Solution Manual for Precalculus: Graphs and Models, A Right Triangle Approach, 6th Edition
Preview Extract
INSTRUCTORโS
SOLUTIONS MANUAL
JUDITH A. PENNA
A LGEBRA & T RIGONOMETRY
G RAPHS AND M ODELS
S IXTH E DITION
P RECALCULUS
G RAPHS AND M ODELS ,
A R IGHT T RIANGLE A PPROACH
S IXTH E DITION
Marvin L. Bittinger
Indiana University Purdue University Indianapolis
Judith A. Beecher
David J. Ellenbogen
Community College of Vermont
Judith A. Penna
Boston Columbus Indianapolis New York San Francisco
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sรฃo Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.
Reproduced by Pearson from electronic files supplied by the author.
Copyright ยฉ 2017, 2013, 2009 Pearson Education, Inc.
Publishing as Pearson, 501 Boylston Street, Boston, MA 02116.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America.
ISBN-13: 978-0-13-438340-8
ISBN-10: 0-13-438340-0
www.pearsonhighered.com
Contents
Just-in-Time Review . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 667
Chapter R . . . . . . . . . . . . . . . . . . . . . . . . . . 709
Just-in-Time Review
1. Real Numbers
โ
2
1
8
1. Rational numbers: , 6, โ2.45, 18.4, โ11, 3 27, 5 , โ ,
3
6
7
โ
0, 16
โ
โ
โ
3. โ5 = โ 25, and โ 26 is to the left ofโโ 25, or โ5, on
the number line. Thus it is true that โ 26 โ25.
16
5
25
16
25
4
=โ
and โ = โ ; โ
is to the right of โ ,
5
20
4
20
20
20
5
4
so it is true that โ > โ .
5
4
1
2
2. Rational numbers but not integers: , โ2.45, 18.4, 5 ,
3
6
8
โ
7
โ
โ
โ โ
3. Irrational numbers: 3, 6 26, 7.151551555 . . . , โ 35, 5 3
6. โ
(Although there is a pattern in 7.151551555 . . . , there is
no repeating block of digits.)
โ
โ
4. Integers: 6, โ11, 3 27, 0, 16
โ
โ
5. Whole numbers: 6, 3 27, 0, 16
4. Absolute Value
6. Real numbers: All of them
3. |4.7| = 4.7 (|a| = a, if a โฅ 0.)
2 2
(|a| = โa, if a < 0.)
4. โ =
3
3
2. Properties of Real Numbers
1. | โ 98| = 98 (|a| = โa, if a < 0.)
2. |0| = 0 (|a| = a, if a โฅ 0.)
5. | โ 7 โ 13| = | โ 20| = 20, or
1. โ24 + 24 = 0 illustrates the additive inverse property.
|13 โ (โ7)| = |13 + 7| = |20| = 20
2. 7(xy) = (7x)y illustrates the associative property of multiplication.
6. |2 โ 14.6| = | โ 12.6| = 12.6, or
3. 9(r โ s) = 9r โ 9s illustrates a distributive property.
7. | โ 39 โ (โ28)| = | โ 39 + 28| = | โ 11| = 11, or
4. 11 + z = z + 11 illustrates the commutative property of
addition.
| โ 28 โ (โ39)| = | โ 28 + 39| = |11| = 11
3 15 6 15 21 21
, or
8. โ โ = โ โ = โ =
4
8
8
8
8
8
15
โ โ 3 = 15 + 6 = 21 = 21
8
4
8
8 8
8
5. โ20 ยท 1 = โ20 illustrates the multiplicative identity property.
6. 5(x + y) = (x + y)5 illustrates the commutative property
of multiplication.
7. q + 0 = q illustrates the additive identity property.
8. 75 ยท
1
= 1 illustrates the multiplicative inverse property.
75
9. (x+y)+w = x+(y+w) illustrates the associative property
of addition.
10. 8(a + b) = 8a + 8b illustrates a distributive property.
|14.6 โ 2| = |12.6| = 12.6
5. Operations with Real Numbers
1. 8 โ (โ11) = 8 + 11 = 19
1
3ยท1
3 1
1
1
3
=
= ยท
=1ยท
=
2. โ ยท โ
10
3
10 ยท 3
3 10
10
10
3. 15 รท (โ3) = โ5
4. โ4 โ (โ1) = โ4 + 1 = โ3
3. Order on the Number Line
5. 7 ยท (โ50) = โ350
1. 9 is to the right of โ9 on the number line, so it is false
that 9 < โ9.
2. โ10 is to the left of โ1 on the number line, so it is true
that โ10 โค โ1.
6. โ0.5 โ 5 = โ0.5 + (โ5) = โ5.5
7. โ3 + 27 = 24
8. โ400 รท โ40 = 10
9. 4.2 ยท (โ3) = โ12.6
c 2017 Pearson Education, Inc.
Copyright
2
Just-in-Time Review
10. โ13 โ (โ33) = โ13 + 33 = 20
wโ4
z9
aโm
bn
= 4 Using โn = m
โ9
z
w
b
a
2
2
z
z
4.
= 2 Raising a quotient to a power
y
y
3.
11. โ60 + 45 = โ15
1
2
3
4
1
1 2
= + โ
=โ
12. โ = + โ
2 3
2
3
6
6
6
13. โ24 รท 3 = โ8
5. 1000 = 1
Using a0 = 1, a = 0
14. โ6 + (โ16) = โ22
5
1
8
1ยท8
1ยท2
/ยท4
4
1
=
=
=โ ยท โ
=
15. โ รท โ
2
8
2
5
2ยท5
/ยท5
2
5
6.
a5
= a5โ(โ3) = a5+3 = a8
aโ3
7.
(2xy 3 )(โ3xโ5 y) = 2(โ3)x ยท xโ5 ยท y 3 ยท y
Using the quotient rule
= โ6×1+(โ5) y 3+1
= โ6xโ4 y 4 , or โ
6. Interval Notation
8. xโ4 ยท xโ7 = xโ4+(โ7) = xโ11 , or
1. This is a closed interval, so we use brackets. Interval notation is [โ5, 5].
9. (mn)โ6 = mโ6 nโ6 , or
10. (tโ5 )4 = tโ5ยท4 = tโ20 , or
3. This interval is of unlimited extent in the negative direction, and the endpoint โ2 is included. Interval notation is
(โโ, โ2].
8. Scienti๏ฌc Notation
5. {x|7 7}.
This interval is of unlimited extent in the positive direction
and the endpoint 7 is not included. Interval notation is
(7, โ).
6. The endpoints โ2 and 2 are not included in the interval,
so we use parentheses. Interval notation is (โ2, 2).
7. The endpoints โ4 and 5 are not included in the interval,
so we use parentheses. Interval notation is (โ4, 5).
8. The interval is of unlimited extent in the positive direction, and the endpoint 1.7 is included. Internal notation
is [1.7, โ).
9. The endpoint โ5 is not included in the interval, so we use a
parenthesis before โ5. The endpoint โ2 is included in the
interval, so we use a bracket after โ2. Interval notation is
(โ5, โ2].
10. This interval is of unlimited
extent in the negative direcโ
tion, and theโendpoint 5 is not included. Interval notation is (โโ, 5).
1
x11
1
m6 n 6
2. This is a half-open interval. We use a parenthesis on
the left and a bracket on the right. Interval notation is
(โ3, โ1].
4. This interval is of unlimited extent in the positive direction, and the endpoint 3.8 is not included. Interval notation is (3.8, โ).
6y 4
x4
1
t20
1. Convert 18,500,000 to scienti๏ฌc notation.
We want the decimal point to be positioned between the
1 and the 8, so we move it 7 places to the left. Since
18,500,000 is greater than 10, the exponent must be positive.
18, 500, 000 = 1.85 ร 107
2. Convert 0.000786 to scienti๏ฌc notation.
We want the decimal point to be positioned between the
7 and the 8, so we move it 4 places to the right. Since
0.000786 is between 0 and 1, the exponent must be negative.
0.000786 = 7.86 ร 10โ4
3. Convert 0.0000000023 to scienti๏ฌc notation.
We want the decimal point to be positioned between the
2 and the 3, so we move it 9 places to the right. Since
0.0000000023 is between 0 and 1, the exponent must be
negative.
0.0000000023 = 2.3 ร 10โ9
4. Convert 8,927,000,000 to scienti๏ฌc notation.
We want the decimal point to be positioned between the
8 and the 9, so we move it 9 places to the left. Since
8,927,000,000 is greater than 10, the exponent must be
positive.
8, 927, 000, 000 = 8.927 ร 109
7. Integers as Exponents
5. Convert 4.3 ร 10โ8 to decimal notation.
1. 3โ6 =
2.
1
36
Using aโm =
1
= (0.2)5
(0.2)โ5
1
am
Using aโm =
The exponent is negative, so the number is between 0 and
1. We move the decimal point 8 places to the left.
1
am
4.3 ร 10โ8 = 0.000000043
c 2017 Pearson Education, Inc.
Copyright
Just-in-Time Review
3
6. Convert 5.17 ร 106 to decimal notation.
6.
The exponent is positive, so the number is greater than
10. We move the decimal point 6 places to the right.
5.17 ร 106 = 5, 170, 000
7. Convert 6.203 ร 1011 to decimal notation.
The exponent is positive, so the number is greater than
10. We move the decimal point 11 places to the right.
6.203 ร 1011 = 620, 300, 000, 000
8. Convert 2.94 ร 10โ5 to scienti๏ฌc notation.
The exponent is negative, so the number is between 0 and
1. We move the decimal point 5 places to the left.
2.94 ร 10โ5 = 0.0000294
4(8 โ 6)2 โ 4 ยท 3 + 2 ยท 8
31 + 190
2
4ยท2 โ4ยท3+2ยท8
Calculating in the
=
3+1
numerator and in
the denominator
4ยท4โ4ยท3+2ยท8
=
4
16 โ 12 + 16
=
4
4 + 16
=
4
20
=
4
=5
7. 64 รท [(โ4) รท (โ2)] = 64 รท 2 = 32
8.
9. Order of Operations
6[9 โ (3 โ 2)] + 4(2 โ 3)
= 6[9 โ 1] + 4(2 โ 3)
1.
3 + 18 รท 6 โ 3 = 3 + 3 โ 3
= 6โ3=3
2.
3.
= 6 ยท 8 + 4(โ1)
Dividing
= 48 โ 4
Adding and subtracting
= 44
= 5 ยท 3 + 8 ยท 32 + 4(6 โ 2)
= 5 ยท 3 + 8 ยท 32 + 4 ยท 4
Working inside parentheses
= 5ยท3+8ยท9+4ยท4
Evaluating 32
10. Introduction to Polynomials
= 15 + 72 + 16
Multiplying
= 87 + 16
Adding in order
= 103
from left to right
5[3 โ 8 ยท 32 + 4 ยท 6 โ 2]
1. 5 โ x6
The term of highest degree is โx6 , so the degree of the
polynomial is 6.
2. x2 y 5 โ x7 y + 4
= 5[3 โ 8 ยท 9 + 4 ยท 6 โ 2]
The degree of x2 y 5 is 2 + 5, or 7; the degree of โx7 y is
7 + 1, or 8; the degree of 4 is 0 (4 = 4×0 ). Thus the degree
of the polynomial is 8.
= 5[3 โ 72 + 24 โ 2]
= 5[โ69 + 24 โ 2]
= 5[โ45 โ 2]
3. 2a4 โ 3 + a2
= 5[โ47]
The term of highest degree is 2a4 , so the degree of the
polynomial is 4.
= โ235
4.
16 รท 4 ยท 4 รท 2 ยท 256
= 4 ยท 4 รท 2 ยท 256
= 16 รท 2 ยท 256
4. โ41 = โ41×0 , so the degree of the polynomial is 0.
Multiplying and dividing
in order from left to right
5. 4x โ x3 + 0.1×8 โ 2×5
The term of highest degree is 0.1×8 , so the degree of the
polynomial is 8.
= 8 ยท 256
6. x โ 3 has two terms. It is a binomial.
= 2048
5.
26 ยท 2โ3 รท 210 รท 2โ8
= 2 รท2
3
โ7
=2
10
รท2
โ8
รท2
โ8
7. 14y 5 has one term. It is a monomial.
1
8. 2y โ y 2 + 8 has three terms. It is a trinomial.
4
=2
11. Add and Subtract Polynomials
1.
(8y โ 1) โ (3 โ y)
= (8y โ 1) + (โ3 + y)
= (8 + 1)y + (โ1 โ 3)
= 9y โ 4
c 2017 Pearson Education, Inc.
Copyright
4
Just-in-Time Review
2.
(3×2 โ 2x โ x3 + 2) โ (5×2 โ 8x โ x3 + 4)
2.
= (3×2 โ 2x โ x3 + 2) + (โ5×2 + 8x + x3 โ 4)
(5x โ 3)2
= (5x)2 โ 2 ยท 5x ยท 3 + 32
= (3 โ 5)x + (โ2 + 8)x + (โ1 + 1)x + (2 โ 4)
2
[(A โ B)2 = A2 โ 2AB + B 2 ]
3
= โ2×2 + 6x โ 2
3.
= 25×2 โ 30x + 9
(2x + 3y + z โ 7) + (4x โ 2y โ z + 8)+
3.
(โ3x + y โ 2z โ 4)
(2x + 3y)2
= (2x)2 + 2(2x)(3y) + (3y)2
= (2 + 4 โ 3)x + (3 โ 2 + 1)y + (1 โ 1 โ 2)z+
[(A+B)2 = A2 +2AB +B 2 ]
(โ7 + 8 โ 4)
= 4×2 + 12xy + 9y 2
= 3x + 2y โ 2z โ 3
4.
4.
(3ab โ 4a b โ 2ab + 6)+
2
2
(a โ 5b)2
= a2 โ 2 ยท a ยท 5b + (5b)2
(โab โ 5a b + 8ab + 4)
2
2
[(AโB)2 = A2 โ2AB +B 2 ]
= (3 โ 1)ab + (โ4 โ 5)a b + (โ2 + 8)ab + (6 + 4)
2
2
= 2ab โ 9a b + 6ab + 10
2
5.
= a2 โ 10ab + 25b2
2
5.
(5×2 + 4xy โ 3y 2 + 2) โ (9×2 โ 4xy + 2y 2 โ 1)
= n2 โ 62
= (5x + 4xy โ 3y + 2) + (โ9x + 4xy โ 2y + 1)
2
2
2
2
= (5 โ 9)x2 + (4 + 4)xy + (โ3 โ 2)y 2 + (2 + 1)
= โ4×2 + 8xy โ 5y 2 + 3
(n + 6)(n โ 6)
[(A + B)(A โ B) = A2 โ B 2 ]
= n โ 36
2
6.
(3y + 4)(3y โ 4)
= (3y)2 โ 42
[(A + B)(A โ B) = A2 โ B 2 ]
= 9y 2 โ 16
12. Multiply Polynomials
1.
14. Factor Polynomials; The FOIL Method
(3a2 )(โ7a4 ) = [3(โ7)](a2 ยท a4 )
= โ21a6
2.
3.
4.
1. 3x + 18 = 3 ยท x + 3 ยท 6 = 3(x + 6)
(y โ 3)(y + 5)
Using FOIL
= y 2 + 2y โ 15
Collecting like terms
= (3x โ 1)(x2 + 6)
= x2 + 3x + 6x + 18
Using FOIL
= x2 + 9x + 18
Collecting like terms
t3 + 6t2 โ 2t โ 12
= (t + 6)(t2 โ 2)
Using FOIL
Collecting like terms
(2x + 3y)(2x + y)
2
= 4x + 2xy + 6xy + 3y
= 4x + 8xy + 3y
4.
= t2 (t + 6) โ 2(t + 6)
(2a + 3)(a + 5)
2
3×3 โ x2 + 18x โ 6
= x2 (3x โ 1) + 6(3x โ 1)
= 2a2 + 13a + 15
6.
3.
(x + 6)(x + 3)
= 2a2 + 10a + 3a + 15
5.
2. 2z 3 โ 8z 2 = 2z 2 ยท z โ 2z 2 ยท 4 = 2z 2 (z โ 4)
= y 2 + 5y โ 3y โ 15
2
Using FOIL
2
5. w2 โ 7w + 10
We look for two numbers with a product of 10 and a sum
of โ7. By trial, we determine that they are โ5 and โ2.
w2 โ 7w + 10 = (w โ 5)(w โ 2)
6. t2 + 8t + 15
(11t โ 1)(3t + 4)
We look for two numbers with a product of 15 and a sum
of 8. By trial, we determine that they are 3 and 5.
= 33t2 + 44t โ 3t โ 4 Using FOIL
= 33t2 + 41t โ 4
t2 + 8t + 15 = (t + 3)(t + 5)
7. 2n2 โ 20n โ 48 = 2(n2 โ 10n โ 24)
13. Special Products of Binomials
1.
Now factor n2 โ 10n โ 24. We look for two numbers with a
product of โ24 and a sum of โ10. By trial, we determine
that they are 2 and โ12. Then n2 โ 10n โ 24 =
(n + 2)(n โ 12). We must include the common factor, 2,
to have a factorization of the original trinomial.
(x + 3)2
= x2 + 2 ยท x ยท 3 + 32
[(A + B)2 = A2 + 2AB + B 2 ]
2n2 โ 20n โ 48 = 2(n + 2)(n โ 12)
2
= x + 6x + 9
c 2017 Pearson Education, Inc.
Copyright
Just-in-Time Review
5
8. y 4 โ 9y 3 + 14y 2 = y 2 (y 2 โ 9y + 14)
Now factor y โ 9y + 14. Look for two numbers with a
product of 14 and a sum of โ9. The numbers are โ2 and
โ7. Then y 2 โ 9y + 14 = (y โ 2)(y โ 7). We must include
the common factor, y 2 , in order to have a factorization of
the original trinomial.
2
4. Split the middle term using the numbers found in
step (3):
โ6x = โ12x + 6x
5. Factor by grouping.
8×2 โ 6x โ 9 = 8×2 โ 12x + 6x โ 9
= 4x(2x โ 3) + 3(2x โ 3)
y 4 โ 9y 3 + 14y 2 = y 2 (y โ 2)(y โ 7)
= (2x โ 3)(4x + 3)
9. 2n2 + 9n โ 56
1. There is no common factor other than 1 or โ1.
1. Factor out the largest common factor, 2.
2. The factorization must be of the form
(2n+ )(n+ ).
10t2 + 4t โ 6 = 2(5t2 + 2t โ 3)
3. Factor the constant term, โ56. The possibilities
are โ1 ยท 56, 1(โ56), โ2 ยท 28, 2(โ28), โ4 ยท 16, 4(โ16),
โ7 ยท 8, and 7(โ8). The factors can be written in
the opposite order as well: 56(โ1), โ56 ยท 1, 28(โ2),
โ28 ยท 2, 16(โ4), โ16 ยท 4, 8(โ7), and โ8 ยท 7.
4. Find a pair of factors for which the sum of the outer
and the inner products is the middle term, 9n. By
trial, we determine that the factorization is (2n โ
7)(n + 8).
Now factor 5t2 + 2t โ 3.
2. Multiply the leading coe๏ฌcient and the constant:
5(โ3) = โ15.
3. Try to factor โ15 so that the sum of the factors is
the coe๏ฌcient of the middle term, 2. The factors we
want are 5 and โ3.
4. Split the middle term using the numbers found in
step (3):
2t = 5t โ 3t.
10. 2y 2 + y โ 6
1. There is no common factor other than 1 or โ1.
2. The factorization
(2y+ )(y+ ).
2. 10t + 4t โ 6
2
must
be
of
the
form
3. Factor the constant term, โ6. The possibilities are
โ1 ยท 6, 1(โ6), โ2 ยท 3, and 2(โ3). The factors can be
written in the opposite order as well: 6(โ1), โ6 ยท 1,
3(โ2) and โ3 ยท 2.
4. Find a pair of factors for which the sum of the outer
and the inner products is the middle term, y. By
trial, we determine that the factorization is
(2y โ 3)(y + 2).
5. Factor by grouping.
5t2 + 2t โ 3 = 5t2 + 5t โ 3t โ 3
= 5t(t + 1) โ 3(t + 1)
= (t + 1)(5t โ 3)
Include the largest common factor in the ๏ฌnal factorization.
10t2 + 4t โ 6 = 2(t + 1)(5t โ 3)
3. 18a2 โ 51a + 15
1. Factor out the largest common factor, 3.
18a2 โ 51a + 15 = 3(6a2 โ 17a + 5)
Now factor 6a2 โ 17a + 5.
11. b2 โ 6bt + 5t2
We look for two numbers with a product of 5 and a sum
of โ6. By trial, we determine that they are โ1 and โ5.
b2 โ 6bt + 5t2 = (b โ t)(b โ 5t)
2. Multiply the leading coe๏ฌcient and the constant:
6(5) = 30.
3. Try to factor 30 so that the sum of the factors is the
coe๏ฌcient of the middle term, โ17. The factors we
want are โ2 and โ15.
12. x4 โ 7×2 โ 30 = (x2 )2 โ 7×2 โ 30
We look for two numbers with a product of โ30 and a sum
of โ7. By trial, we determine that they are 3 and โ10.
x4 โ 7×2 โ 30 = (x2 + 3)(x2 โ 10)
4. Split the middle term using the numbers found in
step (3):
โ17a = โ2a โ 15a.
5. Factor by grouping.
15. Factoring Polynomials; The ac-Method
6a2 โ 17a + 5 = 6a2 โ 2a โ 15a + 5
= 2a(3a โ 1) โ 5(3a โ 1)
= (3a โ 1)(2a โ 5)
1. 8×2 โ 6x โ 9
1. There is no common factor other than 1 or โ1.
2. Multiply the leading coe๏ฌcient and the constant:
8(โ9) = โ72.
Include the largest common factor in the ๏ฌnal factorization.
18a2 โ 51a + 15 = 3(3a โ 1)(2a โ 5)
3. Try to factor โ72 so that the sum of the factors is
the coe๏ฌcient of the middle term, โ6. The factors
we want are โ12 and 6.
c 2017 Pearson Education, Inc.
Copyright
6
Just-in-Time Review
5.
16. Special Factorizations
1. z 2 โ 81 = z 2 โ 92 = (z + 9)(z โ 9)
6.
7pq 4 โ 7py 4 = 7p(q 4 โ y 4 )
= 7p(q 2 + y 2 )(q + y)(q โ y)
7.
3m โ 7 = โ13 + m
Subtracting m
2m = โ6
Adding 7
m = โ3
Dividing by 2
2(x + 7) = 5x + 14
2x + 14 = 5x + 14
5. 9z 2 โ 12z + 4 = (3z)2 โ 2 ยท 3z ยท 2 + 22 = (3z โ 2)2
โ3x + 14 = 14
Subtracting 5x
a + 24a + 144a
โ3x = 0
Subtracting 14
= a(a2 + 24a + 144)
x=0
3
6.
2
= a(a2 + 2 ยท a ยท 12 + 122 )
= a(a + 12)2
The solution is 0.
8.
x3 + 64 = x3 + 43
5y โ (2y โ 10) = 25
5y โ 2y + 10 = 25
= (x + 4)(x2 โ 4x + 16)
3y + 10 = 25
m โ 216 = m โ 6
3
3
3
= (m โ 6)(m + 6m + 36)
2
9.
Dividing by 12
The solution is โ3.
x2 + 12x + 36 = x2 + 2 ยท x ยท 6 + 62
= (x + 6)2
8.
Adding 1
2m โ 7 = โ13
= 7p(q 2 + y 2 )(q 2 โ y 2 )
7.
Adding 5y
12y = 24
y=2
= 7p[(q 2 )2 โ (y 2 )2 ]
4.
12y โ 1 = 23
The solution is 2.
2. 16×2 โ 9 = (4x)2 โ 32 = (4x + 3)(4x โ 3)
3.
7y โ 1 = 23 โ 5y
3y = 15
Subtracting 10
y=5
Dividing by 3
The solution is 5.
3a โ 24a = 3a2 (a3 โ 8)
5
Collecting like terms
2
= 3a2 (a3 โ 23 )
= 3a2 (a โ 2)(a2 + 2a + 4)
10.
18. Inequality-Solving Principles
t6 + 1 = (t2 )3 + 13
= (t2 + 1)(t4 โ t2 + 1)
1.
p โฅ โ125
2.
7t = 70
t = 10
x 6
3
3
x < โ ยท6
2
Dividing by 7
The solution is 10.
2.
Subtracting 25
The solution set is [โ125, โ).
17. Equation-Solving Principles
1.
p + 25 โฅ โ100
9x โ 1 < 17
9x < 18
Adding 1
x<2
Dividing by 9
The solution set is (โโ, 2).
4.
โx โ 16 โฅ 40
โx โฅ 56
6x โ 15 = 45
6x = 60
Adding 15
x = 10
Dividing by 6
The solution is 10.
x โค โ56
Adding 6
Multiplying by โ1 and
reversing the inequality symbol
The solution set is (โโ, โ56].
c 2017 Pearson Education, Inc.
Copyright
Just-in-Time Review
5.
1
yโ6 < 3
3
1
y<9
3
y 0
and q 0, then โp < 0 so both coordinates of
the point (q, โp) are negative and (q, โp) is in the third
quadrant.
(x โ 2)2 + [y โ (โ7)]2 = 36
(x โ 2)2 + (y + 7)2 = 36
124. Let the point be (x, 0). We set the distance from (โ4, โ3)
to (x, 0) equal to the distance from (โ1, 5) to (x, 0) and
solve for x.
(โ4 โ x)2 + (โ3 โ 0)2 = (โ1 โ x)2 + (5 โ 0)2
โ
โ
16 + 8x + x2 + 9 = 1 + 2x + x2 + 25
โ
โ
x2 + 8x + 25 = x2 + 2x + 26
x2 + 8x + 25 = x2 + 2x + 26
Squaring both sides
8x + 25 = 2x + 26
The point is
c 2017 Pearson Education, Inc.
Copyright
1
,0 .
6
6x = 1
1
x=
6
26
Chapter 1: Graphs, Functions, and Models
125. Let (0, y) be the required point. We set the distance from
(โ2, 0) to (0, y) equal to the distance from (4, 6) to (0, y)
and solve for y.
[0 โ (โ2)]2 + (y โ 0)2 = (0 โ 4)2 + (y โ 6)2
4 + y 2 = 16 + y 2 โ 12y + 36
129.
4 + y 2 = 16 + y 2 โ 12y + 36
Squaring both sides
โ48 = โ12y
4=y
The point is (0, 4).
130.
x2 + y 2 = 1
02 + (โ1)2 ? 1
1 1 TRUE
126. We ๏ฌrst ๏ฌnd the distance between each pair of points.
For (โ1, โ3) and (โ4, โ9):
d1 = [โ1 โ (โ4)]2 + [โ3 โ (โ9)]2
โ
โ
= 32 + 62 = 9 + 36
โ
โ
= 45 = 3 5
x2 + y 2 = 1
2
โ 2
3
1
+ โ
? 1
2
2
3 1
+
4 4
1 1 TRUE
โ
3 1
,โ
lies on the unit circle.
2
2
(0, โ1) lies on the unit circle.
131.
x2 + y 2 = 1
โ 2 โ 2
2
2
+
? 1
โ
2
2
2 2
+
4 4
1 1 TRUE
โ โ
2
2
,
lies on the unit circle.
โ
2
2
132.
x2 + y 2 = 1
2 โ 2
1
3
+ โ
? 1
2
2
1 3
+
4 4
1 1 TRUE
โ
3
1
,โ
lies on the unit circle.
2
2
For (โ1, โ3) and (2, 3):
d2 = (โ1 โ 2)2 + (โ3 โ 3)2
โ
= (โ3)2 + (โ6)2 = 9 + 36
โ
โ
= 45 = 3 5
For (โ4, โ9) and (2, 3):
d3 = (โ4 โ 2)2 + (โ9 โ 3)2
โ
= (โ6)2 + (โ12)2 = 36 + 144
โ
โ
= 180 = 6 5
Since d1 + d2 = d3 , the points are collinear.
127. a) When the circle is positioned on a coordinate system
as shown in the text, the center lies on the y-axis
and is equidistant from (โ4, 0) and (0, 2).
Let (0, y) be the coordinates of the center.
(โ4โ0)2 +(0โy)2 = (0โ0)2 +(2โy)2
42 + y 2 = (2 โ y)2
133. See the answer section in the text.
16 + y 2 = 4 โ 4y + y 2
12 = โ4y
Exercise Set 1.2
โ3 = y
The center of the circle is (0, โ3).
b) Use the point (โ4, 0) and the center (0, โ3) to ๏ฌnd
the radius.
(โ4 โ 0)2 + [0 โ (โ3)]2 = r2
25 = r
2
5=r
The radius is 5 ft.
b h
,
by the midpoint formula.
2 2
By the distance formula, each of the distances โ
from P to
b2 + h 2
.
(0, h), from P to (0, 0), and from P to (b, 0) is
2
128. The coordinates of P are
1. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.
2. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.
3. This correspondence is a function, because each member
of the domain corresponds to exactly one member of the
range.
4. This correspondence is not a function, because there is a
member of the domain (1) that corresponds to more than
one member of the range (4 and 6).
5. This correspondence is not a function, because there is a
member of the domain (m) that corresponds to more than
one member of the range (A and B).
c 2017 Pearson Education, Inc.
Copyright
Document Preview (31 of 750 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Precalculus: Graphs and Models, A Right Triangle Approach, 6th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Isabella Jones
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)