Solution Manual For Probability, Statistics, and Random Processes for Engineers, 4th Edition
Preview Extract
1
Solutions to Chapter 2
1. Calculating with the binomial probability law, for the given random variable ๏, we obtain
๏ [๏ = 1] =
ยถ
2 ยต
X
10
๏ซ=0
๏ [๏ = 2] =
๏ [๏ = 3] =
๏ [๏ = 4] =
๏ซ
ยถ
5 ยต
X
10
๏ซ=3
8 ยต
X
๏ซ=6
10 ยต
X
๏ซ=9
๏ซ
10
๏ซ
10
๏ซ
ยถ
ยถ
(๏บ3)๏ซ (0๏บ7)10โ๏ซ โ 0๏บ383๏ป
(0๏บ3)๏ซ (0๏บ7)10โ๏ซ โ 0๏บ57๏ป
(0๏บ3)๏ซ (0๏บ7)10โ๏ซ โ 0๏บ0472๏ป and
(0๏บ3)๏ซ (0๏บ7)10โ๏ซ โ 1๏บ44 ร 10โ4 ๏บ
The CDF is plotted in Fig. 1.
Figure 1:
2. Consider any continuous random variable. Let the outcomes be the values themselves, i.e.
the random variable is an identity mapping. Then the probability of any outcome ๏ธ = ๏ณ is
0. Strictly speaking, we mean the singleton events {๏ธ} have probability zero.
3. The cumulative distribution function (CDF) for the waiting time ๏ is defined over [0๏ป โ) and
given as
โง
(๏ธ๏ฝ2)2 ๏ป 0 โค ๏ธ ๏ผ 1๏ป
โช
โช
โช
โช
1 โค ๏ธ ๏ผ 2๏ป
โจ ๏ธ๏ฝ4๏ป
๏๏ (๏ธ) =
1๏ฝ2๏ป
2 โค ๏ธ ๏ผ 10๏ป
โช
โช
๏ธ๏ฝ20๏ป
10
โค ๏ธ ๏ผ 20๏ป
โช
โช
โฉ
1๏ป
20 โค ๏ธ๏บ
(a) Plotting we get Fig. 2.
2
Figure 2:
(b) Taking the derivative, we get the probability density function (pdf) as
โง
๏ธ๏ฝ2๏ป
0 โค ๏ธ ๏ผ 1๏ป
โช
โช
โช
โช
1๏ฝ4๏ป
1 โค ๏ธ ๏ผ 2๏ป
โจ
0๏ป
2 โค ๏ธ ๏ผ 10๏ป ๏ป
๏ฆ๏ (๏ธ) =
โช
โช
1๏ฝ20๏ป
10
โค ๏ธ ๏ผ 20๏ป
โช
โช
โฉ
0๏ป
20 โค ๏ธ๏บ
with sketch given as:
Figure 3:
We notice that
Z โ
๏ฆ๏ (๏ธ)๏ค๏ธ =
0
=
Z 2
Z 20
๏ธ
1
1
๏ค๏ธ +
๏ค๏ธ +
๏ค๏ธ
2
4
20
0
1
10
1 1 10
+ +
= 1๏บ
4 4 20
Z 1
(c) We compute the following probabilities:
i. [label=(0)]
ii. ๏ [๏ โฅ 10] = 1 โ ๏ [๏ ๏ผ 10] = 1 1 โ ๏๏ (10) = 1๏ฝ2๏ป
iii. ๏ [๏ ๏ผ 5] = ๏๏ (5) = 1๏ฝ2๏ป
R 10
iv. ๏ [5 ๏ผ ๏ ๏ผ 10] = 5 ๏ฆ๏ (๏ธ)๏ค๏ธ = 0๏ป and
v. ๏ [๏ = 1] = 0๏บ
4. The point of this problem is to be careful about whether the end-points ๏ = ๏ข and ๏ = ๏ก
are included in the event or not. Remember ๏๏ (๏ธ) , ๏ [๏ โค ๏ธ] which includes its end-point
1
Note: ๏๏ (10) = ๏ [๏ โค 10]๏ป but here the probability that ๏ = 10 is zero.
3
at the right. Thus to compute ๏ [๏ ๏ผ ๏ธ]๏ป we must subtract from ๏๏ (๏ธ)๏ป the probability that
๏ = ๏ธ๏ป i.e. ๏ [๏ = ๏ธ]๏บ
๏ [๏ ๏ผ ๏ก] = ๏๏ (๏ก) โ ๏ [๏ = ๏ก]๏ป
๏ [๏ โค ๏ก] = ๏๏ (๏ก)๏ป
๏ [๏ก โค ๏ ๏ผ ๏ข] = ๏๏ (๏ข) โ ๏๏ (๏ก) โ ๏ [๏ = ๏ข] + ๏ [๏ = ๏ก]๏ป
๏ [๏ก โค ๏ โค ๏ข] = ๏๏ (๏ข) โ ๏๏ (๏ก) + ๏ [๏ = ๏ก]๏ป
๏ [๏ก ๏ผ ๏ โค ๏ข] = ๏๏ (๏ข) โ ๏๏ (๏ก)๏ป
๏ [๏ก ๏ผ ๏ ๏ผ ๏ข] = ๏๏ (๏ข) โ ๏๏ (๏ก) โ ๏ [๏ = ๏ข]๏บ
5. For normalization, we integrate the probability density function (pdf) over the whole range
of the random variable and equate it to 1.
(a) Cauchy distribution. The pdf of a Cauchy random variable is given by
๏ฆ๏ (๏ธ) =
๏
๏ป
1 + [(๏ธ โ ๏ฎ)๏ฝ๏ฏ]2
for ๏ฎ ๏ผ โ, ๏ฏ ๏พ 0, and โโ ๏ผ ๏ธ ๏ผ โ. For the integration, we will substitute tan ๏ต = ๏ธโ๏ฎ
๏ฏ ,
1
1
and so ๏ค๏ต = ๏ฏ 1+[(๏ธโ๏ฎ)2 ๏ฝ๏ฏ]2 . Therefore
Z โ
โโ
๏ฆ๏ (๏ธ) ๏ค๏ธ =
Z ๏ผ๏ฝ2
๏๏ฏ ๏ค๏ต
ยด
ยณ
๏ผ๏ฝ2
= ๏๏ฏ ๏ต|โ๏ผ๏ฝ2
โ๏ผ๏ฝ2
= ๏๏ฏ๏ผ
= 1๏บ
1
Therefore, ๏ = ๏ฏ๏ผ
.
(b)
Maxwell distribution. The pdf of a Maxwell random variable is given by
(
2
2
๏๏ธ2 ๏ฅโ๏ธ ๏ฝ๏ฎ ๏ธ ๏พ 0
๏บ
๏ฆ๏ (๏ธ) =
0
otherwise
Integrating the pdf (substituting ๏น = ๏ธ๏ฝ๏ฎ), we obtain
Z โ
Z โ
2
2 โ๏ธ2 ๏ฝ๏ฎ2
๏๏ธ ๏ฅ
๏ค๏ธ =
๏๏ฎ2 ๏น 2 ๏ฅโ๏น ๏ฎ ๏ค๏น
0
0
ยฏโ
โ
ยธ
Z
ยฏ
1 โ โ๏น2
3 โ1 โ๏น2 ยฏ
๏น๏ฅ ยฏ +
๏ฅ
๏ค๏น
= ๏๏ฎ
2
2 0
0
โ
๏๏ฎ3 ๏ผ
= 0+
2 2
= 1๏บ
4
Therefore, ๏ = โ๏ผ๏ฎ
3.
(1)
4
6. (a) Beta distribution. The pdf of the Beta distribution is given by
(
๏๏ธ๏ข (1 โ ๏ธ)๏ฃ ๏ธ ๏พ 0
๏ฆ๏ (๏ธ) =
0
otherwise๏บ
Using the formula 6.2-1 in Handbook of Mathematical Functions by Abramowitz and
Stegun, we get
Z โ
Z 1
๏ด๏ฎโ1
๏ฎโ1
๏ฏโ1
๏ธ
(1 โ ๏ธ)
๏ค๏ธ =
๏ค๏ด
๏ฎ+๏ฏ
0
0 (1 + ๏ด)
Z ๏ผ๏ฝ2
= 2
(sin๏ด)2๏ฎโ1 (cos๏ด)2๏ฏโ1 ๏ค๏ด๏บ
0
Now, we look at the product of the Gamma function ฮ(๏ธ) evaluated at ๏ข + 1 and ๏ฃ + 1.
Substitutions used for this integration are ๏ด = ๏ถ 2 ๏ป ๏ต = ๏ท2 and ๏ถ = ๏ฒsin ๏ต๏ป ๏ท = ๏ฒcos ๏ต.
ฮ(๏ข + 1)ฮ(๏ฃ + 1)
=
=
=
โZ โ
๏ด๏ฅ
0
0
๏ข โ๏ด
0
Z โ
Z โ
4
=
4
2
๏ด๏ข ๏ต๏ฃ ๏ฅโ(๏ด+๏ต) ๏ค๏ต ๏ค๏ด
Z โ
2
0
2
๏ฒ2๏ข+2๏ฃ+2 (sin ๏ต)2๏ข+1 (cos ๏ต)2๏ฃ+1 ๏ฅโ๏ฒ ๏ฒ๏ค๏ฒ ๏ค๏ต
0
โ๏ฒ2
๏ฅ
2 ๏ข+๏ฃ+1
(๏ฒ )
0
=
2
๏ถ 2๏ข+1 ๏ท2๏ฃ+1 ๏ฅโ[(๏ถ +๏ท )] ๏ค๏ถ ๏ค๏ท
Z ๏ผ๏ฝ2 Z โ
0
=
0
Z โZ โ
0
ยธ โZ โ
ยธ
๏ฃ โ๏ต
๏ค๏ด
๏ต ๏ฅ ๏ค๏ต
Z ๏ผ๏ฝ2
2๏ฒ ๏ค๏ฒ
(sin ๏ต)2๏ข+1 (cos ๏ต)2๏ฃ+1 ๏ค๏ต
0
Z ๏ผ๏ฝ2
ฮ(๏ข + ๏ฃ + 2)2
(sin ๏ต)2๏ข+1 (cos ๏ต)2๏ฃ+1 ๏ค๏ต๏บ
0
ฮ(๏ข+๏ฃ+2)
Therefore, ๏ = ฮ(๏ข+1)ฮ(๏ฃ+1)
.
(b) Chi-square distribution. The pdf of a Chi-square random variable is given by
(
2
๏๏ธ(๏ฎ๏ฝ2)โ1 ๏ฅโ๏ธ๏ฝ2๏พ ๏ธ ๏พ 0
๏ฆ๏ (๏ธ) =
0
otherwise๏บ
Integrating ๏ฆ๏ (๏ธ), we get
Z โ
Z โ
2
๏ฆ๏ (๏ธ) ๏ค๏ธ =
๏๏ธ(๏ฎ๏ฝ2)โ1 ๏ฅโ๏ธ๏ฝ2๏พ ๏ค๏ธ
0
Z0 โ
2
๏(2๏พ 2 )(๏ฎ๏ฝ2) [(๏ธ๏ฝ2๏พ 2 )(๏ฎ๏ฝ2) ]๏ฅโ๏ธ๏ฝ2๏พ ๏ค๏ธ
=
0
Z โ
2
2 (๏ฎ๏ฝ2)
= ๏(2๏พ )
[(๏ธ๏ฝ2๏พ 2 )(๏ฎ๏ฝ2) ]๏ฅโ๏ธ๏ฝ2๏พ ๏ค๏ธ
0
ยณ๏ฎยด
2 (๏ฎ๏ฝ2)
ฮ
= ๏(2๏พ )
2
= 1๏บ
1
.
Therefore, ๏ = (2๏พ2 )(๏ฎ๏ฝ2)
ฮ( ๏ฎ
2)
5
7. Here we do calculations with the Normal (Gaussian) random variable of mean 0 and given
variance ๏พ 2 ๏บ In notation we often indicate this as ๏ : ๏ (0๏ป ๏พ2 )๏บ In order to calculate
the probabilities ๏ [|๏| โฅ ๏ซ๏พ] for integer values ๏ซ = 1๏ป 2๏ป ๏บ ๏บ ๏บ, we need to convert this to
the standard Normal curve that is distributed as ๏ (0๏ป 1)๏บ In particular the so-called error
function is defined as
Z ๏ธ
1
1
exp(โ ๏ถ2 )๏ค๏ถ๏ป for ๏ธ โฅ 0๏ป
๏ฅ๏ฒ๏ฆ (๏ธ) = โ
2
2๏ผ 0
and so only includes the right hand side of the ๏ (0๏ป 1) distribution. Expanding ๏ [|๏| โฅ ๏ซ๏พ]
for ๏ซ positive, we get ๏ [|๏| โฅ ๏ซ๏พ] = ๏ [{๏ โค โ๏ซ๏พ} โช {๏ โฅ ๏ซ๏พ}]๏ป which is somewhat
cumbersome, so instead we consider the complementary event {|๏| ๏ผ ๏ซ๏พ} which satisfies
๏ [|๏| โฅ ๏ซ๏พ] = 1 โ ๏ [|๏| ๏ผ ๏ซ๏พ]๏บ For this complementary event, we have
๏ [|๏| ๏ผ ๏ซ๏พ] = ๏ [โ๏ซ๏พ ๏ผ ๏ธ ๏ผ ๏ซ๏พ]๏ป for ๏ซ ๏พ 0๏ป
Z 0
Z ๏ซ๏พ
๏ธ2
1
๏ธ2
1
exp(โ 2 )๏ค๏ธ + โ
exp(โ 2 )๏ค๏ธ
= โ
2๏พ
2๏พ
2๏ผ๏พ โ๏ซ๏พ
2๏ผ 0
Z ๏ซ๏พ
2
1
๏ธ
= 2โ
exp(โ 2 )๏ค๏ธ๏ป by the symmetry about ๏ถ = 0๏บ
2๏พ
2๏ผ๏พ 0
By making the change of variable ๏น = ๏ธ๏ฝ๏พ, we then convert this equation into
Z ๏ซ
๏ค๏ธ
๏น2
1
๏ป
exp(โ )๏ค๏น๏ป since ๏ค๏น =
๏ [|๏| ๏ผ ๏ซ๏พ] = 2 โ
2
๏พ
2๏ผ 0
= 2 erf(๏ซ)๏ป for ๏ซ ๏พ 0๏ป
allowing us to use the standard Table 2.4-1 for erf(ยท)๏บ Looking up this value and subtracting
twice it from one, we get
๏บ
๏ซ = 1๏ป
๏ [|๏| โฅ ๏พ] = 0๏บ3174๏ป
๏บ
๏ซ = 2๏ป
๏ [|๏| โฅ 2๏พ] = 0๏บ0456๏ป
๏บ
๏ซ = 3๏ป
๏ [|๏| โฅ 3๏พ] = 0๏บ0026๏ป
๏บ
๏ซ = 4๏ป ๏ [|๏| โฅ 4๏พ] = 0๏บ0008 โ 0๏บ
8. The pdf of the Rayleigh random variable is given by
๏ธ
2
2
๏ฆ๏ (๏ธ) = 2 ๏ฅโ๏ธ ๏ฝ2๏พ ๏ต(๏ธ)๏บ
๏พ
Note that since ๏ฆ๏ (๏ธ) is zero for negative ๏ธ, ๏๏ (๏ธ) = 0, for ๏ธ ๏ผ 0. Now ๏๏ (๏ซ๏พ) =
R ๏ซ๏พ ๏ธ โ๏ธ2 ๏ฝ2๏พ2
๏ธ2
๏ธ
๏ค๏ธ. Substituting ๏น = 2๏พ
2 and ๏ค๏น = ๏พ 2 , we get
0 ๏พ2 ๏ฅ
๏๏ (๏ซ๏พ) =
Z ๏ซ2 ๏ฝ2
0
2
๏ฅโ๏น ๏ค๏น = 1 โ ๏ฅโ๏ซ ๏ฝ2
๏ซ = 0๏ป 1๏ป 2๏ป ๏บ ๏บ ๏บ ๏บ
9. For the Bernoulli random variable ๏, with ๏๏ (0) = ๏ฐ๏ป ๏๏ (1) = ๏ฑ๏ป and ๏ฑ , 1 โ ๏ฐ๏ป the pdf is
given as
๏ฆ๏ (๏ธ) = ๏ฐ๏ฑ(๏ธ) + ๏ฑ๏ฑ(๏ธ โ 1)๏บ
For the binomial random variable ๏ with parameters ๏ฎ and ๏ฐ๏ป we have as a function of ๏ข๏ป
๏ฎ ยต ยถ
X
๏ฎ ๏ซ
๏ฐ (1 โ ๏ฐ)๏ฎโ๏ซ ๏ฑ(๏ข โ ๏ซ)๏บ
๏ฆ๏ (๏ข) =
๏ซ
๏ซ=0
6
For the Poisson case, with mean ๏น๏ = ๏ก, we have the density
๏ฆ๏ (๏ธ) =
โ
X
๏ก๏ซ
๏ซ=0
๏ซ!
๏ฅโ๏ก ๏ฑ(๏ธ โ ๏ซ)๏บ
10. This problem does some calculations with a mixed random variable. We can represent the
pdf of ๏ as
1
1
๏ฆ๏ (๏ธ) = ๏๏ฅโ๏ธ [๏ต(๏ธ โ 1) โ ๏ต(๏ธ โ 4)] + ๏ฑ(๏ธ โ 2) + ๏ฑ(๏ธ โ 3)๏บ
4
4
(a) To find the constant ๏, we must integrate the pdf over all ๏ธ to get 1.
Z
Z
Z 4
1 +โ
1 +โ
๏ฅโ๏ธ ๏ค๏ธ +
๏ฑ(๏ธ โ 2)๏ค๏ธ +
๏ฑ(๏ธ โ 3)๏ค๏ธ = 1๏ป
๏
4 โโ
4 โโ
1
1 1
= 1๏ป
๏(๏ฅโ1 โ ๏ฅโ4 ) + +
4 4
๏บ
1
which has solution ๏ = 12 ๏ฅโ1 โ๏ฅ
โ4 = 1๏บ43๏บ
R๏ธ
(b) Taking the running integral โโ ๏ฆ๏ (๏ถ)๏ค๏ถ, we get the CDF ๏๏ (๏ธ) with sketch given in
Fig. 4.
Figure 4:
Although not requested, the CDF is given analytically as
โง
0๏ป
๏ธ๏ผ1
โช
โช
โช
1 ๏ฅโ1 โ๏ฅโ๏ธ
โช
1 โค ๏ธ ๏ผ 2๏ป
โช
โช
2 ๏ฅโ1 โ๏ฅโ4 ๏ป
โช
โจ 1 ๏ฅโ1 โ๏ฅโ๏ธ 1
๏๏ (๏ธ) =
2 ๏ฅโ1 โ๏ฅโ4 + 4 ๏ป 2 โค ๏ธ ๏ผ 3๏ป
โช
โช
โ๏ฅโ๏ธ
1
โช 1 ๏ฅโ1
3 โค ๏ธ ๏ผ 4๏ป
โช
โ1 โ๏ฅโ4 + 2 ๏ป
2
โช
๏ฅ
โช
โช
โฉ
1๏ป
4 โค ๏ธ๏บ
(c) We calculate the pdf as
๏ฆ๏ (๏ธ) =
So
๏ฅโ๏ธ
1
1
1
[๏ต(๏ธ โ 1) โ ๏ต(๏ธ โ 4)] + ๏ฑ(๏ธ โ 2) + ๏ฑ(๏ธ โ 3)๏บ
2 ๏ฅโ1 โ ๏ฅโ4
4
4
Z 3
1
1
๏ฅโ๏ธ
๏ [2 โค ๏ ๏ผ 3] =
๏ค๏ธ +
โ1
โ4
โ๏ฅ
4
2 2๏ฅ
โ2
โ3
1
1๏ฅ โ๏ฅ
+ ๏ป
=
โ1
โ4
2๏ฅ โ๏ฅ
4
Z 3
2โ
๏ฑ(๏ธ โ 2)๏ค๏ธ
7
where we start the integral of the impulse at 2โ in order to pick the probability mass
at ๏ธ = 2๏บ Note that we must include the probability mass at ๏ธ = 2 because the event
{2 โค ๏ ๏ผ 3} includes this point.
(d) We calculate
Z 3
1
๏ฅโ๏ธ
1
๏ค๏ธ +
๏ [2 ๏ผ ๏ โค 3] =
โ1
โ4
โ๏ฅ
4
2 2๏ฅ
โ2
โ3
1
1๏ฅ โ๏ฅ
+ ๏ป
=
2 ๏ฅโ1 โ ๏ฅโ4 4
Z 3+
2
๏ฑ(๏ธ โ 3)๏ค๏ธ
where we end the integral of the impulse at 3+ to pick up the probability mass at ๏ธ = 3๏บ
(e) We have
๏๏ (3)
=
=
=
๏ [๏ โค 3]
Z +
Z +
Z 3
๏ฅโ๏ธ
1
1 3
1 3
๏ค๏ธ
+
๏ฑ(๏ธ
โ
3)๏ค๏ธ
+
๏ฑ(๏ธ โ 2)๏ค๏ธ
โ1 โ ๏ฅโ4
4 1
4 1
1 2๏ฅ
1 ๏ฅโ1 โ ๏ฅโ3 1 1
+ + ๏บ
2 ๏ฅโ1 โ ๏ฅโ4 4 4
11. First we need to calculate the probability that ๏ is less than 1 and that it is greater than 2
(area of shaded region in Fig. 5). Now
๏ [๏ ๏ผ 1] = ๏ [๏ โค 1] = ๏๏ (1) = 1 โ ๏ฅโ1 ๏บ
๏ [๏ ๏พ 2] = 1 โ ๏ [๏ โค 2] = 1 โ ๏๏ (2) = 1 โ (1 โ ๏ฅโ2 ) = ๏ฅโ2 ๏บ
Since the events are disjoint, the probability that ๏ ๏ผ 1 or ๏ ๏พ 2 is
๏ [{๏ ๏ผ 1} โช {๏ ๏พ 2}] = ๏ [๏ ๏ผ 1] + ๏ [๏ ๏พ 2] = 1 โ ๏ฅโ1 + ๏ฅโ2 = 0๏บ767๏บ
Figure 5:
12. We calculate the pdf as
1
1
๏ฆ๏ (๏ธ) = ๏๏ฅโ๏ธ [๏ต(๏ธ โ 1) โ ๏ต(๏ธ โ 4)] + ๏ฑ(๏ธ โ 2) + ๏ฑ(๏ธ โ 3)๏บ
4
4
8
So
Z 4
๏ [2 ๏ผ ๏ ๏ผ 4] =
๏๏ฅโ๏ธ ๏ค๏ธ +
2
โ2
= ๏(๏ฅ
โ4
โ๏ฅ
1
4
1
)+ ๏ป
4
where we start the integral of the impulse at 2+ in order to not include the probability mass
at ๏ธ = 2๏บ The overall answer then becomes 1๏บ43(๏ฅโ2 โ ๏ฅโ4 ) + 0๏บ25๏บ
13. This is an example where the probability distribution is defined on the sample space which is
not the elementary sample space. Normally, when we consider two coins tossed simultaneously,
we consider the sample space containing two tuples of heads and tails, indicating the outcome
of two tosses, i.e., we consider the sample space โฆ = {๏๏๏ป ๏๏๏ป ๏ ๏๏ป ๏ ๏ }. Here we will see
that we can also define probability on another set of outcomes.
The sample space โฆ contains outcomes ๏ณ 1 ๏ป ๏ณ 2 ๏ป ๏ณ 3 that denote outcomes of two, one, and no
heads, respectively. Assuming that the coins are unbiased, we first find the probability of
these outcomes.
๏ [๏ณ 1 ] = ๏ [heads on both tosses] = 0๏บ5 ร 0๏บ5 = 0๏บ25
๏ [๏ณ 2 ] = ๏ [head on first, tail on second] + ๏ [tail on first, head on second] = 0๏บ5 ร 0๏บ5 + 0๏บ5 ร
0๏บ5 = 0๏บ5
๏ [๏ณ 3 ] = ๏ [tails on both tosses] = 0๏บ5 ร 0๏บ5 = 0๏บ25
(a) {๏ณ : ๏(๏ณ) = 0๏ป ๏ (๏ณ) = โ1} = ๏ณ 2 =โ ๏ [{๏ณ : ๏(๏ณ) = 0๏ป ๏ (๏ณ) = โ1}] = ๏ [๏ณ 2 ] = 0๏บ5
{๏ณ : ๏(๏ณ) = 0๏ป ๏ (๏ณ) = 1} = ๏ณ 1 =โ ๏ [{๏ณ : ๏(๏ณ) = 0๏ป ๏ (๏ณ) = 1}] = ๏ [๏ณ 1 ] = 0๏บ25
{๏ณ : ๏(๏ณ) = 1๏ป ๏ (๏ณ) = โ1} = ๏ =โ ๏ [{๏ณ : ๏(๏ณ) = 1๏ป ๏ (๏ณ) = โ1}] = ๏ [๏] = 0
{๏ณ : ๏(๏ณ) = 1๏ป ๏ (๏ณ) = 1} = ๏ณ 3 =โ ๏ [{๏ณ : ๏(๏ณ) = 1๏ป ๏ (๏ณ) = 1}] = ๏ [๏ณ 3 ] = 0๏บ25
(b) Before we find the independence of ๏ and ๏ , we first find the probability mass functions
(pmf) of ๏ and ๏ .
๏๏ [0] = ๏ [๏ = 0] = ๏ [{๏ณ 1 }] + ๏ [{๏ณ 2 }] = 0๏บ25 + 0๏บ5 = 0๏บ75
๏๏ [1] = ๏ [๏ = 1] = ๏ [{๏บ๏ฅ๏ด๏ก3 }] = 0๏บ25.
๏๏ [๏ซ] = 0 for ๏ซ 6= 0๏ป 1.
Similarly, ๏๏ [โ1] = 0๏บ5๏ป ๏๏ [1] = 0๏บ5๏ป ๏๏ [๏ซ] = 0 for ๏ซ 6= โ1๏ป 1.
For independence of ๏๏ป ๏ , we need ๏๏๏ป๏ [๏ก๏ป ๏ข] = ๏๏ [๏ก]๏๏ [๏ข]. For ๏ก = 0๏ป ๏ข = 1, ๏๏๏ป๏ [0๏ป 1] =
0๏บ25๏ป ๏๏ [0]๏๏ [1] = 0๏บ75 ร 0๏บ5 = 0๏บ375.
Hence ๏ and ๏ are not independent.
9
14. (a) We have to integrate the given density over the full domain. We know
Z +โ
๏ฆ๏ (๏ธ)๏ค๏ธ = 1
โโ
=
=
=
=
Z +2
1
1
1
+
+
+๏
๏ธ2 ๏ค๏ธ
8 16 16
โ2
Z +2
1
+ 2๏
๏ธ2 ๏ค๏ธ
4
ร0
ยฏ !
1 3 ยฏยฏ2
1
+ 2๏
๏ธ
4
3 ยฏ0
8
1
+ 2๏ ๏บ
4
3
Hence ๏ = 9๏ฝ64.
(b) A labeled plot appears below in Fig. 6. Note the jumps occurring at the impulse
locations in the density. Also note the slope of the distribution function is given by the
density function in the smooth regions.
Figure 6:
(c) We proceed as follows
๏๏ (1) =
Z 1
๏ฆ๏ (๏ธ)๏ค๏ธ
โโ
=
=
=
Z +1
1
1
9
1
+
+
+
๏ธ2 ๏ค๏ธ
8 16 16 64 โ2
ยต
ยถ
Z +1
3
1
1
1
9
2
+
+
+
+
๏ธ ๏ค๏ธ
8 16 16
8 64 0
(using the symmetry of ๏ธ2 )
ร
ร
ยฏ !!
3
9
1 3 ยฏยฏ1
1
+
+
๏ธ
4
8 64 3 ยฏ
0
=
9 1
43
1 3
+ +
= ๏บ
4 8 64 3
64
10
(d) We can calculate
๏ [โ1 ๏ผ ๏ โค 2] =
=
9
1
+
16 64
Z 2
๏ฆ๏ (๏ธ)๏ค๏ธ
โโ
Z +2
๏ธ2 ๏ค๏ธ๏บ
โ1
R +1
But the easier way is to realize that โ1 ๏ธ2 ๏ค๏ธ = โ2 ๏ธ2 ๏ค๏ธ (because of symmetry) which
was needed in part (c). Then, by just counting the one relevant impulse area, we can
write
3
3
31
1
+ +
= ๏บ
๏ [โ1 ๏ผ ๏ โค 2] =
16 8 64
64
R +2
15. First we calculate the probability that ๏ is even. Now it is binomial distributed with
parameters ๏ฎ = 4 and ๏ฐ = 0๏บ5๏ป i.e. ๏ข(๏ซ; 4๏ป 0๏บ5)๏ป 0 โค ๏ซ โค 4๏ป thus
๏ [{๏ = even}] = ๏ข(0; 4๏ป 0๏บ5) + ๏ข(2; 4๏ป 0๏บ5) + ๏ข(4; 4๏ป 0๏บ5)
ยต ยถ ยต ยถ0 ยต ยถ4 ยต ยถ ยต ยถ2 ยต ยถ2 ยต ยถ ยต ยถ4 ยต ยถ0
1
1
1
4
1
4
1
4
1
+
+
=
2
2
2
2
2
2
2
4
0
ยต ยถ4
ยต ยถ4
ยต ยถ4
1
1
1
1
= 1ร
+6ร
+1ร
= ๏บ
2
2
2
2
Now, the conditional probability is given as
๏ [{๏ = ๏ซ} โฉ {๏ = even}]
๏ [{๏ = ๏ซ}|{๏ = even}] =
๏ [{๏ = even}]
โง 1
1
2 16 = 8 ๏ป ๏ซ = 0๏ป
โช
โช
โช
โช
0๏ป
๏ซ = 1๏ป
โจ
6
6
=
2 16 = 8 ๏ป ๏ซ = 2๏ป
โช
โช
0๏ป
๏ซ = 3๏ป
โช
โช
โฉ 1
2 16 = 18 ๏ป ๏ซ = 4๏ป
where we have used the fact that the joint event
ยฝ
{๏ = ๏ซ}๏ป ๏ซ even,
{๏ = ๏ซ} โฉ {๏ = even} =
๏๏ป
๏ซ odd.
16. The marginal distribution function of random variable ๏ is given by
โง
โช
0๏ป ๏ฎ ๏ผ 0๏ป
โช
โช
โช
โจ ๏ฎ ๏ป 0 โค ๏ฎ ๏ผ 5๏ป
๏๏ (๏ฎ) = ๏๏๏ป๏ (+โ๏ป ๏ฎ) = 10
๏ฎ
โช
โช
10 ๏ป 5 โค ๏ฎ ๏ผ 10๏ป
โช
โช
โฉ1๏ป ๏ฎ โฅ 10๏บ
The pmf is given by
๏๏ (๏ฎ) = ๏๏ (๏ฎ) โ ๏๏ (๏ฎ โ 1) =
โง
โช
โจ0๏ป
1
๏ป
โช 10
โฉ
0๏ป
๏ฎ โค 0๏ป
0 ๏ผ ๏ฎ โค 10๏ป
๏ฎ ๏พ 10๏บ
11
The conditional probability density function:
๏ [๏ โค ๏ท๏ป ๏ = ๏ฎ] = ๏๏๏ป๏ (๏ท๏ป ๏ฎ) โ ๏๏๏ป๏ (๏ท๏ป ๏ฎ โ 1)
โง
โช
0๏ป
๏ฎโค0
โช
โช
โช
โจ(1 โ ๏ฅโ๏ท๏ฝ๏น0 ) 1 ๏ป 1 โค ๏ฎ โค 5
10
= ๏ต(๏ท)
๏บ
โ๏ท๏ฝ๏น1 ) 1 ๏ป 5 ๏ผ ๏ฎ โค 10
โช
(1
โ
๏ฅ
โช
10
โช
โช
โฉ0๏ป
๏ฎ ๏พ 10
Note that ๏๏ (๏ท|๏ = ๏ฎ) = ๏ [๏ โค ๏ท|๏ = ๏ฎ] is not defined for ๏ฎ โค 0 or ๏ฎ ๏พ 10, because for
these ๏ฎ, ๏ [๏ = ๏ฎ] = 0. Therefore,
๏ [๏ โค ๏ท๏ป ๏ = ๏ฎ]
๏ (๏ฎ)
(๏
(1 โ ๏ฅโ๏ท๏ฝ๏น0 )๏ป 1 โค ๏ฎ โค 5
= ๏ต(๏ท)
๏บ
(1 โ ๏ฅโ๏ท๏ฝ๏น1 )๏ป 5 ๏ผ ๏ฎ โค 10
๏๏ (๏ท|๏ = ๏ฎ) =
Hence,
๏ฆ๏ (๏ท|๏ = ๏ฎ) = ๏ต(๏ท)
(
1 โ๏ท๏ฝ๏น0
๏ป
๏น0 ๏ฅ
1 โ๏ท๏ฝ๏น1
๏ป
๏น1 ๏ฅ
1โค๏ฎโค5
5 ๏ผ ๏ฎ โค 10๏บ
17. Let the number of bulbs produced by ๏ and ๏ be ๏ฎ๏ and ๏ฎ๏ respectively. We have ๏ฎ๏ +๏ฎ๏ =๏ฎ,
and ๏ฎ is the total number of the bulbs. So ๏ [๏] = ๏ฎ๏ฎ๏ = 14 and ๏ [๏] = ๏ฎ๏ฎ๏ = 34 ๏บ Since we
have
๏๏ (๏ธ|๏) = (1 โ ๏ฅโ0๏บ2๏ธ )๏ต(๏ธ)๏ป ๏๏ (๏ธ|๏) = (1 โ ๏ฅโ0๏บ5๏ธ )๏ต(๏ธ)๏ป
then
๏๏ (๏ธ) = ๏๏ (๏ธ|๏)๏ (๏) + ๏๏ (๏ธ|๏)๏ (๏)
3
1
(1 โ ๏ฅโ0๏บ2๏ธ )๏ต(๏ธ) + (1 โ ๏ฅโ0๏บ5๏ธ )๏ต(๏ธ)๏บ
=
4
4
So
3
1
๏ (2) = (1 โ ๏ฅโ0๏บ2ร2 ) + (1 โ ๏ฅโ0๏บ5ร2 ) = 0๏บ56๏ป
4
4
1
3
๏ (5) = (1 โ ๏ฅโ0๏บ2ร5 ) + (1 โ ๏ฅโ0๏บ5ร5 ) = 0๏บ85๏ป
4
4
3
1
๏ (7) = (1 โ ๏ฅโ0๏บ2ร7 ) + (1 โ ๏ฅโ0๏บ5ร7 ) = 0๏บ92๏บ
4
4
Then ๏ [burns at least 2 months] = 1 โ ๏ (2) = 0๏บ44๏ป ๏ [burns at least 5 months] = 1 โ ๏ (5) =
0๏บ15 and ๏ [burns at least 7 months] = 1 โ ๏ (7) = 0๏บ08๏บ
18. Given the event ๏ , {๏ข ๏ผ ๏ โค ๏ก}๏ป for ๏ข ๏ผ ๏ก๏ป we calculate ๏๏ (๏ธ|๏)๏บ
i) ๏ธ โค ๏ข : ๏๏ (๏ธ|๏) = 0๏ป since the joint event {๏ โค ๏ข} โฉ ๏ = ๏๏บ
ii) ๏ธ ๏พ ๏ก : ๏๏ (๏ธ|๏) = 1๏ป since the joint event {๏ โค ๏ก} โฉ ๏ = ๏, so the conditional
probability of {๏ โค ๏ก}, given ๏๏ป is one.
12
iii) ๏ข ๏ผ ๏ธ โค ๏ก : Here we must calculate the actual intersection of the two sets {๏ โค ๏ก} and
๏ = {๏ข ๏ผ ๏ โค ๏ก}๏บ Since ๏ข ๏ผ ๏ธ โค ๏ก, we get {๏ โค ๏ก} โฉ ๏ = {๏ โค ๏ธ} โฉ {๏ข ๏ผ ๏ โค ๏ก} =
{๏ข ๏ผ ๏ ๏ผ ๏ธ}๏บ We can then calculate the conditional probability
๏๏ (๏ธ|๏) =
=
=
๏ [{๏ โค ๏ธ} โฉ ๏]
๏ [๏]
๏ [{๏ข ๏ผ ๏ ๏ผ ๏ธ}]
๏ [๏]
๏๏ (๏ธ) โ ๏๏ (๏ข)
๏ป
๏๏ (๏ก) โ ๏๏ (๏ข)
for ๏ข ๏ผ ๏ธ โค ๏ก๏บ
19. In order to get ๏ [๏ = ๏ซ], we can consider ๏ [๏ = ๏ซ|๏ = ๏ธ] first and then do the integral over
all ๏ธ.
Z โ
๏ [๏ = ๏ซ] =
๏ [๏ = ๏ซ|๏ = ๏ธ]๏ฆ๏ (๏ธ)๏ค๏ธ
โโ
๏บ
Z
Z 5
1
1 5 ๏ธ๏ซ ๏ฅโ๏ธ
๏ซ โ๏ธ
๏ค๏ธ =
=
๏ธ ๏ฅ ๏ค๏ธ
5 0
๏ซ!
5๏ซ! 0
for ๏ซ = 0:
for ๏ซ = 1:
1
1
๏ [๏ = 0] = (1 โ ๏ฅโ5 )
5
0!
1
1
51
๏ [๏ = 1] = (1 โ ๏ฅโ5 โ ๏ฅโ5 )
5
0!
1!
for ๏ซ = 2:
1
๏ [๏ = 2] =
5
ยต
ยถ
1 โ5 51 โ5 52 โ5
1โ ๏ฅ โ ๏ฅ โ ๏ฅ
0!
1!
2!
for general ๏ซ:
1
๏ [๏ = ๏ซ] =
5
ยต
ยถ
1 โ5 51 โ5
5๏ซ โ5
1 โ ๏ฅ โ ๏ฅ ๏บ๏บ๏บ โ ๏ฅ
๏ป
0!
1!
๏ซ!
๏ซ โฅ 0๏บ
20. (a) The pmf of ๏ is binomial with ๏ฎ = 8 and ๏ฐ = ๏ฑ = 0๏บ5, i.e.
๏๏ (๏ซ) , ๏ [๏ = ๏ซ] = ๏ข(๏ซ; 8๏ป 0๏บ5)๏บ
This is because the 8 votes are independent, each with ๏ฐ = 0๏บ5 chance of being favorable.
They are thus Bernoulli trials, which leads to the binomial distribution in the binary
case. We note that since ๏ฐ = 0๏บ5, the distribution will be symmetric about ๏ = ๏ซ = 4.
(b) We must find the conditional PDF ๏๏ (๏ธ|๏) for the range โ1 โค ๏ธ โค 10๏บ Now
๏๏ (๏ธ|๏) , ๏ [๏ โค ๏ธ|๏] =
=
๏ [4 ๏ผ ๏ โค ๏ธ]
๏บ
๏ [๏ ๏พ 4]
๏ [{๏ โค ๏ธ]} โฉ {๏ ๏พ 4}]
๏ [๏ ๏พ 4]
13
Since ๏ is binomially distributed, we have
ยต ยถ8 X
8 ยต ยถ
1
8
๏ [๏ ๏พ 4] =
๏ซ
2
๏ซ=5
ร
ยต ยถ ยต ยถ8 !
1
8
1
=
1โ
2
2
4
93
๏ป
256
where the second to last line is by symmetry of this binomial distribution about ๏ซ = 4.
Turning to the numerator, we have
ยฝ
0๏ป
๏ธ๏ผ5
๏ [4 ๏ผ ๏ โค ๏ธ] = ยก 1 ยข8 P8 ยก8ยข
๏ซ=5 ๏ซ ๏ต(๏ธ โ ๏ซ)๏ป ๏ธ โฅ 5๏บ
2
=
Then
ยฝ
๏ธ๏ผ5
๏ซ=5 ๏ซ ๏ต(๏ธ โ ๏ซ)๏ป ๏ธ โฅ 5๏บ
2
!
ร
ยถ
ยต
8
1 X 8
๏ต(๏ธ โ ๏ซ) ๏ต(๏ธ โ 5)
=
๏ซ
93
๏ซ=5
โ
โ
b๏ธc ยต ยถ
X
1
8 โ
= โ
๏ต(๏ธ โ 5)๏ป
93
๏ซ
๏๏ (๏ธ|๏) =
256
93
ยก 1 ยข8 P8
0๏ป
ยก 8ยข
๏ซ=5
where b๏ธc denotes the least integer function
b๏ธc , ๏ธ rounded down to next integer.
Calculating, we determine
and thus
โง 56
๏ป
โช
ยต ยถ โช
โจ 93
28
1 8
93 ๏ป
=
8
๏ป
โช
93 ๏ซ
โช
โฉ 93
1
93 ๏ป
โง 56
๏ป
โช
โช
โจ 93
84
93 ๏ป
๏๏ (๏ธ|๏) =
92
โช
โช 93 ๏ป
โฉ
1๏ป
๏ซ = 5๏ป
๏ซ = 6๏ป
๏ซ = 7๏ป
๏ซ = 8๏ป
๏ซ = 5๏ป
๏ซ = 6๏ป
๏ซ = 7๏ป
๏ซ = 8๏บ
Now for ๏ธ ๏ผ 5, ๏๏ (๏ธ|๏) = 0๏ป and for ๏ธ ๏พ 8, ๏๏ (๏ธ|๏) = 1๏ป so we have the plot of Figure
1.
(c) From the calculations done above and from the definition
๏ฆ๏ (๏ธ|๏) =
=
๏ค๏๏ (๏ธ|๏)
๏ค๏ธ
8 ยต ยถ
X
8
1
๏ฑ(๏ธ โ ๏ซ)
93
๏ซ
๏ซ=5
=
56
28
8
1
๏ฑ(๏ธ โ 5) + ๏ฑ(๏ธ โ 6) + ๏ฑ(๏ธ โ 7) + ๏ฑ(๏ธ โ 8)๏ป
93
93
93
93
14
Figure 7:
Figure 8:
with plot of Figure 2. Note we write the areas of the impulses in parentheses.
In this figure, ๏ก = 56๏ฝ93, ๏ข = 28๏ฝ93, ๏ฃ = 8๏ฝ93, and ๏ค = 1๏ฝ93.
(d) Using Bayesโ rule, we have
๏ [4 โค ๏ โค 5|๏] =
=
=
๏ [4 ๏ผ ๏ โค 5]
๏ [๏ ๏พ 4]
๏ [๏ = 5]
๏ [๏ ๏พ 4]
ยก 1 ยข8 ยก8ยข
2
5
93
28
ยต ยถ
56
1 8
= ๏บ
=
93 5
93
21. The random variables ๏ and ๏ have joint probability density function (pdf)
ยฝ 3 2
4 ๏ธ (1 โ ๏น)๏ป 0 โค ๏ธ โค 2๏ป 0 โค ๏น โค 1๏ป
๏ฆ๏๏ป๏ (๏ธ๏ป ๏น) =
0๏ป
else.
15
(a) To find ๏ [๏ โค 0๏บ5], we start with
๏ [๏ โค 0๏บ5] =
=
=
=
=
Z 0๏บ5 Z +โ
โโ
Z 0๏บ5 Z 1
๏ฆ๏๏ป๏ (๏ธ๏ป ๏น)๏ค๏ธ๏ค๏น
โโ
3 2
๏ธ (1 โ ๏น)๏ค๏ธ๏ค๏น
0
0 4
ยตZ 0๏บ5
ยถ ยตZ 1
ยถ
3
2
๏ธ ๏ค๏ธ
(1 โ ๏น)๏ค๏น
4
0
0
ยต
ยถยต
ยถ
๏น2
3 ๏ธ3 0๏บ5
|0
(๏น โ )|10
4 3
2
1
1
3 1
(1 โ ) = ๏บ
4 24
2
64
๏บ
(b) By definition
๏๏ (0๏บ5) = ๏ [๏ โค 0๏บ5]
Z +โ Z 0๏บ5
๏ฆ๏๏ป๏ (๏ธ๏ป ๏น)๏ค๏ธ๏ค๏น
=
โโ
=
=
=
โโ
Z 2 Z 0๏บ5
3 2
๏ธ (1 โ ๏น)๏ค๏ธ๏ค๏น
4
0
0
ยต
ยถยต
ยถ
3 ๏ธ3 2
๏น 2 0๏บ5
|
(๏น โ )|0
4 3 0
2
ยต
ยถ
38 1 1
3
โ
= ๏บ
43 2 8
4
(c) To find ๏ [๏ โค 0๏บ5|๏ โค 0๏บ5], we note that ๏ and ๏ are independent random variables,
1
๏บ
so the answer is the same as in part a), namely ๏ [๏ โค 0๏บ5|๏ โค 0๏บ5] = ๏ [๏ โค 0๏บ5] = 64
However, we can also calculate directly,
๏ [๏ โค 0๏บ5๏ป ๏ โค 0๏บ5]
๏ [๏ โค 0๏บ5|๏ โค 0๏บ5] =
๏ [๏ โค 0๏บ5]
ยต ยถ
Z 0๏บ5 Z 0๏บ5
3
3 2
=
๏ธ (1 โ ๏น)๏ค๏ธ๏ค๏น๏ฝ
4
4
0
ยต0
ยถ ยต ยถ
3 1 1 1
3
1
=
โ
๏ฝ
= ๏บ
4 24 2 8
4
64
(d) Here, we can note again that ๏ and ๏ are independent random variables for the given
joint pdf, and thus
๏ [๏
โค 0๏บ5|๏ โค 0๏บ5] = ๏ [๏ โค 0๏บ5]
3
from part b).
=
4
22. To check for independence, we need to look at the marginal pdfs of ๏ and ๏ . How do we
find the pdfโs? We can use the property that the pdf must integrate to 1. Say ๏ฆ๏ (๏ธ) =
Rโ
1 ๏ธ 2
1 ๏ธ 2
๏๏ฅโ 2 ( 3 ) ๏ต(๏ธ), and 0 ๏ฆ๏ (๏ธ)๏ค๏ธ = 1, we find ๏ = 3โ22๏ผ ๏บ Similarly, ๏ฆ๏ (๏น) = ๏๏ฅโ 2 ( 2 ) ๏ต(๏น),
16
Rโ
and 0 ๏ฆ๏ (๏น)๏ค๏น = 1, so ๏ = 2โ22๏ผ ๏บ Multiplying the two marginal pdfs, we see that the
product is indeed equal to joint pdf; i.e., ๏ฆ๏ (๏ธ)๏ฆ๏ (๏น) = ๏ฆ๏๏ป๏ (๏ธ๏ป ๏น). Therefore, ๏ and ๏ are
independent random variables; their joint probability factors and hence ๏ [0 ๏ผ ๏ โค 3๏ป 0 ๏ผ
๏ โค 2] = ๏ [0 ๏ผ ๏ โค 3]๏ [0 ๏ผ ๏ โค 2]๏บ Thus
Z 3
1 ๏ธ 2
2
โ ๏ฅโ 2 ( 3 ) ๏ค๏ธ
โ3 3 2๏ผ
Z 3
1 ๏ธ 2
2
๏ฅโ 2 ( 3 ) ๏ค๏ธ = 2๏ฅ๏ฒ๏ฆ (1)๏ป
= 2ร โ
3 2๏ผ 0
๏ [0 ๏ผ ๏ โค 3] =
Z 2
1 ๏น 2
2
โ ๏ฅโ 2 ( 2 ) ๏ค๏น
โ2 2 2๏ผ
Z 2
1 ๏น 2
2
๏ฅโ 2 ( 2 ) ๏ค๏น = 2๏ฅ๏ฒ๏ฆ (1)๏บ
= 2ร โ
2 2๏ผ 0
๏ [0 ๏ผ ๏ โค 2] =
So
๏ [0 ๏ผ ๏ โค 3๏ป 0 ๏ผ ๏ โค 2] = ๏ [0 ๏ผ ๏ โค 3]๏ [0 ๏ผ ๏ โค 2]
๏บ
= 2 erf(1) ร 2 erf(1) = 4 erf(1)2 = 0๏บ466๏บ
23. (a) Since
1 =
Z +โ
โโ
Z 0
= ๏
โ1
๏ฆ๏ (๏ธ)๏ค๏ธ
(1 + ๏ธ)๏ค๏ธ + ๏
Z +1
0
(1 โ ๏ธ)๏ค๏ธ
ยถยฏ0
ยถยฏ1
ยต
ยต
๏ธ2 ยฏยฏ
๏ธ2 ยฏยฏ
+๏ ๏ธโ
= ๏ ๏ธ+
2 ยฏโ1
2 ยฏ0
ยถ
ยต
1 1
+
= ๏
2 2
= ๏๏บ
Thus ๏ = 1 and ๏ฆ๏ is plotted as
17
(b) ๏๏ (๏ธ) = 0 for ๏ธ โค โ1๏บ Then for โ1 ๏ผ ๏ธ โค 0๏ป we calculate
Z ๏ธ
(1 + ๏ถ)๏ค๏ถ
๏๏ (๏ธ) =
โ1
ยถยฏ๏ธ
ยต
๏ถ 2 ยฏยฏ
=
๏ถ+
2 ยฏโ1
ยต
ยถ
(โ1)2
๏ธ2
โ โ1 +
= ๏ธ+
2
2
2
๏ธ
1
= ๏ธ+
+ ๏บ
2
2
We note that ๏๏ (๏ธ) = 12 ๏บ Then for 0 ๏ผ ๏ธ โค 1๏ป we calculate
Z ๏ธ
1
+
(1 โ ๏ถ)๏ค๏ถ
๏๏ (๏ธ) =
2
0
ยต
ยถยฏ๏ธ
๏ถ2 ยฏยฏ
1
+ ๏ถโ
=
2
2 ยฏ0
๏ธ2
1
+๏ธโ ๏บ
=
2
2
R +1
Note that ๏๏ (๏ธ) = 1 for ๏ธ โฅ 1 since โ1 ๏ฆ๏ (๏ธ)๏ค๏ธ = 1๏บ Putting all the results together,
we get
โง
0๏ป
๏ธ โค โ1๏ป
โช
โช
โจ 1
๏ธ2
2 + ๏ธ + 2 ๏ป โ1 ๏ผ ๏ธ โค 0๏ป
๏๏ (๏ธ) =
1
๏ธ2
โช
โช
โฉ 2 +๏ธโ 2 ๏ป 0 ๏ผ๏ธโค1
1๏ป
๏ธ ๏พ 1๏บ
The sketch of ๏๏ is shown below.
(c) ๏ [๏ ๏พ ๏ข] = 1 โ ๏๏ (๏ข) = 12 ๏๏ (๏ข)๏ป which gives ๏๏ (๏ข) = 23 ๏ป therefore ๏ข โ (0๏ป 1)๏บ In this
2
interval ๏๏ (๏ข) = 12 + ๏ข โ ๏ข2 , so we have the quadratic equation
3๏ข2 โ 6๏ข + 1 = 0๏ป
q
q
which is solved by roots ๏ข1๏ป2 = 1 ยฑ 23 ๏บ The root in (0๏ป 1) is then ๏ข = 1 โ 23 ‘ 0๏บ185๏บ
24. The general expression is given as:
1
p
๏ฆ๏๏ (๏ธ๏ป ๏น) =
exp
2
2๏ผ๏พ 1 โ ๏ฝ2
ยต
ยถ
โ1
2
2
(๏ธ + ๏น โ 2๏ฝ๏ธ๏น) ๏บ
2๏พ 2 (1 โ ๏ฝ2 )
18
If ๏ฝ = 0 and ๏พ = 1๏ป then this becomes
ยต
ยถ
โ1 2
1
2
exp
(๏ธ + ๏น )
๏ฆ๏๏ (๏ธ๏ป ๏น) =
2๏ผ
2
1 2
1 2
1
1
= โ ๏ฅโ 2 ๏ธ โ ๏ฅโ 2 ๏น
2๏ผ
2๏ผ
= ๏ฆ๏ (๏ธ)๏ฆ๏ (๏น)๏บ
The desired joint probability can be calculated as
ยธ
โ
ยธ โ
ยธ
โ
1 1
1
1
1
1
1
1
= ๏ โ ๏ผ๏โค
๏ โ ๏ผ๏ โค
๏ โ ๏ผ ๏ โค ๏ปโ ๏ผ ๏ โค
2
2 2
2
2
2
2
2
ยต ยถ
ยต ยถ
1
1
= 2 erf
2 erf
2
2
โ
ยต ยถยธ2
1
= 2 erf
2
‘ 0๏บ144๏บ
25. We use Bayesโ formula for pdfโs:
๏ฆ๏|๏ (๏ธ|๏น) =
We have
๏ฆ๏ |๏ (๏น|๏ธ)๏ฆ๏ (๏ธ)
๏บ
๏ฆ๏ (๏น)
๏ธ
1
๏ฆ๏ (๏ธ) = rect( )๏บ
2
2
Then
๏ฆ๏ (๏น) =
Z โ
Z โ
๏ฆ๏๏ (๏ธ๏ป ๏น)๏ค๏ธ =
๏ฆ๏ |๏ (๏น|๏ธ)๏ฆ๏ (๏ธ)๏ค๏ธ
โโ
โ
ยธ
1 1
(๏น โ ๏ธ)2
โ
=
exp โ
๏ค๏ธ๏บ
2๏พ 2
โ1 2 2๏ผ๏พ 2
โโ
Z 1
๏ค๏ธ
Let ๏ป = ๏ธโ๏น
๏พ , then ๏ค๏ป = ๏พ and we obtain
๏ฆ๏ (๏น) =
1
2
โ
ยธ
1 2
1โ๏น
โ1 โ ๏น
1
1
โ ๏ฅโ 2 ๏ป ๏ค๏ป =
erf(
) โ erf(
) ๏บ
โ1โ๏น
2
๏พ
๏พ
2๏ผ
๏พ
Z 1โ๏น
๏พ
But ๏ฅ๏ฒ๏ฆ (๏ธ) = โ๏ฅ๏ฒ๏ฆ (โ๏ธ), hence
๏ฆ๏ (๏น) =
โ
ยธ
1+๏น
๏นโ1
1
erf(
) โ erf(
) ๏บ
2
๏พ
๏พ
Then finally
2
โ 1
exp[โ (๏นโ๏ธ)
]rect( ๏ธ2 )
๏ฆ๏ |๏ (๏น|๏ธ)๏ฆ๏ (๏ธ)
2๏พ 2
2๏ผ ๏พ
๏บ
=
๏ฆ๏|๏ (๏ธ|๏น) =
๏นโ1
๏ฆ๏ (๏น)
erf( 1+๏น
)
โ
erf(
)
๏พ
๏พ
19
26. We start o๏ฌ with the general relation for conditional probability densities
๏ฆ๏|๏ (๏ธ|๏น) =
=
๏ฆ๏ |๏ (๏น|๏ธ)๏ฆ๏ (๏ธ)
๏ฆ๏ (๏น)
2
2
โ 1 ๏ฅโ(๏นโ๏ธ) ๏ฝ2๏พ
2๏ผ๏พ2
ยข
ยก1
1
2 ๏ฑ(๏ธ โ 1) + 2 ๏ฑ(๏ธ + 1)
๏ฆ๏ (๏น)
๏บ
Next, we find the denominator as
Z +โ
๏ฆ๏ (๏น) =
โโ
Z +โ
=
โโ
Z +โ
=
โโ
๏ฆ๏๏ป๏ (๏น๏ป ๏ธ)๏ค๏ธ
๏ฆ๏ |๏ (๏น|๏ธ)๏ฆ๏ (๏ธ)๏ค๏ธ
1
2
2
โ
๏ฅโ(๏นโ๏ธ) ๏ฝ2๏พ
2
2๏ผ๏พ
ยต
ยถ
1
1
๏ฑ(๏ธ โ 1) + ๏ฑ(๏ธ + 1) ๏ค๏ธ๏ป
2
2
and so, combining this result with the one above, we have
๏ฆ๏|๏ (๏ธ|๏น) =
=
=
=
=
2
2
โ 1 ๏ฅโ(๏นโ๏ธ) ๏ฝ2๏พ
2๏ผ๏พ2
ยข
ยก1
1
2 ๏ฑ(๏ธ โ 1) + 2 ๏ฑ(๏ธ + 1)
๏ฆ๏ (๏น)
ยข
2 ๏ฝ2๏พ 2 ยก 1
1
โ(๏นโ๏ธ)
โ
๏ฅ
๏ฑ(๏ธ โ 1) + 12 ๏ฑ(๏ธ + 1)
2
2
ยข
ยก
R +โ 2๏ผ๏พ1
โ
๏ฅโ(๏นโ๏ธ)2 ๏ฝ2๏พ2 12 ๏ฑ(๏ธ โ 1) + 12 ๏ฑ(๏ธ + 1) ๏ค๏ธ
2
โโ
2๏ผ๏พ
ยข
2
2 ยก1
โ 1 ๏ฅโ(๏นโ๏ธ) ๏ฝ2๏พ
๏ฑ(๏ธ โ 1) + 12 ๏ฑ(๏ธ + 1)
2
2
2๏ผ๏พ
ยก1
ยข
โ 1
๏ฅโ(๏นโ1)2 ๏ฝ2๏พ2 + 12 ๏ฅโ(๏น+1)2 ๏ฝ2๏พ2
2
2
2๏ผ๏พ
ยข
2
2 ยก
๏ฅโ(๏นโ๏ธ) ๏ฝ2๏พ 12 ๏ฑ(๏ธ โ 1) + 12 ๏ฑ(๏ธ + 1)
๏ป or equivalently
1 โ(๏นโ1)2 ๏ฝ2๏พ2
+ 12 ๏ฅโ(๏น+1)2 ๏ฝ2๏พ2
2๏ฅ
2
2
๏ฅโ(๏นโ๏ธ) ๏ฝ2๏พ
๏ฅโ(๏นโ1)2 ๏ฝ2๏พ2 + ๏ฅโ(๏น+1)2 ๏ฝ2๏พ2
(๏ฑ(๏ธ โ 1) + ๏ฑ(๏ธ + 1)) ๏บ
Note, we could have eliminated a few steps in our solution by starting from the Total Probability Theorem for density functions, from which we can write directly
๏ฆ๏ |๏ (๏น|๏ธ)๏ฆ๏ (๏ธ)
๏ฆ๏|๏ (๏ธ|๏น) = R +โ
๏บ
โโ ๏ฆ๏ |๏ (๏น|๏ธ)๏ฆ๏ (๏ธ)๏ค๏ธ
If the question had asked instead for the conditional probability mass function (PMF) ๏๏|๏ ,
the answer would have been
(
2
2
๏ฅโ(๏นโ๏ธ) ๏ฝ2๏พ
๏ธ = ยฑ1๏ป
2 ๏ฝ2๏พ 2
2 ๏ฝ2๏พ 2 ๏ป
โ(๏นโ1)
โ(๏น+1)
๏ฅ
+๏ฅ
๏ป
๏๏|๏ (๏ธ|๏น) =
0๏ป
else
as can be easily obtained by integrating the conditional density found above.
20
27.
๏ [๏] = ๏ [๏ ๏พ 30] = 1 โ ๏๏ (30)
๏ [๏] = ๏ [๏ โค 31] = ๏๏ (31)
๏ [๏๏] = ๏ [30 ๏ผ ๏ โค 31] = ๏๏ (31) โ ๏๏ (30)
๏๏ (31) โ ๏๏ (30)
๏ [๏๏]
=
๏ [๏|๏] =
๏ [๏]
1 โ ๏๏ (30)
=
๏ [๏|๏] =
=
31โ30
1
60
60โ30 = 30 ๏บ
60
๏๏ (31) โ ๏๏ (30)
๏ [๏๏]
=
๏ [๏]
๏๏ (31)
31โ30
1
60
= ๏บ
31
31
60
28. (a)
1 =
Z +โ
โโ
Z โ
๏ฆ๏ (๏ธ)๏ค๏ธ
๏ฅโ2๏ธ ๏ค๏ธ
ยต โ2๏ธ ยฏโ ยถ
ยฏ
๏ฅ
ยฏ
= ๏ฃ
โ2 ยฏ0
ยต
ยถ
1
= ๏ฃ 0โโ
2
= ๏ฃ๏ฝ2๏ป
= ๏ฃ
0
thus we must have ๏ฃ = 2.
21
(b) For ๏ธ ๏พ 0๏ป ๏ก ๏พ 0๏ป we can write
๏ [๏ โฅ ๏ธ + ๏ก] = 2
= 2
Z โ
๏ฅโ2๏ถ ๏ค๏ถ
ยถ
ยฏ
โ2 ยฏ๏ธ+๏ก
๏ธ+๏ก
ยต โ2๏ถ ยฏโ
ยฏ
๏ฅ
ร
๏ฅโ2(๏ธ+๏ก)
= 2 0โโ
2
= ๏ฅโ2(๏ธ+๏ก) ๏ป
!
with ๏ธ ๏พ 0๏ป ๏ก ๏พ 0๏บ
(c)
๏ [๏ โฅ ๏ธ + ๏ก|๏ ๏พ ๏ก] =
๏ [๏ โฅ ๏ธ + ๏ก๏ป ๏ ๏พ ๏ก]
๏ป
๏ [๏ ๏พ ๏ก]
but note that for ๏ธ ๏พ 0, the event {๏ โฅ ๏ธ + ๏ก} is a subset of the event {๏ ๏พ ๏ก}๏ป so
{๏ โฅ ๏ธ + ๏ก} โฉ {๏ ๏พ ๏ก} = {๏ โฅ ๏ธ + ๏ก}๏ป and hence ๏ [๏ โฅ ๏ธ + ๏ก๏ป ๏ ๏พ ๏ก] = ๏ [๏ โฅ ๏ธ + ๏ก]๏ป
thus we have, for ๏ธ ๏พ 0,
๏ [๏ โฅ ๏ธ + ๏ก|๏ ๏พ ๏ก] =
=
๏ [๏ โฅ ๏ธ + ๏ก๏ป ๏ ๏พ ๏ก]
๏ [๏ ๏พ ๏ก]
๏ [๏ โฅ ๏ธ + ๏ก]
๏ [๏ ๏พ ๏ก]
๏ฅโ2(๏ธ+๏ก)
๏ฅโ2๏ก
โ2๏ธ
= ๏ฅ ๏ป independent of ๏ก !
=
Since this conditional probability is (functionally) independent of the variable ๏ก, the
memory of ๏ก had been lost.
29. We need to solve for ๏น in
1 โ ๏ฅโ๏น โฅ 0๏บ95๏บ
But this implies that
๏น โฅ โ ln(0๏บ005)
๏บ
= 2๏บ996๏บ
Thus, ๏น = 3 should do.
30. This is a rather classic problem in detection theory.
๏ [๏|๏ ] = ๏ [๏ โฅ 0๏บ5|๏ ]
Z โ
1
1
2
= โ
๏ฅโ 2 (๏ธโ1) ๏ค๏ธ
2๏ผ 0๏บ5
Z โ
1 2
1
= โ
๏ฅโ 2 ๏น ๏ค๏น๏ป with ๏น , ๏ธ โ 1๏ป
2๏ผ โ0๏บ5
1
๏บ
=
+ erf(0๏บ5) = 0๏บ69๏บ
2
22
Then
๏ [๏|๏ ๏ฃ ] = ๏ [๏ โฅ 0๏บ5|๏ ๏ฃ ]
Z โ
1 2
1
๏ฅโ 2 ๏ธ ๏ค๏ธ
= โ
2๏ผ 0๏บ5
1
๏บ
โ erf(0๏บ5) = 0๏บ31๏ป
=
2
๏ [๏๏ฃ |๏ ๏ฃ ] = ๏ [๏ ๏ผ 0๏บ5|๏ ๏ฃ ]
Z 0๏บ5
1 2
1
๏ฅโ 2 ๏ธ ๏ค๏ธ
= โ
2๏ผ โโ
1
๏บ
+ erf(0๏บ5) = 0๏บ69๏ป
=
2
and
๏ [๏๏ฃ |๏ ] = ๏ [๏ ๏ผ 0๏บ5|๏ ]
Z 0๏บ5
1
1
2
= โ
๏ฅโ 2 (๏ธโ1) ๏ค๏ธ
2๏ผ โโ
Z โ0๏บ5
1 2
1
๏ฅโ 2 ๏น ๏ค๏น๏ป again with ๏น , ๏ธ โ 1๏ป
= โ
2๏ผ โโ
1
๏บ
=
โ erf(0๏บ5) = 0๏บ31๏บ
2
31. From Bayesโ Theorem
๏ [๏ |๏] =
๏ [๏ ๏ฃ |๏] =
๏ [๏ |๏๏ฃ ] =
๏ [๏ ๏ฃ |๏๏ฃ ] =
๏ [๏ ]
๏ [๏|๏ ]๏ [๏ ]
= 0๏บ69
๏ป
๏ [๏]
0๏บ69๏ [๏ ] + 0๏บ31(1 โ ๏ [๏ ])
๏ [๏ ๏ฃ ]
๏ [๏|๏ ๏ฃ ]๏ [๏ ๏ฃ ]
= 0๏บ31
๏ป
๏ [๏]
0๏บ69๏ [๏ ๏ฃ ] + 0๏บ31(1 โ ๏ [๏ ๏ฃ ])
๏ [๏ ]
๏ [๏๏ฃ |๏ ]๏ [๏ ]
= 0๏บ31
๏ป and
๏ [๏๏ฃ ]
0๏บ31๏ [๏ ] + 0๏บ69(1 โ ๏ [๏ ])
๏ [๏ ๏ฃ ]
๏ [๏๏ฃ |๏ ๏ฃ ]๏ [๏ ๏ฃ ]
=
0๏บ69
๏บ
๏ [๏๏ฃ ]
0๏บ31๏ [๏ ] + 0๏บ69(1 โ ๏ [๏ ])
As a partial check, we note that ๏ [๏ |๏]+๏ [๏ ๏ฃ |๏] = 1 as it must, and likewise for ๏ [๏ |๏๏ฃ ]+
๏ [๏ ๏ฃ |๏๏ฃ ]๏บ Then, for ๏ [๏ ] = 10โ3 ๏ป we get ๏ [๏ |๏] ‘ 2 ร 10โ3 ๏ป ๏ [๏ ๏ฃ |๏] ‘ 0๏บ998๏ป ๏ [๏ |๏๏ฃ ] ‘
0๏บ45 ร 10โ3 ๏ป and ๏ [๏ ๏ฃ |๏๏ฃ ] ‘ 0๏บ9996๏บ But, for ๏ [๏ ] = 10โ6 ๏ป we get ๏ [๏ |๏] ‘ 2๏บ2 ร
10โ6 ๏ป ๏ [๏ ๏ฃ |๏] ‘ 0๏บ999998๏ป ๏ [๏ |๏๏ฃ ] ‘ 0๏บ45ร10โ36 ๏ป and ๏ [๏ ๏ฃ |๏๏ฃ ] ‘ 0๏บ999998๏บ Thus, because
of the uncertainty in the prior probability ๏ [๏ ]๏ป these calcuated probability numbers have
little value for decision making.
32.
23
A clearer version of the function is given below:
function [alpha,beta] = roc(r)
%function for evaluations in Problem 2.32
t=zeros (1,100); alpha=zeros(1,100); beta=zeros(1,100);
t(1)=-6;
for n=2:100
t(n)=t(1)+(1.5*n/100)*(r+6);
alpha(n)=quad(โbellโ,t(n),10);
beta(n)=quad(โbellโ,t(n)-r,10);
end
plot(alpha(2:100),beta(2:100))
axis([0 1 0 1])
axis (โimageโ)
end
However, note that this function will only work with definition of the function โbellโ, not given
here. See documentation on MATLAB function โquadโ.
33. From the data, ๏ธ = 9 ร 106 ph/sec ๏บ For the counting interval (CI) โ๏ด = 10โ6 sec. then,
24
๏ธโ๏ด = 9๏บ So
๏ [{false alarm in CI}] = ๏ [{ 0 photons in CI}] + ๏ [{ 1 photon in CI}]
(9)0 โ9 (9)1 โ9
๏ฅ +
๏ฅ
=
0!
1!
= 10๏ฅโ9 ‘ 0๏บ0012๏บ
๏ [{at least one false alarm in 106 tries}] = 1 โ ๏ [{ 0 false alarms in 106 tries}]
ยต 6ยถ
10
6
(0๏บ0012)0 (1 โ 0๏บ0012)10
‘ 1โ
0
6
= 1 โ (0๏บ9988)10
‘ 0๏บ
34. (a) โฆ = {๏๏ป ๏๏ป ๏ }๏ป where ๏=green, ๏=red, and ๏ =yellow. The ๏พ-field of events are:
{๏}๏ป {๏}๏ป {๏ }๏ป {๏๏ป ๏}(i.e. light is green or red) ๏ป {๏๏ป ๏ }(i.e.light is green or yellow)๏ป
{๏๏ป ๏ }(light is red or yellow) ๏ป ๏(null event)๏ป and โฆ๏ป the certain event.
(b) ๏(๏) = โ1๏ป ๏(๏) = 0๏ป ๏(๏ ) = ๏ผ๏ป and ๏ [๏] = ๏ [๏ ] = 0๏บ5๏ [๏]๏บ Hence
๏ [๏] + 0๏บ5๏ [๏] + 0๏บ5๏ [๏] = 1๏บ
So ๏ [๏] = 12 and ๏ [๏] = ๏ [๏ ] = 14 ๏บ
35.
(a)
๏max = 8 ร 5 = 40 minutes,
๏min = 8 ร 0 = 0 minutes.
25
Note that if each station sends a message that is infinitesimally short, you get ๏min = 0.
Let ๏ denote the waiting time and let ๏ฐ , ๏ [{a station is busy}]๏บ Then
๏
[๏ ] = [2๏บ5๏ฐ + (1 โ ๏ฐ)1] 8
= 8 minutes for ๏ฐ = 0๏ป
= 14 minutes for ๏ฐ = 0๏บ5๏ป
= 20 minutes for ๏ฐ = 1๏บ
(b) Here is a MATLAB function that simulates the waiting time:
function [w]=token (p, NT, NS)
% function to simulate the token system in Problem 2.35
% p=probability a station is occupies, NT is number of trials,
% and NS is number of stations.
w=zeros (1, NT);
for n=1:NT
st=zeros(1,9);
for m=2:9
z=rand๏ผ=p;
if z๏พ0
st(m)=5*rand;
else
st (m)=1;
end
w(n)=sum (st);
end
end
stem (1: NT, w)
title(โ50 Monte Carlo simulations of Token Systemโ)
xlabel(โtrial numberโ)
ylabel(โwaiting time in minutesโ)
Here is a sample output, corresponding to โprobability of station occupiedโ ๏ฐ = 0๏บ4,
โnumber of trialsโ ๏๏ = 50, and โnumber of stationsโ ๏ ๏ = 9.
26
36.
ZZ
1 โ 1 (๏ธ2 +๏น2 )
๏ฅ 2
๏ค๏ธ๏ค๏น๏ป transform to polar coordinates
(๏ธ๏ป๏น) :๏ธ2 +๏น 2 โค๏ฃ2 2๏ผ
Z ๏ฃ Z 2๏ผ
p
1 2
1
=
๏ฅโ 2 ๏ฒ ๏ฒ๏ค๏ฒ๏ค๏ต๏ป with ๏ฒ = ๏ธ2 + ๏น2 and ๏ค๏ธ๏ค๏น = ๏ฒ๏ค๏ฒ๏ค๏ต๏ป
2๏ผ
Z ๏ฃ 0 0
1 2
1
=
๏ฅโ 2 ๏ฒ ๏ฒ๏ค๏ฒ๏ป let ๏ต , ๏ฒ2 ๏ป then ๏ค๏ต = ๏ฒ๏ค๏ฒ๏ป
2
0
Z ๏ฃ2 ๏ฝ2
=
๏ฅโ๏ต ๏ค๏ต
๏ [๏ 2 + ๏ 2 โค ๏ฃ2 ] =
0
2
= 1 โ ๏ฅโ๏ฃ ๏ฝ2 = 0๏บ95๏บ
Thus we need
๏ฃ2
1
= ln
= ln 20 ‘ 3๏ป
2
1 โ 0๏บ95
โ
๏ฃ ‘
6 = 2๏บ45๏บ
โ
37. (a) Since the area of this square with side 2 is 2, constant joint density ๏ฆ๏๏ป๏ must take on
value 12 to be properly normalized, thus ๏ = 12 .
(b) We can see four regions for the ๏น values in evaluating
Z +โ
๏ฆ๏ (๏ธ) =
๏ฆ๏๏ป๏ (๏ธ๏ป ๏น)๏ค๏น๏บ
โโ
These regions are ๏ธ โค โ1๏ป โ1 ๏ผ ๏ธ ๏ผ 0๏ป 0 โค ๏ธ ๏ผ 1๏ปand ๏ธ โฅ 1๏บ Now, the first and last of
these regions gives the trivial result ๏ฆ๏ (๏ธ) = 0๏บ For 0 โค ๏ธ ๏ผ 1๏ป we get
Z 1โ๏ธ
1
1
๏ฆ๏ (๏ธ) =
๏ค๏น = (1 โ ๏ธ โ ๏ธ + 1) = 1 โ ๏ธ๏บ
2
๏ธโ1 2
27
Similarly for โ1 ๏ผ ๏ธ ๏ผ 0๏ป we get
๏ฆ๏ (๏ธ) =
Z 1+๏ธ
1
1
๏ค๏น = (1 + ๏ธ + ๏ธ + 1) = 1 + ๏ธ๏บ
2
โ๏ธโ1 2
Combining these regions we finally get
ยฝ
1 โ |๏ธ|๏ป |๏ธ| ๏ผ 1๏ป
๏ฆ๏ (๏ธ) =
0๏ป
else๏บ
(c) If ๏ is close to 1, then we see that ๏ must be close to 0. This suggests dependence
between ๏ and ๏๏บ To be sure we can use the result of part b together with the symmetry
of the joint density to check whether ๏ฆ๏๏ป๏ = ๏ฆ๏ ๏ฆ๏ or not. By symmetry of ๏ฆ๏๏ป๏ it
must also be that
ยฝ
1 โ |๏น|๏ป |๏น| ๏ผ 1๏ป
๏ฆ๏ (๏น) =
0๏ป
else๏บ
Now the product of these two triangles (1 โ |๏ธ|) (1 โ |๏น|) 6= 12 on supp(๏ฆ๏๏ป๏ ) ๏ป so the
random variables are definitely dependent. (The support of a function ๏ฆ (๏ธ) is the set of
domain values {๏ธ|๏ฆ (๏ธ) 6= 0} and is written as supp{๏ฆ }๏บ)
(d) We start with the definition and then plug in our result from part b:
๏ฆ๏๏ป๏ (๏ธ๏ป ๏น)
๏ฆ๏ (๏ธ)
โง 0๏บ5
0 โค |๏ธ| + |๏น| ๏ผ 1๏ป
โจ 1โ|๏ธ| ๏ป
=
0๏ป
otherwise in {|๏ธ| ๏ผ 1}๏ป
โฉ
ร๏ป
|๏ธ| โฅ 1๏บ
๏ฆ๏ |๏ (๏น|๏ธ) =
Note that the conditional density is not defined for {|๏ธ| โฅ 1}.
38. The pdf of the failure time random variable ๏ is
ยต Z ๏ด
ยถ
0
0
๏ฆ๏ (๏ด) = ๏ฎ(๏ด) exp โ
๏ฎ(๏ด )๏ค๏ด
0
= ๏น exp(โ๏น๏ด) in this case.
Assume ๏น is measured in (hours)โ1 . If ๏ = {failure in 100 hrs or less}๏ป then
๏ [๏] = ๏ [๏ โค 100]
Z 100
๏น๏ฅโ๏น๏ด ๏ค๏ด
=
0
= 1 โ ๏ฅโ๏น100
โค 0๏บ05?
Thus we need ๏ฅโ๏น100 โฅ 0๏บ95๏ป or taking logs and solving,
๏น โค 5๏บ13 ร 10โ4 ๏บ
28
39. In general, for any ๏ฎ(๏ด)๏ป the pdf of the failure time random variable ๏ is
ยถ
ยต Z ๏ด
0
0
๏ฎ(๏ด )๏ค๏ด ๏บ
๏ฆ๏ (๏ด) = ๏ฎ(๏ด) exp โ
0
(i) for ๏ด ๏ผ 0๏ป ๏ฎ(๏ด) = 0๏ป and so ๏ฆ๏ (๏ด) = 0๏ป
(ii) for 0 โค ๏ด โค 10๏ป ๏ฎ (๏ด) = 12 ๏ป and so
1 1
๏ฆ๏ (๏ด) = ๏ฅโ 2 ๏ด ๏ป
2
(iii) for ๏ด ๏พ 10๏ป ,๏ฎ(๏ด) = ๏ด โ ๏ฃ for some constant ๏ฃ๏บ Now at ๏ด = 10๏ป ๏ฎ = 12 ๏ป thus 12 = 10 โ ๏ฃ๏ป
and so ๏ฃ = 9๏บ5. Then, for ๏ด ๏พ 10,
ยต ยฝZ 10
ยพยถ
Z ๏ด
1 0
0
0
๏ค๏ด +
(๏ด โ 9๏บ5)๏ค๏ด
๏ฆ๏ (๏ด) = (๏ด โ 9๏บ5) exp โ
2
0
10
ยต ยฝ
ยพยถ
1
= (๏ด โ 9๏บ5) exp โ 5 + ( ๏ด2 โ 9๏บ5๏ด) โ (50 โ 95)
2
ยพยถ
ยต ยฝ 2
๏ด
๏บ
โ 9๏บ5๏ด + 50
= (๏ด โ 9๏บ5) exp โ
2
We can put all this together in the one equation
โง
0๏ป
๏ด ๏ผ 0๏ป
โช
โจ
1 โ 12 ๏ด
๏ฅ
๏ป
0
โค
๏ด โค 10
๏ฆ๏ (๏ด) =
oยด
ยณ2n 2
โช
โฉ (๏ด โ 9๏บ5) exp โ ๏ด โ 9๏บ5๏ด + 50 ๏ป
๏ด ๏พ 10๏บ
2
40. (a) Let โ๏ธ ๏พ 0 and โ๏น ๏พ 0๏ป then
๏ [๏ธ ๏ผ ๏ โค ๏ธ + โ๏ธ๏ป ๏น ๏ผ ๏ โค ๏น + โ๏น]
= ๏๏๏ (๏ธ + โ๏ธ๏ป ๏น + โ๏น) โ ๏๏๏ (๏ธ + โ๏ธ๏ป ๏น)
=
‘
‘
‘
โ๏๏๏ (๏ธ๏ป ๏น + โ๏น) + ๏๏๏ (๏ธ๏ป ๏น)
ยต
ยถ
๏๏๏ (๏ธ + โ๏ธ๏ป ๏น + โ๏น) โ ๏๏๏ (๏ธ๏ป ๏น + โ๏น)
โ๏ธ
โ๏ธ
ยต
ยถ
๏๏๏ (๏ธ + โ๏ธ๏ป ๏น) โ ๏๏๏ (๏ธ๏ป ๏น)
โ
โ๏ธ
โ๏ธ
ยถ
ยต
๏๏๏๏ (๏ธ๏ป ๏น + โ๏น) ๏๏๏๏ (๏ธ๏ป ๏น)
โ
โ๏ธ
๏๏ธ
๏๏ธ
๏ 2 ๏๏๏ (๏ธ๏ป ๏น)
โ๏ธโ๏น
๏๏ธ๏๏น
๏ฆ๏๏ (๏ธ๏ป ๏น)โ๏ธโ๏น๏บ
(b) By definition of the density ๏ฆ๏๏ as the mixed partial derivative of the distribution
function ๏๏๏ ๏ป the integral of the density over all space must be ๏๏๏ (โ๏ป โ)๏ป since
๏๏๏ (โโ๏ป โ) = ๏๏๏ (โ๏ป โโ) = ๏๏๏ (โโ๏ป โโ) are all zero. But, again by definition,
๏๏๏ (โ๏ป โ) = ๏ [๏ โค โ๏ป ๏ โค โ]
= 1๏บ
29
(c) From part (a), it follows that
๏ฆ๏๏ (๏ธ๏ป ๏น)โ๏ธโ๏น โฅ 0๏ป
since it is a probability. Then since we took โ๏ธ ๏พ 0 and โ๏น ๏พ 0๏ป it follows that
๏ฆ๏๏ (๏ธ๏ป ๏น) โฅ 0 too.
Document Preview (29 of 343 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual For Probability, Statistics, and Random Processes for Engineers, 4th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Benjamin Harris
0 (0 Reviews)
Best Selling
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)