure 1 shows a simplified overview of a digital communication transmission over the air. The information source to be transmitted can be audio, video, or data. The information source may be formatted into a digital sequence of symbols from a finite set Ean F={0, 1}. So 0110100 is an example of a digital sequence. The period of the symbols is denoted by T. The principle of digital communication systems is that, during the finite interval of time T, the information symbol is represented by one digital waveform from a finite set of digital waveforms before it is sent. This technique is called modulation. Modulation techniques use a carrier that is modulated by the information to be transmitted.The modulated carrier is transformed into an electromagnetic field and propagated in the air through an antenna.The unmodulated carrier can be represented in its general form by a sinusoidal function s(t)=A sin Av0 t+f B, where A is the amplitude, v0 is the radian frequency, and f is the phase. Letโ€™s assume that A=1, f=0, and v0=2pf0 radian, where f0 is the frequency of the unmodulated carrier. 1. Write s(t) using these assumptions. 2. What is the period, T0 , of the unmodulated carrier? 3. Evaluate s(t) for t=0, 1/A4f0 B, 1/A2f0 B, 3/A4f0 B, and 1/f0 . 4. Graph s(t) for 0 โฑ• t โฑ• 12T0 . That is, graph 12 cycles of the function. 5. For what values of t does the function reach its maximum value? [Hint: Express t in terms of f0]. Three modulation techniques are used for transmission over the air: amplitude modulation, frequency modulation and phase modulation. In this project, we are interested in phase modulation. Figure 2 illustrates this process. An information symbol is mapped onto a phase that modulates the carrier. The modulated carrier is expressed by Si(t)=sin A2pf0 t+ci B. Letโ€™s assume the following mapping scheme: Ean F S Ecn F 0 c0 = 0 1 c1 = p 6. Map the binary sequence M=010 into a phase sequence P. 7. What is the expression of the modulated carrier S0(t) for ci=c0 and S1(t) for ci=c1 ? 8. Letโ€™s assume that in the sequence M the period of each symbol is T=4T0 . For each of the three intervals C0, 4T0 D, C4T0 , 8T0 D, and C8T0 , 12T0 D, indicate which of S0(t) or S1(t) is the modulated carrier. On the same graph, illustrate M, P, and the modulated carrier for 0 โฑ• t โฑ• 12T0 . Carrier s (t ) Information source Figure 1 Format Digital symbols Modulate Digital waveform (Modulated carrier) Si (t ) Transmit Simplified Overview of a Digital Communication Transmission Carrier s (t ) โซฝ sin (2โฒf 0t ) Digital symbols {โฃn } Mapping Figure 2 Phase {โบn } Modulate Digital waveforms Si (t ) โซฝ sin (2โฒf 0t โซน โบi ) Principle of Phase Modulation Copyright ยฉ 2013 Pearson Education, Inc. 2. Identifying Mountain Peaks in Hawaii Suppose that you are standing on the southeastern shore of Oahu and you see three mountain peaks on the horizon. You want to determine which mountains are visible from Oahu.The possible mountain peaks that can be seen from Oahu and the height (above sea level) of their peaks are given in the table. Island Distance (miles) Mountain Height (feet) Lanai 65 Lanaihale 3,370 Maui 110 Haleakala 10,023 Hawaii 190 Mauna Kea 13,796 Molokai 40 Kamakou 4,961 Copyright ยฉ 2013 Pearson Education, Inc. (a) To determine which of these mountain peaks would be visible from Oahu, consider that you are standing on the shore and looking โ€œstraight outโ€ so that your line of sight is tangent to the surface of Earth at the point where you are standing. Make a sketch of the right triangle formed by your sight line, the radius from the center of Earth to the point where you are standing, and the line from the center of Earth through Lanai. (b) Assuming that the radius of Earth is 3960 miles, determine the angle formed at the center of Earth. (c) Determine the length of the hypotenuse of the triangle. Is Lanaihale visible from Oahu? (d) Repeat parts (a)โ€“(c) for the other three islands. (e) Which three mountains are visible from Oahu? Copyright ยฉ 2013 Pearson Education, Inc. . Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com Copyright ยฉ 2013 Pearson Education, Inc Trigonometry A Unit Circle Approach 10th Edition Sullivan Solutions Manual Full Download: http://testbanklive.com/download/trigonometry-a-unit-circle-approach-10th-edition-sullivan-solutions-manual/ 4. CBL Experiment Using a CBL, the microphone probe, and a tuning fork, record the amplitude, frequency, and period of the sound from the graph of the sound created by the tuning fork over time. Repeat the experiment for different tuning forks.

Document Preview (99 of 821 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in