Solution Manual For Probability, Statistics, and Random Processes for Engineers, 4th Edition

Preview Extract
1 Solutions to Chapter 2 1. Calculating with the binomial probability law, for the given random variable ๏˜, we obtain ๏ [๏˜ = 1] = ยถ 2 ยต X 10 ๏ซ=0 ๏ [๏˜ = 2] = ๏ [๏˜ = 3] = ๏ [๏˜ = 4] = ๏ซ ยถ 5 ยต X 10 ๏ซ=3 8 ยต X ๏ซ=6 10 ยต X ๏ซ=9 ๏ซ 10 ๏ซ 10 ๏ซ ยถ ยถ (๏€บ3)๏ซ (0๏€บ7)10โˆ’๏ซ โ‰ˆ 0๏€บ383๏€ป (0๏€บ3)๏ซ (0๏€บ7)10โˆ’๏ซ โ‰ˆ 0๏€บ57๏€ป (0๏€บ3)๏ซ (0๏€บ7)10โˆ’๏ซ โ‰ˆ 0๏€บ0472๏€ป and (0๏€บ3)๏ซ (0๏€บ7)10โˆ’๏ซ โ‰ˆ 1๏€บ44 ร— 10โˆ’4 ๏€บ The CDF is plotted in Fig. 1. Figure 1: 2. Consider any continuous random variable. Let the outcomes be the values themselves, i.e. the random variable is an identity mapping. Then the probability of any outcome ๏ธ = ๏‚ณ is 0. Strictly speaking, we mean the singleton events {๏ธ} have probability zero. 3. The cumulative distribution function (CDF) for the waiting time ๏˜ is defined over [0๏€ป โˆž) and given as โŽง (๏ธ๏€ฝ2)2 ๏€ป 0 โ‰ค ๏ธ ๏€ผ 1๏€ป โŽช โŽช โŽช โŽช 1 โ‰ค ๏ธ ๏€ผ 2๏€ป โŽจ ๏ธ๏€ฝ4๏€ป ๏†๏˜ (๏ธ) = 1๏€ฝ2๏€ป 2 โ‰ค ๏ธ ๏€ผ 10๏€ป โŽช โŽช ๏ธ๏€ฝ20๏€ป 10 โ‰ค ๏ธ ๏€ผ 20๏€ป โŽช โŽช โŽฉ 1๏€ป 20 โ‰ค ๏ธ๏€บ (a) Plotting we get Fig. 2. 2 Figure 2: (b) Taking the derivative, we get the probability density function (pdf) as โŽง ๏ธ๏€ฝ2๏€ป 0 โ‰ค ๏ธ ๏€ผ 1๏€ป โŽช โŽช โŽช โŽช 1๏€ฝ4๏€ป 1 โ‰ค ๏ธ ๏€ผ 2๏€ป โŽจ 0๏€ป 2 โ‰ค ๏ธ ๏€ผ 10๏€ป ๏€ป ๏ฆ๏˜ (๏ธ) = โŽช โŽช 1๏€ฝ20๏€ป 10 โ‰ค ๏ธ ๏€ผ 20๏€ป โŽช โŽช โŽฉ 0๏€ป 20 โ‰ค ๏ธ๏€บ with sketch given as: Figure 3: We notice that Z โˆž ๏ฆ๏˜ (๏ธ)๏ค๏ธ = 0 = Z 2 Z 20 ๏ธ 1 1 ๏ค๏ธ + ๏ค๏ธ + ๏ค๏ธ 2 4 20 0 1 10 1 1 10 + + = 1๏€บ 4 4 20 Z 1 (c) We compute the following probabilities: i. [label=(0)] ii. ๏ [๏˜ โ‰ฅ 10] = 1 โˆ’ ๏ [๏˜ ๏€ผ 10] = 1 1 โˆ’ ๏†๏˜ (10) = 1๏€ฝ2๏€ป iii. ๏ [๏˜ ๏€ผ 5] = ๏†๏˜ (5) = 1๏€ฝ2๏€ป R 10 iv. ๏ [5 ๏€ผ ๏˜ ๏€ผ 10] = 5 ๏ฆ๏˜ (๏ธ)๏ค๏ธ = 0๏€ป and v. ๏ [๏˜ = 1] = 0๏€บ 4. The point of this problem is to be careful about whether the end-points ๏˜ = ๏ข and ๏˜ = ๏ก are included in the event or not. Remember ๏†๏˜ (๏ธ) , ๏ [๏˜ โ‰ค ๏ธ] which includes its end-point 1 Note: ๏†๏˜ (10) = ๏ [๏˜ โ‰ค 10]๏€ป but here the probability that ๏˜ = 10 is zero. 3 at the right. Thus to compute ๏ [๏˜ ๏€ผ ๏ธ]๏€ป we must subtract from ๏†๏˜ (๏ธ)๏€ป the probability that ๏˜ = ๏ธ๏€ป i.e. ๏ [๏˜ = ๏ธ]๏€บ ๏ [๏˜ ๏€ผ ๏ก] = ๏†๏˜ (๏ก) โˆ’ ๏ [๏˜ = ๏ก]๏€ป ๏ [๏˜ โ‰ค ๏ก] = ๏†๏˜ (๏ก)๏€ป ๏ [๏ก โ‰ค ๏˜ ๏€ผ ๏ข] = ๏†๏˜ (๏ข) โˆ’ ๏†๏˜ (๏ก) โˆ’ ๏ [๏˜ = ๏ข] + ๏ [๏˜ = ๏ก]๏€ป ๏ [๏ก โ‰ค ๏˜ โ‰ค ๏ข] = ๏†๏˜ (๏ข) โˆ’ ๏†๏˜ (๏ก) + ๏ [๏˜ = ๏ก]๏€ป ๏ [๏ก ๏€ผ ๏˜ โ‰ค ๏ข] = ๏†๏˜ (๏ข) โˆ’ ๏†๏˜ (๏ก)๏€ป ๏ [๏ก ๏€ผ ๏˜ ๏€ผ ๏ข] = ๏†๏˜ (๏ข) โˆ’ ๏†๏˜ (๏ก) โˆ’ ๏ [๏˜ = ๏ข]๏€บ 5. For normalization, we integrate the probability density function (pdf) over the whole range of the random variable and equate it to 1. (a) Cauchy distribution. The pdf of a Cauchy random variable is given by ๏ฆ๏˜ (๏ธ) = ๏‚ ๏€ป 1 + [(๏ธ โˆ’ ๏‚ฎ)๏€ฝ๏‚ฏ]2 for ๏‚ฎ ๏€ผ โˆž, ๏‚ฏ ๏€พ 0, and โˆ’โˆž ๏€ผ ๏ธ ๏€ผ โˆž. For the integration, we will substitute tan ๏‚ต = ๏ธโˆ’๏‚ฎ ๏‚ฏ , 1 1 and so ๏ค๏‚ต = ๏‚ฏ 1+[(๏ธโˆ’๏‚ฎ)2 ๏€ฝ๏‚ฏ]2 . Therefore Z โˆž โˆ’โˆž ๏ฆ๏˜ (๏ธ) ๏ค๏ธ = Z ๏‚ผ๏€ฝ2 ๏‚๏‚ฏ ๏ค๏‚ต ยด ยณ ๏‚ผ๏€ฝ2 = ๏‚๏‚ฏ ๏‚ต|โˆ’๏‚ผ๏€ฝ2 โˆ’๏‚ผ๏€ฝ2 = ๏‚๏‚ฏ๏‚ผ = 1๏€บ 1 Therefore, ๏‚ = ๏‚ฏ๏‚ผ . (b) Maxwell distribution. The pdf of a Maxwell random variable is given by ( 2 2 ๏‚๏ธ2 ๏ฅโˆ’๏ธ ๏€ฝ๏‚ฎ ๏ธ ๏€พ 0 ๏€บ ๏ฆ๏˜ (๏ธ) = 0 otherwise Integrating the pdf (substituting ๏น = ๏ธ๏€ฝ๏‚ฎ), we obtain Z โˆž Z โˆž 2 2 โˆ’๏ธ2 ๏€ฝ๏‚ฎ2 ๏‚๏ธ ๏ฅ ๏ค๏ธ = ๏‚๏‚ฎ2 ๏น 2 ๏ฅโˆ’๏น ๏‚ฎ ๏ค๏น 0 0 ยฏโˆž โˆ™ ยธ Z ยฏ 1 โˆž โˆ’๏น2 3 โˆ’1 โˆ’๏น2 ยฏ ๏น๏ฅ ยฏ + ๏ฅ ๏ค๏น = ๏‚๏‚ฎ 2 2 0 0 โˆš ๏‚๏‚ฎ3 ๏‚ผ = 0+ 2 2 = 1๏€บ 4 Therefore, ๏‚ = โˆš๏‚ผ๏‚ฎ 3. (1) 4 6. (a) Beta distribution. The pdf of the Beta distribution is given by ( ๏‚๏ธ๏ข (1 โˆ’ ๏ธ)๏ฃ ๏ธ ๏€พ 0 ๏ฆ๏˜ (๏ธ) = 0 otherwise๏€บ Using the formula 6.2-1 in Handbook of Mathematical Functions by Abramowitz and Stegun, we get Z โˆž Z 1 ๏ด๏‚ฎโˆ’1 ๏‚ฎโˆ’1 ๏‚ฏโˆ’1 ๏ธ (1 โˆ’ ๏ธ) ๏ค๏ธ = ๏ค๏ด ๏‚ฎ+๏‚ฏ 0 0 (1 + ๏ด) Z ๏‚ผ๏€ฝ2 = 2 (sin๏ด)2๏‚ฎโˆ’1 (cos๏ด)2๏‚ฏโˆ’1 ๏ค๏ด๏€บ 0 Now, we look at the product of the Gamma function ฮ“(๏ธ) evaluated at ๏ข + 1 and ๏ฃ + 1. Substitutions used for this integration are ๏ด = ๏ถ 2 ๏€ป ๏ต = ๏ท2 and ๏ถ = ๏ฒsin ๏‚ต๏€ป ๏ท = ๏ฒcos ๏‚ต. ฮ“(๏ข + 1)ฮ“(๏ฃ + 1) = = = โˆ™Z โˆž ๏ด๏ฅ 0 0 ๏ข โˆ’๏ด 0 Z โˆž Z โˆž 4 = 4 2 ๏ด๏ข ๏ต๏ฃ ๏ฅโˆ’(๏ด+๏ต) ๏ค๏ต ๏ค๏ด Z โˆž 2 0 2 ๏ฒ2๏ข+2๏ฃ+2 (sin ๏‚ต)2๏ข+1 (cos ๏‚ต)2๏ฃ+1 ๏ฅโˆ’๏ฒ ๏ฒ๏ค๏ฒ ๏ค๏‚ต 0 โˆ’๏ฒ2 ๏ฅ 2 ๏ข+๏ฃ+1 (๏ฒ ) 0 = 2 ๏ถ 2๏ข+1 ๏ท2๏ฃ+1 ๏ฅโˆ’[(๏ถ +๏ท )] ๏ค๏ถ ๏ค๏ท Z ๏‚ผ๏€ฝ2 Z โˆž 0 = 0 Z โˆžZ โˆž 0 ยธ โˆ™Z โˆž ยธ ๏ฃ โˆ’๏ต ๏ค๏ด ๏ต ๏ฅ ๏ค๏ต Z ๏‚ผ๏€ฝ2 2๏ฒ ๏ค๏ฒ (sin ๏‚ต)2๏ข+1 (cos ๏‚ต)2๏ฃ+1 ๏ค๏‚ต 0 Z ๏‚ผ๏€ฝ2 ฮ“(๏ข + ๏ฃ + 2)2 (sin ๏‚ต)2๏ข+1 (cos ๏‚ต)2๏ฃ+1 ๏ค๏‚ต๏€บ 0 ฮ“(๏ข+๏ฃ+2) Therefore, ๏‚ = ฮ“(๏ข+1)ฮ“(๏ฃ+1) . (b) Chi-square distribution. The pdf of a Chi-square random variable is given by ( 2 ๏‚๏ธ(๏ฎ๏€ฝ2)โˆ’1 ๏ฅโˆ’๏ธ๏€ฝ2๏‚พ ๏ธ ๏€พ 0 ๏ฆ๏˜ (๏ธ) = 0 otherwise๏€บ Integrating ๏ฆ๏˜ (๏ธ), we get Z โˆž Z โˆž 2 ๏ฆ๏˜ (๏ธ) ๏ค๏ธ = ๏‚๏ธ(๏ฎ๏€ฝ2)โˆ’1 ๏ฅโˆ’๏ธ๏€ฝ2๏‚พ ๏ค๏ธ 0 Z0 โˆž 2 ๏‚(2๏‚พ 2 )(๏ฎ๏€ฝ2) [(๏ธ๏€ฝ2๏‚พ 2 )(๏ฎ๏€ฝ2) ]๏ฅโˆ’๏ธ๏€ฝ2๏‚พ ๏ค๏ธ = 0 Z โˆž 2 2 (๏ฎ๏€ฝ2) = ๏‚(2๏‚พ ) [(๏ธ๏€ฝ2๏‚พ 2 )(๏ฎ๏€ฝ2) ]๏ฅโˆ’๏ธ๏€ฝ2๏‚พ ๏ค๏ธ 0 ยณ๏ฎยด 2 (๏ฎ๏€ฝ2) ฮ“ = ๏‚(2๏‚พ ) 2 = 1๏€บ 1 . Therefore, ๏‚ = (2๏‚พ2 )(๏ฎ๏€ฝ2) ฮ“( ๏ฎ 2) 5 7. Here we do calculations with the Normal (Gaussian) random variable of mean 0 and given variance ๏‚พ 2 ๏€บ In notation we often indicate this as ๏˜ : ๏Ž (0๏€ป ๏‚พ2 )๏€บ In order to calculate the probabilities ๏ [|๏˜| โ‰ฅ ๏ซ๏‚พ] for integer values ๏ซ = 1๏€ป 2๏€ป ๏€บ ๏€บ ๏€บ, we need to convert this to the standard Normal curve that is distributed as ๏Ž (0๏€ป 1)๏€บ In particular the so-called error function is defined as Z ๏ธ 1 1 exp(โˆ’ ๏ถ2 )๏ค๏ถ๏€ป for ๏ธ โ‰ฅ 0๏€ป ๏ฅ๏ฒ๏ฆ (๏ธ) = โˆš 2 2๏‚ผ 0 and so only includes the right hand side of the ๏Ž (0๏€ป 1) distribution. Expanding ๏ [|๏˜| โ‰ฅ ๏ซ๏‚พ] for ๏ซ positive, we get ๏ [|๏˜| โ‰ฅ ๏ซ๏‚พ] = ๏ [{๏˜ โ‰ค โˆ’๏ซ๏‚พ} โˆช {๏˜ โ‰ฅ ๏ซ๏‚พ}]๏€ป which is somewhat cumbersome, so instead we consider the complementary event {|๏˜| ๏€ผ ๏ซ๏‚พ} which satisfies ๏ [|๏˜| โ‰ฅ ๏ซ๏‚พ] = 1 โˆ’ ๏ [|๏˜| ๏€ผ ๏ซ๏‚พ]๏€บ For this complementary event, we have ๏ [|๏˜| ๏€ผ ๏ซ๏‚พ] = ๏ [โˆ’๏ซ๏‚พ ๏€ผ ๏ธ ๏€ผ ๏ซ๏‚พ]๏€ป for ๏ซ ๏€พ 0๏€ป Z 0 Z ๏ซ๏‚พ ๏ธ2 1 ๏ธ2 1 exp(โˆ’ 2 )๏ค๏ธ + โˆš exp(โˆ’ 2 )๏ค๏ธ = โˆš 2๏‚พ 2๏‚พ 2๏‚ผ๏‚พ โˆ’๏ซ๏‚พ 2๏‚ผ 0 Z ๏ซ๏‚พ 2 1 ๏ธ = 2โˆš exp(โˆ’ 2 )๏ค๏ธ๏€ป by the symmetry about ๏ถ = 0๏€บ 2๏‚พ 2๏‚ผ๏‚พ 0 By making the change of variable ๏น = ๏ธ๏€ฝ๏‚พ, we then convert this equation into Z ๏ซ ๏ค๏ธ ๏น2 1 ๏€ป exp(โˆ’ )๏ค๏น๏€ป since ๏ค๏น = ๏ [|๏˜| ๏€ผ ๏ซ๏‚พ] = 2 โˆš 2 ๏‚พ 2๏‚ผ 0 = 2 erf(๏ซ)๏€ป for ๏ซ ๏€พ 0๏€ป allowing us to use the standard Table 2.4-1 for erf(ยท)๏€บ Looking up this value and subtracting twice it from one, we get ๏€บ ๏ซ = 1๏€ป ๏ [|๏˜| โ‰ฅ ๏‚พ] = 0๏€บ3174๏€ป ๏€บ ๏ซ = 2๏€ป ๏ [|๏˜| โ‰ฅ 2๏‚พ] = 0๏€บ0456๏€ป ๏€บ ๏ซ = 3๏€ป ๏ [|๏˜| โ‰ฅ 3๏‚พ] = 0๏€บ0026๏€ป ๏€บ ๏ซ = 4๏€ป ๏ [|๏˜| โ‰ฅ 4๏‚พ] = 0๏€บ0008 โ‰ˆ 0๏€บ 8. The pdf of the Rayleigh random variable is given by ๏ธ 2 2 ๏ฆ๏˜ (๏ธ) = 2 ๏ฅโˆ’๏ธ ๏€ฝ2๏‚พ ๏ต(๏ธ)๏€บ ๏‚พ Note that since ๏ฆ๏˜ (๏ธ) is zero for negative ๏ธ, ๏†๏˜ (๏ธ) = 0, for ๏ธ ๏€ผ 0. Now ๏†๏˜ (๏ซ๏‚พ) = R ๏ซ๏‚พ ๏ธ โˆ’๏ธ2 ๏€ฝ2๏‚พ2 ๏ธ2 ๏ธ ๏ค๏ธ. Substituting ๏น = 2๏‚พ 2 and ๏ค๏น = ๏‚พ 2 , we get 0 ๏‚พ2 ๏ฅ ๏†๏˜ (๏ซ๏‚พ) = Z ๏ซ2 ๏€ฝ2 0 2 ๏ฅโˆ’๏น ๏ค๏น = 1 โˆ’ ๏ฅโˆ’๏ซ ๏€ฝ2 ๏ซ = 0๏€ป 1๏€ป 2๏€ป ๏€บ ๏€บ ๏€บ ๏€บ 9. For the Bernoulli random variable ๏˜, with ๏๏˜ (0) = ๏ฐ๏€ป ๏๏˜ (1) = ๏ฑ๏€ป and ๏ฑ , 1 โˆ’ ๏ฐ๏€ป the pdf is given as ๏ฆ๏˜ (๏ธ) = ๏ฐ๏‚ฑ(๏ธ) + ๏ฑ๏‚ฑ(๏ธ โˆ’ 1)๏€บ For the binomial random variable ๏‚ with parameters ๏ฎ and ๏ฐ๏€ป we have as a function of ๏ข๏€ป ๏ฎ ยต ยถ X ๏ฎ ๏ซ ๏ฐ (1 โˆ’ ๏ฐ)๏ฎโˆ’๏ซ ๏‚ฑ(๏ข โˆ’ ๏ซ)๏€บ ๏ฆ๏‚ (๏ข) = ๏ซ ๏ซ=0 6 For the Poisson case, with mean ๏‚น๏˜ = ๏ก, we have the density ๏ฆ๏˜ (๏ธ) = โˆž X ๏ก๏ซ ๏ซ=0 ๏ซ! ๏ฅโˆ’๏ก ๏‚ฑ(๏ธ โˆ’ ๏ซ)๏€บ 10. This problem does some calculations with a mixed random variable. We can represent the pdf of ๏˜ as 1 1 ๏ฆ๏˜ (๏ธ) = ๏๏ฅโˆ’๏ธ [๏ต(๏ธ โˆ’ 1) โˆ’ ๏ต(๏ธ โˆ’ 4)] + ๏‚ฑ(๏ธ โˆ’ 2) + ๏‚ฑ(๏ธ โˆ’ 3)๏€บ 4 4 (a) To find the constant ๏, we must integrate the pdf over all ๏ธ to get 1. Z Z Z 4 1 +โˆž 1 +โˆž ๏ฅโˆ’๏ธ ๏ค๏ธ + ๏‚ฑ(๏ธ โˆ’ 2)๏ค๏ธ + ๏‚ฑ(๏ธ โˆ’ 3)๏ค๏ธ = 1๏€ป ๏ 4 โˆ’โˆž 4 โˆ’โˆž 1 1 1 = 1๏€ป ๏(๏ฅโˆ’1 โˆ’ ๏ฅโˆ’4 ) + + 4 4 ๏€บ 1 which has solution ๏ = 12 ๏ฅโˆ’1 โˆ’๏ฅ โˆ’4 = 1๏€บ43๏€บ R๏ธ (b) Taking the running integral โˆ’โˆž ๏ฆ๏˜ (๏ถ)๏ค๏ถ, we get the CDF ๏†๏˜ (๏ธ) with sketch given in Fig. 4. Figure 4: Although not requested, the CDF is given analytically as โŽง 0๏€ป ๏ธ๏€ผ1 โŽช โŽช โŽช 1 ๏ฅโˆ’1 โˆ’๏ฅโˆ’๏ธ โŽช 1 โ‰ค ๏ธ ๏€ผ 2๏€ป โŽช โŽช 2 ๏ฅโˆ’1 โˆ’๏ฅโˆ’4 ๏€ป โŽช โŽจ 1 ๏ฅโˆ’1 โˆ’๏ฅโˆ’๏ธ 1 ๏†๏˜ (๏ธ) = 2 ๏ฅโˆ’1 โˆ’๏ฅโˆ’4 + 4 ๏€ป 2 โ‰ค ๏ธ ๏€ผ 3๏€ป โŽช โŽช โˆ’๏ฅโˆ’๏ธ 1 โŽช 1 ๏ฅโˆ’1 3 โ‰ค ๏ธ ๏€ผ 4๏€ป โŽช โˆ’1 โˆ’๏ฅโˆ’4 + 2 ๏€ป 2 โŽช ๏ฅ โŽช โŽช โŽฉ 1๏€ป 4 โ‰ค ๏ธ๏€บ (c) We calculate the pdf as ๏ฆ๏˜ (๏ธ) = So ๏ฅโˆ’๏ธ 1 1 1 [๏ต(๏ธ โˆ’ 1) โˆ’ ๏ต(๏ธ โˆ’ 4)] + ๏‚ฑ(๏ธ โˆ’ 2) + ๏‚ฑ(๏ธ โˆ’ 3)๏€บ 2 ๏ฅโˆ’1 โˆ’ ๏ฅโˆ’4 4 4 Z 3 1 1 ๏ฅโˆ’๏ธ ๏ [2 โ‰ค ๏˜ ๏€ผ 3] = ๏ค๏ธ + โˆ’1 โˆ’4 โˆ’๏ฅ 4 2 2๏ฅ โˆ’2 โˆ’3 1 1๏ฅ โˆ’๏ฅ + ๏€ป = โˆ’1 โˆ’4 2๏ฅ โˆ’๏ฅ 4 Z 3 2โˆ’ ๏‚ฑ(๏ธ โˆ’ 2)๏ค๏ธ 7 where we start the integral of the impulse at 2โˆ’ in order to pick the probability mass at ๏ธ = 2๏€บ Note that we must include the probability mass at ๏ธ = 2 because the event {2 โ‰ค ๏˜ ๏€ผ 3} includes this point. (d) We calculate Z 3 1 ๏ฅโˆ’๏ธ 1 ๏ค๏ธ + ๏ [2 ๏€ผ ๏˜ โ‰ค 3] = โˆ’1 โˆ’4 โˆ’๏ฅ 4 2 2๏ฅ โˆ’2 โˆ’3 1 1๏ฅ โˆ’๏ฅ + ๏€ป = 2 ๏ฅโˆ’1 โˆ’ ๏ฅโˆ’4 4 Z 3+ 2 ๏‚ฑ(๏ธ โˆ’ 3)๏ค๏ธ where we end the integral of the impulse at 3+ to pick up the probability mass at ๏ธ = 3๏€บ (e) We have ๏†๏˜ (3) = = = ๏ [๏˜ โ‰ค 3] Z + Z + Z 3 ๏ฅโˆ’๏ธ 1 1 3 1 3 ๏ค๏ธ + ๏‚ฑ(๏ธ โˆ’ 3)๏ค๏ธ + ๏‚ฑ(๏ธ โˆ’ 2)๏ค๏ธ โˆ’1 โˆ’ ๏ฅโˆ’4 4 1 4 1 1 2๏ฅ 1 ๏ฅโˆ’1 โˆ’ ๏ฅโˆ’3 1 1 + + ๏€บ 2 ๏ฅโˆ’1 โˆ’ ๏ฅโˆ’4 4 4 11. First we need to calculate the probability that ๏˜ is less than 1 and that it is greater than 2 (area of shaded region in Fig. 5). Now ๏ [๏˜ ๏€ผ 1] = ๏ [๏˜ โ‰ค 1] = ๏†๏˜ (1) = 1 โˆ’ ๏ฅโˆ’1 ๏€บ ๏ [๏˜ ๏€พ 2] = 1 โˆ’ ๏ [๏˜ โ‰ค 2] = 1 โˆ’ ๏†๏˜ (2) = 1 โˆ’ (1 โˆ’ ๏ฅโˆ’2 ) = ๏ฅโˆ’2 ๏€บ Since the events are disjoint, the probability that ๏˜ ๏€ผ 1 or ๏˜ ๏€พ 2 is ๏ [{๏˜ ๏€ผ 1} โˆช {๏˜ ๏€พ 2}] = ๏ [๏˜ ๏€ผ 1] + ๏ [๏˜ ๏€พ 2] = 1 โˆ’ ๏ฅโˆ’1 + ๏ฅโˆ’2 = 0๏€บ767๏€บ Figure 5: 12. We calculate the pdf as 1 1 ๏ฆ๏˜ (๏ธ) = ๏๏ฅโˆ’๏ธ [๏ต(๏ธ โˆ’ 1) โˆ’ ๏ต(๏ธ โˆ’ 4)] + ๏‚ฑ(๏ธ โˆ’ 2) + ๏‚ฑ(๏ธ โˆ’ 3)๏€บ 4 4 8 So Z 4 ๏ [2 ๏€ผ ๏˜ ๏€ผ 4] = ๏๏ฅโˆ’๏ธ ๏ค๏ธ + 2 โˆ’2 = ๏(๏ฅ โˆ’4 โˆ’๏ฅ 1 4 1 )+ ๏€ป 4 where we start the integral of the impulse at 2+ in order to not include the probability mass at ๏ธ = 2๏€บ The overall answer then becomes 1๏€บ43(๏ฅโˆ’2 โˆ’ ๏ฅโˆ’4 ) + 0๏€บ25๏€บ 13. This is an example where the probability distribution is defined on the sample space which is not the elementary sample space. Normally, when we consider two coins tossed simultaneously, we consider the sample space containing two tuples of heads and tails, indicating the outcome of two tosses, i.e., we consider the sample space โ„ฆ = {๏ˆ๏ˆ๏€ป ๏ˆ๏”๏€ป ๏” ๏ˆ๏€ป ๏” ๏” }. Here we will see that we can also define probability on another set of outcomes. The sample space โ„ฆ contains outcomes ๏‚ณ 1 ๏€ป ๏‚ณ 2 ๏€ป ๏‚ณ 3 that denote outcomes of two, one, and no heads, respectively. Assuming that the coins are unbiased, we first find the probability of these outcomes. ๏ [๏‚ณ 1 ] = ๏ [heads on both tosses] = 0๏€บ5 ร— 0๏€บ5 = 0๏€บ25 ๏ [๏‚ณ 2 ] = ๏ [head on first, tail on second] + ๏ [tail on first, head on second] = 0๏€บ5 ร— 0๏€บ5 + 0๏€บ5 ร— 0๏€บ5 = 0๏€บ5 ๏ [๏‚ณ 3 ] = ๏ [tails on both tosses] = 0๏€บ5 ร— 0๏€บ5 = 0๏€บ25 (a) {๏‚ณ : ๏˜(๏‚ณ) = 0๏€ป ๏™ (๏‚ณ) = โˆ’1} = ๏‚ณ 2 =โ‡’ ๏ [{๏‚ณ : ๏˜(๏‚ณ) = 0๏€ป ๏™ (๏‚ณ) = โˆ’1}] = ๏ [๏‚ณ 2 ] = 0๏€บ5 {๏‚ณ : ๏˜(๏‚ณ) = 0๏€ป ๏™ (๏‚ณ) = 1} = ๏‚ณ 1 =โ‡’ ๏ [{๏‚ณ : ๏˜(๏‚ณ) = 0๏€ป ๏™ (๏‚ณ) = 1}] = ๏ [๏‚ณ 1 ] = 0๏€บ25 {๏‚ณ : ๏˜(๏‚ณ) = 1๏€ป ๏™ (๏‚ณ) = โˆ’1} = ๏ƒ =โ‡’ ๏ [{๏‚ณ : ๏˜(๏‚ณ) = 1๏€ป ๏™ (๏‚ณ) = โˆ’1}] = ๏ [๏ƒ] = 0 {๏‚ณ : ๏˜(๏‚ณ) = 1๏€ป ๏™ (๏‚ณ) = 1} = ๏‚ณ 3 =โ‡’ ๏ [{๏‚ณ : ๏˜(๏‚ณ) = 1๏€ป ๏™ (๏‚ณ) = 1}] = ๏ [๏‚ณ 3 ] = 0๏€บ25 (b) Before we find the independence of ๏˜ and ๏™ , we first find the probability mass functions (pmf) of ๏˜ and ๏™ . ๏๏˜ [0] = ๏ [๏˜ = 0] = ๏ [{๏‚ณ 1 }] + ๏ [{๏‚ณ 2 }] = 0๏€บ25 + 0๏€บ5 = 0๏€บ75 ๏๏˜ [1] = ๏ [๏˜ = 1] = ๏ [{๏บ๏ฅ๏ด๏ก3 }] = 0๏€บ25. ๏๏˜ [๏ซ] = 0 for ๏ซ 6= 0๏€ป 1. Similarly, ๏๏™ [โˆ’1] = 0๏€บ5๏€ป ๏๏™ [1] = 0๏€บ5๏€ป ๏๏™ [๏ซ] = 0 for ๏ซ 6= โˆ’1๏€ป 1. For independence of ๏˜๏€ป ๏™ , we need ๏๏˜๏€ป๏™ [๏ก๏€ป ๏ข] = ๏๏˜ [๏ก]๏๏™ [๏ข]. For ๏ก = 0๏€ป ๏ข = 1, ๏๏˜๏€ป๏™ [0๏€ป 1] = 0๏€บ25๏€ป ๏๏˜ [0]๏๏™ [1] = 0๏€บ75 ร— 0๏€บ5 = 0๏€บ375. Hence ๏˜ and ๏™ are not independent. 9 14. (a) We have to integrate the given density over the full domain. We know Z +โˆž ๏ฆ๏˜ (๏ธ)๏ค๏ธ = 1 โˆ’โˆž = = = = Z +2 1 1 1 + + +๏ ๏ธ2 ๏ค๏ธ 8 16 16 โˆ’2 Z +2 1 + 2๏ ๏ธ2 ๏ค๏ธ 4 รƒ0 ยฏ ! 1 3 ยฏยฏ2 1 + 2๏ ๏ธ 4 3 ยฏ0 8 1 + 2๏ ๏€บ 4 3 Hence ๏ = 9๏€ฝ64. (b) A labeled plot appears below in Fig. 6. Note the jumps occurring at the impulse locations in the density. Also note the slope of the distribution function is given by the density function in the smooth regions. Figure 6: (c) We proceed as follows ๏†๏˜ (1) = Z 1 ๏ฆ๏˜ (๏ธ)๏ค๏ธ โˆ’โˆž = = = Z +1 1 1 9 1 + + + ๏ธ2 ๏ค๏ธ 8 16 16 64 โˆ’2 ยต ยถ Z +1 3 1 1 1 9 2 + + + + ๏ธ ๏ค๏ธ 8 16 16 8 64 0 (using the symmetry of ๏ธ2 ) รƒ รƒ ยฏ !! 3 9 1 3 ยฏยฏ1 1 + + ๏ธ 4 8 64 3 ยฏ 0 = 9 1 43 1 3 + + = ๏€บ 4 8 64 3 64 10 (d) We can calculate ๏ [โˆ’1 ๏€ผ ๏˜ โ‰ค 2] = = 9 1 + 16 64 Z 2 ๏ฆ๏˜ (๏ธ)๏ค๏ธ โˆ’โˆž Z +2 ๏ธ2 ๏ค๏ธ๏€บ โˆ’1 R +1 But the easier way is to realize that โˆ’1 ๏ธ2 ๏ค๏ธ = โˆ’2 ๏ธ2 ๏ค๏ธ (because of symmetry) which was needed in part (c). Then, by just counting the one relevant impulse area, we can write 3 3 31 1 + + = ๏€บ ๏ [โˆ’1 ๏€ผ ๏˜ โ‰ค 2] = 16 8 64 64 R +2 15. First we calculate the probability that ๏˜ is even. Now it is binomial distributed with parameters ๏ฎ = 4 and ๏ฐ = 0๏€บ5๏€ป i.e. ๏ข(๏ซ; 4๏€ป 0๏€บ5)๏€ป 0 โ‰ค ๏ซ โ‰ค 4๏€ป thus ๏ [{๏˜ = even}] = ๏ข(0; 4๏€ป 0๏€บ5) + ๏ข(2; 4๏€ป 0๏€บ5) + ๏ข(4; 4๏€ป 0๏€บ5) ยต ยถ ยต ยถ0 ยต ยถ4 ยต ยถ ยต ยถ2 ยต ยถ2 ยต ยถ ยต ยถ4 ยต ยถ0 1 1 1 4 1 4 1 4 1 + + = 2 2 2 2 2 2 2 4 0 ยต ยถ4 ยต ยถ4 ยต ยถ4 1 1 1 1 = 1ร— +6ร— +1ร— = ๏€บ 2 2 2 2 Now, the conditional probability is given as ๏ [{๏˜ = ๏ซ} โˆฉ {๏˜ = even}] ๏ [{๏˜ = ๏ซ}|{๏˜ = even}] = ๏ [{๏˜ = even}] โŽง 1 1 2 16 = 8 ๏€ป ๏ซ = 0๏€ป โŽช โŽช โŽช โŽช 0๏€ป ๏ซ = 1๏€ป โŽจ 6 6 = 2 16 = 8 ๏€ป ๏ซ = 2๏€ป โŽช โŽช 0๏€ป ๏ซ = 3๏€ป โŽช โŽช โŽฉ 1 2 16 = 18 ๏€ป ๏ซ = 4๏€ป where we have used the fact that the joint event ยฝ {๏˜ = ๏ซ}๏€ป ๏ซ even, {๏˜ = ๏ซ} โˆฉ {๏˜ = even} = ๏ƒ๏€ป ๏ซ odd. 16. The marginal distribution function of random variable ๏Ž is given by โŽง โŽช 0๏€ป ๏ฎ ๏€ผ 0๏€ป โŽช โŽช โŽช โŽจ ๏ฎ ๏€ป 0 โ‰ค ๏ฎ ๏€ผ 5๏€ป ๏†๏Ž (๏ฎ) = ๏†๏—๏€ป๏Ž (+โˆž๏€ป ๏ฎ) = 10 ๏ฎ โŽช โŽช 10 ๏€ป 5 โ‰ค ๏ฎ ๏€ผ 10๏€ป โŽช โŽช โŽฉ1๏€ป ๏ฎ โ‰ฅ 10๏€บ The pmf is given by ๏๏Ž (๏ฎ) = ๏†๏Ž (๏ฎ) โˆ’ ๏†๏Ž (๏ฎ โˆ’ 1) = โŽง โŽช โŽจ0๏€ป 1 ๏€ป โŽช 10 โŽฉ 0๏€ป ๏ฎ โ‰ค 0๏€ป 0 ๏€ผ ๏ฎ โ‰ค 10๏€ป ๏ฎ ๏€พ 10๏€บ 11 The conditional probability density function: ๏ [๏— โ‰ค ๏ท๏€ป ๏Ž = ๏ฎ] = ๏†๏—๏€ป๏Ž (๏ท๏€ป ๏ฎ) โˆ’ ๏†๏—๏€ป๏Ž (๏ท๏€ป ๏ฎ โˆ’ 1) โŽง โŽช 0๏€ป ๏ฎโ‰ค0 โŽช โŽช โŽช โŽจ(1 โˆ’ ๏ฅโˆ’๏ท๏€ฝ๏‚น0 ) 1 ๏€ป 1 โ‰ค ๏ฎ โ‰ค 5 10 = ๏ต(๏ท) ๏€บ โˆ’๏ท๏€ฝ๏‚น1 ) 1 ๏€ป 5 ๏€ผ ๏ฎ โ‰ค 10 โŽช (1 โˆ’ ๏ฅ โŽช 10 โŽช โŽช โŽฉ0๏€ป ๏ฎ ๏€พ 10 Note that ๏†๏— (๏ท|๏Ž = ๏ฎ) = ๏ [๏— โ‰ค ๏ท|๏Ž = ๏ฎ] is not defined for ๏ฎ โ‰ค 0 or ๏ฎ ๏€พ 10, because for these ๏ฎ, ๏ [๏Ž = ๏ฎ] = 0. Therefore, ๏ [๏— โ‰ค ๏ท๏€ป ๏Ž = ๏ฎ] ๏ (๏ฎ) (๏Ž (1 โˆ’ ๏ฅโˆ’๏ท๏€ฝ๏‚น0 )๏€ป 1 โ‰ค ๏ฎ โ‰ค 5 = ๏ต(๏ท) ๏€บ (1 โˆ’ ๏ฅโˆ’๏ท๏€ฝ๏‚น1 )๏€ป 5 ๏€ผ ๏ฎ โ‰ค 10 ๏†๏— (๏ท|๏Ž = ๏ฎ) = Hence, ๏ฆ๏— (๏ท|๏Ž = ๏ฎ) = ๏ต(๏ท) ( 1 โˆ’๏ท๏€ฝ๏‚น0 ๏€ป ๏‚น0 ๏ฅ 1 โˆ’๏ท๏€ฝ๏‚น1 ๏€ป ๏‚น1 ๏ฅ 1โ‰ค๏ฎโ‰ค5 5 ๏€ผ ๏ฎ โ‰ค 10๏€บ 17. Let the number of bulbs produced by ๏ and ๏‚ be ๏ฎ๏ and ๏ฎ๏‚ respectively. We have ๏ฎ๏ +๏ฎ๏‚ =๏ฎ, and ๏ฎ is the total number of the bulbs. So ๏ [๏] = ๏ฎ๏ฎ๏ = 14 and ๏ [๏‚] = ๏ฎ๏ฎ๏‚ = 34 ๏€บ Since we have ๏†๏˜ (๏ธ|๏) = (1 โˆ’ ๏ฅโˆ’0๏€บ2๏ธ )๏ต(๏ธ)๏€ป ๏†๏˜ (๏ธ|๏‚) = (1 โˆ’ ๏ฅโˆ’0๏€บ5๏ธ )๏ต(๏ธ)๏€ป then ๏†๏˜ (๏ธ) = ๏†๏˜ (๏ธ|๏)๏ (๏) + ๏†๏˜ (๏ธ|๏‚)๏ (๏‚) 3 1 (1 โˆ’ ๏ฅโˆ’0๏€บ2๏ธ )๏ต(๏ธ) + (1 โˆ’ ๏ฅโˆ’0๏€บ5๏ธ )๏ต(๏ธ)๏€บ = 4 4 So 3 1 ๏† (2) = (1 โˆ’ ๏ฅโˆ’0๏€บ2ร—2 ) + (1 โˆ’ ๏ฅโˆ’0๏€บ5ร—2 ) = 0๏€บ56๏€ป 4 4 1 3 ๏† (5) = (1 โˆ’ ๏ฅโˆ’0๏€บ2ร—5 ) + (1 โˆ’ ๏ฅโˆ’0๏€บ5ร—5 ) = 0๏€บ85๏€ป 4 4 3 1 ๏† (7) = (1 โˆ’ ๏ฅโˆ’0๏€บ2ร—7 ) + (1 โˆ’ ๏ฅโˆ’0๏€บ5ร—7 ) = 0๏€บ92๏€บ 4 4 Then ๏ [burns at least 2 months] = 1 โˆ’ ๏† (2) = 0๏€บ44๏€ป ๏ [burns at least 5 months] = 1 โˆ’ ๏† (5) = 0๏€บ15 and ๏ [burns at least 7 months] = 1 โˆ’ ๏† (7) = 0๏€บ08๏€บ 18. Given the event ๏ , {๏ข ๏€ผ ๏˜ โ‰ค ๏ก}๏€ป for ๏ข ๏€ผ ๏ก๏€ป we calculate ๏†๏˜ (๏ธ|๏)๏€บ i) ๏ธ โ‰ค ๏ข : ๏†๏˜ (๏ธ|๏) = 0๏€ป since the joint event {๏˜ โ‰ค ๏ข} โˆฉ ๏ = ๏ƒ๏€บ ii) ๏ธ ๏€พ ๏ก : ๏†๏˜ (๏ธ|๏) = 1๏€ป since the joint event {๏˜ โ‰ค ๏ก} โˆฉ ๏ = ๏, so the conditional probability of {๏˜ โ‰ค ๏ก}, given ๏๏€ป is one. 12 iii) ๏ข ๏€ผ ๏ธ โ‰ค ๏ก : Here we must calculate the actual intersection of the two sets {๏˜ โ‰ค ๏ก} and ๏ = {๏ข ๏€ผ ๏˜ โ‰ค ๏ก}๏€บ Since ๏ข ๏€ผ ๏ธ โ‰ค ๏ก, we get {๏˜ โ‰ค ๏ก} โˆฉ ๏ = {๏˜ โ‰ค ๏ธ} โˆฉ {๏ข ๏€ผ ๏˜ โ‰ค ๏ก} = {๏ข ๏€ผ ๏˜ ๏€ผ ๏ธ}๏€บ We can then calculate the conditional probability ๏†๏˜ (๏ธ|๏) = = = ๏ [{๏˜ โ‰ค ๏ธ} โˆฉ ๏] ๏ [๏] ๏ [{๏ข ๏€ผ ๏˜ ๏€ผ ๏ธ}] ๏ [๏] ๏†๏˜ (๏ธ) โˆ’ ๏†๏˜ (๏ข) ๏€ป ๏†๏˜ (๏ก) โˆ’ ๏†๏˜ (๏ข) for ๏ข ๏€ผ ๏ธ โ‰ค ๏ก๏€บ 19. In order to get ๏ [๏™ = ๏ซ], we can consider ๏ [๏™ = ๏ซ|๏˜ = ๏ธ] first and then do the integral over all ๏ธ. Z โˆž ๏ [๏™ = ๏ซ] = ๏ [๏™ = ๏ซ|๏˜ = ๏ธ]๏ฆ๏˜ (๏ธ)๏ค๏ธ โˆ’โˆž ๏€บ Z Z 5 1 1 5 ๏ธ๏ซ ๏ฅโˆ’๏ธ ๏ซ โˆ’๏ธ ๏ค๏ธ = = ๏ธ ๏ฅ ๏ค๏ธ 5 0 ๏ซ! 5๏ซ! 0 for ๏ซ = 0: for ๏ซ = 1: 1 1 ๏ [๏™ = 0] = (1 โˆ’ ๏ฅโˆ’5 ) 5 0! 1 1 51 ๏ [๏™ = 1] = (1 โˆ’ ๏ฅโˆ’5 โˆ’ ๏ฅโˆ’5 ) 5 0! 1! for ๏ซ = 2: 1 ๏ [๏™ = 2] = 5 ยต ยถ 1 โˆ’5 51 โˆ’5 52 โˆ’5 1โˆ’ ๏ฅ โˆ’ ๏ฅ โˆ’ ๏ฅ 0! 1! 2! for general ๏ซ: 1 ๏ [๏™ = ๏ซ] = 5 ยต ยถ 1 โˆ’5 51 โˆ’5 5๏ซ โˆ’5 1 โˆ’ ๏ฅ โˆ’ ๏ฅ ๏€บ๏€บ๏€บ โˆ’ ๏ฅ ๏€ป 0! 1! ๏ซ! ๏ซ โ‰ฅ 0๏€บ 20. (a) The pmf of ๏˜ is binomial with ๏ฎ = 8 and ๏ฐ = ๏ฑ = 0๏€บ5, i.e. ๏๏˜ (๏ซ) , ๏ [๏˜ = ๏ซ] = ๏ข(๏ซ; 8๏€ป 0๏€บ5)๏€บ This is because the 8 votes are independent, each with ๏ฐ = 0๏€บ5 chance of being favorable. They are thus Bernoulli trials, which leads to the binomial distribution in the binary case. We note that since ๏ฐ = 0๏€บ5, the distribution will be symmetric about ๏˜ = ๏ซ = 4. (b) We must find the conditional PDF ๏†๏˜ (๏ธ|๏) for the range โˆ’1 โ‰ค ๏ธ โ‰ค 10๏€บ Now ๏†๏˜ (๏ธ|๏) , ๏ [๏˜ โ‰ค ๏ธ|๏] = = ๏ [4 ๏€ผ ๏˜ โ‰ค ๏ธ] ๏€บ ๏ [๏˜ ๏€พ 4] ๏ [{๏˜ โ‰ค ๏ธ]} โˆฉ {๏˜ ๏€พ 4}] ๏ [๏˜ ๏€พ 4] 13 Since ๏˜ is binomially distributed, we have ยต ยถ8 X 8 ยต ยถ 1 8 ๏ [๏˜ ๏€พ 4] = ๏ซ 2 ๏ซ=5 รƒ ยต ยถ ยต ยถ8 ! 1 8 1 = 1โˆ’ 2 2 4 93 ๏€ป 256 where the second to last line is by symmetry of this binomial distribution about ๏ซ = 4. Turning to the numerator, we have ยฝ 0๏€ป ๏ธ๏€ผ5 ๏ [4 ๏€ผ ๏˜ โ‰ค ๏ธ] = ยก 1 ยข8 P8 ยก8ยข ๏ซ=5 ๏ซ ๏ต(๏ธ โˆ’ ๏ซ)๏€ป ๏ธ โ‰ฅ 5๏€บ 2 = Then ยฝ ๏ธ๏€ผ5 ๏ซ=5 ๏ซ ๏ต(๏ธ โˆ’ ๏ซ)๏€ป ๏ธ โ‰ฅ 5๏€บ 2 ! รƒ ยถ ยต 8 1 X 8 ๏ต(๏ธ โˆ’ ๏ซ) ๏ต(๏ธ โˆ’ 5) = ๏ซ 93 ๏ซ=5 โŽ› โŽž b๏ธc ยต ยถ X 1 8 โŽ  = โŽ ๏ต(๏ธ โˆ’ 5)๏€ป 93 ๏ซ ๏†๏˜ (๏ธ|๏) = 256 93 ยก 1 ยข8 P8 0๏€ป ยก 8ยข ๏ซ=5 where b๏ธc denotes the least integer function b๏ธc , ๏ธ rounded down to next integer. Calculating, we determine and thus โŽง 56 ๏€ป โŽช ยต ยถ โŽช โŽจ 93 28 1 8 93 ๏€ป = 8 ๏€ป โŽช 93 ๏ซ โŽช โŽฉ 93 1 93 ๏€ป โŽง 56 ๏€ป โŽช โŽช โŽจ 93 84 93 ๏€ป ๏†๏˜ (๏ธ|๏) = 92 โŽช โŽช 93 ๏€ป โŽฉ 1๏€ป ๏ซ = 5๏€ป ๏ซ = 6๏€ป ๏ซ = 7๏€ป ๏ซ = 8๏€ป ๏ซ = 5๏€ป ๏ซ = 6๏€ป ๏ซ = 7๏€ป ๏ซ = 8๏€บ Now for ๏ธ ๏€ผ 5, ๏†๏˜ (๏ธ|๏) = 0๏€ป and for ๏ธ ๏€พ 8, ๏†๏˜ (๏ธ|๏) = 1๏€ป so we have the plot of Figure 1. (c) From the calculations done above and from the definition ๏ฆ๏˜ (๏ธ|๏) = = ๏ค๏†๏˜ (๏ธ|๏) ๏ค๏ธ 8 ยต ยถ X 8 1 ๏‚ฑ(๏ธ โˆ’ ๏ซ) 93 ๏ซ ๏ซ=5 = 56 28 8 1 ๏‚ฑ(๏ธ โˆ’ 5) + ๏‚ฑ(๏ธ โˆ’ 6) + ๏‚ฑ(๏ธ โˆ’ 7) + ๏‚ฑ(๏ธ โˆ’ 8)๏€ป 93 93 93 93 14 Figure 7: Figure 8: with plot of Figure 2. Note we write the areas of the impulses in parentheses. In this figure, ๏ก = 56๏€ฝ93, ๏ข = 28๏€ฝ93, ๏ฃ = 8๏€ฝ93, and ๏ค = 1๏€ฝ93. (d) Using Bayesโ€™ rule, we have ๏ [4 โ‰ค ๏˜ โ‰ค 5|๏] = = = ๏ [4 ๏€ผ ๏˜ โ‰ค 5] ๏ [๏˜ ๏€พ 4] ๏ [๏˜ = 5] ๏ [๏˜ ๏€พ 4] ยก 1 ยข8 ยก8ยข 2 5 93 28 ยต ยถ 56 1 8 = ๏€บ = 93 5 93 21. The random variables ๏˜ and ๏™ have joint probability density function (pdf) ยฝ 3 2 4 ๏ธ (1 โˆ’ ๏น)๏€ป 0 โ‰ค ๏ธ โ‰ค 2๏€ป 0 โ‰ค ๏น โ‰ค 1๏€ป ๏ฆ๏˜๏€ป๏™ (๏ธ๏€ป ๏น) = 0๏€ป else. 15 (a) To find ๏ [๏˜ โ‰ค 0๏€บ5], we start with ๏ [๏˜ โ‰ค 0๏€บ5] = = = = = Z 0๏€บ5 Z +โˆž โˆ’โˆž Z 0๏€บ5 Z 1 ๏ฆ๏˜๏€ป๏™ (๏ธ๏€ป ๏น)๏ค๏ธ๏ค๏น โˆ’โˆž 3 2 ๏ธ (1 โˆ’ ๏น)๏ค๏ธ๏ค๏น 0 0 4 ยตZ 0๏€บ5 ยถ ยตZ 1 ยถ 3 2 ๏ธ ๏ค๏ธ (1 โˆ’ ๏น)๏ค๏น 4 0 0 ยต ยถยต ยถ ๏น2 3 ๏ธ3 0๏€บ5 |0 (๏น โˆ’ )|10 4 3 2 1 1 3 1 (1 โˆ’ ) = ๏€บ 4 24 2 64 ๏€บ (b) By definition ๏†๏™ (0๏€บ5) = ๏ [๏™ โ‰ค 0๏€บ5] Z +โˆž Z 0๏€บ5 ๏ฆ๏˜๏€ป๏™ (๏ธ๏€ป ๏น)๏ค๏ธ๏ค๏น = โˆ’โˆž = = = โˆ’โˆž Z 2 Z 0๏€บ5 3 2 ๏ธ (1 โˆ’ ๏น)๏ค๏ธ๏ค๏น 4 0 0 ยต ยถยต ยถ 3 ๏ธ3 2 ๏น 2 0๏€บ5 | (๏น โˆ’ )|0 4 3 0 2 ยต ยถ 38 1 1 3 โˆ’ = ๏€บ 43 2 8 4 (c) To find ๏ [๏˜ โ‰ค 0๏€บ5|๏™ โ‰ค 0๏€บ5], we note that ๏˜ and ๏™ are independent random variables, 1 ๏€บ so the answer is the same as in part a), namely ๏ [๏˜ โ‰ค 0๏€บ5|๏™ โ‰ค 0๏€บ5] = ๏ [๏˜ โ‰ค 0๏€บ5] = 64 However, we can also calculate directly, ๏ [๏˜ โ‰ค 0๏€บ5๏€ป ๏™ โ‰ค 0๏€บ5] ๏ [๏˜ โ‰ค 0๏€บ5|๏™ โ‰ค 0๏€บ5] = ๏ [๏™ โ‰ค 0๏€บ5] ยต ยถ Z 0๏€บ5 Z 0๏€บ5 3 3 2 = ๏ธ (1 โˆ’ ๏น)๏ค๏ธ๏ค๏น๏€ฝ 4 4 0 ยต0 ยถ ยต ยถ 3 1 1 1 3 1 = โˆ’ ๏€ฝ = ๏€บ 4 24 2 8 4 64 (d) Here, we can note again that ๏˜ and ๏™ are independent random variables for the given joint pdf, and thus ๏ [๏™ โ‰ค 0๏€บ5|๏˜ โ‰ค 0๏€บ5] = ๏ [๏™ โ‰ค 0๏€บ5] 3 from part b). = 4 22. To check for independence, we need to look at the marginal pdfs of ๏˜ and ๏™ . How do we find the pdfโ€™s? We can use the property that the pdf must integrate to 1. Say ๏ฆ๏˜ (๏ธ) = Rโˆž 1 ๏ธ 2 1 ๏ธ 2 ๏๏ฅโˆ’ 2 ( 3 ) ๏ต(๏ธ), and 0 ๏ฆ๏˜ (๏ธ)๏ค๏ธ = 1, we find ๏ = 3โˆš22๏‚ผ ๏€บ Similarly, ๏ฆ๏™ (๏น) = ๏‚๏ฅโˆ’ 2 ( 2 ) ๏ต(๏น), 16 Rโˆž and 0 ๏ฆ๏™ (๏น)๏ค๏น = 1, so ๏‚ = 2โˆš22๏‚ผ ๏€บ Multiplying the two marginal pdfs, we see that the product is indeed equal to joint pdf; i.e., ๏ฆ๏˜ (๏ธ)๏ฆ๏™ (๏น) = ๏ฆ๏˜๏€ป๏™ (๏ธ๏€ป ๏น). Therefore, ๏˜ and ๏™ are independent random variables; their joint probability factors and hence ๏ [0 ๏€ผ ๏˜ โ‰ค 3๏€ป 0 ๏€ผ ๏™ โ‰ค 2] = ๏ [0 ๏€ผ ๏˜ โ‰ค 3]๏ [0 ๏€ผ ๏™ โ‰ค 2]๏€บ Thus Z 3 1 ๏ธ 2 2 โˆš ๏ฅโˆ’ 2 ( 3 ) ๏ค๏ธ โˆ’3 3 2๏‚ผ Z 3 1 ๏ธ 2 2 ๏ฅโˆ’ 2 ( 3 ) ๏ค๏ธ = 2๏ฅ๏ฒ๏ฆ (1)๏€ป = 2ร— โˆš 3 2๏‚ผ 0 ๏ [0 ๏€ผ ๏˜ โ‰ค 3] = Z 2 1 ๏น 2 2 โˆš ๏ฅโˆ’ 2 ( 2 ) ๏ค๏น โˆ’2 2 2๏‚ผ Z 2 1 ๏น 2 2 ๏ฅโˆ’ 2 ( 2 ) ๏ค๏น = 2๏ฅ๏ฒ๏ฆ (1)๏€บ = 2ร— โˆš 2 2๏‚ผ 0 ๏ [0 ๏€ผ ๏™ โ‰ค 2] = So ๏ [0 ๏€ผ ๏˜ โ‰ค 3๏€ป 0 ๏€ผ ๏™ โ‰ค 2] = ๏ [0 ๏€ผ ๏˜ โ‰ค 3]๏ [0 ๏€ผ ๏™ โ‰ค 2] ๏€บ = 2 erf(1) ร— 2 erf(1) = 4 erf(1)2 = 0๏€บ466๏€บ 23. (a) Since 1 = Z +โˆž โˆ’โˆž Z 0 = ๏ โˆ’1 ๏ฆ๏˜ (๏ธ)๏ค๏ธ (1 + ๏ธ)๏ค๏ธ + ๏ Z +1 0 (1 โˆ’ ๏ธ)๏ค๏ธ ยถยฏ0 ยถยฏ1 ยต ยต ๏ธ2 ยฏยฏ ๏ธ2 ยฏยฏ +๏ ๏ธโˆ’ = ๏ ๏ธ+ 2 ยฏโˆ’1 2 ยฏ0 ยถ ยต 1 1 + = ๏ 2 2 = ๏๏€บ Thus ๏ = 1 and ๏ฆ๏˜ is plotted as 17 (b) ๏†๏˜ (๏ธ) = 0 for ๏ธ โ‰ค โˆ’1๏€บ Then for โˆ’1 ๏€ผ ๏ธ โ‰ค 0๏€ป we calculate Z ๏ธ (1 + ๏ถ)๏ค๏ถ ๏†๏˜ (๏ธ) = โˆ’1 ยถยฏ๏ธ ยต ๏ถ 2 ยฏยฏ = ๏ถ+ 2 ยฏโˆ’1 ยต ยถ (โˆ’1)2 ๏ธ2 โˆ’ โˆ’1 + = ๏ธ+ 2 2 2 ๏ธ 1 = ๏ธ+ + ๏€บ 2 2 We note that ๏†๏˜ (๏ธ) = 12 ๏€บ Then for 0 ๏€ผ ๏ธ โ‰ค 1๏€ป we calculate Z ๏ธ 1 + (1 โˆ’ ๏ถ)๏ค๏ถ ๏†๏˜ (๏ธ) = 2 0 ยต ยถยฏ๏ธ ๏ถ2 ยฏยฏ 1 + ๏ถโˆ’ = 2 2 ยฏ0 ๏ธ2 1 +๏ธโˆ’ ๏€บ = 2 2 R +1 Note that ๏†๏˜ (๏ธ) = 1 for ๏ธ โ‰ฅ 1 since โˆ’1 ๏ฆ๏˜ (๏ธ)๏ค๏ธ = 1๏€บ Putting all the results together, we get โŽง 0๏€ป ๏ธ โ‰ค โˆ’1๏€ป โŽช โŽช โŽจ 1 ๏ธ2 2 + ๏ธ + 2 ๏€ป โˆ’1 ๏€ผ ๏ธ โ‰ค 0๏€ป ๏†๏˜ (๏ธ) = 1 ๏ธ2 โŽช โŽช โŽฉ 2 +๏ธโˆ’ 2 ๏€ป 0 ๏€ผ๏ธโ‰ค1 1๏€ป ๏ธ ๏€พ 1๏€บ The sketch of ๏†๏˜ is shown below. (c) ๏ [๏˜ ๏€พ ๏ข] = 1 โˆ’ ๏†๏˜ (๏ข) = 12 ๏†๏˜ (๏ข)๏€ป which gives ๏†๏˜ (๏ข) = 23 ๏€ป therefore ๏ข โˆˆ (0๏€ป 1)๏€บ In this 2 interval ๏†๏˜ (๏ข) = 12 + ๏ข โˆ’ ๏ข2 , so we have the quadratic equation 3๏ข2 โˆ’ 6๏ข + 1 = 0๏€ป q q which is solved by roots ๏ข1๏€ป2 = 1 ยฑ 23 ๏€บ The root in (0๏€ป 1) is then ๏ข = 1 โˆ’ 23 ‘ 0๏€บ185๏€บ 24. The general expression is given as: 1 p ๏ฆ๏˜๏™ (๏ธ๏€ป ๏น) = exp 2 2๏‚ผ๏‚พ 1 โˆ’ ๏‚ฝ2 ยต ยถ โˆ’1 2 2 (๏ธ + ๏น โˆ’ 2๏‚ฝ๏ธ๏น) ๏€บ 2๏‚พ 2 (1 โˆ’ ๏‚ฝ2 ) 18 If ๏‚ฝ = 0 and ๏‚พ = 1๏€ป then this becomes ยต ยถ โˆ’1 2 1 2 exp (๏ธ + ๏น ) ๏ฆ๏˜๏™ (๏ธ๏€ป ๏น) = 2๏‚ผ 2 1 2 1 2 1 1 = โˆš ๏ฅโˆ’ 2 ๏ธ โˆš ๏ฅโˆ’ 2 ๏น 2๏‚ผ 2๏‚ผ = ๏ฆ๏˜ (๏ธ)๏ฆ๏™ (๏น)๏€บ The desired joint probability can be calculated as ยธ โˆ™ ยธ โˆ™ ยธ โˆ™ 1 1 1 1 1 1 1 1 = ๏ โˆ’ ๏€ผ๏˜โ‰ค ๏ โˆ’ ๏€ผ๏™ โ‰ค ๏ โˆ’ ๏€ผ ๏˜ โ‰ค ๏€ปโˆ’ ๏€ผ ๏™ โ‰ค 2 2 2 2 2 2 2 2 ยต ยถ ยต ยถ 1 1 = 2 erf 2 erf 2 2 โˆ™ ยต ยถยธ2 1 = 2 erf 2 ‘ 0๏€บ144๏€บ 25. We use Bayesโ€™ formula for pdfโ€™s: ๏ฆ๏˜|๏™ (๏ธ|๏น) = We have ๏ฆ๏™ |๏˜ (๏น|๏ธ)๏ฆ๏˜ (๏ธ) ๏€บ ๏ฆ๏™ (๏น) ๏ธ 1 ๏ฆ๏˜ (๏ธ) = rect( )๏€บ 2 2 Then ๏ฆ๏™ (๏น) = Z โˆž Z โˆž ๏ฆ๏˜๏™ (๏ธ๏€ป ๏น)๏ค๏ธ = ๏ฆ๏™ |๏˜ (๏น|๏ธ)๏ฆ๏˜ (๏ธ)๏ค๏ธ โˆ’โˆž โˆ™ ยธ 1 1 (๏น โˆ’ ๏ธ)2 โˆš = exp โˆ’ ๏ค๏ธ๏€บ 2๏‚พ 2 โˆ’1 2 2๏‚ผ๏‚พ 2 โˆ’โˆž Z 1 ๏ค๏ธ Let ๏‚ป = ๏ธโˆ’๏น ๏‚พ , then ๏ค๏‚ป = ๏‚พ and we obtain ๏ฆ๏™ (๏น) = 1 2 โˆ™ ยธ 1 2 1โˆ’๏น โˆ’1 โˆ’ ๏น 1 1 โˆš ๏ฅโˆ’ 2 ๏‚ป ๏ค๏‚ป = erf( ) โˆ’ erf( ) ๏€บ โˆ’1โˆ’๏น 2 ๏‚พ ๏‚พ 2๏‚ผ ๏‚พ Z 1โˆ’๏น ๏‚พ But ๏ฅ๏ฒ๏ฆ (๏ธ) = โˆ’๏ฅ๏ฒ๏ฆ (โˆ’๏ธ), hence ๏ฆ๏™ (๏น) = โˆ™ ยธ 1+๏น ๏นโˆ’1 1 erf( ) โˆ’ erf( ) ๏€บ 2 ๏‚พ ๏‚พ Then finally 2 โˆš 1 exp[โˆ’ (๏นโˆ’๏ธ) ]rect( ๏ธ2 ) ๏ฆ๏™ |๏˜ (๏น|๏ธ)๏ฆ๏˜ (๏ธ) 2๏‚พ 2 2๏‚ผ ๏‚พ ๏€บ = ๏ฆ๏˜|๏™ (๏ธ|๏น) = ๏นโˆ’1 ๏ฆ๏™ (๏น) erf( 1+๏น ) โˆ’ erf( ) ๏‚พ ๏‚พ 19 26. We start o๏ฌ€ with the general relation for conditional probability densities ๏ฆ๏˜|๏™ (๏ธ|๏น) = = ๏ฆ๏™ |๏˜ (๏น|๏ธ)๏ฆ๏˜ (๏ธ) ๏ฆ๏™ (๏น) 2 2 โˆš 1 ๏ฅโˆ’(๏นโˆ’๏ธ) ๏€ฝ2๏‚พ 2๏‚ผ๏‚พ2 ยข ยก1 1 2 ๏‚ฑ(๏ธ โˆ’ 1) + 2 ๏‚ฑ(๏ธ + 1) ๏ฆ๏™ (๏น) ๏€บ Next, we find the denominator as Z +โˆž ๏ฆ๏™ (๏น) = โˆ’โˆž Z +โˆž = โˆ’โˆž Z +โˆž = โˆ’โˆž ๏ฆ๏™๏€ป๏˜ (๏น๏€ป ๏ธ)๏ค๏ธ ๏ฆ๏™ |๏˜ (๏น|๏ธ)๏ฆ๏˜ (๏ธ)๏ค๏ธ 1 2 2 โˆš ๏ฅโˆ’(๏นโˆ’๏ธ) ๏€ฝ2๏‚พ 2 2๏‚ผ๏‚พ ยต ยถ 1 1 ๏‚ฑ(๏ธ โˆ’ 1) + ๏‚ฑ(๏ธ + 1) ๏ค๏ธ๏€ป 2 2 and so, combining this result with the one above, we have ๏ฆ๏˜|๏™ (๏ธ|๏น) = = = = = 2 2 โˆš 1 ๏ฅโˆ’(๏นโˆ’๏ธ) ๏€ฝ2๏‚พ 2๏‚ผ๏‚พ2 ยข ยก1 1 2 ๏‚ฑ(๏ธ โˆ’ 1) + 2 ๏‚ฑ(๏ธ + 1) ๏ฆ๏™ (๏น) ยข 2 ๏€ฝ2๏‚พ 2 ยก 1 1 โˆ’(๏นโˆ’๏ธ) โˆš ๏ฅ ๏‚ฑ(๏ธ โˆ’ 1) + 12 ๏‚ฑ(๏ธ + 1) 2 2 ยข ยก R +โˆž 2๏‚ผ๏‚พ1 โˆš ๏ฅโˆ’(๏นโˆ’๏ธ)2 ๏€ฝ2๏‚พ2 12 ๏‚ฑ(๏ธ โˆ’ 1) + 12 ๏‚ฑ(๏ธ + 1) ๏ค๏ธ 2 โˆ’โˆž 2๏‚ผ๏‚พ ยข 2 2 ยก1 โˆš 1 ๏ฅโˆ’(๏นโˆ’๏ธ) ๏€ฝ2๏‚พ ๏‚ฑ(๏ธ โˆ’ 1) + 12 ๏‚ฑ(๏ธ + 1) 2 2 2๏‚ผ๏‚พ ยก1 ยข โˆš 1 ๏ฅโˆ’(๏นโˆ’1)2 ๏€ฝ2๏‚พ2 + 12 ๏ฅโˆ’(๏น+1)2 ๏€ฝ2๏‚พ2 2 2 2๏‚ผ๏‚พ ยข 2 2 ยก ๏ฅโˆ’(๏นโˆ’๏ธ) ๏€ฝ2๏‚พ 12 ๏‚ฑ(๏ธ โˆ’ 1) + 12 ๏‚ฑ(๏ธ + 1) ๏€ป or equivalently 1 โˆ’(๏นโˆ’1)2 ๏€ฝ2๏‚พ2 + 12 ๏ฅโˆ’(๏น+1)2 ๏€ฝ2๏‚พ2 2๏ฅ 2 2 ๏ฅโˆ’(๏นโˆ’๏ธ) ๏€ฝ2๏‚พ ๏ฅโˆ’(๏นโˆ’1)2 ๏€ฝ2๏‚พ2 + ๏ฅโˆ’(๏น+1)2 ๏€ฝ2๏‚พ2 (๏‚ฑ(๏ธ โˆ’ 1) + ๏‚ฑ(๏ธ + 1)) ๏€บ Note, we could have eliminated a few steps in our solution by starting from the Total Probability Theorem for density functions, from which we can write directly ๏ฆ๏™ |๏˜ (๏น|๏ธ)๏ฆ๏˜ (๏ธ) ๏ฆ๏˜|๏™ (๏ธ|๏น) = R +โˆž ๏€บ โˆ’โˆž ๏ฆ๏™ |๏˜ (๏น|๏ธ)๏ฆ๏˜ (๏ธ)๏ค๏ธ If the question had asked instead for the conditional probability mass function (PMF) ๏๏˜|๏™ , the answer would have been ( 2 2 ๏ฅโˆ’(๏นโˆ’๏ธ) ๏€ฝ2๏‚พ ๏ธ = ยฑ1๏€ป 2 ๏€ฝ2๏‚พ 2 2 ๏€ฝ2๏‚พ 2 ๏€ป โˆ’(๏นโˆ’1) โˆ’(๏น+1) ๏ฅ +๏ฅ ๏€ป ๏๏˜|๏™ (๏ธ|๏น) = 0๏€ป else as can be easily obtained by integrating the conditional density found above. 20 27. ๏ [๏] = ๏ [๏” ๏€พ 30] = 1 โˆ’ ๏†๏” (30) ๏ [๏‚] = ๏ [๏” โ‰ค 31] = ๏†๏” (31) ๏ [๏๏‚] = ๏ [30 ๏€ผ ๏” โ‰ค 31] = ๏†๏” (31) โˆ’ ๏†๏” (30) ๏†๏” (31) โˆ’ ๏†๏” (30) ๏ [๏๏‚] = ๏ [๏‚|๏] = ๏ [๏] 1 โˆ’ ๏†๏” (30) = ๏ [๏|๏‚] = = 31โˆ’30 1 60 60โˆ’30 = 30 ๏€บ 60 ๏†๏” (31) โˆ’ ๏†๏” (30) ๏ [๏๏‚] = ๏ [๏‚] ๏†๏” (31) 31โˆ’30 1 60 = ๏€บ 31 31 60 28. (a) 1 = Z +โˆž โˆ’โˆž Z โˆž ๏ฆ๏˜ (๏ธ)๏ค๏ธ ๏ฅโˆ’2๏ธ ๏ค๏ธ ยต โˆ’2๏ธ ยฏโˆž ยถ ยฏ ๏ฅ ยฏ = ๏ฃ โˆ’2 ยฏ0 ยต ยถ 1 = ๏ฃ 0โˆ’โˆ’ 2 = ๏ฃ๏€ฝ2๏€ป = ๏ฃ 0 thus we must have ๏ฃ = 2. 21 (b) For ๏ธ ๏€พ 0๏€ป ๏ก ๏€พ 0๏€ป we can write ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก] = 2 = 2 Z โˆž ๏ฅโˆ’2๏ถ ๏ค๏ถ ยถ ยฏ โˆ’2 ยฏ๏ธ+๏ก ๏ธ+๏ก ยต โˆ’2๏ถ ยฏโˆž ยฏ ๏ฅ รƒ ๏ฅโˆ’2(๏ธ+๏ก) = 2 0โˆ’โˆ’ 2 = ๏ฅโˆ’2(๏ธ+๏ก) ๏€ป ! with ๏ธ ๏€พ 0๏€ป ๏ก ๏€พ 0๏€บ (c) ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก|๏˜ ๏€พ ๏ก] = ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก๏€ป ๏˜ ๏€พ ๏ก] ๏€ป ๏ [๏˜ ๏€พ ๏ก] but note that for ๏ธ ๏€พ 0, the event {๏˜ โ‰ฅ ๏ธ + ๏ก} is a subset of the event {๏˜ ๏€พ ๏ก}๏€ป so {๏˜ โ‰ฅ ๏ธ + ๏ก} โˆฉ {๏˜ ๏€พ ๏ก} = {๏˜ โ‰ฅ ๏ธ + ๏ก}๏€ป and hence ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก๏€ป ๏˜ ๏€พ ๏ก] = ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก]๏€ป thus we have, for ๏ธ ๏€พ 0, ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก|๏˜ ๏€พ ๏ก] = = ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก๏€ป ๏˜ ๏€พ ๏ก] ๏ [๏˜ ๏€พ ๏ก] ๏ [๏˜ โ‰ฅ ๏ธ + ๏ก] ๏ [๏˜ ๏€พ ๏ก] ๏ฅโˆ’2(๏ธ+๏ก) ๏ฅโˆ’2๏ก โˆ’2๏ธ = ๏ฅ ๏€ป independent of ๏ก ! = Since this conditional probability is (functionally) independent of the variable ๏ก, the memory of ๏ก had been lost. 29. We need to solve for ๏น in 1 โˆ’ ๏ฅโˆ’๏น โ‰ฅ 0๏€บ95๏€บ But this implies that ๏น โ‰ฅ โˆ’ ln(0๏€บ005) ๏€บ = 2๏€บ996๏€บ Thus, ๏น = 3 should do. 30. This is a rather classic problem in detection theory. ๏ [๏|๏ ] = ๏ [๏˜ โ‰ฅ 0๏€บ5|๏ ] Z โˆž 1 1 2 = โˆš ๏ฅโˆ’ 2 (๏ธโˆ’1) ๏ค๏ธ 2๏‚ผ 0๏€บ5 Z โˆž 1 2 1 = โˆš ๏ฅโˆ’ 2 ๏น ๏ค๏น๏€ป with ๏น , ๏ธ โˆ’ 1๏€ป 2๏‚ผ โˆ’0๏€บ5 1 ๏€บ = + erf(0๏€บ5) = 0๏€บ69๏€บ 2 22 Then ๏ [๏|๏ ๏ฃ ] = ๏ [๏˜ โ‰ฅ 0๏€บ5|๏ ๏ฃ ] Z โˆž 1 2 1 ๏ฅโˆ’ 2 ๏ธ ๏ค๏ธ = โˆš 2๏‚ผ 0๏€บ5 1 ๏€บ โˆ’ erf(0๏€บ5) = 0๏€บ31๏€ป = 2 ๏ [๏๏ฃ |๏ ๏ฃ ] = ๏ [๏˜ ๏€ผ 0๏€บ5|๏ ๏ฃ ] Z 0๏€บ5 1 2 1 ๏ฅโˆ’ 2 ๏ธ ๏ค๏ธ = โˆš 2๏‚ผ โˆ’โˆž 1 ๏€บ + erf(0๏€บ5) = 0๏€บ69๏€ป = 2 and ๏ [๏๏ฃ |๏ ] = ๏ [๏˜ ๏€ผ 0๏€บ5|๏ ] Z 0๏€บ5 1 1 2 = โˆš ๏ฅโˆ’ 2 (๏ธโˆ’1) ๏ค๏ธ 2๏‚ผ โˆ’โˆž Z โˆ’0๏€บ5 1 2 1 ๏ฅโˆ’ 2 ๏น ๏ค๏น๏€ป again with ๏น , ๏ธ โˆ’ 1๏€ป = โˆš 2๏‚ผ โˆ’โˆž 1 ๏€บ = โˆ’ erf(0๏€บ5) = 0๏€บ31๏€บ 2 31. From Bayesโ€™ Theorem ๏ [๏ |๏] = ๏ [๏ ๏ฃ |๏] = ๏ [๏ |๏๏ฃ ] = ๏ [๏ ๏ฃ |๏๏ฃ ] = ๏ [๏ ] ๏ [๏|๏ ]๏ [๏ ] = 0๏€บ69 ๏€ป ๏ [๏] 0๏€บ69๏ [๏ ] + 0๏€บ31(1 โˆ’ ๏ [๏ ]) ๏ [๏ ๏ฃ ] ๏ [๏|๏ ๏ฃ ]๏ [๏ ๏ฃ ] = 0๏€บ31 ๏€ป ๏ [๏] 0๏€บ69๏ [๏ ๏ฃ ] + 0๏€บ31(1 โˆ’ ๏ [๏ ๏ฃ ]) ๏ [๏ ] ๏ [๏๏ฃ |๏ ]๏ [๏ ] = 0๏€บ31 ๏€ป and ๏ [๏๏ฃ ] 0๏€บ31๏ [๏ ] + 0๏€บ69(1 โˆ’ ๏ [๏ ]) ๏ [๏ ๏ฃ ] ๏ [๏๏ฃ |๏ ๏ฃ ]๏ [๏ ๏ฃ ] = 0๏€บ69 ๏€บ ๏ [๏๏ฃ ] 0๏€บ31๏ [๏ ] + 0๏€บ69(1 โˆ’ ๏ [๏ ]) As a partial check, we note that ๏ [๏ |๏]+๏ [๏ ๏ฃ |๏] = 1 as it must, and likewise for ๏ [๏ |๏๏ฃ ]+ ๏ [๏ ๏ฃ |๏๏ฃ ]๏€บ Then, for ๏ [๏ ] = 10โˆ’3 ๏€ป we get ๏ [๏ |๏] ‘ 2 ร— 10โˆ’3 ๏€ป ๏ [๏ ๏ฃ |๏] ‘ 0๏€บ998๏€ป ๏ [๏ |๏๏ฃ ] ‘ 0๏€บ45 ร— 10โˆ’3 ๏€ป and ๏ [๏ ๏ฃ |๏๏ฃ ] ‘ 0๏€บ9996๏€บ But, for ๏ [๏ ] = 10โˆ’6 ๏€ป we get ๏ [๏ |๏] ‘ 2๏€บ2 ร— 10โˆ’6 ๏€ป ๏ [๏ ๏ฃ |๏] ‘ 0๏€บ999998๏€ป ๏ [๏ |๏๏ฃ ] ‘ 0๏€บ45ร—10โˆ’36 ๏€ป and ๏ [๏ ๏ฃ |๏๏ฃ ] ‘ 0๏€บ999998๏€บ Thus, because of the uncertainty in the prior probability ๏ [๏ ]๏€ป these calcuated probability numbers have little value for decision making. 32. 23 A clearer version of the function is given below: function [alpha,beta] = roc(r) %function for evaluations in Problem 2.32 t=zeros (1,100); alpha=zeros(1,100); beta=zeros(1,100); t(1)=-6; for n=2:100 t(n)=t(1)+(1.5*n/100)*(r+6); alpha(n)=quad(โ€™bellโ€™,t(n),10); beta(n)=quad(โ€™bellโ€™,t(n)-r,10); end plot(alpha(2:100),beta(2:100)) axis([0 1 0 1]) axis (โ€™imageโ€™) end However, note that this function will only work with definition of the function โ€™bellโ€™, not given here. See documentation on MATLAB function โ€™quadโ€™. 33. From the data, ๏‚ธ = 9 ร— 106 ph/sec ๏€บ For the counting interval (CI) โˆ†๏ด = 10โˆ’6 sec. then, 24 ๏‚ธโˆ†๏ด = 9๏€บ So ๏ [{false alarm in CI}] = ๏ [{ 0 photons in CI}] + ๏ [{ 1 photon in CI}] (9)0 โˆ’9 (9)1 โˆ’9 ๏ฅ + ๏ฅ = 0! 1! = 10๏ฅโˆ’9 ‘ 0๏€บ0012๏€บ ๏ [{at least one false alarm in 106 tries}] = 1 โˆ’ ๏ [{ 0 false alarms in 106 tries}] ยต 6ยถ 10 6 (0๏€บ0012)0 (1 โˆ’ 0๏€บ0012)10 ‘ 1โˆ’ 0 6 = 1 โˆ’ (0๏€บ9988)10 ‘ 0๏€บ 34. (a) โ„ฆ = {๏‡๏€ป ๏’๏€ป ๏™ }๏€ป where ๏‡=green, ๏’=red, and ๏™ =yellow. The ๏‚พ-field of events are: {๏‡}๏€ป {๏’}๏€ป {๏™ }๏€ป {๏‡๏€ป ๏’}(i.e. light is green or red) ๏€ป {๏‡๏€ป ๏™ }(i.e.light is green or yellow)๏€ป {๏’๏€ป ๏™ }(light is red or yellow) ๏€ป ๏ƒ(null event)๏€ป and โ„ฆ๏€ป the certain event. (b) ๏˜(๏‡) = โˆ’1๏€ป ๏˜(๏’) = 0๏€ป ๏˜(๏™ ) = ๏‚ผ๏€ป and ๏ [๏‡] = ๏ [๏™ ] = 0๏€บ5๏ [๏’]๏€บ Hence ๏ [๏’] + 0๏€บ5๏ [๏’] + 0๏€บ5๏ [๏’] = 1๏€บ So ๏ [๏’] = 12 and ๏ [๏‡] = ๏ [๏™ ] = 14 ๏€บ 35. (a) ๏”max = 8 ร— 5 = 40 minutes, ๏”min = 8 ร— 0 = 0 minutes. 25 Note that if each station sends a message that is infinitesimally short, you get ๏”min = 0. Let ๏” denote the waiting time and let ๏ฐ , ๏ [{a station is busy}]๏€บ Then ๏…[๏” ] = [2๏€บ5๏ฐ + (1 โˆ’ ๏ฐ)1] 8 = 8 minutes for ๏ฐ = 0๏€ป = 14 minutes for ๏ฐ = 0๏€บ5๏€ป = 20 minutes for ๏ฐ = 1๏€บ (b) Here is a MATLAB function that simulates the waiting time: function [w]=token (p, NT, NS) % function to simulate the token system in Problem 2.35 % p=probability a station is occupies, NT is number of trials, % and NS is number of stations. w=zeros (1, NT); for n=1:NT st=zeros(1,9); for m=2:9 z=rand๏€ผ=p; if z๏€พ0 st(m)=5*rand; else st (m)=1; end w(n)=sum (st); end end stem (1: NT, w) title(โ€™50 Monte Carlo simulations of Token Systemโ€™) xlabel(โ€™trial numberโ€™) ylabel(โ€™waiting time in minutesโ€™) Here is a sample output, corresponding to โ€™probability of station occupiedโ€™ ๏ฐ = 0๏€บ4, โ€™number of trialsโ€™ ๏Ž๏” = 50, and โ€™number of stationsโ€™ ๏Ž ๏“ = 9. 26 36. ZZ 1 โˆ’ 1 (๏ธ2 +๏น2 ) ๏ฅ 2 ๏ค๏ธ๏ค๏น๏€ป transform to polar coordinates (๏ธ๏€ป๏น) :๏ธ2 +๏น 2 โ‰ค๏ฃ2 2๏‚ผ Z ๏ฃ Z 2๏‚ผ p 1 2 1 = ๏ฅโˆ’ 2 ๏ฒ ๏ฒ๏ค๏ฒ๏ค๏‚ต๏€ป with ๏ฒ = ๏ธ2 + ๏น2 and ๏ค๏ธ๏ค๏น = ๏ฒ๏ค๏ฒ๏ค๏‚ต๏€ป 2๏‚ผ Z ๏ฃ 0 0 1 2 1 = ๏ฅโˆ’ 2 ๏ฒ ๏ฒ๏ค๏ฒ๏€ป let ๏ต , ๏ฒ2 ๏€ป then ๏ค๏ต = ๏ฒ๏ค๏ฒ๏€ป 2 0 Z ๏ฃ2 ๏€ฝ2 = ๏ฅโˆ’๏ต ๏ค๏ต ๏ [๏˜ 2 + ๏™ 2 โ‰ค ๏ฃ2 ] = 0 2 = 1 โˆ’ ๏ฅโˆ’๏ฃ ๏€ฝ2 = 0๏€บ95๏€บ Thus we need ๏ฃ2 1 = ln = ln 20 ‘ 3๏€ป 2 1 โˆ’ 0๏€บ95 โˆš ๏ฃ ‘ 6 = 2๏€บ45๏€บ โˆš 37. (a) Since the area of this square with side 2 is 2, constant joint density ๏ฆ๏˜๏€ป๏™ must take on value 12 to be properly normalized, thus ๏ = 12 . (b) We can see four regions for the ๏น values in evaluating Z +โˆž ๏ฆ๏˜ (๏ธ) = ๏ฆ๏˜๏€ป๏™ (๏ธ๏€ป ๏น)๏ค๏น๏€บ โˆ’โˆž These regions are ๏ธ โ‰ค โˆ’1๏€ป โˆ’1 ๏€ผ ๏ธ ๏€ผ 0๏€ป 0 โ‰ค ๏ธ ๏€ผ 1๏€ปand ๏ธ โ‰ฅ 1๏€บ Now, the first and last of these regions gives the trivial result ๏ฆ๏˜ (๏ธ) = 0๏€บ For 0 โ‰ค ๏ธ ๏€ผ 1๏€ป we get Z 1โˆ’๏ธ 1 1 ๏ฆ๏˜ (๏ธ) = ๏ค๏น = (1 โˆ’ ๏ธ โˆ’ ๏ธ + 1) = 1 โˆ’ ๏ธ๏€บ 2 ๏ธโˆ’1 2 27 Similarly for โˆ’1 ๏€ผ ๏ธ ๏€ผ 0๏€ป we get ๏ฆ๏˜ (๏ธ) = Z 1+๏ธ 1 1 ๏ค๏น = (1 + ๏ธ + ๏ธ + 1) = 1 + ๏ธ๏€บ 2 โˆ’๏ธโˆ’1 2 Combining these regions we finally get ยฝ 1 โˆ’ |๏ธ|๏€ป |๏ธ| ๏€ผ 1๏€ป ๏ฆ๏˜ (๏ธ) = 0๏€ป else๏€บ (c) If ๏˜ is close to 1, then we see that ๏™ must be close to 0. This suggests dependence between ๏˜ and ๏™๏€บ To be sure we can use the result of part b together with the symmetry of the joint density to check whether ๏ฆ๏˜๏€ป๏™ = ๏ฆ๏˜ ๏ฆ๏™ or not. By symmetry of ๏ฆ๏˜๏€ป๏™ it must also be that ยฝ 1 โˆ’ |๏น|๏€ป |๏น| ๏€ผ 1๏€ป ๏ฆ๏™ (๏น) = 0๏€ป else๏€บ Now the product of these two triangles (1 โˆ’ |๏ธ|) (1 โˆ’ |๏น|) 6= 12 on supp(๏ฆ๏˜๏€ป๏™ ) ๏€ป so the random variables are definitely dependent. (The support of a function ๏ฆ (๏ธ) is the set of domain values {๏ธ|๏ฆ (๏ธ) 6= 0} and is written as supp{๏ฆ }๏€บ) (d) We start with the definition and then plug in our result from part b: ๏ฆ๏˜๏€ป๏™ (๏ธ๏€ป ๏น) ๏ฆ๏˜ (๏ธ) โŽง 0๏€บ5 0 โ‰ค |๏ธ| + |๏น| ๏€ผ 1๏€ป โŽจ 1โˆ’|๏ธ| ๏€ป = 0๏€ป otherwise in {|๏ธ| ๏€ผ 1}๏€ป โŽฉ ร—๏€ป |๏ธ| โ‰ฅ 1๏€บ ๏ฆ๏™ |๏˜ (๏น|๏ธ) = Note that the conditional density is not defined for {|๏ธ| โ‰ฅ 1}. 38. The pdf of the failure time random variable ๏˜ is ยต Z ๏ด ยถ 0 0 ๏ฆ๏˜ (๏ด) = ๏‚ฎ(๏ด) exp โˆ’ ๏‚ฎ(๏ด )๏ค๏ด 0 = ๏‚น exp(โˆ’๏‚น๏ด) in this case. Assume ๏‚น is measured in (hours)โˆ’1 . If ๏ = {failure in 100 hrs or less}๏€ป then ๏ [๏] = ๏ [๏˜ โ‰ค 100] Z 100 ๏‚น๏ฅโˆ’๏‚น๏ด ๏ค๏ด = 0 = 1 โˆ’ ๏ฅโˆ’๏‚น100 โ‰ค 0๏€บ05? Thus we need ๏ฅโˆ’๏‚น100 โ‰ฅ 0๏€บ95๏€ป or taking logs and solving, ๏‚น โ‰ค 5๏€บ13 ร— 10โˆ’4 ๏€บ 28 39. In general, for any ๏‚ฎ(๏ด)๏€ป the pdf of the failure time random variable ๏˜ is ยถ ยต Z ๏ด 0 0 ๏‚ฎ(๏ด )๏ค๏ด ๏€บ ๏ฆ๏˜ (๏ด) = ๏‚ฎ(๏ด) exp โˆ’ 0 (i) for ๏ด ๏€ผ 0๏€ป ๏‚ฎ(๏ด) = 0๏€ป and so ๏ฆ๏˜ (๏ด) = 0๏€ป (ii) for 0 โ‰ค ๏ด โ‰ค 10๏€ป ๏‚ฎ (๏ด) = 12 ๏€ป and so 1 1 ๏ฆ๏˜ (๏ด) = ๏ฅโˆ’ 2 ๏ด ๏€ป 2 (iii) for ๏ด ๏€พ 10๏€ป ,๏‚ฎ(๏ด) = ๏ด โˆ’ ๏ฃ for some constant ๏ฃ๏€บ Now at ๏ด = 10๏€ป ๏‚ฎ = 12 ๏€ป thus 12 = 10 โˆ’ ๏ฃ๏€ป and so ๏ฃ = 9๏€บ5. Then, for ๏ด ๏€พ 10, ยต ยฝZ 10 ยพยถ Z ๏ด 1 0 0 0 ๏ค๏ด + (๏ด โˆ’ 9๏€บ5)๏ค๏ด ๏ฆ๏˜ (๏ด) = (๏ด โˆ’ 9๏€บ5) exp โˆ’ 2 0 10 ยต ยฝ ยพยถ 1 = (๏ด โˆ’ 9๏€บ5) exp โˆ’ 5 + ( ๏ด2 โˆ’ 9๏€บ5๏ด) โˆ’ (50 โˆ’ 95) 2 ยพยถ ยต ยฝ 2 ๏ด ๏€บ โˆ’ 9๏€บ5๏ด + 50 = (๏ด โˆ’ 9๏€บ5) exp โˆ’ 2 We can put all this together in the one equation โŽง 0๏€ป ๏ด ๏€ผ 0๏€ป โŽช โŽจ 1 โˆ’ 12 ๏ด ๏ฅ ๏€ป 0 โ‰ค ๏ด โ‰ค 10 ๏ฆ๏˜ (๏ด) = oยด ยณ2n 2 โŽช โŽฉ (๏ด โˆ’ 9๏€บ5) exp โˆ’ ๏ด โˆ’ 9๏€บ5๏ด + 50 ๏€ป ๏ด ๏€พ 10๏€บ 2 40. (a) Let โˆ†๏ธ ๏€พ 0 and โˆ†๏น ๏€พ 0๏€ป then ๏ [๏ธ ๏€ผ ๏˜ โ‰ค ๏ธ + โˆ†๏ธ๏€ป ๏น ๏€ผ ๏™ โ‰ค ๏น + โˆ†๏น] = ๏†๏˜๏™ (๏ธ + โˆ†๏ธ๏€ป ๏น + โˆ†๏น) โˆ’ ๏†๏˜๏™ (๏ธ + โˆ†๏ธ๏€ป ๏น) = ‘ ‘ ‘ โˆ’๏†๏˜๏™ (๏ธ๏€ป ๏น + โˆ†๏น) + ๏†๏˜๏™ (๏ธ๏€ป ๏น) ยต ยถ ๏†๏˜๏™ (๏ธ + โˆ†๏ธ๏€ป ๏น + โˆ†๏น) โˆ’ ๏†๏˜๏™ (๏ธ๏€ป ๏น + โˆ†๏น) โˆ†๏ธ โˆ†๏ธ ยต ยถ ๏†๏˜๏™ (๏ธ + โˆ†๏ธ๏€ป ๏น) โˆ’ ๏†๏˜๏™ (๏ธ๏€ป ๏น) โˆ’ โˆ†๏ธ โˆ†๏ธ ยถ ยต ๏€๏†๏˜๏™ (๏ธ๏€ป ๏น + โˆ†๏น) ๏€๏†๏˜๏™ (๏ธ๏€ป ๏น) โˆ’ โˆ†๏ธ ๏€๏ธ ๏€๏ธ ๏€ 2 ๏†๏˜๏™ (๏ธ๏€ป ๏น) โˆ†๏ธโˆ†๏น ๏€๏ธ๏€๏น ๏ฆ๏˜๏™ (๏ธ๏€ป ๏น)โˆ†๏ธโˆ†๏น๏€บ (b) By definition of the density ๏ฆ๏˜๏™ as the mixed partial derivative of the distribution function ๏†๏˜๏™ ๏€ป the integral of the density over all space must be ๏†๏˜๏™ (โˆž๏€ป โˆž)๏€ป since ๏†๏˜๏™ (โˆ’โˆž๏€ป โˆž) = ๏†๏˜๏™ (โˆž๏€ป โˆ’โˆž) = ๏†๏˜๏™ (โˆ’โˆž๏€ป โˆ’โˆž) are all zero. But, again by definition, ๏†๏˜๏™ (โˆž๏€ป โˆž) = ๏ [๏˜ โ‰ค โˆž๏€ป ๏™ โ‰ค โˆž] = 1๏€บ 29 (c) From part (a), it follows that ๏ฆ๏˜๏™ (๏ธ๏€ป ๏น)โˆ†๏ธโˆ†๏น โ‰ฅ 0๏€ป since it is a probability. Then since we took โˆ†๏ธ ๏€พ 0 and โˆ†๏น ๏€พ 0๏€ป it follows that ๏ฆ๏˜๏™ (๏ธ๏€ป ๏น) โ‰ฅ 0 too.

Document Preview (29 of 343 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in