Solution Manual for Precalculus Enhanced with Graphing Utilities, 8th Edition
Preview Extract
Chapter 2
Functions and Their Graphs
16. explicitly
Section 2.1
1.
17. a.
๏จ ๏ญ1,3๏ฉ
2. 3 ๏จ ๏ญ2 ๏ฉ ๏ญ 5 ๏จ ๏ญ2 ๏ฉ ๏ซ
2
1
1
๏ฝ 3 ๏จ 4 ๏ฉ ๏ญ 5 ๏จ ๏ญ2 ๏ฉ ๏ญ
2
๏จ ๏ญ2 ๏ฉ
๏ฝ 12 ๏ซ 10 ๏ญ
๏ฝ
43
or 21 12 or 21.5
2
4. 3 ๏ญ 2 x ๏พ 5
๏ญ2 x ๏พ 2
x ๏ผ ๏ญ1
Solution set: ๏ป x | x ๏ผ ๏ญ1๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ1๏ฉ
5.
๏ฐ
c. {(0, 1.411), (22, 1.305), (40, 1.229), (70, 1.121),
(100, 1.031)}
18. a.
Domain: {1.80, 1.78, 1.77}
Range: {87.1, 86.9, 92.0, 84.1, 86.4}
b.
c. {(1.80, 87.1), (1.78, 86.9), (1.77, 83.0),
(1.77, 84.1), (1.80, 86.4)}
5๏ซ2
19. Domain: {Elvis, Colleen, Kaleigh, Marissa}
Range: {Jan. 8, Mar. 15, Sept. 17}
Function
6. radicals
7. independent; dependent
20. Domain: {Bob, John, Chuck}
Range: {Beth, Diane, Linda, Marcia}
Not a function
8. a
9. c
10. False; g ๏น 0
11. False; every function is a relation, but not every
relation is a function. For example, the relation
x 2 ๏ซ y 2 ๏ฝ 1 is not a function.
12. verbally, numerically, graphically, algebraically
13. False; if the domain is not specified, we assume
it is the largest set of real numbers for which the
value of f is a real number.
14. False; if x is in the domain of a function f, we say
that f is defined at x, or f(x) exists.
15. difference quotient
b.
1
2
3. We must not allow the denominator to be 0.
x ๏ซ 4 ๏น 0 ๏ x ๏น ๏ญ4 ; Domain: ๏ป x x ๏น ๏ญ4๏ฝ .
๏ญ๏ฑ
Domain: {0,22,40,70,100}
Range: {1.031, 1.121, 1.229, 1.305, 1.411}
21. Domain: {20, 30, 40}
Range: {200, 300, 350, 425}
Not a function
22. Domain: {Less than 9th grade, 9th-12th grade,
High School graduate, Some college, College
graduate}
Range: {$18,120, $23,251, $36,055, $45,810,
$67,165}
Function
23. Domain: {-3, 2, 4}
Range: {6, 9, 10}
Not a function
24. Domain: {โ2, โ1, 3, 4}
Range: {3, 5, 7, 12}
Function
83
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
25. Domain: {1, 2, 3, 4}
Range: {3}
Function
34. Graph y ๏ฝ x . The graph passes the vertical line
test. Thus, the equation represents a function.
26. Domain: {0, 1, 2, 3}
Range: {โ2, 3, 7}
Function
27. Domain: {-4, 0, 3}
Range: {1, 3, 5, 6}
Not a function
35. x 2 ๏ฝ 8 ๏ญ y 2
Solve for y : y ๏ฝ ๏ฑ 8 ๏ญ x 2
๏จ
๏ฉ
28. Domain: {-4, -3, -2, -1}
Range: {0, 1, 2, 3, 4}
Not a function
For x ๏ฝ 0, y ๏ฝ ๏ฑ2 2 . Thus, 0, ๏ญ2 2 and
29. Domain: {โ1, 0, 2, 4}
Range: {-1, 3, 8}
Function
since a distinct x-value corresponds to two different
y-values.
30. Domain: {โ2, โ1, 0, 1}
Range: {3, 4, 16}
Function
36. y ๏ฝ ๏ฑ 1 ๏ญ 2 x
For x ๏ฝ 0, y ๏ฝ ๏ฑ1 . Thus, (0, 1) and (0, โ1) are on
the graph. This is not a function, since a distinct xvalue corresponds to two different y-values.
๏จ 0, 2 2 ๏ฉ are on the graph. This is not a function,
31. Graph y ๏ฝ 2 x 2 ๏ญ 3x ๏ซ 4 . The graph passes the
vertical line test. Thus, the equation represents a
function.
37. x ๏ฝ y 2
Solve for y : y ๏ฝ ๏ฑ x
For x ๏ฝ 1, y ๏ฝ ๏ฑ1 . Thus, (1, 1) and (1, โ1) are on
the graph. This is not a function, since a distinct
x-value corresponds to two different y-values.
38. x ๏ซ y 2 ๏ฝ 1
3
32. Graph y ๏ฝ x . The graph passes the vertical line
test. Thus, the equation represents a function.
Solve for y : y ๏ฝ ๏ฑ 1 ๏ญ x
For x ๏ฝ 0, y ๏ฝ ๏ฑ1 . Thus, (0, 1) and (0, โ1) are on
the graph. This is not a function, since a distinct xvalue corresponds to two different y-values.
39. Graph y ๏ฝ 3 x . The graph passes the vertical
line test. Thus, the equation represents a
function.
1
. The graph passes the vertical line
x
test. Thus, the equation represents a function.
33. Graph y ๏ฝ
84
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.1: Functions
3x ๏ญ 1
. The graph passes the vertical
x๏ซ2
line test. Thus, the equation represents a
function.
40. Graph y ๏ฝ
f.
f ๏จ x ๏ซ 1๏ฉ ๏ฝ 3 ๏จ x ๏ซ 1๏ฉ ๏ซ 2 ๏จ x ๏ซ 1๏ฉ ๏ญ 4
2
๏จ
๏ฉ
๏ฝ 3 x2 ๏ซ 2 x ๏ซ 1 ๏ซ 2x ๏ซ 2 ๏ญ 4
๏ฝ 3×2 ๏ซ 6 x ๏ซ 3 ๏ซ 2 x ๏ซ 2 ๏ญ 4
๏ฝ 3×2 ๏ซ 8 x ๏ซ 1
41.
g.
f ๏จ 2 x ๏ฉ ๏ฝ 3 ๏จ 2 x ๏ฉ ๏ซ 2 ๏จ 2 x ๏ฉ ๏ญ 4 ๏ฝ 12 x 2 ๏ซ 4 x ๏ญ 4
h.
f ๏จ x ๏ซ h๏ฉ ๏ฝ 3๏จ x ๏ซ h๏ฉ ๏ซ 2 ๏จ x ๏ซ h๏ฉ ๏ญ 4
2
2
๏จ
๏ฝ 3 x 2 ๏ซ 2 xh ๏ซ h 2 ๏ซ 2 x ๏ซ 2h ๏ญ 4
Solve for y: y ๏ฝ 2 x ๏ซ 3 or y ๏ฝ ๏ญ(2 x ๏ซ 3)
๏ฝ 3x 2 ๏ซ 6 xh ๏ซ 3h 2 ๏ซ 2 x ๏ซ 2h ๏ญ 4
For x ๏ฝ 1, y ๏ฝ 5 or y ๏ฝ ๏ญ5 . Thus, ๏จ1,5 ๏ฉ and
๏จ1, ๏ญ5 ๏ฉ are on the graph. This is not a function,
44.
since a distinct x-value corresponds to two
different y-values.
42. x 2 ๏ญ 4 y 2 ๏ฝ 1
Solve for y: x 2 ๏ญ 4 y 2 ๏ฝ 1
2
2
4 y ๏ฝ x ๏ญ1
x2 ๏ญ 1
y2 ๏ฝ
4
f ๏จ x ๏ฉ ๏ฝ ๏ญ 2×2 ๏ซ x ๏ญ 1
a.
f ๏จ 0 ๏ฉ ๏ฝ ๏ญ 2 ๏จ 0 ๏ฉ ๏ซ 0 ๏ญ 1 ๏ฝ ๏ญ1
b.
f ๏จ1๏ฉ ๏ฝ ๏ญ 2 ๏จ1๏ฉ ๏ซ 1 ๏ญ 1 ๏ฝ ๏ญ 2
c.
f ๏จ ๏ญ1๏ฉ ๏ฝ ๏ญ 2 ๏จ ๏ญ1๏ฉ ๏ซ ๏จ ๏ญ1๏ฉ ๏ญ 1 ๏ฝ ๏ญ 4
d.
f ๏จ ๏ญ x ๏ฉ ๏ฝ ๏ญ 2 ๏จ ๏ญ x ๏ฉ ๏ซ ๏จ ๏ญ x ๏ฉ ๏ญ1 ๏ฝ ๏ญ 2×2 ๏ญ x ๏ญ1
e.
๏ญ f ๏จ x ๏ฉ ๏ฝ ๏ญ ๏ญ2 x 2 ๏ซ x ๏ญ 1 ๏ฝ 2 x 2 ๏ญ x ๏ซ 1
f.
f ๏จ x ๏ซ 1๏ฉ ๏ฝ ๏ญ 2 ๏จ x ๏ซ 1๏ฉ ๏ซ ๏จ x ๏ซ 1๏ฉ ๏ญ 1
2
2
2
2
๏จ
๏จ
๏ฉ
๏ฝ ๏ญ 2 x2 ๏ซ 2 x ๏ซ 1 ๏ซ x ๏ซ 1 ๏ญ1
๏ฑ x2 ๏ญ 1
2
1
1๏ถ
๏ฆ
For x ๏ฝ 2, y ๏ฝ ๏ฑ . Thus, ๏ง 2, ๏ท and
2๏ธ
2
๏จ
1
๏ฆ
๏ถ
๏ง 2, ๏ญ ๏ท are on the graph. This is not a
2๏ธ
๏จ
function, since a distinct x-value corresponds to
two different y-values.
๏ฝ ๏ญ 2 x2 ๏ญ 4x ๏ญ 2 ๏ซ x
๏ฝ ๏ญ 2 x 2 ๏ญ 3x ๏ญ 2
g.
f ๏จ 2 x ๏ฉ ๏ฝ ๏ญ 2 ๏จ 2 x ๏ฉ ๏ซ ๏จ 2 x ๏ฉ ๏ญ 1 ๏ฝ ๏ญ 8×2 ๏ซ 2 x ๏ญ 1
h.
f ๏จ x ๏ซ h ๏ฉ ๏ฝ ๏ญ 2( x ๏ซ h) 2 ๏ซ ๏จ x ๏ซ h ๏ฉ ๏ญ 1
2
๏จ
๏ฉ
๏ฝ ๏ญ 2 x 2 ๏ซ 2 xh ๏ซ h 2 ๏ซ x ๏ซ h ๏ญ 1
๏ฝ ๏ญ 2 x 2 ๏ญ 4 xh ๏ญ 2h 2 ๏ซ x ๏ซ h ๏ญ 1
f ๏จ x ๏ฉ ๏ฝ 3x 2 ๏ซ 2 x ๏ญ 4
a.
f ๏จ 0๏ฉ ๏ฝ 3๏จ 0๏ฉ ๏ซ 2 ๏จ0๏ฉ ๏ญ 4 ๏ฝ ๏ญ 4
b.
f ๏จ1๏ฉ ๏ฝ 3 ๏จ1๏ฉ ๏ซ 2 ๏จ1๏ฉ ๏ญ 4 ๏ฝ 3 ๏ซ 2 ๏ญ 4 ๏ฝ 1
2
2
c.
f ๏จ ๏ญ1๏ฉ ๏ฝ 3 ๏จ ๏ญ1๏ฉ ๏ซ 2 ๏จ ๏ญ1๏ฉ ๏ญ 4 ๏ฝ 3 ๏ญ 2 ๏ญ 4 ๏ฝ ๏ญ3
d.
f ๏จ ๏ญ x ๏ฉ ๏ฝ 3 ๏จ ๏ญ x ๏ฉ ๏ซ 2 ๏จ ๏ญ x ๏ฉ ๏ญ 4 ๏ฝ 3x 2 ๏ญ 2 x ๏ญ 4
e.
๏ญ f ๏จ x ๏ฉ ๏ฝ ๏ญ 3x 2 ๏ซ 2 x ๏ญ 4 ๏ฝ ๏ญ3x 2 ๏ญ 2 x ๏ซ 4
45.
f ๏จ x๏ฉ ๏ฝ
a.
2
2
๏จ
๏ฉ
2
y๏ฝ
43.
๏ฉ
y ๏ฝ 2x ๏ซ 3
๏ฉ
b.
c.
x
2
x ๏ซ1
0
๏ฝ0
0 ๏ซ1 1
1
1
f ๏จ1๏ฉ ๏ฝ 2
๏ฝ
1 ๏ซ1 2
๏ญ1
๏ญ1
1
f ๏จ ๏ญ1๏ฉ ๏ฝ
๏ฝ
๏ฝ๏ญ
2
๏จ ๏ญ1๏ฉ ๏ซ 1 1 ๏ซ 1 2
f ๏จ 0๏ฉ ๏ฝ
0
2
๏ฝ
๏ญx
๏ญx
d.
f ๏จ๏ญx๏ฉ ๏ฝ
e.
๏ญx
๏ฆ x ๏ถ
๏ญ f ๏จ x๏ฉ ๏ฝ ๏ญ ๏ง 2
๏ท๏ฝ 2
๏ซ
๏ซ1
x
x
1
๏จ
๏ธ
85
Copyright ยฉ 2021 Pearson Education, Inc.
๏จ๏ญx๏ฉ ๏ซ1
2
๏ฝ
2
x ๏ซ1
Chapter 2: Functions and Their Graphs
f.
x ๏ซ1
f ๏จ x ๏ซ 1๏ฉ ๏ฝ
๏จ x ๏ซ 1๏ฉ ๏ซ 1
x ๏ซ1
๏ฝ
x2 ๏ซ 2 x ๏ซ 1 ๏ซ 1
x ๏ซ1
๏ฝ
g.
h.
46.
x2 ๏ซ 2 x ๏ซ 2
2x
2x
f ๏จ2x๏ฉ ๏ฝ
๏ฝ 2
2
๏จ 2x๏ฉ ๏ซ1 4x ๏ซ 1
f ๏จ x ๏ซ h๏ฉ ๏ฝ
f ๏จ x๏ฉ ๏ฝ
x๏ซh
๏จ x ๏ซ h ๏ฉ2 ๏ซ 1
๏ฝ
48.
x๏ซh
x 2 ๏ซ 2 xh ๏ซ h 2 ๏ซ 1
x2 ๏ญ1
x๏ซ4
02 ๏ญ 1 ๏ญ1
1
๏ฝ
๏ฝ๏ญ
0๏ซ4
4
4
a.
f ๏จ0๏ฉ ๏ฝ
b.
12 ๏ญ 1 0
f ๏จ1๏ฉ ๏ฝ
๏ฝ ๏ฝ0
1๏ซ 4 5
c.
f ๏จ ๏ญ1๏ฉ ๏ฝ
๏จ ๏ญ1๏ฉ2 ๏ญ 1
๏ญ1 ๏ซ 4
f ๏จ๏ญx๏ฉ ๏ฝ ๏ญ x ๏ซ 4 ๏ฝ x ๏ซ 4
e.
๏ญ f ๏จ x ๏ฉ ๏ฝ ๏ญ ๏จ x ๏ซ 4๏ฉ ๏ฝ ๏ญ x ๏ญ 4
f.
f ๏จ x ๏ซ 1๏ฉ ๏ฝ x ๏ซ 1 ๏ซ 4
g.
f ๏จ2x๏ฉ ๏ฝ 2x ๏ซ 4 ๏ฝ 2 x ๏ซ 4
h.
f ๏จ x ๏ซ h๏ฉ ๏ฝ x ๏ซ h ๏ซ 4
๏ฝ
0
๏ฝ0
3
f ๏จ x ๏ฉ ๏ฝ x2 ๏ซ x
a.
f ๏จ 0 ๏ฉ ๏ฝ 02 ๏ซ 0 ๏ฝ 0 ๏ฝ 0
b.
f ๏จ1๏ฉ ๏ฝ 12 ๏ซ 1 ๏ฝ 2
c.
f ๏จ ๏ญ1๏ฉ ๏ฝ
๏จ ๏ญ1๏ฉ2 ๏ซ ๏จ ๏ญ1๏ฉ ๏ฝ 1 ๏ญ 1 ๏ฝ 0 ๏ฝ 0
d.
f ๏จ๏ญx๏ฉ ๏ฝ
๏จ ๏ญ x ๏ฉ2 ๏ซ ๏จ ๏ญ x ๏ฉ ๏ฝ
e.
๏ญ f ๏จ x๏ฉ ๏ฝ ๏ญ
๏จ x ๏ซ x๏ฉ ๏ฝ ๏ญ x ๏ซ x
f.
f ๏จ x ๏ซ 1๏ฉ ๏ฝ
๏จ x ๏ซ 1๏ฉ2 ๏ซ ๏จ x ๏ซ 1๏ฉ
d.
x2 ๏ญ1
f ๏จ๏ญx๏ฉ ๏ฝ
๏ฝ
๏ญx ๏ซ 4
๏ญx ๏ซ 4
e.
๏ฆ x2 ๏ญ1 ๏ถ ๏ญ x2 ๏ซ 1
๏ญ f ๏จ x ๏ฉ ๏ฝ ๏ญ ๏ง๏ง
๏ท๏ท ๏ฝ x ๏ซ 4
๏จ x๏ซ4 ๏ธ
f.
๏จ x ๏ซ 1๏ฉ ๏ญ 1
๏จ x ๏ซ 1๏ฉ ๏ซ 4
f ๏จ x ๏ซ 1๏ฉ ๏ฝ
49.
4×2 ๏ญ1
2x ๏ซ 4
g.
f ๏จ2x๏ฉ ๏ฝ
h.
๏จ x ๏ซ h ๏ฉ2 ๏ญ 1 x 2 ๏ซ 2 xh ๏ซ h 2 ๏ญ 1
f ๏จ x ๏ซ h๏ฉ ๏ฝ
๏ฝ
x๏ซh๏ซ4
๏จ x ๏ซ h๏ฉ ๏ซ 4
2x ๏ซ 4
f ๏จ x๏ฉ ๏ฝ x ๏ซ 4
a.
f ๏จ0๏ฉ ๏ฝ 0 ๏ซ 4 ๏ฝ 0 ๏ซ 4 ๏ฝ 4
b.
f ๏จ1๏ฉ ๏ฝ 1 ๏ซ 4 ๏ฝ 1 ๏ซ 4 ๏ฝ 5
c.
f ๏จ ๏ญ1๏ฉ ๏ฝ ๏ญ 1 ๏ซ 4 ๏ฝ 1 ๏ซ 4 ๏ฝ 5
g.
f ๏จ2x๏ฉ ๏ฝ
๏จ 2 x ๏ฉ2 ๏ซ 2 x ๏ฝ
h.
f ๏จ x ๏ซ h๏ฉ ๏ฝ
4 x2 ๏ซ 2x
๏จ x ๏ซ h ๏ฉ2 ๏ซ ๏จ x ๏ซ h ๏ฉ
๏ฝ x 2 ๏ซ 2 xh ๏ซ h 2 ๏ซ x ๏ซ h
x2 ๏ซ 2 x ๏ซ 1 ๏ญ1 x2 ๏ซ 2 x
๏ฝ
x๏ซ5
x๏ซ5
๏ฝ
2
๏ฝ x 2 ๏ซ 3x ๏ซ 2
2
๏จ 2 x ๏ฉ2 ๏ญ 1
2
x2 ๏ญ x
๏ฝ x2 ๏ซ 2 x ๏ซ 1 ๏ซ x ๏ซ 1
๏จ ๏ญ x ๏ฉ2 ๏ญ 1
๏ฝ
47.
d.
2
f ๏จ x๏ฉ ๏ฝ
2x ๏ซ1
3x ๏ญ 5
2 ๏จ0๏ฉ ๏ซ 1
0 ๏ซ1
1
๏ฝ๏ญ
0๏ญ5
5
a.
f ๏จ0๏ฉ ๏ฝ
b.
f ๏จ1๏ฉ ๏ฝ
c.
f ๏จ ๏ญ1๏ฉ ๏ฝ
d.
f ๏จ๏ญx๏ฉ ๏ฝ
e.
๏ฆ 2x ๏ซ 1 ๏ถ ๏ญ 2x ๏ญ1
๏ญ f ๏จ x๏ฉ ๏ฝ ๏ญ ๏ง
๏ท๏ฝ
๏จ 3x ๏ญ 5 ๏ธ 3x ๏ญ 5
86
Copyright ยฉ 2021 Pearson Education, Inc.
3๏จ0๏ฉ ๏ญ 5
2 ๏จ1๏ฉ ๏ซ 1
3 ๏จ1๏ฉ ๏ญ 5
๏ฝ
๏ฝ
2 ๏ซ1 3
3
๏ฝ
๏ฝ๏ญ
3๏ญ5 ๏ญ2
2
2 ๏จ ๏ญ1๏ฉ ๏ซ 1
3 ๏จ ๏ญ1๏ฉ ๏ญ 5
2๏จ๏ญx๏ฉ ๏ซ1
3๏จ ๏ญx๏ฉ ๏ญ 5
๏ฝ
๏ญ 2 ๏ซ 1 ๏ญ1 1
๏ฝ
๏ฝ
๏ญ3 ๏ญ 5 ๏ญ 8 8
๏ฝ
๏ญ 2x ๏ซ 1 2x ๏ญ1
๏ฝ
๏ญ3 x ๏ญ 5 3 x ๏ซ 5
Section 2.1: Functions
f.
f ๏จ x ๏ซ 1๏ฉ ๏ฝ
g.
f ๏จ2x๏ฉ ๏ฝ
h.
50.
2 ๏จ 2x ๏ฉ ๏ซ 1
3๏จ2x๏ฉ ๏ญ 5
๏ฝ
๏ฝ
2x ๏ซ 2 ๏ซ1 2x ๏ซ 3
๏ฝ
3x ๏ซ 3 ๏ญ 5 3x ๏ญ 2
4x ๏ซ1
6x ๏ญ 5
2 ๏จ x ๏ซ h๏ฉ ๏ซ1
3๏จ x ๏ซ h๏ฉ ๏ญ 5
2 x ๏ซ 2h ๏ซ 1
3 x ๏ซ 3h ๏ญ 5
๏ฝ
๏จ0 ๏ซ 2๏ฉ
๏ฝ 1๏ญ
2
1
c.
f ๏จ ๏ญ1๏ฉ ๏ฝ 1 ๏ญ
๏จ1 ๏ซ 2 ๏ฉ
f ๏จ ๏ญ x๏ฉ ๏ฝ 1 ๏ญ
2
๏ฝ 1๏ญ
1
๏จ ๏ญ1 ๏ซ 2 ๏ฉ
2
1 3
๏ฝ
4 4
1 8
๏ฝ
9 9
1
๏ฝ 1๏ญ ๏ฝ 0
1
57. F ( x ) ๏ฝ
x3 ๏ซ x
x3 ๏ซ x ๏น 0
f ๏จ x ๏ซ 1๏ฉ ๏ฝ 1 ๏ญ
1
๏จ x ๏ซ 1 ๏ซ 2๏ฉ
๏จ 2x ๏ซ 2๏ฉ
2
๏ฝ 1๏ญ
2
๏ฝ 1๏ญ
1
๏จ x ๏ซ 3๏ฉ
4 ๏จ x ๏ซ 1๏ฉ
2
x ๏น 0, x 2 ๏น ๏ญ1
Domain: ๏ป x x ๏น 0๏ฝ .
58. G ( x) ๏ฝ
x ๏ญ 4x
x ๏ญ 4x ๏น 0
2
x( x 2 ๏ญ 4) ๏น 0
x ๏น 0, x 2 ๏น 4
x ๏น 0, x ๏น ๏ฑ2
1
๏จ x ๏ซ h ๏ซ 2 ๏ฉ2
f ( x) ๏ฝ x 2 ๏ซ 2
Domain: ๏ป x x is any real number๏ฝ .
x๏ซ4
3
3
1
f ( x) ๏ฝ ๏ญ5 x ๏ซ 4
f ( x) ๏ฝ
x๏ญ2
x( x 2 ๏ซ 1) ๏น 0
Domain: ๏ป x x is any real number๏ฝ .
53.
x 2 ๏น 4 ๏ x ๏น ๏ฑ2
Domain: ๏ป x x ๏น ๏ญ 2, x ๏น 2๏ฝ .
๏จ ๏ญ x ๏ซ 2๏ฉ 2
1
2x
2
x ๏ญ4
x ๏ญ4 ๏น 0
1
f ๏จ x ๏ซ h๏ฉ ๏ฝ 1๏ญ
x
2
2
f.
h.
52.
56. h( x ) ๏ฝ
e.
f ๏จ2x๏ฉ ๏ฝ 1 ๏ญ
x2 ๏ซ 1
Domain: ๏ป x x is any real number๏ฝ .
x ๏ญ 16
x ๏ญ 16 ๏น 0
๏ฆ
๏ถ
1
1
๏ท๏ฝ
๏ญ f ๏จ x ๏ฉ ๏ฝ ๏ญ ๏ง1 ๏ญ
๏ญ1
2
๏ง ๏จ x ๏ซ 2 ๏ฉ ๏ท ๏จ x ๏ซ 2 ๏ฉ2
๏จ
๏ธ
g.
x2
x 2 ๏น 16 ๏ x ๏น ๏ฑ4
Domain: ๏ป x x ๏น ๏ญ 4, x ๏น 4๏ฝ .
1
f ๏จ1๏ฉ ๏ฝ 1 ๏ญ
f ( x) ๏ฝ
2
๏จ x ๏ซ 2 ๏ฉ2
f ๏จ0๏ฉ ๏ฝ 1 ๏ญ
54.
55. g ( x) ๏ฝ
1
b.
d.
51.
3 ๏จ x ๏ซ 1๏ฉ ๏ญ 5
f ๏จ x ๏ซ h๏ฉ ๏ฝ
f ๏จ x๏ฉ ๏ฝ 1๏ญ
a.
2 ๏จ x ๏ซ 1๏ฉ ๏ซ 1
Domain: ๏ป x x ๏น ๏ญ 2, x ๏น 0, x ๏น 2๏ฝ .
59. h( x ) ๏ฝ 3x ๏ญ 12
3x ๏ญ 12 ๏ณ 0
3x ๏ณ 12
x๏ณ4
Domain: ๏ป x x ๏ณ 4๏ฝ .
x ๏ซ1
2 x2 ๏ซ 8
Domain: ๏ป x x is any real number๏ฝ .
87
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
Also 3t ๏ญ 21 ๏น 0
60. G ( x) ๏ฝ 1 ๏ญ x
1๏ญ x ๏ณ 0
๏ญ x ๏ณ ๏ญ1
x ๏ฃ1
Domain: ๏ป x x ๏ฃ 1๏ฝ .
61. p( x) ๏ฝ
3t ๏ญ 21 ๏น 0
3t ๏น 21
t๏น7
Domain: ๏ปt t ๏ณ 4, t ๏น 7๏ฝ .
x
2x ๏ซ 3 ๏ญ1
z ๏ซ3
z๏ญ2
z ๏ซ3๏ณ 0
66. h( z ) ๏ฝ
2x ๏ซ 3 ๏ญ1 ๏ฝ 0
2x ๏ซ 3 ๏ฝ 1
z ๏ณ ๏ญ3
Also z ๏ญ 2 ๏น 0
z๏น2
Domain: ๏ป z z ๏ณ ๏ญ3, z ๏น 2๏ฝ .
2 x ๏ซ 3 ๏ฝ ๏ญ1 or 2 x ๏ซ 3 ๏ฝ 1
2 x ๏ฝ ๏ญ4
2 x ๏ฝ ๏ญ2
x ๏ฝ ๏ญ2
x ๏ฝ ๏ญ1
Domain: ๏ป x x ๏น ๏ญ 2, x ๏น ๏ญ1๏ฝ .
67.
62. p( x) ๏ฝ
x ๏ญ1
3x ๏ญ 1 ๏ญ 4
Domain: ๏ป x x is any real number๏ฝ .
68. g (t ) ๏ฝ ๏ญt 2 ๏ซ 3 t 2 ๏ซ 7t
3x ๏ญ 1 ๏ญ 4 ๏ฝ 0
Domain: ๏ปt t is any real number๏ฝ .
3x ๏ญ 1 ๏ฝ 4
3 x ๏ญ 1 ๏ฝ ๏ญ4 or 3 x ๏ญ 1 ๏ฝ 4
69. M (t ) ๏ฝ 5
3 x ๏ฝ ๏ญ3
3x ๏ฝ 5
5
x ๏ฝ ๏ญ1
x๏ฝ
3
๏ฌ
5๏ผ
Domain: ๏ญ x x ๏น ๏ญ1, x ๏น ๏ฝ .
3๏พ
๏ฎ
63.
t ๏ซ1
2
t ๏ญ 5t ๏ญ 14
t 2 ๏ญ 5t ๏ญ 14 ๏ฝ 0
(t ๏ซ 2)(t ๏ญ 7) ๏ฝ 0
t ๏ซ 2 ๏ฝ 0 or t ๏ญ 7 ๏ฝ 0
t ๏ฝ ๏ญ2
t ๏ฝ7
Domain: ๏ปt t ๏น ๏ญ2, x ๏น 7๏ฝ .
x
f ( x) ๏ฝ
f ( x) ๏ฝ 3 5 x ๏ญ 4
x๏ญ4
x๏ญ4 ๏พ 0
x๏พ4
Domain: ๏ป x x ๏พ 4๏ฝ .
70. N ( p ) ๏ฝ 5
2 p ๏ญ 98
2
2 p ๏ญ 98 ๏ฝ 0
2( p 2 ๏ญ 49) ๏ฝ 0
๏ญx
๏ญ x๏ญ2
64. q ( x ) ๏ฝ
p
2
2( p ๏ซ 7)( p ๏ญ 7) ๏ฝ 0
p ๏ซ 7 ๏ฝ 0 or p ๏ญ 7 ๏ฝ 0
๏ญx ๏ญ 2 ๏พ 0
๏ญx ๏พ 2
p ๏ฝ ๏ญ7
Domain: ๏ป p p ๏น ๏ญ7, x ๏น 7๏ฝ .
x ๏ผ ๏ญ2
Domain: ๏ป x x ๏ผ ๏ญ 2๏ฝ .
65. P (t ) ๏ฝ
p๏ฝ7
71.
t๏ญ4
3t ๏ญ 21
f ( x) ๏ฝ 3x ๏ซ 4
a.
g ( x) ๏ฝ 2 x ๏ญ 3
( f ๏ซ g )( x) ๏ฝ 3 x ๏ซ 4 ๏ซ 2 x ๏ญ 3 ๏ฝ 5 x ๏ซ 1
Domain: ๏ป x x is any real number๏ฝ .
t๏ญ4๏ณ 0
t๏ณ4
88
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.1: Functions
b.
( f ๏ญ g )( x) ๏ฝ (3 x ๏ซ 4) ๏ญ (2 x ๏ญ 3)
๏ฝ 3x ๏ซ 4 ๏ญ 2 x ๏ซ 3
๏ฝ x๏ซ7
Domain: ๏ป x x is any real number๏ฝ .
c.
e.
( f ๏ซ g )(3) ๏ฝ 5(3) ๏ญ 1 ๏ฝ 15 ๏ญ 1 ๏ฝ 14
f.
( f ๏ญ g )(4) ๏ฝ ๏ญ4 ๏ซ 3 ๏ฝ ๏ญ1
g.
( f ๏ g )(2) ๏ฝ 6(2) 2 ๏ญ 2 ๏ญ 2
๏ฝ 6(4) ๏ญ 2 ๏ญ 2
๏ฝ 24 ๏ญ 2 ๏ญ 2 ๏ฝ 20
( f ๏ g )( x) ๏ฝ (3x ๏ซ 4)(2 x ๏ญ 3)
๏ฝ 6 x 2 ๏ญ 9 x ๏ซ 8 x ๏ญ 12
h.
๏ฝ 6 x 2 ๏ญ x ๏ญ 12
Domain: ๏ป x x is any real number๏ฝ .
d.
73.
๏ฆf ๏ถ
3x ๏ซ 4
๏ง ๏ท ( x) ๏ฝ
2x ๏ญ 3
๏จg๏ธ
b.
( f ๏ซ g )(3) ๏ฝ 5(3) ๏ซ 1 ๏ฝ 15 ๏ซ 1 ๏ฝ 16
f.
( f ๏ญ g )(4) ๏ฝ 4 ๏ซ 7 ๏ฝ 11
g.
( f ๏ g )(2) ๏ฝ 6(2) 2 ๏ญ 2 ๏ญ 12 ๏ฝ 24 ๏ญ 2 ๏ญ 12 ๏ฝ 10
h.
๏ฆ f ๏ถ
3(1) ๏ซ 4 3 ๏ซ 4 7
๏ฝ
๏ฝ
๏ฝ ๏ญ7
๏ง ๏ท (1) ๏ฝ
2(1) ๏ญ 3 2 ๏ญ 3 ๏ญ1
๏จg๏ธ
a.
g ( x) ๏ฝ 3x ๏ญ 2
c.
Domain: ๏ป x x is any real number๏ฝ .
c.
( f ๏ญ g )( x) ๏ฝ (2 x ๏ซ 1) ๏ญ (3 x ๏ญ 2)
๏ฝ 2 x ๏ซ 1 ๏ญ 3x ๏ซ 2
๏ฝ ๏ญx ๏ซ 3
Domain: ๏ป x x is any real number๏ฝ .
d.
๏ฆ f ๏ถ
2x ๏ซ1
๏ง ๏ท ( x) ๏ฝ
g
x๏ญ2
3
๏จ ๏ธ
3x ๏ญ 2 ๏น 0
๏ฆ f ๏ถ
x ๏ญ1
๏ง ๏ท ( x) ๏ฝ 2
g
2x
๏จ ๏ธ
Domain: ๏ป x x ๏น 0๏ฝ .
e.
( f ๏ซ g )(3) ๏ฝ 2(3) 2 ๏ซ 3 ๏ญ 1
๏ฝ 2(9) ๏ซ 3 ๏ญ 1
๏ฝ 18 ๏ซ 3 ๏ญ 1 ๏ฝ 20
f.
( f ๏ญ g )(4) ๏ฝ ๏ญ 2(4) 2 ๏ซ 4 ๏ญ 1
๏ฝ ๏ญ2(16) ๏ซ 4 ๏ญ 1
๏ฝ ๏ญ32 ๏ซ 4 ๏ญ 1 ๏ฝ ๏ญ29
g.
( f ๏ g )(2) ๏ฝ 2(2)3 ๏ญ 2(2) 2
๏ฝ 2(8) ๏ญ 2(4)
๏ฝ 16 ๏ญ 8 ๏ฝ 8
( f ๏ g )( x) ๏ฝ (2 x ๏ซ 1)(3 x ๏ญ 2)
๏ฝ 6 x2 ๏ญ x ๏ญ 2
Domain: ๏ป x x is any real number๏ฝ .
( f ๏ g )( x) ๏ฝ ( x ๏ญ 1)(2 x 2 ) ๏ฝ 2 x 3 ๏ญ 2 x 2
Domain: ๏ป x x is any real number๏ฝ .
๏ฝ 6 x 2 ๏ญ 4 x ๏ซ 3x ๏ญ 2
d.
( f ๏ญ g )( x) ๏ฝ ( x ๏ญ 1) ๏ญ (2 x 2 )
๏ฝ ๏ญ 2 x2 ๏ซ x ๏ญ 1
( f ๏ซ g )( x) ๏ฝ 2 x ๏ซ 1 ๏ซ 3 x ๏ญ 2 ๏ฝ 5 x ๏ญ 1
Domain: ๏ป x x is any real number๏ฝ .
b.
( f ๏ซ g )( x) ๏ฝ x ๏ญ 1 ๏ซ 2 x 2 ๏ฝ 2 x 2 ๏ซ x ๏ญ 1
๏ฝ x ๏ญ1 ๏ญ 2×2
e.
f ( x) ๏ฝ 2 x ๏ซ 1
g ( x) ๏ฝ 2 x 2
Domain: ๏ป x x is any real number๏ฝ .
3
2
๏ฌ
3๏ผ
Domain: ๏ญ x x ๏น ๏ฝ .
2๏พ
๏ฎ
72.
f ( x) ๏ฝ x ๏ญ 1
a.
2x ๏ญ 3 ๏น 0 ๏ 2x ๏น 3 ๏ x ๏น
๏ฆ f ๏ถ
2(1) ๏ซ 1 2 ๏ซ 1 3
๏ฝ
๏ฝ ๏ฝ3
๏ง ๏ท (1) ๏ฝ
g
3(1)
๏ญ2 3๏ญ2 1
๏จ ๏ธ
h.
๏ฆ f ๏ถ
1๏ญ1
0
0
๏ฝ
๏ฝ ๏ฝ0
๏ง ๏ท (1) ๏ฝ
2
g
2(1)
2
2(1)
๏จ ๏ธ
2
3
2๏ผ
๏ฌ
Domain: ๏ญ x x ๏น ๏ฝ .
3๏พ
๏ฎ
3x ๏น 2 ๏ x ๏น
89
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
74.
f ( x) ๏ฝ 2 x 2 ๏ซ 3
a.
g ( x) ๏ฝ 4 x3 ๏ซ 1
b.
Domain: ๏ป x x ๏ณ 0๏ฝ .
( f ๏ซ g )( x) ๏ฝ 2 x 2 ๏ซ 3 ๏ซ 4 x 3 ๏ซ 1
๏ฝ 4 x3 ๏ซ 2 x 2 ๏ซ 4
Domain: ๏ป x x is any real number๏ฝ .
b.
๏จ
๏ฉ ๏จ
c.
๏ฉ
d.
3
๏ฝ 2x ๏ซ 3 ๏ญ 4x ๏ญ1
๏ฝ ๏ญ 4 x3 ๏ซ 2 x 2 ๏ซ 2
๏จ
๏ฉ๏จ
3x ๏น 5 ๏ x ๏น
๏ฉ
( f ๏ g )( x) ๏ฝ 2 x 2 ๏ซ 3 4 x 3 ๏ซ 1
๏ฝ 8 x5 ๏ซ 12 x3 ๏ซ 2 x 2 ๏ซ 3
Domain: ๏ป x x is any real number๏ฝ .
d.
๏ฆ f ๏ถ
x
๏ง ๏ท ( x) ๏ฝ
3x ๏ญ 5
๏จg๏ธ
x ๏ณ 0 and 3 x ๏ญ 5 ๏น 0
5
3
๏ฌ
5๏ผ
Domain: ๏ญ x x ๏ณ 0 and x ๏น ๏ฝ .
3๏พ
๏ฎ
Domain: ๏ป x x is any real number๏ฝ .
c.
( f ๏ g )( x) ๏ฝ x (3x ๏ญ 5) ๏ฝ 3x x ๏ญ 5 x
Domain: ๏ป x x ๏ณ 0๏ฝ .
( f ๏ญ g )( x) ๏ฝ 2 x 2 ๏ซ 3 ๏ญ 4 x3 ๏ซ 1
2
( f ๏ญ g )( x) ๏ฝ x ๏ญ (3 x ๏ญ 5) ๏ฝ x ๏ญ 3 x ๏ซ 5
e.
( f ๏ซ g )(3) ๏ฝ 3 ๏ซ 3(3) ๏ญ 5
๏ฝ 3 ๏ซ9๏ญ5 ๏ฝ 3 ๏ซ 4
๏ฆ f ๏ถ
2×2 ๏ซ 3
(
x
)
๏ฝ
๏ง ๏ท
4 x3 ๏ซ 1
๏จg๏ธ
4 x3 ๏ซ 1 ๏น 0
f.
( f ๏ญ g )(4) ๏ฝ 4 ๏ญ 3(4) ๏ซ 5
๏ฝ 2 ๏ญ 12 ๏ซ 5 ๏ฝ ๏ญ5
4 x3 ๏น ๏ญ1
g.
3
1
1
2
x3 ๏น ๏ญ ๏ x ๏น 3 ๏ญ ๏ฝ ๏ญ
4
4
2
3 ๏ผ
๏ฌ๏ฏ
2๏ฏ
Domain: ๏ญ x x ๏น ๏ญ
๏ฝ.
2
๏ฎ๏ฏ
๏พ๏ฏ
e.
๏ฝ 6 2 ๏ญ5 2 ๏ฝ 2
h.
( f ๏ซ g )(3) ๏ฝ 4(3)3 ๏ซ 2(3) 2 ๏ซ 4
76.
๏ฝ 4(27) ๏ซ 2(9) ๏ซ 4
b.
c.
( f ๏ g )(2) ๏ฝ 8(2)5 ๏ซ 12(2)3 ๏ซ 2(2) 2 ๏ซ 3
๏ฝ 256 ๏ซ 96 ๏ซ 8 ๏ซ 3 ๏ฝ 363
a.
d.
๏ฆ f ๏ถ
2(1)2 ๏ซ 3 2(1) ๏ซ 3 2 ๏ซ 3 5
๏ฝ
๏ฝ
๏ฝ ๏ฝ1
๏ง ๏ท (1) ๏ฝ
4(1)3 ๏ซ 1 4(1) ๏ซ 1 4 ๏ซ 1 5
๏จg๏ธ
f ( x) ๏ฝ x
( f ๏ญ g )( x) ๏ฝ x ๏ญ x
( f ๏ g )( x) ๏ฝ x ๏ x ๏ฝ x x
Domain: ๏ป x x is any real number๏ฝ .
๏ฝ 8(32) ๏ซ 12(8) ๏ซ 2(4) ๏ซ 3
75.
( f ๏ซ g )( x) ๏ฝ x ๏ซ x
Domain: ๏ป x x is any real number๏ฝ .
๏ฝ ๏ญ256 ๏ซ 32 ๏ซ 2 ๏ฝ ๏ญ222
h.
g ( x) ๏ฝ x
Domain: ๏ป x x is any real number๏ฝ .
( f ๏ญ g )(4) ๏ฝ ๏ญ 4(4)3 ๏ซ 2(4) 2 ๏ซ 2
๏ฝ ๏ญ4(64) ๏ซ 2(16) ๏ซ 2
g.
๏ฆ f ๏ถ
1
1
1
1
๏ฝ
๏ฝ
๏ฝ๏ญ
๏ง ๏ท (1) ๏ฝ
g
3(1)
๏ญ
5
3
๏ญ
5
๏ญ
2
2
๏จ ๏ธ
f ( x) ๏ฝ x
a.
๏ฝ 108 ๏ซ 18 ๏ซ 4 ๏ฝ 130
f.
( f ๏ g )(2) ๏ฝ 3(2) 2 ๏ญ 5 2
g ( x) ๏ฝ 3x ๏ญ 5
( f ๏ซ g )( x) ๏ฝ x ๏ซ 3 x ๏ญ 5
Domain: ๏ป x x ๏ณ 0๏ฝ .
x
๏ฆ f ๏ถ
๏ง ๏ท ( x) ๏ฝ
x
๏จg๏ธ
Domain: ๏ป x x ๏น 0๏ฝ .
e.
( f ๏ซ g )(3) ๏ฝ 3 ๏ซ 3 ๏ฝ 3 ๏ซ 3 ๏ฝ 6
f.
( f ๏ญ g )(4) ๏ฝ 4 ๏ญ 4 ๏ฝ 4 ๏ญ 4 ๏ฝ 0
g.
( f ๏ g )(2) ๏ฝ 2 2 ๏ฝ 2 ๏ 2 ๏ฝ 4
90
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.1: Functions
h.
77.
1 1
๏ฆ f ๏ถ
๏ฝ ๏ฝ1
๏ง ๏ท (1) ๏ฝ
1 1
๏จg๏ธ
f ( x) ๏ฝ 1 ๏ซ
a.
1
x
g ( x) ๏ฝ
( f ๏ซ g )( x) ๏ฝ 1 ๏ซ
c.
( f ๏ญ g )( x) ๏ฝ 1 ๏ซ
1
x
x๏ฃ4
Domain: ๏ป x 1 ๏ฃ x ๏ฃ 4๏ฝ .
1 1
2
๏ซ ๏ฝ 1๏ซ
x x
x
d.
1 1
๏ญ ๏ฝ1
x x
Domain: ๏ป x x ๏น 0๏ฝ .
c.
Domain: ๏ป x 1 ๏ฃ x ๏ผ 4๏ฝ .
e.
78.
( f ๏ญ g )(4) ๏ฝ 1
g.
( f ๏ g )(2) ๏ฝ
h.
๏ฆ f ๏ถ
๏ง ๏ท (1) ๏ฝ 1 ๏ซ 1 ๏ฝ 2
๏จg๏ธ
f ( x) ๏ฝ x ๏ญ 1
a.
f.
( f ๏ญ g )(4) ๏ฝ 4 ๏ญ 1 ๏ญ 4 ๏ญ 4
๏ฝ 3 ๏ญ 0 ๏ฝ 3 ๏ญ0 ๏ฝ 3
g.
( f ๏ g )(2) ๏ฝ ๏ญ(2)2 ๏ซ 5(2) ๏ญ 4
๏ฝ ๏ญ4 ๏ซ 10 ๏ญ 4 ๏ฝ 2
2 5
๏ฝ
3 3
f.
( f ๏ซ g )(3) ๏ฝ 3 ๏ญ 1 ๏ซ 4 ๏ญ 3
๏ฝ 2 ๏ซ 1 ๏ฝ 2 ๏ซ1
1 x ๏ซ1
๏ฆ f ๏ถ
x ๏ฝ x ๏ฝ x ๏ซ1 ๏ x ๏ฝ x ๏ซ1
d. ๏ง ๏ท ( x) ๏ฝ
1
1
x 1
๏จg๏ธ
x
x
Domain: ๏ป x x ๏น 0๏ฝ .
1๏ซ
( f ๏ซ g )(3) ๏ฝ 1 ๏ซ
๏ฆ f ๏ถ
x ๏ญ1
x ๏ญ1
๏ฝ
๏ง ๏ท ( x) ๏ฝ
4๏ญ x
4๏ญ x
๏จg๏ธ
x ๏ญ 1 ๏ณ 0 and 4 ๏ญ x ๏พ 0
x ๏ณ 1 and ๏ญ x ๏พ ๏ญ4
x๏ผ4
๏ฆ 1๏ถ1 1 1
( f ๏ g )( x) ๏ฝ ๏ง1 ๏ซ ๏ท ๏ฝ ๏ซ 2
๏จ x๏ธx x x
Domain: ๏ป x x ๏น 0๏ฝ .
e.
h.
1
1
1 1 3
๏ซ
๏ฝ ๏ซ ๏ฝ
2 (2) 2 2 4 4
79.
๏ฆ f ๏ถ
1 ๏ญ1
0
๏ฝ
๏ฝ 0 ๏ฝ0
๏ง ๏ท (1) ๏ฝ
g
4
1
3
๏ญ
๏จ ๏ธ
f ( x) ๏ฝ
a.
2x ๏ซ 3
3x ๏ญ 2
( f ๏ซ g )( x) ๏ฝ x ๏ญ 1 ๏ซ 4 ๏ญ x
g ( x) ๏ฝ
3x ๏ญ 2 ๏น 0
3x ๏น 2 ๏ x ๏น 2
3
Domain: x x ๏น 2 .
3
๏ป
x๏ฃ4
4x
3x ๏ญ 2
2x ๏ซ 3
4x
๏ซ
3x ๏ญ 2 3x ๏ญ 2
2x ๏ซ 3 ๏ซ 4x 6x ๏ซ 3
๏ฝ
๏ฝ
3x ๏ญ 2
3x ๏ญ 2
( f ๏ซ g )( x) ๏ฝ
g ( x) ๏ฝ 4 ๏ญ x
x ๏ญ 1 ๏ณ 0 and 4 ๏ญ x ๏ณ 0
x ๏ณ 1 and ๏ญ x ๏ณ ๏ญ4
Domain: ๏ป x 1 ๏ฃ x ๏ฃ 4๏ฝ .
b.
๏จ x ๏ญ 1 ๏ฉ๏จ 4 ๏ญ x ๏ฉ
๏ฝ ๏ญ x2 ๏ซ 5x ๏ญ 4
x ๏ญ 1 ๏ณ 0 and 4 ๏ญ x ๏ณ 0
x ๏ณ 1 and ๏ญ x ๏ณ ๏ญ4
Domain: ๏ป x x ๏น 0๏ฝ .
b.
( f ๏ g )( x) ๏ฝ
( f ๏ญ g )( x) ๏ฝ x ๏ญ 1 ๏ญ 4 ๏ญ x
x ๏ญ 1 ๏ณ 0 and 4 ๏ญ x ๏ณ 0
x ๏ณ 1 and ๏ญ x ๏ณ ๏ญ4
x๏ฃ4
Domain: ๏ป x 1 ๏ฃ x ๏ฃ 4๏ฝ .
91
Copyright ยฉ 2021 Pearson Education, Inc.
๏ฝ
Chapter 2: Functions and Their Graphs
b.
2x ๏ซ 3
4x
๏ญ
3x ๏ญ 2 3x ๏ญ 2
2x ๏ซ 3 ๏ญ 4x ๏ญ 2x ๏ซ 3
๏ฝ
๏ฝ
3x ๏ญ 2
3x ๏ญ 2
( f ๏ญ g )( x) ๏ฝ
80.
f ( x) ๏ฝ x ๏ซ 1
a.
3x ๏ญ 2 ๏น 0
c.
and
2
x
x๏น0
x ๏ณ ๏ญ1
Domain: ๏ป x x ๏ณ ๏ญ1, and x ๏น 0๏ฝ .
b.
2
๏ฆ 2 x ๏ซ 3 ๏ถ ๏ฆ 4 x ๏ถ 8 x ๏ซ 12 x
( f ๏ g )( x) ๏ฝ ๏ง
๏ท๏ง
๏ท๏ฝ
๏จ 3 x ๏ญ 2 ๏ธ ๏จ 3 x ๏ญ 2 ๏ธ (3x ๏ญ 2) 2
3x ๏ญ 2 ๏น 0
2
x
x๏น0
( f ๏ญ g )( x) ๏ฝ x ๏ซ 1 ๏ญ
x ๏ซ1 ๏ณ 0
and
x ๏ณ ๏ญ1
Domain: ๏ป x x ๏ณ ๏ญ1, and x ๏น 0๏ฝ .
2
3
๏ฌ
2๏ผ
Domain: ๏ญ x x ๏น ๏ฝ .
3๏พ
๏ฎ
3x ๏น 2 ๏ x ๏น
d.
2
x
( f ๏ซ g )( x) ๏ฝ x ๏ซ 1 ๏ซ
x ๏ซ1 ๏ณ 0
2
3x ๏น 2 ๏ x ๏น
3
๏ฌ
2๏ผ
Domain: ๏ญ x x ๏น ๏ฝ .
3๏พ
๏ฎ
g ( x) ๏ฝ
c.
2 2 x ๏ซ1
๏ฝ
x
x
x๏น0
( f ๏ g )( x) ๏ฝ x ๏ซ 1 ๏
x ๏ซ1 ๏ณ 0
and
x ๏ณ ๏ญ1
Domain: ๏ป x x ๏ณ ๏ญ1, and x ๏น 0๏ฝ .
2x ๏ซ 3
๏ฆ f ๏ถ
3x ๏ญ 2 2 x ๏ซ 3 ๏ 3x ๏ญ 2 ๏ฝ 2 x ๏ซ 3
๏ง ๏ท ( x) ๏ฝ 4 x ๏ฝ
3x ๏ญ 2 4 x
4x
๏จg๏ธ
3x ๏ญ 2
3 x ๏ญ 2 ๏น 0 and x ๏น 0
d.
3x ๏น 2
๏ฆ f ๏ถ
๏ง ๏ท ( x) ๏ฝ
๏จg๏ธ
x ๏ซ1 ๏ณ 0
2
x๏น
3
x ๏ซ1 x x ๏ซ1
๏ฝ
2
2
x
and x ๏น 0
x ๏ณ ๏ญ1
Domain: ๏ป x x ๏ณ ๏ญ1, and x ๏น 0๏ฝ .
๏ฌ
2
๏ผ
Domain: ๏ญ x x ๏น and x ๏น 0 ๏ฝ .
3
๏ฎ
๏พ
e.
( f ๏ซ g )(3) ๏ฝ 3 ๏ซ 1 ๏ซ
2
2
2 8
๏ฝ 4 ๏ซ ๏ฝ 2๏ซ ๏ฝ
3
3
3 3
2
1
๏ฝ 5๏ญ
4
2
e.
( f ๏ซ g )(3) ๏ฝ
6(3) ๏ซ 3 18 ๏ซ 3 21
๏ฝ
๏ฝ
๏ฝ3
3(3) ๏ญ 2 9 ๏ญ 2
7
f.
( f ๏ญ g )(4) ๏ฝ 4 ๏ซ 1 ๏ญ
f.
( f ๏ญ g )(4) ๏ฝ
๏ญ 2(4) ๏ซ 3 ๏ญ 8 ๏ซ 3 ๏ญ 5
1
๏ฝ
๏ฝ
๏ฝ๏ญ
3(4) ๏ญ 2
12 ๏ญ 2 10
2
g.
( f ๏ g )(2) ๏ฝ
g.
( f ๏ g )(2) ๏ฝ
h.
๏ฆ f ๏ถ
1 1๏ซ1
2
๏ฝ
๏ง ๏ท (1) ๏ฝ
2
2
๏จg๏ธ
๏ฝ
h.
8(2) 2 ๏ซ 12(2)
๏จ 3(2) ๏ญ 2 ๏ฉ2
8(4) ๏ซ 24
๏จ 6 ๏ญ 2๏ฉ
2
๏ฝ
32 ๏ซ 24
๏จ4๏ฉ
2
๏ฝ
56 7
๏ฝ
16 2
81.
๏ฆf ๏ถ
2(1) ๏ซ 3 2 ๏ซ 3 5
๏ฝ
๏ฝ
๏ง ๏ท (1) ๏ฝ
4(1)
4
4
๏จg๏ธ
f ( x) ๏ฝ 3x ๏ซ 1
2 2 ๏ซ1 2 3
๏ฝ
๏ฝ 3
2
2
( f ๏ซ g )( x) ๏ฝ 6 ๏ญ
1
x ๏ฝ 3 x ๏ซ 1 ๏ซ g ( x)
2
7
5 ๏ญ x ๏ฝ g ( x)
2
7
g ( x) ๏ฝ 5 ๏ญ x
2
6๏ญ
92
Copyright ยฉ 2021 Pearson Education, Inc.
1
x
2
Section 2.1: Functions
82.
f ( x) ๏ฝ
1
x
๏ฆ f ๏ถ
x ๏ซ1
๏ง ๏ท ( x) ๏ฝ 2
g
x ๏ญx
๏จ ๏ธ
86.
f ( x ๏ซ h) ๏ญ f ( x )
h
3( x ๏ซ h) 2 ๏ซ 2 ๏ญ (3 x 2 ๏ซ 2)
๏ฝ
h
2
3 x ๏ซ 6 xh ๏ซ 3h 2 ๏ซ 2 ๏ญ 3 x 2 ๏ญ 2
๏ฝ
h
2
6 xh ๏ซ 3h
๏ฝ
h
๏ฝ 6 x ๏ซ 3h
1
x ๏ซ1
๏ฝ x
x 2 ๏ญ x g ( x)
1
1 x2 ๏ญ x
g ( x) ๏ฝ x ๏ฝ ๏
x ๏ซ1
x x ๏ซ1
x2 ๏ญ x
1 x( x ๏ญ 1) x ๏ญ 1
๏ฝ ๏
๏ฝ
x x ๏ซ1
x ๏ซ1
83.
87.
f ( x) ๏ฝ 4 x ๏ซ 3
f ( x) ๏ฝ ๏ญ3x ๏ซ 1
f ( x ๏ซ h) ๏ญ f ( x) ๏ญ3( x ๏ซ h) ๏ซ 1 ๏ญ (๏ญ3x ๏ซ 1)
๏ฝ
h
h
๏ญ3x ๏ญ 3h ๏ซ 1 ๏ซ 3x ๏ญ 1
๏ฝ
h
๏ญ3h
๏ฝ
๏ฝ ๏ญ3
h
85.
f ( x) ๏ฝ x 2 ๏ญ 4
f ( x ๏ซ h) ๏ญ f ( x )
h
( x ๏ซ h) 2 ๏ญ 4 ๏ญ ( x 2 ๏ญ 4)
๏ฝ
h
2
x ๏ซ 2 xh ๏ซ h 2 ๏ญ 4 ๏ญ x 2 ๏ซ 4
๏ฝ
h
2
2 xh ๏ซ h
๏ฝ
h
๏ฝ 2x ๏ซ h
f ( x) ๏ฝ x 2 ๏ญ x ๏ซ 4
f ( x ๏ซ h) ๏ญ f ( x )
h
( x ๏ซ h) 2 ๏ญ ( x ๏ซ h) ๏ซ 4 ๏ญ ( x 2 ๏ญ x ๏ซ 4)
๏ฝ
h
2
2
x ๏ซ 2 xh ๏ซ h ๏ญ x ๏ญ h ๏ซ 4 ๏ญ x 2 ๏ซ x ๏ญ 4
๏ฝ
h
2
2 xh ๏ซ h ๏ญ h
๏ฝ
h
๏ฝ 2x ๏ซ h ๏ญ1
f ( x ๏ซ h) ๏ญ f ( x) 4( x ๏ซ h) ๏ซ 3 ๏ญ (4 x ๏ซ 3)
๏ฝ
h
h
4 x ๏ซ 4h ๏ซ 3 ๏ญ 4 x ๏ญ 3
๏ฝ
h
4h
๏ฝ
๏ฝ4
h
84.
f ( x) ๏ฝ 3x 2 ๏ซ 2
88.
f ๏จ x ๏ฉ ๏ฝ 3x 2 ๏ญ 2 x ๏ซ 6
f ๏จ x ๏ซ h๏ฉ ๏ญ f ๏จ x๏ฉ
h
๏ฉ3 ๏จ x ๏ซ h ๏ฉ 2 ๏ญ 2 ๏จ x ๏ซ h ๏ฉ ๏ซ 6 ๏น ๏ญ ๏ฉ3 x 2 ๏ญ 2 x ๏ซ 6 ๏น
๏ป
๏ช
๏ป๏บ ๏ซ
๏ฝ๏ซ
h
๏ฝ
๏จ
๏ฉ
3 x 2 ๏ซ 2 xh ๏ซ h 2 ๏ญ 2 x ๏ญ 2h ๏ซ 6 ๏ญ 3x 2 ๏ซ 2 x ๏ญ 6
h
3x ๏ซ 6 xh ๏ซ 3h ๏ญ 2h ๏ญ 3 x 2 6 xh ๏ซ 3h 2 ๏ญ 2h
๏ฝ
๏ฝ
h
h
๏ฝ 6 x ๏ซ 3h ๏ญ 2
2
93
Copyright ยฉ 2021 Pearson Education, Inc.
2
Chapter 2: Functions and Their Graphs
89.
f ( x) ๏ฝ
5
4x ๏ญ 3
91.
f ( x) ๏ฝ
2x
x๏ซ3
2( x ๏ซ h)
2x
๏ญ
f ( x ๏ซ h) ๏ญ f ( x ) x ๏ซ h ๏ซ 3 x ๏ซ 3
๏ฝ
h
h
2( x ๏ซ h)( x ๏ซ 3) ๏ญ 2 x ๏จ x ๏ซ 3 ๏ซ h ๏ฉ
๏จ x ๏ซ h ๏ซ 3๏ฉ๏จ x ๏ซ 3๏ฉ
๏ฝ
h
5
5
๏ญ
f ( x ๏ซ h) ๏ญ f ( x) 4( x ๏ซ h) ๏ญ 3 4 x ๏ญ 3
๏ฝ
h
h
5(4 x ๏ญ 3) ๏ญ 5 ๏จ 4( x ๏ซ h) ๏ญ 3๏ฉ
๏จ 4( x ๏ซ h) ๏ญ 3๏ฉ๏จ 4 x ๏ญ 3๏ฉ
๏ฝ
h
๏ฆ 20 x ๏ซ 15 ๏ญ 20 x ๏ญ 15 ๏ญ 20h ๏ถ ๏ฆ 1 ๏ถ
๏ฝ ๏ง๏ง
๏ท๏ท ๏ง ๏ท
๏จ ๏จ 4( x ๏ซ h) ๏ญ 3๏ฉ๏จ 4 x ๏ญ 3๏ฉ ๏ธ ๏จ h ๏ธ
๏ฆ
๏ถ๏ฆ 1 ๏ถ
๏ญ20h
๏ฝ ๏ง๏ง
๏ท
x
h
x
4(
๏ซ
)
๏ญ
3
4
๏ญ
3
๏ฉ๏จ
๏ฉ ๏ธ๏ท ๏จ๏ง h ๏ธ๏ท
๏จ๏จ
๏ญ20
๏ฝ
๏จ 4( x ๏ซ h) ๏ญ 3๏ฉ๏จ 4 x ๏ญ 3๏ฉ
90.
f ( x) ๏ฝ
2
2
2 x ๏ซ 6 x ๏ซ 2hx ๏ซ 6h ๏ญ 2 x ๏ญ 6 x ๏ญ 2 xh
๏จ x ๏ซ h ๏ซ 3๏ฉ๏จ x ๏ซ 3๏ฉ
๏ฝ
h
๏ฆ
๏ถ ๏ฆ 1๏ถ
6h
๏ฝ๏ง
๏ท๏ง ๏ท
๏จ ๏จ x ๏ซ h ๏ซ 3๏ฉ๏จ x ๏ซ 3๏ฉ ๏ธ ๏จ h ๏ธ
๏ฝ
1
x๏ซ3
92.
1
1
๏ญ
f ( x ๏ซ h) ๏ญ f ( x ) x ๏ซ h ๏ซ 3 x ๏ซ 3
๏ฝ
h
h
x ๏ซ 3 ๏ญ ๏จ x ๏ซ 3 ๏ซ h๏ฉ
๏จ x ๏ซ h ๏ซ 3๏ฉ๏จ x ๏ซ 3๏ฉ
๏ฝ
h
๏ฆ x ๏ซ 3๏ญ x ๏ญ 3 ๏ญ h ๏ถ๏ฆ 1 ๏ถ
๏ฝ ๏ง๏ง
๏ท๏ท ๏ง ๏ท
๏จ ๏จ x ๏ซ h ๏ซ 3๏ฉ๏จ x ๏ซ 3๏ฉ ๏ธ ๏จ h ๏ธ
๏ฆ
๏ถ๏ฆ 1 ๏ถ
๏ญh
๏ฝ ๏ง๏ง
๏ท๏ท ๏ง ๏ท
๏จ ๏จ x ๏ซ h ๏ซ 3๏ฉ๏จ x ๏ซ 3๏ฉ ๏ธ ๏จ h ๏ธ
๏ญ1
๏ฝ
๏จ x ๏ซ h ๏ซ 3๏ฉ๏จ x ๏ซ 3๏ฉ
f ( x) ๏ฝ
6
๏ซ
๏ซ
3๏ฉ๏จ x ๏ซ 3๏ฉ
x
h
๏จ
5x
x๏ญ4
5( x ๏ซ h)
5x
๏ญ
f ( x ๏ซ h) ๏ญ f ( x ) x ๏ซ h ๏ญ 4 x ๏ญ 4
๏ฝ
h
h
5( x ๏ซ h)( x ๏ญ 4) ๏ญ 5 x ๏จ x ๏ญ 4 ๏ซ h ๏ฉ
๏จ x ๏ซ h ๏ญ 4๏ฉ๏จ x ๏ญ 4๏ฉ
๏ฝ
h
5 x ๏ญ 20 x ๏ซ 5hx ๏ญ 20 h ๏ญ 5 x ๏ซ 20 x ๏ญ 5 xh
2
๏ฝ
2
๏จ x ๏ซ h ๏ญ 4๏ฉ๏จ x ๏ญ 4๏ฉ
h
๏ฆ
๏ถ ๏ฆ 1๏ถ
๏ญ20h
๏ฝ๏ง
๏ท๏ง ๏ท
๏จ ๏จ x ๏ซ h ๏ญ 4๏ฉ๏จ x ๏ญ 4๏ฉ ๏ธ ๏จ h ๏ธ
๏ฝ๏ญ
94
Copyright ยฉ 2021 Pearson Education, Inc.
20
๏ซ
๏ญ
x
h
4๏ฉ๏จ x ๏ญ 4๏ฉ
๏จ
Section 2.1: Functions
93.
f ๏จ x๏ฉ ๏ฝ
x๏ญ2
95.
f ๏จ x ๏ซ h๏ฉ ๏ญ f ๏จ x ๏ฉ
๏ฝ
๏ฝ
๏ฝ
94.
h
f ( x ๏ซ h) ๏ญ f ( x ) ๏จ x ๏ซ h ๏ฉ
๏ฝ
h
h
๏ฝ
2
2
h
x ๏ญ x 2 ๏ซ 2 xh ๏ซ h 2
x ๏จ x ๏ซ h๏ฉ
2
๏ฝ
๏จ x ๏ซ h ๏ญ 2 ๏ซ x ๏ญ 2๏ฉ
๏ฉ
2
h
๏ญ
๏ญ h2
1
2
xh
๏ฆ ๏ถ
๏ฝ๏ง ๏ท
๏จ h ๏ธ x 2 ๏จ x ๏ซ h ๏ฉ2
1
x๏ซh๏ญ2๏ซ x๏ญ2
๏ฆ 1 ๏ถ h ๏จ ๏ญ2 x ๏ญ h ๏ฉ
๏ฝ๏ง ๏ท
๏จ h ๏ธ x 2 ๏จ x ๏ซ h ๏ฉ2
f ( x) ๏ฝ x ๏ซ 1
f ๏จ x ๏ซ h๏ฉ ๏ญ f ๏จ x๏ฉ
h
x ๏ซ h ๏ซ1 ๏ญ x ๏ซ1
๏ฝ
h
x ๏ซ h ๏ซ1 ๏ญ x ๏ซ1 x ๏ซ h ๏ซ1 ๏ซ x ๏ซ1
๏ฝ
๏
h
x ๏ซ h ๏ซ1 ๏ซ x ๏ซ1
x ๏ซ h ๏ซ 1 ๏ญ ( x ๏ซ 1)
h
๏ฝ
๏ฝ
h x ๏ซ h ๏ซ1 ๏ซ x ๏ซ1
h x ๏ซ h ๏ซ1 ๏ซ x ๏ซ1
๏ฝ
x2 ๏จ x ๏ซ h ๏ฉ
๏จ
๏จ x ๏ซ h ๏ญ 2 ๏ซ x ๏ญ 2๏ฉ
๏จ
1
x2
x2 ๏ญ ๏จ x ๏ซ h ๏ฉ
h
h
๏ญ
2
x๏ซh๏ญ2 ๏ญ x๏ญ2
h
2
x๏ซh๏ญ ๏ญ x๏ญ2 x๏ซh๏ญ2๏ซ x๏ญ2
๏
h
x๏ซh๏ญ2๏ซ x๏ญ2
x๏ซh๏ญ2๏ญ x๏ซ2
๏ฝ
1
x2
1
h
๏ฝ
f ๏จ x๏ฉ ๏ฝ
๏ฉ ๏จ
๏ฝ
96.
f ๏จ x๏ฉ ๏ฝ
๏ญ2 x ๏ญ h
x ๏จ x ๏ซ h๏ฉ
2
2
๏ญ ๏จ 2x ๏ซ h๏ฉ
x2 ๏จ x ๏ซ h ๏ฉ
1
x ๏ซ1
f ( x ๏ซ h) ๏ญ f ( x ) ๏จ x ๏ซ h ๏ฉ ๏ซ 1
๏ฝ
h
h
2
๏ญ
1
x ๏ซ1
๏จ
2
๏ฉ
x2 ๏ซ 1 ๏ญ ๏จ x ๏ซ h ๏ฉ ๏ซ 1
1
2
( x ๏ซ 1)(๏จ x ๏ซ h ๏ฉ ๏ซ 1)
2
2
x ๏ซ h ๏ซ1 ๏ซ x ๏ซ1
2
2
1
๏ฉ
๏ฝ
๏ฝ
๏จ
2
h
๏ฉ
x ๏ซ 1 ๏ญ x 2 ๏ซ 2 xh ๏ซ h 2 ๏ญ 1
( x ๏ซ 1)(๏จ x ๏ซ h ๏ฉ ๏ซ 1)
2
2
๏ฝ
h
๏ญ2 xh ๏ญ h 2
๏ฆ1๏ถ
๏ฝ๏ง ๏ท
๏จ h ๏ธ ( x 2 ๏ซ 1)(๏จ x ๏ซ h ๏ฉ2 ๏ซ 1)
h ๏จ ๏ญ2 x ๏ญ h ๏ฉ
๏ฆ1๏ถ
๏ฝ๏ง ๏ท
2
๏จ h ๏ธ ( x ๏ซ 1)(๏จ x ๏ซ h ๏ฉ2 ๏ซ 1)
๏ฝ
๏ฝ
95
Copyright ยฉ 2021 Pearson Education, Inc.
๏ญ2 x ๏ญ h
( x ๏ซ 1)(๏จ x ๏ซ h ๏ฉ ๏ซ 1)
2
2
๏ญ ๏จ 2x ๏ซ h๏ฉ
( x ๏ซ 1)(๏จ x ๏ซ h ๏ฉ ๏ซ 1)
2
2
Chapter 2: Functions and Their Graphs
97.
f ( x) ๏ฝ 4 ๏ญ x 2
99.
f ๏จ x ๏ซ h๏ฉ ๏ญ f ๏จ x๏ฉ
0 ๏ฝ x2 ๏ญ 2 x ๏ญ 8
0 ๏ฝ ( x ๏ญ 4)( x ๏ซ 2)
x ๏ญ 4 ๏ฝ 0 or x ๏ซ 2 ๏ฝ 0
x๏ฝ4
or x ๏ฝ ๏ญ2
h
4 ๏ญ ( x ๏ซ h) 2 ๏ญ 4 ๏ญ x 2
๏ฝ
h
4 ๏ญ ( x ๏ซ h) 2 ๏ญ 4 ๏ญ x 2
๏ฝ
h
h
๏ฝ
๏ฝ
๏ฝ
๏ฝ
98.
The solution set is ๏ป ๏ญ2, 4๏ฝ .
4 ๏ญ ( x ๏ซ h) 2 ๏ซ 4 ๏ญ x 2
๏
2
4 ๏ญ ( x ๏ซ h) ๏ซ 4 ๏ญ x
2
100.
4 ๏ญ ( x ๏ซ h) 2 ๏ญ (4 ๏ญ x 2 )
๏ฝ
๏จ 4 ๏ญ ( x ๏ซ h) ๏ญ 4 ๏ญ x ๏ฉ
2
2
4 ๏ญ ( x 2 ๏ซ 2 xh ๏ซ h 2 ) ๏ญ (4 ๏ญ x 2 )
h
๏จ x ๏ซ h ๏ซ 1 ๏ซ x ๏ซ 1๏ฉ
๏ญ2 xh ๏ญ h 2
h
๏จ x ๏ซ h ๏ซ 1 ๏ซ x ๏ซ 1๏ฉ
๏ญ2 x ๏ญ h
4 ๏ญ ( x ๏ซ h) 2 ๏ญ 4 ๏ญ x 2
4 ๏ญ ( x ๏ซ h) 2 ๏ญ 4 ๏ญ x 2
101.
1
x๏ซ2 ๏ญ x๏ซh๏ซ2
x๏ซ2 ๏ญ x๏ซh๏ซ2
102.
x๏ซ2 ๏ซ x๏ซh๏ซ2
h x๏ซ2 x๏ซh๏ซ2
x๏ซ2 ๏ซ x๏ซh๏ซ2
x ๏ซ 2 ๏ญ ( x ๏ซ h ๏ซ 2)
๏ฝ
h( x ๏ซ 2) x ๏ซ h ๏ซ 2 ๏ซ ( x ๏ซ h ๏ซ 2) x ๏ซ 2
x๏ซ2๏ญ x๏ญh๏ญ2
๏ฝ
h( x ๏ซ 2) x ๏ซ h ๏ซ 2 ๏ซ ( x ๏ซ h ๏ซ 2) x ๏ซ 2
๏ญh
๏ฝ
h( x ๏ซ 2) x ๏ซ h ๏ซ 2 ๏ซ ( x ๏ซ h ๏ซ 2) x ๏ซ 2
1
๏ญ
( x ๏ซ 2) x ๏ซ h ๏ซ 2 ๏ซ ( x ๏ซ h ๏ซ 2) x ๏ซ 2
f ( x) ๏ฝ 3x 2 ๏ญ Bx ๏ซ 4 and f ( ๏ญ1) ๏ฝ 12 :
f (๏ญ1) ๏ฝ 3(๏ญ1) 2 ๏ญ B( ๏ญ1) ๏ซ 4
12 ๏ฝ 3 ๏ซ B ๏ซ 4
B๏ฝ5
๏ฝ
๏
f ( x) ๏ฝ 2 x3 ๏ซ Ax 2 ๏ซ 4 x ๏ญ 5 and f (2) ๏ฝ 5
f (2) ๏ฝ 2(2)3 ๏ซ A(2) 2 ๏ซ 4(2) ๏ญ 5
5 ๏ฝ 16 ๏ซ 4 A ๏ซ 8 ๏ญ 5
5 ๏ฝ 4 A ๏ซ 19
๏ญ14 ๏ฝ 4 A
๏ญ14
7
๏ฝ๏ญ
A๏ฝ
4
2
x๏ซ2
f ( x ๏ซ h) ๏ญ f ( x )
๏ฝ
h
1
1
๏ญ
x๏ซh๏ซ2
x๏ซ2 ๏ฝ
h
h x๏ซ2 x๏ซh๏ซ2
7 5
3
๏ฝ x๏ญ
16 6
4
7 3 5
๏ญ ๏ซ ๏ฝ x
16 4 6
5
7 12
x๏ฝ๏ญ ๏ซ
6
16 16
5
5
x๏ฝ
6
16
5 6 3
x๏ฝ ๏ ๏ฝ
16 5 8
๏ญ
๏ฌ3๏ผ
The solution set is ๏ญ ๏ฝ .
๏ฎ8๏พ
๏ญ(2 x ๏ซ h)
f ๏จ x๏ฉ ๏ฝ
11 ๏ฝ x 2 ๏ญ 2 x ๏ซ 3
๏ฝ
103.
3x ๏ซ 8
and f (0) ๏ฝ 2
2x ๏ญ A
3(0) ๏ซ 8
f (0) ๏ฝ
2(0) ๏ญ A
8
2๏ฝ
๏ญA
๏ญ 2A ๏ฝ 8
A ๏ฝ ๏ญ4
f ( x) ๏ฝ
96
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.1: Functions
104.
2x ๏ญ B
1
and f (2) ๏ฝ
3x ๏ซ 4
2
2(2) ๏ญ B
f (2) ๏ฝ
3(2) ๏ซ 4
1 4๏ญB
๏ฝ
2
10
5 ๏ฝ 4๏ญB
b.
f ( x) ๏ฝ
H ๏จ x ๏ฉ ๏ฝ 15 :
15 ๏ฝ 20 ๏ญ 4.9 x 2
๏ญ5 ๏ฝ ๏ญ 4.9 x 2
x 2 ๏ป 1.0204
x ๏ป 1.01 seconds
H ๏จ x ๏ฉ ๏ฝ 10 :
B ๏ฝ ๏ญ1
10 ๏ฝ 20 ๏ญ 4.9 x 2
๏ญ10 ๏ฝ ๏ญ 4.9 x 2
105. Let x represent the length of the rectangle.
x
Then,
represents the width of the rectangle
2
since the length is twice the width. The function
x x2 1 2
for the area is A( x ) ๏ฝ x ๏ ๏ฝ
๏ฝ x .
2 2 2
106. Let x represent the length of one of the two equal
sides. The function for the area is:
1
1
A( x ) ๏ฝ ๏ x ๏ x ๏ฝ x 2
2
2
x 2 ๏ป 2.0408
x ๏ป 1.43 seconds
H ๏จ x๏ฉ ๏ฝ 5 :
5 ๏ฝ 20 ๏ญ 4.9 x 2
๏ญ15 ๏ฝ ๏ญ 4.9 x 2
x 2 ๏ป 3.0612
x ๏ป 1.75 seconds
c.
107. Let x represent the number of hours worked.
The function for the gross salary is:
G ( x) ๏ฝ 16 x
108. Let x represent the number of items sold.
The function for the gross salary is:
G ( x) ๏ฝ 10 x ๏ซ 100
109. a.
H ๏จ1๏ฉ ๏ฝ 20 ๏ญ 4.9 ๏จ1๏ฉ
H ๏จ x๏ฉ ๏ฝ 0
0 ๏ฝ 20 ๏ญ 4.9 x 2
๏ญ 20 ๏ฝ ๏ญ 4.9 x 2
x 2 ๏ป 4.0816
x ๏ป 2.02 seconds
110. a.
H ๏จ1๏ฉ ๏ฝ 20 ๏ญ 13 ๏จ1๏ฉ ๏ฝ 20 ๏ญ 13 ๏ฝ 7 meters
2
H ๏จ1.1๏ฉ ๏ฝ 20 ๏ญ 13 ๏จ1.1๏ฉ ๏ฝ 20 ๏ญ 13 ๏จ1.21๏ฉ
2
2
๏ฝ 20 ๏ญ 15.73 ๏ฝ 4.27 meters
๏ฝ 20 ๏ญ 4.9 ๏ฝ 15.1 meters
H ๏จ1.1๏ฉ ๏ฝ 20 ๏ญ 4.9 ๏จ1.1๏ฉ
2
H ๏จ1.2 ๏ฉ ๏ฝ 20 ๏ญ 13 ๏จ1.2 ๏ฉ ๏ฝ 20 ๏ญ 13 ๏จ1.44 ๏ฉ
2
๏ฝ 20 ๏ญ 4.9 ๏จ1.21๏ฉ
๏ฝ 20 ๏ญ 18.72 ๏ฝ 1.28 meters
๏ฝ 20 ๏ญ 5.929 ๏ฝ 14.071 meters
H ๏จ1.2 ๏ฉ ๏ฝ 20 ๏ญ 4.9 ๏จ1.2 ๏ฉ
2
b.
H ๏จ x ๏ฉ ๏ฝ 15
15 ๏ฝ 20 ๏ญ 13 x 2
๏ฝ 20 ๏ญ 4.9 ๏จ1.44 ๏ฉ
๏ญ5 ๏ฝ ๏ญ13 x 2
๏ฝ 20 ๏ญ 7.056 ๏ฝ 12.944 meters
x 2 ๏ป 0.3846
x ๏ป 0.62 seconds
H ๏จ x ๏ฉ ๏ฝ 10
10 ๏ฝ 20 ๏ญ 13 x 2
๏ญ10 ๏ฝ ๏ญ13 x 2
x 2 ๏ป 0.7692
x ๏ป 0.88 seconds
97
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
H ๏จ x๏ฉ ๏ฝ 5
2
c.
5 ๏ฝ 20 ๏ญ 13 x 2
2
8 5 8 5
๏ฆ2๏ถ
๏ฆ2๏ถ
A๏ง ๏ท ๏ฝ 4 ๏ 1๏ญ ๏ง ๏ท ๏ฝ
๏ฝ ๏
3
3
3
3 9 3 3
๏จ ๏ธ
๏จ ๏ธ
๏ญ15 ๏ฝ ๏ญ 13 x 2
๏ฝ
2
x ๏ป 1.1538
x ๏ป 1.07 seconds
c.
L ๏จ x๏ฉ
๏ฆL๏ถ
113. R ๏จ x ๏ฉ ๏ฝ ๏ง ๏ท ๏จ x ๏ฉ ๏ฝ
P ๏จ x๏ฉ
๏จP๏ธ
H ๏จ x๏ฉ ๏ฝ 0
0 ๏ฝ 20 ๏ญ 13 x 2
๏ญ 20 ๏ฝ ๏ญ13 x 2
114. T ๏จ x ๏ฉ ๏ฝ ๏จV ๏ซ P ๏ฉ๏จ x ๏ฉ ๏ฝ V ๏จ x ๏ฉ ๏ซ P ๏จ x ๏ฉ
x 2 ๏ป 1.5385
115. H ๏จ x ๏ฉ ๏ฝ ๏จ P ๏ I ๏ฉ๏จ x ๏ฉ ๏ฝ P ๏จ x ๏ฉ ๏ I ๏จ x ๏ฉ
x ๏ป 1.24 seconds
116. N ๏จ x ๏ฉ ๏ฝ ๏จ I ๏ญ T ๏ฉ๏จ x ๏ฉ ๏ฝ I ๏จ x ๏ฉ ๏ญ T ๏จ x ๏ฉ
x 36, 000
111. C ๏จ x ๏ฉ ๏ฝ 100 ๏ซ ๏ซ
x
10
a.
117. a.
๏ฝ ๏ญ0.05 x 3 ๏ซ 0.8 x 2 ๏ซ 155 x ๏ญ 500
b.
450 36, 000
C ๏จ 450 ๏ฉ ๏ฝ 100 ๏ซ
๏ซ
10
450
๏ฝ 100 ๏ซ 45 ๏ซ 80
c.
600 36, 000
๏ซ
10
600
๏ฝ 100 ๏ซ 60 ๏ซ 60
118. a.
b.
400 36, 000
๏ซ
10
400
๏ฝ 100 ๏ซ 40 ๏ซ 90
P is the dependent variable; a is the
independent variable
P (20) ๏ฝ 0.027(20) 2 ๏ญ 6.530(20) ๏ซ 363.804
๏ฝ 244.004
In 2015 there are 244.004 million people
who are 20 years of age or older.
c.
2
P (0) ๏ฝ 0.027(0) 2 ๏ญ 6.530(0) ๏ซ 363.804
๏ฝ 363.804
In 2015 there are 363.804 million people.
2
1
4 8 4 2 2
๏ฆ1๏ถ
๏ฆ1๏ถ
A๏ง ๏ท ๏ฝ 4 ๏ 1๏ญ ๏ง ๏ท ๏ฝ
๏ฝ ๏
3
3 9 3 3
๏จ3๏ธ
๏จ3๏ธ
119. a.
R (v) ๏ฝ 2.2v; B (v) ๏ฝ 0.05v 2 ๏ซ 0.4 v ๏ญ 15
D ( v ) ๏ฝ R (v ) ๏ซ B (v )
8 2
๏ป 1.26 ft 2
9
๏ฝ 2.2v ๏ซ 0.05v 2 ๏ซ 0.4 v ๏ญ 15
๏ฝ 0.05v 2 ๏ซ 2.6v ๏ญ 15
2
b.
When 15 hundred smartphones are sold, the
profit is $1836.25.
๏ฝ 10.8 ๏ญ 130.6 ๏ซ 363.804
C ๏จ 400 ๏ฉ ๏ฝ 100 ๏ซ
๏ฝ
2
๏ฝ $1836.25
๏ฝ $230
a.
3
P (15) ๏ฝ ๏ญ0.05(15) ๏ซ 0.8(15) ๏ซ 155(15) ๏ญ 500
๏ฝ ๏ญ168.75 ๏ซ 180 ๏ซ 2325 ๏ญ 500
C ๏จ 600 ๏ฉ ๏ฝ 100 ๏ซ
112. A ๏จ x ๏ฉ ๏ฝ 4 x 1 ๏ญ x
๏ฉ
๏ฝ ๏ญ1.2 x 2 ๏ซ 220 x ๏ญ 0.05 x 3 ๏ซ 2 x 2 ๏ญ 65 x ๏ญ 500
๏ฝ $220
d.
๏ฉ ๏จ
๏ฝ ๏ญ1.2 x 2 ๏ซ 220 x ๏ญ 0.05 x 3 ๏ญ 2 x 2 ๏ซ 65 x ๏ซ 500
๏ฝ $225
c.
P ( x) ๏ฝ R( x) ๏ญ C ( x)
๏จ
500 36, 000
๏ซ
10
500
๏ฝ 100 ๏ซ 50 ๏ซ 72
C ๏จ 500 ๏ฉ ๏ฝ 100 ๏ซ
๏ฝ $222
b.
8 5
๏ป 1.99 ft 2
9
1
3
3
๏ฆ1๏ถ
๏ฆ1๏ถ
A๏ง ๏ท ๏ฝ 4 ๏ 1๏ญ ๏ง ๏ท ๏ฝ 2
๏ฝ 2๏
2
4
2
๏จ2๏ธ
๏จ2๏ธ
b.
๏ฝ 3 ๏ป 1.73 ft 2
2
D (60) ๏ฝ 0.05(60) ๏ซ 2.6(60) ๏ญ 15
๏ฝ 180 ๏ซ 156 ๏ญ 15
๏ฝ 321
98
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.1: Functions
c.
120. a.
The car will need 321 feet to stop once the
impediment is observed.
c.
F ๏จ a ๏ซ b ๏ฉ ๏ฝ 5 ๏จ a ๏ซ b ๏ฉ ๏ญ 2 ๏ฝ 5a ๏ซ 5b ๏ญ 2
h ๏จ x๏ฉ ๏ฝ 2x
Since
5a ๏ซ 5b ๏ญ 2 ๏น 5a ๏ญ 2 ๏ซ 5b ๏ญ 2 ๏ฝ F ๏จ a ๏ฉ ๏ซ F ๏จ b ๏ฉ ,
h ๏จ a ๏ซ b ๏ฉ ๏ฝ 2 ๏จ a ๏ซ b ๏ฉ ๏ฝ 2a ๏ซ 2b
F ๏จ x ๏ฉ ๏ฝ 5 x ๏ญ 2 does not have the property.
๏ฝ h ๏จ a ๏ฉ ๏ซ h ๏จb ๏ฉ
h ๏จ x ๏ฉ ๏ฝ 2 x has the property.
b.
F ๏จ x ๏ฉ ๏ฝ 5x ๏ญ 2
d.
g ๏จ x ๏ฉ ๏ฝ x2
G ๏จ x๏ฉ ๏ฝ
1
x
G ๏จa ๏ซ b๏ฉ ๏ฝ
g ๏จ a ๏ซ b ๏ฉ ๏ฝ ๏จ a ๏ซ b ๏ฉ ๏ฝ a 2 ๏ซ 2ab ๏ซ b 2
2
Since
a 2 ๏ซ 2ab ๏ซ b 2 ๏น a 2 ๏ซ b 2 ๏ฝ g ๏จ a ๏ฉ ๏ซ g ๏จ b ๏ฉ ,
G ๏จ x๏ฉ ๏ฝ
1
1 1
๏น ๏ซ ๏ฝ G ๏จ a ๏ฉ ๏ซ G ๏จb ๏ฉ
a๏ซb a b
1
does not have the property.
x
g ( x) ๏ฝ x 2 does not have the property.
121.
f ( x ๏ซ h) ๏ญ f ( x ) 3 x ๏ซ h ๏ญ 3 x
๏ฝ
๏ฝ
h
h
1
1
๏ฝ
๏จ x ๏ซ h๏ฉ 3 ๏ญ x 3
h
1
1
๏ฝ
2
1
1
2
2
1
1
2
๏จ x ๏ซ h ๏ฉ 3 ๏ญ x 3 ( x ๏ซ h) 3 ๏ซ x 3 ( x ๏ซ h) 3 ๏ซ x 3
๏
h
( x ๏ซ h) 3 ๏ซ x 3 ( x ๏ซ h) 3 ๏ซ x 3
h
๏ฝ
2
1
1
2
( x ๏ซ h) 3 ๏ซ x 3 ( x ๏ซ h) 3 ๏ซ x 3
๏ฝ
๏ฝ
x๏ซh๏ญx
h ๏ฉ๏ช ( x ๏ซ h) 3 ๏ซ x 3 ( x ๏ซ h) 3 ๏ซ x 3 ๏น๏บ
๏ซ
๏ป
1
2
2
1
1
1
1
2
๏ฝ
h
h ๏ฉ๏ช( x ๏ซ h) 3 ๏ซ x 3 ( x ๏ซ h) 3 ๏ซ x 3 ๏น๏บ
๏ซ
๏ป
2
1
1
2
2
( x ๏ซ h) 3 ๏ซ x 3 ( x ๏ซ h) 3 ๏ซ x 3
122.
๏ฆ x๏ซ4 ๏ถ
2
f๏ง
๏ท ๏ฝ 3x ๏ญ 2
๏จ 5x ๏ญ 4 ๏ธ
x๏ซ4
๏ฝ 1.
Solve
5x ๏ญ 4
x๏ซ4
๏ฝ1
5x ๏ญ 4
x ๏ซ 4 ๏ฝ 5x ๏ญ 4
123. We need
x2 ๏ซ 1
๏ณ 0 . Since x 2 ๏ซ 1 ๏พ 0 for all
7 ๏ญ 3x ๏ญ 1
real numbers x, we need 7 ๏ญ 3 x ๏ญ 1 ๏พ 0 .
7 ๏ญ 3x ๏ญ 1 ๏พ 0
3x ๏ญ 1 ๏ผ 7
๏ญ7 ๏ผ 3 x ๏ญ 1 ๏ผ 7
x๏ฝ2
Therefore, f ๏จ1๏ฉ ๏ฝ 3(2) ๏ญ 2 ๏ฝ 10
2
๏ญ2 ๏ผ x ๏ผ
8
3
8๏ผ
8๏ถ
๏ฌ
๏ฆ
The domain of f is ๏ญ x | ๏ญ2 ๏ผ x ๏ผ ๏ฝ , or ๏ง ๏ญ2, ๏ท
3๏พ
3๏ธ
๏ฎ
๏จ
in interval notation.
99
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
124. No. The domain of f is
๏ป x x is any real number๏ฝ , but the domain of g is
129. Let x represent the amount of the 7% fat
hamburger added.
% fat tot. amt. amt. of fat
20%
12
๏จ 0.20๏ฉ๏จ12๏ฉ
7%
x
๏จ 0.07 ๏ฉ๏จ x ๏ฉ
15% 12 ๏ซ x ๏จ 0.15๏ฉ๏จ12 ๏ซ x ๏ฉ
๏ป x x ๏น ๏ญ1๏ฝ .
125.
3x ๏ญ x3
( your age)
๏จ 0.20๏ฉ๏จ12๏ฉ ๏ซ ๏จ 0.07 ๏ฉ๏จ x ๏ฉ ๏ฝ ๏จ 0.15๏ฉ๏จ12 ๏ซ x ๏ฉ
126. Answers will vary.
2.4 ๏ซ 0.07 x ๏ฝ 1.8 ๏ซ 0.15 x
127. ( x ๏ซ 12)2 ๏ซ y 2 ๏ฝ 16
x-intercept (y=0):
( x ๏ซ 12) 2 ๏ซ 02 ๏ฝ 16
0.6 ๏ฝ .08 x
x ๏ฝ 7.5
7.5 lbs. of the 7% fat hamburger must be added,
producing 19.5 lbs. of the 15% fat hamburger.
( x ๏ซ 12) 2 ๏ฝ 16
( x ๏ซ 12) ๏ฝ ๏ฑ4
x 3 ๏ญ 9 x ๏ฝ 2 x 2 ๏ญ 18
130.
x ๏ฝ ๏ญ12 ๏ฑ 4
x 3 ๏ญ 2 x 2 ๏ญ 9 x ๏ซ 18 ๏ฝ 0
x ๏ฝ ๏ญ16, x ๏ฝ ๏ญ8
( ๏ญ16, 0), ( ๏ญ8, 0)
y-intercept (x=0):
(0 ๏ซ 12) 2 ๏ซ y 2 ๏ฝ 16
( x 3 ๏ญ 2 x 2 ) ๏ญ (9 x ๏ญ 18) ๏ฝ 0
x 2 ( x ๏ญ 2) ๏ญ 9( x ๏ญ 2) ๏ฝ 0
( x 2 ๏ญ 9)( x ๏ญ 2) ๏ฝ 0
(12) 2 ๏ซ y 2 ๏ฝ 16
( x ๏ญ 3)( x ๏ซ 3)( x ๏ญ 2) ๏ฝ 0
( x ๏ญ 3) ๏ฝ 0 or ( x ๏ซ 3) ๏ฝ 0 or ( x ๏ญ 2) ๏ฝ 0
2
y ๏ฝ 16 ๏ญ 144 ๏ฝ ๏ญ128
There are no real solutions so there are no yintercepts.
Symmetry: ( x ๏ซ 12) 2 ๏ซ ( ๏ญ y ) 2 ๏ฝ 16
x ๏ฝ 3, x ๏ฝ ๏ญ3, x ๏ฝ 2
The solution set is: ๏ป 3, ๏ญ3, 2๏ฝ
131.
( x ๏ซ 12) 2 ๏ซ y 2 ๏ฝ 16
This shows x-axis symmetry.
a ๏ซ bx ๏ฝ ac ๏ซ d
a ๏ญ ac ๏ฝ d ๏ญ bx
a(1 ๏ญ c) ๏ฝ d ๏ญ bx
128. y ๏ฝ 3 x 2 ๏ญ 8 x
a๏ฝ
y ๏ฝ 3( ๏ญ1) 2 ๏ญ 8 ๏ญ1
There is no solution so (-1,-5) is NOT a solution.
y ๏ฝ 3×2 ๏ญ 8 x
132.
y ๏ฝ 3(4) 2 ๏ญ 8 4
d ๏ญ bx
1๏ญ c
r ๏ฝ kd 2
0.4 ๏ฝ k (0.6) 2
10
๏ฝk
9
Thus,
10
r ๏ฝ (1.5) 2
9
๏ฝ 2.5 kg ๏ m 2
๏ฝ 48 ๏ญ 16 ๏ฝ 32
So (4,32) is a solution.
y ๏ฝ 3×2 ๏ญ 8 x
y ๏ฝ 3(9) 2 ๏ญ 8 9
๏ฝ 243 ๏ญ 24 ๏ฝ 219 ๏น 171
So (9,171) is NOT a solution.
100
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.2: The Graph of a Function
133. 3x ๏ญ 10 y ๏ฝ 12
๏ญ10 y ๏ฝ ๏ญ3 x ๏ซ 12
3
6
y ๏ฝ x๏ญ
10
5
f ๏จ 5 ๏ฉ ๏ฝ ๏ญ3
5.
f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ซ 4
a ๏จ ๏ญ1๏ฉ ๏ซ 4 ๏ฝ 2 ๏ a ๏ฝ ๏ญ2
2
3
. The slope of a
10
10
perpendicular line would be ๏ญ .
3
6. False. The graph must pass the vertical line test
in order to be the graph of a function.
(4 x 2 ๏ญ 7) ๏ 3 ๏ญ (3 x ๏ซ 5) ๏ 8 x
7. False; e.g. y ๏ฝ
The slope of the line is
134.
4.
(4 x 2 ๏ญ 7) 2
12 x 2 ๏ญ 21 ๏ญ (24 x 2 ๏ซ 40 x)
(4 x 2 ๏ญ 7) 2
2
2
12 x ๏ญ 21 ๏ญ 24 x ๏ญ 40 x
2
(4 x ๏ญ 7)
2
๏ฝ
8. True
๏ฝ
๏ฝ
1
.
x
9. c
2
๏ญ12 x ๏ญ 40 x ๏ญ 21
๏ฝ๏ญ
(4 x 2 ๏ญ 7) 2
12 x 2 ๏ซ 40 x ๏ซ 21
10. a
11. a.
f (๏ญ 6) ๏ฝ ๏ญ3 since ( ๏ญ 6, ๏ญ3) is on the graph.
(4 x 2 ๏ญ 7) 2
135. Add the powers of x to obtain a degree of 7.
Section 2.2
1. x 2 ๏ซ 4 y 2 ๏ฝ 16
x-intercepts:
f (0) ๏ฝ 3 since (0,3) is on the graph.
b.
f (6) ๏ฝ 0 since (6, 0) is on the graph.
f (11) ๏ฝ 1 since (11, 1) is on the graph.
c.
f (3) is positive since f (3) ๏ป 3.7.
d.
f (๏ญ4) is negative since f ( ๏ญ4) ๏ป ๏ญ1.
e.
f ( x) ๏ฝ 0 when x ๏ฝ ๏ญ3, x ๏ฝ 6, and x ๏ฝ 10.
f.
f ( x) ๏พ 0 when ๏ญ 3 ๏ผ x ๏ผ 6, and 10 ๏ผ x ๏ฃ 11.
g.
The domain of f is ๏ป x ๏ญ 6 ๏ฃ x ๏ฃ 11๏ฝ or
๏ ๏ญ 6, 11๏ .
x 2 ๏ซ 4 ๏จ 0 ๏ฉ ๏ฝ 16
2
x 2 ๏ฝ 16
x ๏ฝ ๏ฑ4 ๏ ๏จ ๏ญ4, 0 ๏ฉ , ๏จ 4, 0 ๏ฉ
y-intercepts:
h.
The range of f is ๏ป y ๏ญ 3 ๏ฃ y ๏ฃ 4๏ฝ or
๏ ๏ญ 3, 4๏ .
i.
The x-intercepts are ๏ญ3 , 6, and 10.
j.
The y-intercept is 3.
2
k.
The line y ๏ฝ
y ๏ฝ ๏ฑ2 ๏ ๏จ 0, ๏ญ2 ๏ฉ , ๏จ 0, 2 ๏ฉ
l.
The line x ๏ฝ 5 intersects the graph 1 time.
m.
f ( x) ๏ฝ 3 when x ๏ฝ 0 and x ๏ฝ 4.
n.
f ( x) ๏ฝ ๏ญ 2 when x ๏ฝ ๏ญ5 and x ๏ฝ 8.
๏จ 0 ๏ฉ ๏ซ 4 y 2 ๏ฝ 16
2
4 y ๏ฝ 16
2
y ๏ฝ4
2. False;
x ๏ฝ 2y ๏ญ 2
๏ญ2 ๏ฝ 2 y ๏ญ 2
0 ๏ฝ 2y
0๏ฝ y
12. a.
The point ๏จ ๏ญ2, 0 ๏ฉ is on the graph.
3. vertical
1
intersects the graph 3 times.
2
f (0) ๏ฝ 0 since (0, 0) is on the graph.
f (6) ๏ฝ 0 since ( 6, 0) is on the graph.
b.
f (2) ๏ฝ ๏ญ2 since (2, ๏ญ 2) is on the graph.
f (๏ญ2) ๏ฝ 1 since ( ๏ญ2, 1) is on the graph.
101
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
Domain: ๏ป x ๏ญ ๏ฐ ๏ฃ x ๏ฃ ๏ฐ๏ฝ ;
c.
f (3) is negative since f (3) ๏ป ๏ญ1.
d.
f (๏ญ1) is positive since f ( ๏ญ1) ๏ป 1.0.
e.
f ( x) ๏ฝ 0 when x ๏ฝ 0, x ๏ฝ 4, and x ๏ฝ 6.
b. Intercepts: ๏จ ๏ญ๏ฐ, 0 ๏ฉ , ๏จ ๏ฐ, 0 ๏ฉ , (0, 0)
f.
f ( x) ๏ผ 0 when 0 ๏ผ x ๏ผ 4.
c.
g.
The domain of f is ๏ป x ๏ญ 4 ๏ฃ x ๏ฃ 6๏ฝ or
a.
Range: ๏ป y ๏ญ 1 ๏ฃ y ๏ฃ 1๏ฝ
17. Not a function since vertical lines will intersect
the graph in more than one point.
๏ ๏ญ 4, 6๏ .
h. The range of f is ๏ป y ๏ญ 2 ๏ฃ y ๏ฃ 3๏ฝ or ๏ ๏ญ2, 3๏ .
i.
The x-intercepts are 0, 4, and 6.
j.
The y-intercept is 0.
a.
b. Intercepts: (0, 0)
l.
The line x ๏ฝ 1 intersects the graph 1 time.
m.
f ( x) ๏ฝ 3 when x ๏ฝ 5.
n.
f ( x) ๏ฝ ๏ญ 2 when x ๏ฝ 2.
c.
a.
b. Intercepts: (๏ญ2, 0)(2, 0)(0, ๏ญ2)(0, 2)
c.
Domain: ๏ป x x ๏ฃ ๏ญ1 or x ๏ณ 1๏ฝ ;
a.
b. Intercepts: (1, 0)
c.
Domain: ๏ป x x is any real number๏ฝ ;
None
20. Function
Range: ๏ป y y ๏พ 0๏ฝ
a.
Domain: ๏ป x 0 ๏ฃ x ๏ผ 4๏ฝ ;
Range: ๏ป y 0 ๏ฃ y ๏ผ 3๏ฝ
b. Intercepts: (0,1)
None
b. Intercepts: (0, 0)
c.
15. Function
Domain: ๏ป x ๏ญ ๏ฐ ๏ฃ x ๏ฃ ๏ฐ๏ฝ ;
None
21. Function
Range: ๏ป y ๏ญ 1 ๏ฃ y ๏ฃ 1๏ฝ
a.
Domain: ๏ป x x is any real number๏ฝ ;
Range: ๏ป y y ๏ฃ 2๏ฝ
๏ฆ ๏ฐ ๏ถ ๏ฆ๏ฐ ๏ถ
b. Intercepts: ๏ง ๏ญ , 0 ๏ท , ๏ง , 0 ๏ท , (0,1)
๏จ 2 ๏ธ ๏จ2 ๏ธ
c.
Domain: ๏ป x 0 ๏ผ x ๏ผ 3๏ฝ ;
Range: ๏ป y y 0 and shifted down k units if k < 0,
๏ฉ ๏ฆ x ๏ญ ๏ญ ๏ถ2 ๏น
๏ช ๏ง
๏บ
1
๏ณ ๏ท๏ธ ๏บ
๏จ
๏ช
exp ๏ญ
. Then
๏ช
๏บ
2
2๏ฐ
๏ช
๏บ
๏ซ๏ช
๏ป๏บ
stretch/compress vertically by a factor of
so the range of g is ๏ฉ๏ซ k , ๏ฅ ๏ฉ .
101. The domain of g ( x) ๏ฝ
1
๏ณ
to
get
๏ฉ ๏ฆ x ๏ญ ๏ญ ๏ถ2 ๏น
๏ช ๏ง
๏บ
1 1
๏ณ ๏ท๏ธ ๏บ
exp ๏ช ๏ญ ๏จ
f ( x) ๏ฝ ๏
๏ช
๏บ
2
๏ณ 2๏ฐ
๏ช
๏บ
๏ช๏ซ
๏บ๏ป
1๏น
๏ฉ
๏ช multiply all the y -coordinates by ๏ณ ๏บ .
๏ซ
๏ป
1. Stretch/compress horizontally by a factor or
๏ณ (stretch if ๏ณ ๏พ 1 )
2. Shift horizontally ๏ญ units (left if ๏ญ ๏ผ 0 and
right if ๏ญ ๏พ 0 ).
3.Stretch/compress vertically by a factor of
(compress if ๏ณ ๏พ 1 )
99. The graph of y ๏ฝ ๏ญ x is the graph of y ๏ฝ x
but reflected about the y-axis. Therefore, our
region is simply rotated about the y-axis and
does not change shape. Instead of the region
being bounded on the right by x ๏ฝ 4 , it is
bounded on the left by x ๏ฝ ๏ญ4 . Thus, the area of
16
the second region would also be
square
3
units.
g ( x) ๏ฝ f ( x) ๏ซ k is the graph of f shifted up k
and right if ๏ญ ๏พ 0 ) to get
f ( x) ๏ฝ
97. The graph of y ๏ฝ 4 f ( x) is a vertical stretch of
the graph of f by a factor of 4, while the graph of
y ๏ฝ f (4 x) is a horizontal compression of the
1
๏ณ
x is ๏ฉ๏ซ 0, ๏ฅ ๏ฉ . The graph
of g ( x ๏ญ k ) is the graph of g shifted k units to
the right, so the domaine of g is ๏ฉ๏ซ k , ๏ฅ ๏ฉ .
102. 3x ๏ญ 5 y ๏ฝ 30
๏ญ5 y ๏ฝ ๏ญ3x ๏ซ 30
3
y ๏ฝ x๏ญ6
5
3
The slope is and the y-intercept is -6.
5
13.1 13.1
๏ซ
๏ฝ 8.4214 . The
7
2
total distance is 26.2 mile. Thus the average
26.2
๏ฝ 3.11 mph .
speed is
8.4214
103. The total time run is
156
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.6: Mathematical Models: Building Functions
104. W ๏ฝ kT
7 ๏ฝ k4
7
k๏ฝ
4
7
7
W ๏ฝ T ๏ฝ (9) ๏ฝ 15.75 gal
4
4
105. y 2 ๏ฝ x ๏ซ 4
x-intercepts:
(0) 2 ๏ฝ x ๏ซ 4
0๏ฝ x๏ซ4
x ๏ฝ ๏ญ4
109.
y-intercepts:
y2 ๏ฝ 0 ๏ซ 4
y2 ๏ฝ 4
y ๏ฝ ๏ฑ2
f ( x ๏ซ h) ๏ญ f ( x )
๏ฝ
h
3( x ๏ซ h) 2 ๏ซ 2( x ๏ซ h) ๏ญ 1 ๏ญ (3x 2 ๏ซ 2 x ๏ญ 1)
๏ฝ
h
3( x 2 ๏ซ 2 xh ๏ซ h 2 ) ๏ซ 2 x ๏ซ 2h ๏ญ 1 ๏ญ 3 x 2 ๏ญ 2 x ๏ซ 1
๏ฝ
h
3x 2 ๏ซ 6 xh ๏ซ 3h 2 ๏ซ 2 x ๏ซ 2h ๏ญ 1 ๏ญ 3x 2 ๏ญ 2 x ๏ซ 1
h
2
6 xh ๏ซ h ๏ซ 2h h(6 x ๏ซ h ๏ซ 2)
๏ฝ
๏ฝ 6x ๏ซ h ๏ซ 2
h
h
110. z 3 ๏ซ 216 ๏ฝ ๏จ z ๏ฉ ๏ซ ๏จ 6 ๏ฉ
3
The intercepts are ๏จ ๏ญ4, 0๏ฉ , ๏จ 0, ๏ญ2๏ฉ and ๏จ 0, 2๏ฉ .
3
๏ฝ ( z ๏ซ 6)( z 2 ๏ญ 6 z ๏ซ 36)
Test x-axis symmetry: Let y ๏ฝ ๏ญ y
๏จ ๏ญ y ๏ฉ2 ๏ฝ x ๏ซ 4
y 2 ๏ฝ x ๏ซ 4 same
Test y-axis symmetry: Let x ๏ฝ ๏ญ x
y 2 ๏ฝ ๏ญ x ๏ซ 4 different
Section 2.6
Test origin symmetry: Let x ๏ฝ ๏ญ x and y ๏ฝ ๏ญ y .
1. a.
๏จ ๏ญ y๏ฉ ๏ฝ ๏ญ x ๏ซ 4
2
The distance d from P to the origin is
d ๏ฝ x 2 ๏ซ y 2 . Since P is a point on the
y 2 ๏ฝ ๏ญ x ๏ซ 4 different
graph of y ๏ฝ x 2 ๏ญ 8 , we have:
Therefore, the graph will have x-axis symmetry.
d ( x) ๏ฝ x 2 ๏ซ ( x 2 ๏ญ 8) 2 ๏ฝ x 4 ๏ญ 15 x 2 ๏ซ 64
106. The denominator must not be zero.
x 2 ๏ญ 5 x ๏ญ 14 ๏ฝ 0
( x ๏ญ 7)( x ๏ซ 2) ๏ฝ 0
x ๏ฝ 7, x ๏ฝ ๏ญ2
b.
d (0) ๏ฝ 04 ๏ญ 15(0) 2 ๏ซ 64 ๏ฝ 64 ๏ฝ 8
c.
d (1) ๏ฝ (1) 4 ๏ญ 15(1) 2 ๏ซ 64
๏ฝ 1 ๏ญ 15 ๏ซ 64 ๏ฝ 50 ๏ฝ 5 2 ๏ป 7.07
So the domain is: ๏ป x | x ๏น 7, x ๏น ๏ญ2๏ฝ
๏ด๏ฐ
d.
2
107. ๏ญ16t ๏ซ 96t ๏ซ 200 ๏ฝ 88
๏ญ16t 2 ๏ซ 96t ๏ซ 112 ๏ฝ 0
๏ญ16(t 2 ๏ญ 6t ๏ญ 7) ๏ฝ 0
๏ญ16(t ๏ญ 7)(t ๏ซ 1) ๏ฝ 0
t ๏ฝ 7, t ๏ฝ ๏ญ1
Since t represents time the only answer that is
reasonable is 7 seconds.
108.
3
๏ญ๏ฑ๏ฐ
๏ฑ๏ฐ
๏ญ๏ต
e.
d is smallest when x ๏ป ๏ญ2.74 or when
x ๏ป 2.74 .
16 x5 y 6 z ๏ฝ 3 8 ๏ 2 x3 x 2 y 6 z ๏ฝ 2 xy 2 3 2 x 2 z
157
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
2. a.
The distance d from P to (0, โ1) is
2
4. a.
The distance d from P to the origin is
d ๏ฝ x 2 ๏ซ y 2 . Since P is a point on the
2
d ๏ฝ x ๏ซ ( y ๏ซ 1) . Since P is a point on
the graph of y ๏ฝ x 2 ๏ญ 8 , we have:
graph of y ๏ฝ
d ( x) ๏ฝ x 2 ๏ซ ( x 2 ๏ญ 8 ๏ซ 1) 2
2
๏จ
2
๏ฝ x ๏ซ x ๏ญ7
4
2
2
b.
d (0) ๏ฝ 04 ๏ญ 13(0) 2 ๏ซ 49 ๏ฝ 49 ๏ฝ 7
c.
d (๏ญ1) ๏ฝ (๏ญ1)4 ๏ญ 13(๏ญ1) 2 ๏ซ 49 ๏ฝ 37 ๏ป 6.08
d.
2
1
๏ฆ1๏ถ
d ( x) ๏ฝ x ๏ซ ๏ง ๏ท ๏ฝ x 2 ๏ซ 2
x
x
๏จ ๏ธ
๏ฉ ๏ฝ x ๏ญ 13x ๏ซ 49
2
1
, we have:
x
b.
8
10
5
โ5
0
c.
โ4
d is smallest when x ๏ฝ ๏ญ1 or x ๏ฝ 1 .
4
0
e.
d is smallest when x ๏ป ๏ญ2.55 or when
x ๏ป 2.55 .
d.
d (1) ๏ฝ
3. a.
the graph of y ๏ฝ x , we have:
d ( x) ๏ฝ ( x ๏ญ 1) 2 ๏ซ
๏จ x ๏ฉ ๏ฝ x ๏ญ x ๏ซ1
2
2
where x ๏ณ 0 .
b.
๏ญ1
๏ฝ 2
5. By definition, a triangle has area
1
A ๏ฝ b h, b ๏ฝ base, h ๏ฝ height. From the figure,
2
we know that b ๏ฝ x and h ๏ฝ y. Expressing the
area of the triangle as a function of x , we have:
1
1
1
A( x ) ๏ฝ xy ๏ฝ x x3 ๏ฝ x 4 .
2
2
2
๏จ ๏ฉ
2
0
2
0
d is smallest when x ๏ฝ 12 .
6. By definition, a triangle has area
1
A ๏ฝ b h, b=base, h ๏ฝ height. Because one
2
vertex of the triangle is at the origin and the
other is on the x-axis, we know that
b ๏ฝ x and h ๏ฝ y. Expressing the area of the
triangle as a function of x , we have:
1
1
9
1
A( x ) ๏ฝ xy ๏ฝ x 9 ๏ญ x 2 ๏ฝ x ๏ญ x3 .
2
2
2
2
๏จ
7. a.
d.
๏จ ๏ญ1๏ฉ2 ๏ซ 1
The distance d from P to the point (1, 0) is
d ๏ฝ ( x ๏ญ 1) 2 ๏ซ y 2 . Since P is a point on
c.
12 ๏ซ 1
๏ฝ 2; d (๏ญ1) ๏ฝ
1
12 1
3
d ( x) ๏ฝ
๏ญ ๏ซ1 ๏ฝ
2
2
2
๏จ
๏ฉ
A( x ) ๏ฝ xy ๏ฝ x 16 ๏ญ x 2
๏ฉ
b. Domain: ๏ป x 0 ๏ผ x ๏ผ 4๏ฝ
158
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.6: Mathematical Models: Building Functions
c.
The area is largest when x ๏ป 2.31 .
e.
The largest area is
A(1.41) ๏ฝ 2 ๏จ1.41๏ฉ 4 ๏ญ 1.412 ๏ป 4 square
30
units.
The largest perimeter is
p (1.79) ๏ฝ 4 ๏จ1.79 ๏ฉ ๏ซ 2 4 ๏ญ 1.792 ๏ป 8.94
4
0
units.
0
9. a.
In Quadrant I, x 2 ๏ซ y 2 ๏ฝ 4 ๏ฎ y ๏ฝ 4 ๏ญ x 2
A( x) ๏ฝ (2 x)(2 y ) ๏ฝ 4 x 4 ๏ญ x 2
d. The largest area is
๏จ
b.
p ( x) ๏ฝ 2(2 x) ๏ซ 2(2 y ) ๏ฝ 4 x ๏ซ 4 4 ๏ญ x 2
c.
Graphing the area equation:
10
๏ฉ
A(2.31) ๏ฝ 2.31 16 ๏ญ 2.312 ๏ป 24.63 square
units.
8. a.
A( x) ๏ฝ 2 xy ๏ฝ 2 x 4 ๏ญ x 2
0
b.
p( x) ๏ฝ 2(2 x) ๏ซ 2( y ) ๏ฝ 4 x ๏ซ 2 4 ๏ญ x 2
c.
Graphing the area equation:
2
0
4
The area is largest when x ๏ป 1.41 .
d. Graphing the perimeter equation:
0
12
2
0
0
2
0
The area is largest when x ๏ป 1.41 .
d. Graphing the perimeter equation:
10
The perimeter is largest when x ๏ป 1.41 .
10. a.
0
2
b.
0
11. a.
A(r ) ๏ฝ (2r )(2r ) ๏ฝ 4r 2
p (r ) ๏ฝ 4(2r ) ๏ฝ 8r
C ๏ฝ circumference, A ๏ฝ total area,
r ๏ฝ radius, x ๏ฝ side of square
C ๏ฝ 2๏ฐr ๏ฝ 10 ๏ญ 4 x ๏ r ๏ฝ 5๏ญ๏ฐ2 x
The perimeter is largest when x ๏ป 1.79 .
159
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
Total Area ๏ฝ area square + area circle ๏ฝ x 2 ๏ซ ๏ฐ r 2
๏จ
A( x ) ๏ฝ x ๏ซ ๏ฐ 5๏ญ๏ฐ2 x
2
๏ฉ
2
c.
8
25 ๏ญ 20 x ๏ซ 4 x 2
๏ฝx ๏ซ
๏ฐ
2
b. Since the lengths must be positive, we have:
10 ๏ญ 4 x ๏พ 0 and x ๏พ 0
๏ญ 4 x ๏พ ๏ญ10 and x ๏พ 0
x ๏ผ 2.5
and x ๏พ 0
Domain: ๏ป x 0 ๏ผ x ๏ผ 2.5๏ฝ
c.
The area is smallest when x ๏ป 2.08 meters.
0
3.33
0
The total area is smallest when x ๏ป 1.40
meters.
8
13. a.
0
Since the wire of length x is bent into a
circle, the circumference is x . Therefore,
C ( x) ๏ฝ x .
b. Since C ๏ฝ x ๏ฝ 2๏ฐ r , r ๏ฝ
2.5
0
x
.
2๏ฐ
2
x2
๏ฆ x ๏ถ
.
A( x ) ๏ฝ ๏ฐ r 2 ๏ฝ ๏ฐ ๏ง ๏ท ๏ฝ
4๏ฐ
๏จ 2๏ฐ ๏ธ
14. a.
12. a.
C ๏ฝ circumference, A ๏ฝ total area,
r ๏ฝ radius, x ๏ฝ side of equilateral triangle
10 ๏ญ 3x
C ๏ฝ 2๏ฐr ๏ฝ 10 ๏ญ 3x ๏ r ๏ฝ
2๏ฐ
The height of the equilateral triangle is
Total Area ๏ฝ area triangle ๏ซ area circle
3 2
๏ฆ 10 ๏ญ 3 x ๏ถ
x ๏ซ ๏ฐ๏ง
๏ท
4
๏จ 2๏ฐ ๏ธ
b. Since P ๏ฝ x ๏ฝ 4s, s ๏ฝ
1
x , we have
4
2
3
x.
2
1 ๏ฆ 3 ๏ถ
๏ฝ x ๏ง๏ง
x ๏ท ๏ซ ๏ฐ r2
2 ๏จ 2 ๏ท๏ธ
A( x) ๏ฝ
Since the wire of length x is bent into a
square, the perimeter is x . Therefore,
p( x) ๏ฝ x .
2
3 2 100 ๏ญ 60 x ๏ซ 9 x 2
๏ฝ
x ๏ซ
4
4๏ฐ
1
๏ฆ1 ๏ถ
A( x ) ๏ฝ s 2 ๏ฝ ๏ง x ๏ท ๏ฝ x 2 .
16
๏จ4 ๏ธ
15. a.
A ๏ฝ area, r ๏ฝ radius; diameter ๏ฝ 2r
A(r ) ๏ฝ (2r )(r ) ๏ฝ 2r 2
b.
p ๏ฝ perimeter
p(r ) ๏ฝ 2(2r ) ๏ซ 2r ๏ฝ 6r
16. C ๏ฝ circumference, r ๏ฝ radius;
x ๏ฝ length of a side of the triangle
b. Since the lengths must be positive, we have:
10 ๏ญ 3x ๏พ 0
and x ๏พ 0
๏ญ 3x ๏พ ๏ญ10 and x ๏พ 0
10
x๏ผ
and x ๏พ 0
3
๏ฌ
10 ๏ผ
Domain: ๏ญ x 0 ๏ผ x ๏ผ ๏ฝ
3๏พ
๏ฎ
Since ๏ABC is equilateral, EM ๏ฝ
160
Copyright ยฉ 2021 Pearson Education, Inc.
3x
.
2
Section 2.6: Mathematical Models: Building Functions
d 2 ๏ฝ 3 ๏ญ 40t
3x
3x
๏ญ OE ๏ฝ
๏ญr
2
2
Therefore, OM ๏ฝ
2
๏ถ
๏ฆ x ๏ถ ๏ฆ 3x
๏ญr๏ท
In ๏OAM , r 2 ๏ฝ ๏ง ๏ท ๏ซ ๏ง
๏จ2๏ธ ๏จ 2
๏ธ
2
d1 ๏ฝ 2 ๏ญ 30t
d
2
x
3
๏ซ x 2 ๏ญ 3 rx ๏ซ r 2
4 4
3 rx ๏ฝ x 2
r2 ๏ฝ
b. The distance is smallest at t ๏ป 0.07 hours.
x
3
Therefore, the circumference of the circle is
๏ฆ x ๏ถ 2๏ฐ 3
C ( x ) ๏ฝ 2๏ฐ r ๏ฝ 2๏ฐ ๏ง
x
๏ท๏ฝ
3
๏จ 3๏ธ
r๏ฝ
20. r ๏ฝ radius of cylinder, h ๏ฝ height of cylinder,
V ๏ฝ volume of cylinder
17. Area of the equilateral triangle
1
3
3 2
A ๏ฝ x๏
x๏ฝ
x
2
2
4
2
h2
h2
๏ฆh๏ถ
r 2 ๏ซ ๏ง ๏ท ๏ฝ R2 ๏ r 2 ๏ซ
๏ฝ R2 ๏ r 2 ๏ฝ R2 ๏ญ
4
4
๏จ2๏ธ
2
V ๏ฝ ๏ฐr h
x2
.
3
Area inside the circle, but outside the triangle:
3 2
A( x ) ๏ฝ ๏ฐ r 2 ๏ญ
x
4
3 2 ๏ฆ๏ฐ
3๏ถ 2
x2
๏ฝ๏ฐ ๏ญ
x ๏ฝ ๏ง๏ง ๏ญ
๏ท๏ท x
3
4
๏จ3 4 ๏ธ
From problem 16, we have r 2 ๏ฝ
๏ฆ
๏ฆ
h2 ๏ถ
h2 ๏ถ
V (h) ๏ฝ ๏ฐ ๏ง๏ง R 2 ๏ญ ๏ท๏ท h ๏ฝ ๏ฐh ๏ง๏ง R 2 ๏ญ ๏ท๏ท
4 ๏ธ
4 ๏ธ
๏จ
๏จ
21.
r ๏ฝ radius of cylinder, h ๏ฝ height of cylinder,
V ๏ฝ volume of cylinder
H H ๏ญh
๏ฝ
R
r
Hr ๏ฝ R ๏จ H ๏ญ h ๏ฉ
By similar triangles:
18. d 2 ๏ฝ d12 ๏ซ d 2 2
d 2 ๏ฝ ๏จ 30t ๏ฉ ๏ซ ๏จ 40t ๏ฉ
2
Hr ๏ฝ RH ๏ญ Rh
2
Rh ๏ฝ RH ๏ญ Hr
d ๏จ t ๏ฉ ๏ฝ 900 t ๏ซ 1600 t ๏ฝ 2500 t ๏ฝ 50 t
2
2
2
RH ๏ญ Hr H ๏จ R ๏ญ r ๏ฉ
๏ฝ
R
R
๏ฆ H ๏จ R ๏ญ r ๏ฉ ๏ถ ๏ฐ H ๏จ R ๏ญ r ๏ฉ r2
V (r ) ๏ฝ ๏ฐ r 2 h ๏ฝ ๏ฐ r 2 ๏ง
๏ท๏ฝ
R
R
๏จ
๏ธ
h๏ฝ
d2 =40t
d1=30t
d
22. a.
19. a.
d
2
๏ฝ d12 ๏ซ d 2 2
d 2 ๏ฝ ๏จ 2 ๏ญ 30t ๏ฉ ๏ซ ๏จ 3 ๏ญ 40t ๏ฉ
2
d ๏จt ๏ฉ ๏ฝ
2
๏จ 2 ๏ญ 30t ๏ฉ2 ๏ซ ๏จ 3 ๏ญ 40t ๏ฉ2
The total cost of installing the cable along
the road is 500x . If cable is installed x
miles along the road, there are 5 ๏ญ x miles
between the road to the house and where the
cable ends along the road.
๏ฝ 4 ๏ญ 120t ๏ซ 900t 2 ๏ซ 9 ๏ญ 240t ๏ซ 1600t 2
๏ฝ 2500t 2 ๏ญ 360t ๏ซ 13
161
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
House
23. a.
time on land is given by
d
2
Town
P
d ๏ฝ (5 ๏ญ x) 2 ๏ซ 22
T ( x) ๏ฝ
C ( x) ๏ฝ 500 x ๏ซ 700 x 2 ๏ญ 10 x ๏ซ 29
Domain: ๏ป x 0 ๏ฃ x ๏ฃ 5 ๏ฝ
C (1) ๏ฝ 500 ๏จ1๏ฉ ๏ซ 700 1 ๏ญ 10 ๏จ1๏ฉ ๏ซ 29
x
12 ๏ญ x d1 12 ๏ญ x
x2 ๏ซ 4
๏ซ ๏ฝ
๏ซ
5
3
5
3
b. Domain: ๏ป x 0 ๏ฃ x ๏ฃ 12 ๏ฝ
2
๏ฝ 500 ๏ซ 700 20 ๏ฝ $3630.50
c.
C (3) ๏ฝ 500 ๏จ 3๏ฉ ๏ซ 700 32 ๏ญ 10 ๏จ 3๏ฉ ๏ซ 29
๏ด๏ต๏ฐ๏ฐ
T (4) ๏ฝ
๏ฝ
๏ฝ 1500 ๏ซ 700 8 ๏ฝ $3479.90
d.
T (8) ๏ฝ
๏ฝ
๏ฐ
e.
12โx
d1 ๏ฝ x 2 ๏ซ 22 ๏ฝ x 2 ๏ซ 4
The total time for the trip is:
๏ฝ 25 ๏ญ 10 x ๏ซ x 2 ๏ซ 4 ๏ฝ x 2 ๏ญ 10 x ๏ซ 29
The total cost of installing the cable is:
d.
12 ๏ญ x
.
5
d1
2
x
5๏ญx
c.
d1
. The
3
Island
Box
b.
The time on the boat is given by
3000
24. a.
๏ต
Using MINIMUM, the graph indicates that
x ๏ป 2.96 miles results in the least cost.
12 ๏ญ 4
42 ๏ซ 4
๏ซ
5
3
8
20
๏ซ
๏ป 3.09 hours
5
3
12 ๏ญ 8
82 ๏ซ 4
๏ซ
5
3
4
68
๏ซ
๏ป 3.55 hours
5
3
Let A ๏ฝ amount of material ,
x ๏ฝ length of the base , h ๏ฝ height , and
V ๏ฝ volume .
10
V ๏ฝ x 2 h ๏ฝ 10 ๏ h ๏ฝ 2
x
Total Area A ๏ฝ ๏จ Area base ๏ฉ ๏ซ ๏จ 4 ๏ฉ ๏จ Area side ๏ฉ
๏ฝ x 2 ๏ซ 4 xh
๏ฆ 10 ๏ถ
๏ฝ x2 ๏ซ 4 x ๏ง 2 ๏ท
๏จx ๏ธ
40
๏ฝ x2 ๏ซ
x
40
2
A๏จ x๏ฉ ๏ฝ x ๏ซ
x
40
๏ฝ 1 ๏ซ 40 ๏ฝ 41 ft 2
1
b.
A ๏จ1๏ฉ ๏ฝ 12 ๏ซ
c.
A ๏จ 2 ๏ฉ ๏ฝ 22 ๏ซ
162
Copyright ยฉ 2021 Pearson Education, Inc.
40
๏ฝ 4 ๏ซ 20 ๏ฝ 24 ft 2
2
Section 2.6: Mathematical Models: Building Functions
d.
y1 ๏ฝ x 2 ๏ซ
26. Consider the diagrams shown below.
40
x
100
10
0
0
๏ฑ๏ฐ๏ฐ
๏ฐ
๏ฑ๏ฐ
๏ฐ
The amount of material is least when
x ๏ฝ 2.71 ft.
e.
The largest area is
A ๏จ 2.71๏ฉ ๏ฝ 2.712 ๏ซ
25.
40
๏ฝ 22.1 ft 2
2.71
a.
length = 24 ๏ญ 2x ; width = 24 ๏ญ 2x ;
height = x
V ( x) ๏ฝ x(24 ๏ญ 2 x)(24 ๏ญ 2 x) ๏ฝ x(24 ๏ญ 2 x) 2
b.
V (3) ๏ฝ 3(24 ๏ญ 2(3)) 2 ๏ฝ 3(18) 2
There is a pair of similar triangles in the
diagram. This allows us to write
r 4
r 1
1
๏ฝ
๏ ๏ฝ ๏r๏ฝ h
h 16
h 4
4
Substituting into the volume formula for the
conical portion of water gives
๏ฝ 3(324) ๏ฝ 972 in 3 .
c.
V (10) ๏ฝ 10(24 ๏ญ 2(10))2 ๏ฝ 10(4) 2
2
1
1 ๏ฆ1 ๏ถ
๏ฐ 3
V ๏จ h๏ฉ ๏ฝ ๏ฐ r 2h ๏ฝ ๏ฐ ๏ง h ๏ท h ๏ฝ
h .
3
3 ๏จ4 ๏ธ
48
๏ฝ 10(16) ๏ฝ 160 in 3 .
d.
y1 ๏ฝ x(24 ๏ญ 2 x )2
27. a.
1100
0
0
12
Use MAXIMUM.
๏ฑ๏ฑ๏ฐ๏ฐ
The total cost is the sum of the shipment
cost, storage cost, and product cost. Since
each shipment will contain x units, there are
600/x shipments per year, each costing $15.
๏ฆ 600 ๏ถ ๏ฆ 9000 ๏ถ
So the shipment cost is 15 ๏ง
๏ท =๏ง
๏ท.
๏จ x ๏ธ ๏จ x ๏ธ
The storage cost for the year is given as
1.60 x. The product costs is
600(4.85) ๏ฝ 2910. So, the total cost is
C ( x) ๏ฝ
๏ฐ
๏ฐ
๏ฑ๏ฒ
The volume is largest when x ๏ฝ 4 inches.
e.
The largest volume is
V (4) ๏ฝ 4(24 ๏ญ 2(4)) 2 ๏ฝ 1024 in 3
163
Copyright ยฉ 2021 Pearson Education, Inc.
9000
๏ซ 1.60 x ๏ซ 2910.
x
Chapter 2: Functions and Their Graphs
b.
31.
10 14
๏ฝ
4
x
10 x ๏ฝ 4(14)
10 x ๏ฝ 56
x ๏ฝ 5.6
32. x ๏ฝ u ๏ญ 1
u ๏ญ1
u ๏ญ1
y๏ฝ
๏ฝ
u ๏ญ1๏ซ1
u
The retailer should order 75 drives per order
for a minimum yearly cost of $3150.
28.
33.
x๏ซ5
2
1
๏ซx 3 ๏ฝ
3x 3
๏ฝ
2 x ๏ญ 3 ๏ญ 5 ๏ฝ ๏ญ2
2x ๏ญ 3 ๏ฝ 3
๏ฝ
2 x ๏ญ 3 ๏ฝ ๏ญ3 or 2 x ๏ญ 3 ๏ฝ 3
2 x ๏ฝ 0 or
2x ๏ฝ 6
x ๏ฝ 0 or
2
3x 3 3x 3
x ๏ซ 5 ๏ซ 3x
2
3x 3
4x ๏ซ 5
2
3x ๏ญ 2 ๏ฃ ๏ญ4
Convert this to miles-per-hour.
5
5
1
5 sec ๏ฝ
min ๏ฝ
hr ๏ฝ
hr.
60
3600
720
66
66 ft ๏ฝ
mi
5280
66
distance 5280
๏ฝ
1 ๏ฝ 9 mph
time
720
Since the truck is traveling 55 mph, the Fusion
must travel 55 + 9 = 64 mph.
y2 ๏ญ y1 6 ๏ญ ( ๏ญ2) 8
๏ฝ
๏ฝ
๏ฝ ๏ญ4
1๏ญ 3
x2 ๏ญ x1
๏ญ2
3x
34. ๏ญ 3x ๏ญ 2 ๏ณ 4
x๏ฝ3
29. In order for the 16-foot long Ford Fusion to pass
the 50-foot truck, the Ford Fusion must travel the
length of the truck and the length of itself in the
time frame of 5 seconds. Thus the Fusion must
travel an additional 66 feet in 5 seconds.
30. m ๏ฝ
๏ซ
2
3x 3
The solution set is ๏ป 0,3๏ฝ .
speed=
x๏ซ5
No solution since a square root cannot be
negative.
35. Since the graph is symmetric is symmetric about
the origin then (3, -2) is symmetric to (-3, 2).
36.
v๏ฝ
2.6t
d2
vd 2
๏ฝ
2.6t
E
P
E
P
2
๏ฆ vd 2 ๏ถ
E
๏ง 2.6t ๏ท ๏ฝ P
๏จ
๏ธ
v2 d 4
E
๏ฝ
2
P
6.76t
2 4
Pv d
๏ฝE
6.76t 2
6.76t 2 E
P๏ฝ 2 4
v d
164
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Review Exercises
3x 2 ๏ญ 7 x ๏ฝ 4 x ๏ญ 2
37.
2
3x ๏ญ 11x ๏ซ 2 ๏ฝ 0
b 2 ๏ญ 4ac ๏ฝ (๏ญ11) 2 ๏ญ 4(3)(2)
๏ฝ 121 ๏ญ 24 ๏ฝ 97
d.
๏ฆ 3x ๏ถ ๏ญ3 x
๏ญ f ( x) ๏ฝ ๏ญ ๏ง 2
๏ท๏ฝ
๏จ x ๏ญ 1 ๏ธ x2 ๏ญ 1
e.
f ( x ๏ญ 2) ๏ฝ
3( x ๏ญ 2)
( x ๏ญ 2) 2 ๏ญ 1
3๏จ x ๏ญ 2๏ฉ
3x ๏ญ 6
๏ฝ 2
x ๏ญ 4x ๏ซ 4 ๏ญ1 x ๏ญ 4x ๏ซ 3
๏ฝ
f.
Chapter 2 Review Exercises
1. a.
Domain {8, 16, 20, 24}
7.
Range {$6.30, $12.32, $13.99}
b. {(8,$6.30), (16,$13.99), (20,$12.32),
(24,$13.99)}
c.
d.
f (2 x) ๏ฝ
2
3(2 x )
6x
๏ฝ 2
2
(2 x) ๏ญ 1 4 x ๏ญ 1
f ( x) ๏ฝ x 2 ๏ญ 4
a.
f (2) ๏ฝ 22 ๏ญ 4 ๏ฝ 4 ๏ญ 4 ๏ฝ 0 ๏ฝ 0
b.
f (๏ญ2) ๏ฝ
c.
f (๏ญ x) ๏ฝ (๏ญ x) 2 ๏ญ 4 ๏ฝ x 2 ๏ญ 4
d.
๏ญ f ( x) ๏ฝ ๏ญ x 2 ๏ญ 4
e.
f ( x ๏ญ 2) ๏ฝ ( x ๏ญ 2) 2 ๏ญ 4
๏จ ๏ญ2 ๏ฉ2 ๏ญ 4 ๏ฝ
4๏ญ4 ๏ฝ 0 ๏ฝ 0
๏ฝ x2 ๏ญ 4 x ๏ซ 4 ๏ญ 4
๏ฝ x2 ๏ญ 4 x
f.
f (2 x) ๏ฝ (2 x) 2 ๏ญ 4 ๏ฝ 4 x 2 ๏ญ 4
๏จ
๏ฉ
๏ฝ 4 x2 ๏ญ 1 ๏ฝ 2 x2 ๏ญ 1
2. This relation represents a function.
Domain = {โ1, 2, 4}; Range = {0, 3}.
8.
3. Domain {2,4}; Range {-1,1,2}
Not a function
x2 ๏ญ 4
x2
22 ๏ญ 4 4 ๏ญ 4 0
๏ฝ
๏ฝ ๏ฝ0
4
4
22
a.
f (2) ๏ฝ
b.
f (๏ญ2) ๏ฝ
๏จ ๏ญ2 ๏ฉ2 ๏ญ 4 4 ๏ญ 4 0
๏ฝ
๏ฝ ๏ฝ0
4
4
๏จ ๏ญ2 ๏ฉ2
c.
f (๏ญ x) ๏ฝ
(๏ญ x) 2 ๏ญ 4 x 2 ๏ญ 4
๏ฝ
x2
(๏ญ x) 2
a.
3(2)
6
6
f (2) ๏ฝ
๏ฝ
๏ฝ ๏ฝ2
2
4
1
3
๏ญ
(2) ๏ญ 1
d.
๏ฆ x2 ๏ญ 4 ๏ถ 4 ๏ญ x2
x2 ๏ญ 4
๏ญ f ( x) ๏ฝ ๏ญ ๏ง 2 ๏ท ๏ฝ
๏ฝ
๏ญ
x2
x2
๏จ x ๏ธ
b.
3(๏ญ2)
๏ญ6
๏ญ6
f (๏ญ2) ๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ2
(๏ญ2) 2 ๏ญ 1 4 ๏ญ 1 3
e.
f ( x ๏ญ 2) ๏ฝ
c.
3(๏ญ x)
๏ญ3 x
f (๏ญ x) ๏ฝ
๏ฝ 2
2
(๏ญ x) ๏ญ 1 x ๏ญ 1
4. not a function; domain [-1, 3]; range [-2, 2]
5. function; domain: all real numbers; range
๏ ๏ญ3, ๏ฅ ๏ฉ
6.
f ( x) ๏ฝ
f ( x) ๏ฝ
3x
x ๏ญ1
2
๏ฝ
165
Copyright ยฉ 2021 Pearson Education, Inc.
( x ๏ญ 2) 2 ๏ญ 4 x 2 ๏ญ 4 x ๏ซ 4 ๏ญ 4
๏ฝ
( x ๏ญ 2) 2
( x ๏ญ 2) 2
x2 ๏ญ 4 x x ๏จ x ๏ญ 4๏ฉ
๏ฝ
( x ๏ญ 2) 2 ( x ๏ญ 2) 2
Chapter 2: Functions and Their Graphs
f.
f (2 x) ๏ฝ
๏ฝ
9.
(2 x) 2 ๏ญ 4 4 x 2 ๏ญ 4
๏ฝ
(2 x) 2
4 x2
๏จ
14.
๏ฉ ๏ฝ x ๏ญ1
4 x2 ๏ญ 1
2
4 x2
x2
x ๏พ ๏ญ8
Domain: ๏ป x x ๏พ ๏ญ8๏ฝ .
x
x ๏ญ9
The denominator cannot be zero:
x2 ๏ญ 9 ๏น 0
f ( x) ๏ฝ
2
15.
g ( x) ๏ฝ 3 x ๏ซ 1
๏ฝ 2 ๏ญ x ๏ซ 3x ๏ซ 1 ๏ฝ 2 x ๏ซ 3
Domain: ๏ป x x is any real number๏ฝ .
x ๏น ๏ญ3 or 3
Domain: ๏ป x x ๏น ๏ญ3, x ๏น 3๏ฝ .
( f ๏ญ g )( x) ๏ฝ f ๏จ x ๏ฉ ๏ญ g ( x)
๏ฝ 2 ๏ญ x ๏ญ ๏จ 3 x ๏ซ 1๏ฉ
f ( x) ๏ฝ 2 ๏ญ x
The radicand must be non-negative:
2๏ญ x ๏ณ 0
๏ฝ 2 ๏ญ x ๏ญ 3x ๏ญ 1
๏ฝ ๏ญ4 x ๏ซ 1
Domain: ๏ป x x is any real number๏ฝ .
x๏ฃ2
Domain: ๏ป x x ๏ฃ 2๏ฝ or ๏จ ๏ญ๏ฅ, 2๏ .
( f ๏ g )( x) ๏ฝ f ( x) ๏ g ๏จ x ๏ฉ
๏ฝ ๏จ 2 ๏ญ x ๏ฉ๏จ 3 x ๏ซ 1๏ฉ
x
11. g ( x) ๏ฝ
x
The denominator cannot be zero:
x๏น0
๏ฝ 6 x ๏ซ 2 ๏ญ 3x 2 ๏ญ x
๏ฝ ๏ญ3x 2 ๏ซ 5 x ๏ซ 2
Domain: ๏ป x x is any real number๏ฝ .
Domain: ๏ป x x ๏น 0๏ฝ .
f ๏จ x๏ฉ 2 ๏ญ x
๏ฆ f ๏ถ
๏ง g ๏ท ( x) ๏ฝ g x ๏ฝ 3x ๏ซ 1
๏จ ๏ฉ
๏จ ๏ธ
3x ๏ซ 1 ๏น 0
x
12. f ( x) ๏ฝ 2
x ๏ซ 2x ๏ญ 3
The denominator cannot be zero:
x2 ๏ซ 2 x ๏ญ 3 ๏น 0
1
3
๏ฌ
1๏ผ
Domain: ๏ญ x x ๏น ๏ญ ๏ฝ .
3๏พ
๏ฎ
3 x ๏น ๏ญ1 ๏ x ๏น ๏ญ
๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 1๏ฉ ๏น 0
x ๏น ๏ญ3 or 1
Domain:๏ป x x ๏น ๏ญ3, x ๏น 1๏ฝ .
13.
f ( x) ๏ฝ 2 ๏ญ x
( f ๏ซ g )( x) ๏ฝ f ๏จ x ๏ฉ ๏ซ g ( x)
( x ๏ซ 3)( x ๏ญ 3) ๏น 0
10.
x
x๏ซ8
The radicand must be non-negative and not zero:
x๏ซ8๏พ 0
f ( x) ๏ฝ
16.
f ( x) ๏ฝ 3x 2 ๏ซ x ๏ซ 1
g ( x) ๏ฝ 3x
( f ๏ซ g )( x) ๏ฝ f ๏จ x ๏ฉ ๏ซ g ( x)
x ๏ซ1
x2 ๏ญ 4
The denominator cannot be zero:
x2 ๏ญ 4 ๏น 0
f ( x) ๏ฝ
๏ฝ 3×2 ๏ซ x ๏ซ 1 ๏ซ 3x
๏ฝ 3×2 ๏ซ 4 x ๏ซ 1
Domain: ๏ป x x is any real number๏ฝ .
๏จ x ๏ซ 2๏ฉ๏จ x ๏ญ 2๏ฉ ๏น 0
( f ๏ญ g )( x) ๏ฝ f ๏จ x ๏ฉ ๏ญ g ( x)
x ๏น ๏ญ2 or 2
Also, the radicand must be non-negative:
x ๏ซ1 ๏ณ 0
๏ฝ 3x 2 ๏ซ x ๏ซ 1 ๏ญ 3x
๏ฝ 3x 2 ๏ญ 2 x ๏ซ 1
Domain: ๏ป x x is any real number๏ฝ .
x ๏ณ ๏ญ1
Domain: ๏ ๏ญ1, 2๏ฉ ๏ ๏จ 2, ๏ฅ ๏ฉ .
166
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Review Exercises
( f ๏ g )( x) ๏ฝ f ( x) ๏ g ๏จ x ๏ฉ
๏จ
18.
๏ฉ
f ( x) ๏ฝ ๏ญ2 x 2 ๏ซ x ๏ซ 1
f ๏จ x ๏ซ h๏ฉ ๏ญ f ๏จ x๏ฉ
h
๏ฝ 3x 2 ๏ซ x ๏ซ 1 ๏จ 3x ๏ฉ
๏ฝ 9 x3 ๏ซ 3x 2 ๏ซ 3 x
Domain: ๏ป x x is any real number๏ฝ .
2
๏ฝ
f ๏จ x ๏ฉ 3x 2 ๏ซ x ๏ซ 1
๏ฆ f ๏ถ
๏ง g ๏ท ( x) ๏ฝ g x ๏ฝ
3x
๏จ ๏ฉ
๏จ ๏ธ
3x ๏น 0 ๏ x ๏น 0
๏ฝ
x ๏ซ1
1
g ( x) ๏ฝ
x ๏ญ1
x
๏ซ
๏ฝ
๏ซ
f
g
x
f
x
g
x
(
)( )
๏จ ๏ฉ ( )
f ( x) ๏ฝ
๏ฝ
๏ฝ
x ๏ซ 1 1 x ๏จ x ๏ซ 1๏ฉ ๏ซ 1๏จ x ๏ญ 1๏ฉ
๏ซ ๏ฝ
x ๏ญ1 x
x ๏จ x ๏ญ 1๏ฉ
2
๏จ
h
2
๏ญ2 x ๏ซ 2 xh ๏ซ h
2
๏ฉ ๏ซ x ๏ซ h ๏ซ 1 ๏ซ 2x ๏ญ x ๏ญ1
19. a.
Range:
2
x ๏ซ x ๏ซ x ๏ญ1 x ๏ซ 2x ๏ญ1
๏ฝ
x ๏จ x ๏ญ 1๏ฉ
x ๏จ x ๏ญ 1๏ฉ
๏ป y ๏ญ 3 ๏ฃ y ๏ฃ 3 ๏ฝ ; ๏ ๏ญ3, 3๏
b. Intercept: ๏จ 0, 0 ๏ฉ
c.
f ๏จ ๏ญ2 ๏ฉ ๏ฝ ๏ญ1
( f ๏ญ g )( x) ๏ฝ f ๏จ x ๏ฉ ๏ญ g ( x)
d.
f ๏จ x ๏ฉ ๏ฝ ๏ญ3 when x = โ4
e.
f ( x) ๏พ 0 when 0 ๏ผ x ๏ฃ 3
๏ฝ
x ๏ซ 1 1 x ๏จ x ๏ซ 1๏ฉ ๏ญ 1๏จ x ๏ญ 1๏ฉ
๏ญ ๏ฝ
x ๏ญ1 x
x ๏จ x ๏ญ 1๏ฉ
2
2
Domain: ๏ป x ๏ญ 4 ๏ฃ x ๏ฃ 3 ๏ฝ ; ๏ ๏ญ4, 3๏
Domain: ๏ป x x ๏น 0, x ๏น 1๏ฝ .
๏ฝ
๏ฉ
h
๏ญ2 x 2 ๏ญ 4 xh ๏ญ 2h 2 ๏ซ x ๏ซ h ๏ซ 1 ๏ซ 2 x 2 ๏ญ x ๏ญ 1
๏ฝ
h
๏ญ4 xh ๏ญ 2h 2 ๏ซ h h ๏จ ๏ญ4 x ๏ญ 2h ๏ซ 1๏ฉ
๏ฝ
๏ฝ
h
h
๏ฝ ๏ญ4 x ๏ญ 2h ๏ซ 1
Domain: ๏ป x x ๏น 0๏ฝ .
17.
๏จ
๏ญ2 ๏จ x ๏ซ h ๏ฉ ๏ซ ๏จ x ๏ซ h ๏ฉ ๏ซ 1 ๏ญ ๏ญ2 x 2 ๏ซ x ๏ซ 1
๏ป x | 0 ๏ผ x ๏ฃ 3๏ฝ
2
x ๏ซ x ๏ญ x ๏ซ1
x ๏ซ1
๏ฝ
x ๏จ x ๏ญ 1๏ฉ
x ๏จ x ๏ญ 1๏ฉ
f.
To graph y ๏ฝ f ๏จ x ๏ญ 3๏ฉ , shift the graph of f
horizontally 3 units to the right.
Domain: ๏ป x x ๏น 0, x ๏น 1๏ฝ .
x ๏ซ1
๏ฆ x ๏ซ1๏ถ๏ฆ 1 ๏ถ
( f ๏ g )( x) ๏ฝ f ( x) ๏ g ๏จ x ๏ฉ ๏ฝ ๏ง
๏ท๏ง x ๏ท ๏ฝ
x
๏ญ
1
x
๏จ x ๏ญ 1๏ฉ
๏จ
๏ธ๏จ ๏ธ
Domain: ๏ป x x ๏น 0, x ๏น 1๏ฝ .
x ๏ซ1
f ๏จ x ๏ฉ x ๏ญ 1 ๏ฆ x ๏ซ 1 ๏ถ ๏ฆ x ๏ถ x( x ๏ซ 1)
๏ฆ f ๏ถ
๏ง g ๏ท ( x) ๏ฝ g x ๏ฝ 1 ๏ฝ ๏ง x ๏ญ 1 ๏ท ๏ง 1 ๏ท ๏ฝ x ๏ญ 1
๏จ ๏ฉ
๏จ
๏ธ๏จ ๏ธ
๏จ ๏ธ
x
Domain: ๏ป x x ๏น 0, x ๏น 1๏ฝ .
167
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
g.
4 ๏ซ x2
1 ๏ซ x4
4 ๏ซ (๏ญ x) 2 4 ๏ซ x 2
g (๏ญ x) ๏ฝ
๏ฝ
๏ฝ g ( x)
1 ๏ซ (๏ญ x) 4 1 ๏ซ x 4
g is even.
๏ฆ1 ๏ถ
To graph y ๏ฝ f ๏ง x ๏ท , stretch the graph of
๏จ2 ๏ธ
f horizontally by a factor of 2.
22. g ( x) ๏ฝ
23. G ( x) ๏ฝ 1 ๏ญ x ๏ซ x3
G ( ๏ญ x ) ๏ฝ 1 ๏ญ ( ๏ญ x ) ๏ซ ( ๏ญ x )3
๏ฝ 1 ๏ซ x ๏ญ x 3 ๏น ๏ญG ( x) or G ( x )
G is neither even nor odd.
h.
To graph y ๏ฝ ๏ญ f ๏จ x ๏ฉ , reflect the graph of f
x
1 ๏ซ x2
๏ญx
๏ญx
f (๏ญ x) ๏ฝ
๏ฝ
๏ฝ ๏ญ f ( x)
1 ๏ซ (๏ญ x) 2 1 ๏ซ x 2
f is odd.
24.
f ( x) ๏ฝ
25.
f ๏จ x ๏ฉ ๏ฝ 2 x3 ๏ญ 5 x ๏ซ 1 on the interval ๏จ ๏ญ3,3๏ฉ
vertically about the y-axis.
Use MAXIMUM and MINIMUM on the graph
of y1 ๏ฝ 2 x3 ๏ญ 5 x ๏ซ 1 .
20
20. a.
๏ญ3
Domain: ๏จ ๏ญ๏ฅ, 4๏
Range: ๏จ ๏ญ๏ฅ,3๏
๏ญ20
Decreasing: ๏ ๏ญ2, 2๏
e.
The graph has no symmetry.
f.
The function is neither.
g.
x-intercepts: ๏จ ๏ญ3, 0 ๏ฉ , ๏จ 0, 0 ๏ฉ , ๏จ 3, 0 ๏ฉ ;
Use MAXIMUM and MINIMUM on the graph
of y1 ๏ฝ 2 x 4 ๏ญ 5 x3 ๏ซ 2 x ๏ซ 1 .
20
๏ญ2
f ( x) ๏ฝ x3 ๏ญ 4 x
20
3 ๏ญ2
๏ญ10
20
3
f (๏ญ x) ๏ฝ (๏ญ x) ๏ญ 4(๏ญ x) ๏ฝ ๏ญ x ๏ซ 4 x
๏จ
๏ญ20
f ๏จ x ๏ฉ ๏ฝ 2 x 4 ๏ญ 5 x3 ๏ซ 2 x ๏ซ 1 on the interval ๏จ ๏ญ2,3๏ฉ
26.
y-intercept: (0,0)
3
3
f is decreasing on: ๏ ๏ญ0.91, 0.91๏ .
Local minimum is ๏ญ1 at x ๏ฝ 2 ;
Local maximum is 1 at x ๏ฝ ๏ญ2
d. No absolute minimum;
Absolute maximum is 3 at x ๏ฝ 4
21.
3 ๏ญ3
local maximum value: 4.04 when x ๏ป ๏ญ0.91
local minimum value: ๏ญ2.04 when x ๏ฝ 0.91
f is increasing on: ๏ ๏ญ3, ๏ญ0.91๏ and ๏ 0.91,3๏ ;
b. Increasing: ๏จ ๏ญ๏ฅ, ๏ญ2๏ and ๏ 2, 4๏ ;
c.
20
๏ฉ
3
๏ญ10
๏ฝ ๏ญ x3 ๏ญ 4 x ๏ฝ ๏ญ f ( x)
๏ญ2
f is odd.
3
๏ญ10
local maximum: 1.53 when x ๏ฝ 0.41
168
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Review Exercises
local minimal values: 0.54 when x ๏ฝ ๏ญ0.34 ,
๏ญ3.56 when x ๏ฝ 1.80
f is increasing on: ๏ ๏ญ0.34, 0.41๏ and ๏1.80, 3๏ ;
33.
f ( x) ๏ฝ x
34.
f ( x) ๏ฝ x
f is decreasing on: ๏ ๏ญ2, ๏ญ0.34๏ and ๏ 0.41, 1.80๏ .
27.
f ( x) ๏ฝ 8 x 2 ๏ญ x
a.
b.
c.
28.
f (2) ๏ญ f (1) 8(2) 2 ๏ญ 2 ๏ญ [8(1) 2 ๏ญ 1]
๏ฝ
2 ๏ญ1
1
๏ฝ 32 ๏ญ 2 ๏ญ (7) ๏ฝ 23
f (1) ๏ญ f (0) 8(1) 2 ๏ญ 1 ๏ญ [8(0) 2 ๏ญ 0]
๏ฝ
1๏ญ 0
1
๏ฝ 8 ๏ญ 1 ๏ญ ๏จ0๏ฉ ๏ฝ 7
f (4) ๏ญ f (2) 8(4) 2 ๏ญ 4 ๏ญ [8(2) 2 ๏ญ 2]
๏ฝ
4๏ญ2
2
128 ๏ญ 4 ๏ญ (30) 94
๏ฝ
๏ฝ
๏ฝ 47
2
2
f ( x) ๏ฝ 2 ๏ญ 5 x
f (3) ๏ญ f (2) ๏ฉ๏ซ 2 ๏ญ 5 ๏จ 3๏ฉ ๏น๏ป ๏ญ ๏ฉ๏ซ 2 ๏ญ 5 ๏จ 2 ๏ฉ ๏น๏ป
๏ฝ
3๏ญ 2
3๏ญ2
๏จ 2 ๏ญ 15 ๏ฉ ๏ญ ๏จ 2 ๏ญ 10 ๏ฉ
๏ฝ
1
๏ฝ ๏ญ13 ๏ญ ๏จ ๏ญ8 ๏ฉ ๏ฝ ๏ญ5
29.
f ( x) ๏ฝ 3x ๏ญ 4 x 2
35. F ( x ) ๏ฝ x ๏ญ 4 . Using the graph of y ๏ฝ x ,
2๏น ๏ฉ
2๏น
๏ฉ
f (3) ๏ญ f (2) ๏ซ3 ๏จ 3๏ฉ ๏ญ 4 ๏จ 3๏ฉ ๏ป ๏ญ ๏ซ3 ๏จ 2 ๏ฉ ๏ญ 4 ๏จ 2 ๏ฉ ๏ป
๏ฝ
3๏ญ 2
3๏ญ 2
๏จ 9 ๏ญ 36 ๏ฉ ๏ญ ๏จ 6 ๏ญ 16 ๏ฉ
๏ฝ
1
๏ฝ ๏ญ27 ๏ซ 10 ๏ฝ ๏ญ17
vertically shift the graph downward 4 units.
30. Refer to question 29 for the slope.
y ๏ซ 10 ๏ฝ ๏ญ17( x ๏ญ 2)
y ๏ซ 10 ๏ฝ ๏ญ17 x ๏ซ 34
y ๏ฝ ๏ญ17 x ๏ซ 24
Intercepts: (โ4,0), (4,0), (0,โ4)
Domain: ๏ป x x is any real number๏ฝ
31. The graph does not pass the Vertical Line Test
and is therefore not a function.
Range: ๏ป y y ๏ณ ๏ญ 4๏ฝ or ๏ ๏ญ4, ๏ฅ ๏ฉ
32. The graph passes the Vertical Line Test and is
therefore a function.
36. g ( x) ๏ฝ ๏ญ 2 x . Reflect the graph of y ๏ฝ x
about the x-axis and vertically stretch the graph
by a factor of 2.
169
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
39. h( x ) ๏ฝ ( x ๏ญ 1) 2 ๏ซ 2 . Using the graph of y ๏ฝ x 2 ,
horizontally shift the graph to the right 1 unit and
vertically shift the graph up 2 units.
Intercepts: (0, 0)
Domain: ๏ป x x is any real number๏ฝ
Range: ๏ป y y ๏ฃ 0๏ฝ or ๏จ ๏ญ๏ฅ, 0๏
Intercepts: (0, 3)
Domain: ๏ป x x is any real number๏ฝ
Range: ๏ป y y ๏ณ 2๏ฝ or ๏ 2, ๏ฅ ๏ฉ
37. h( x) ๏ฝ x ๏ญ 1 . Using the graph of y ๏ฝ x ,
horizontally shift the graph to the right 1 unit.
40. g ( x) ๏ฝ ๏ญ 2( x ๏ซ 2)3 ๏ญ 8
Using the graph of y ๏ฝ x3 , horizontally shift the
graph to the left 2 units, vertically stretch the
graph by a factor of 2, reflect about the x-axis,
and vertically shift the graph down 8 units.
y
x
๏ญ๏น ๏จ๏ญ 2 ๏ญ 3 4, 0 ๏ฉ
Intercept: (1, 0)
Domain: ๏ป x x ๏ณ 1๏ฝ or ๏1, ๏ฅ ๏ฉ
๏ญ5
๏จ๏ญ๏ณ๏ฌ๏ ๏ญ๏ถ๏ฉ
Range: ๏ป y y ๏ณ 0๏ฝ or ๏ 0, ๏ฅ ๏ฉ
38.
๏จ๏ญ๏ฒ๏ฌ๏ ๏ญ๏ธ๏ฉ
f ( x) ๏ฝ 1 ๏ญ x ๏ฝ ๏ญ( x ๏ญ 1) . Reflect the graph of
๏จ๏ญ๏ฑ๏ฌ๏ ๏ญ๏ฑ๏ฐ๏ฉ
y ๏ฝ x about the y-axis and horizontally shift
the graph to the right 1 unit.
๏จ
๏ฉ
Intercepts: (0,โ24), ๏ญ 2 ๏ญ 3 4, 0 ๏ป ๏จ ๏ญ3.6, 0 ๏ฉ
Domain: ๏ป x x is any real number๏ฝ
Range: ๏ป y y is any real number๏ฝ
41.
๏ฌ3x
f ( x) ๏ฝ ๏ญ
๏ฎx ๏ซ1
a.
if ๏ญ 2 ๏ผ x ๏ฃ 1
if x ๏พ 1
Domain: ๏ป x x ๏พ ๏ญ2 ๏ฝ or ๏จ ๏ญ2, ๏ฅ ๏ฉ
b. Intercept: ๏จ 0, 0 ๏ฉ
Intercepts: (1, 0), (0, 1)
Domain: ๏ป x x ๏ฃ 1๏ฝ or ๏จ ๏ญ๏ฅ, 1๏
Range: ๏ป y y ๏ณ 0๏ฝ or ๏ 0, ๏ฅ ๏ฉ
170
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Review Exercises
c.
Graph:
44. a.
x 2 h ๏ฝ 10 ๏ h ๏ฝ
10
x2
A( x ) ๏ฝ 2 x 2 ๏ซ 4 x h
๏ฆ 10 ๏ถ
๏ฝ 2 x2 ๏ซ 4 x ๏ง 2 ๏ท
๏จx ๏ธ
40
๏ฝ 2 x2 ๏ซ
x
d. Range: ๏ป y | y ๏พ ๏ญ6 ๏ฝ or ๏จ ๏ญ6, ๏ฅ ๏ฉ
42.
๏ฌx
๏ฏ
f ( x) ๏ฝ ๏ญ1
๏ฏ3x
๏ฎ
a.
A(1) ๏ฝ 2 ๏12 ๏ซ
c.
A(2) ๏ฝ 2 ๏ 22 ๏ซ
40
๏ฝ 8 ๏ซ 20 ๏ฝ 28 ft 2
2
d. Graphing:
if ๏ญ 4 ๏ฃ x ๏ผ 0
50
if x ๏ฝ 0
if x ๏พ 0
Domain: ๏ป x x ๏ณ ๏ญ 4๏ฝ or ๏ ๏ญ4, ๏ฅ ๏ฉ
5
0
b. Intercept: (0, 1)
c.
40
๏ฝ 2 ๏ซ 40 ๏ฝ 42 ft 2
1
b.
0
Graph:
The area is smallest when x ๏ป 2.15 feet.
45. a.
Consider the following diagram:
P(x,y)
y
y ๏ฝ 10 ๏ญ x
d. Range: ๏ป y y ๏ณ ๏ญ 4, y ๏น 0๏ฝ
43.
2
x
Ax ๏ซ 5
and f (1) ๏ฝ 4
6x ๏ญ 2
A(1) ๏ซ 5
๏ฝ4
6(1) ๏ญ 2
A๏ซ5
๏ฝ4
4
A ๏ซ 5 ๏ฝ 16
f ( x) ๏ฝ
The area of the rectangle is A ๏ฝ xy . Thus,
the area function for the rectangle is:
A( x ) ๏ฝ x(10 ๏ญ x 2 )
b.
The maximum value occurs at the vertex:
A ๏ฝ 11
The maximum area is roughly:
A(1.83) ๏ฝ ๏ญ(1.83)3 ๏ซ 10(1.83)
๏ป 12.17 square units
171
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
can never equal 0. This means that x ๏น ๏ญ2 .
Domain: ๏ป x | x ๏น ๏ญ2๏ฝ
Chapter 2 Test
1. a.
๏ป๏จ 2,5๏ฉ , ๏จ 4, 6 ๏ฉ , ๏จ 6, 7 ๏ฉ , ๏จ8,8๏ฉ๏ฝ
g ๏จ ๏ญ1๏ฉ ๏ฝ
This relation is a function because there are
no ordered pairs that have the same first
element and different second elements.
Domain: ๏ป2, 4, 6,8๏ฝ
x๏ญ4
x 2 ๏ซ 5 x ๏ญ 36
The function tells us to divide x ๏ญ 4 by
4. h ๏จ x ๏ฉ ๏ฝ
Range: ๏ป5, 6, 7,8๏ฝ
b.
๏ป๏จ1,3๏ฉ , ๏จ 4, ๏ญ2 ๏ฉ , ๏จ ๏ญ3,5๏ฉ , ๏จ1, 7 ๏ฉ๏ฝ
x 2 ๏ซ 5 x ๏ญ 36 . Since division by 0 is not defined,
we need to exclude any values which make the
denominator 0.
x 2 ๏ซ 5 x ๏ญ 36 ๏ฝ 0
This relation is not a function because there
are two ordered pairs that have the same
first element but different second elements.
๏จ x ๏ซ 9 ๏ฉ๏จ x ๏ญ 4 ๏ฉ ๏ฝ 0
Domain: ๏ป๏ญ3,1, 4๏ฝ
x ๏ฝ ๏ญ9 or x ๏ฝ 4
Domain: ๏ป x | x ๏น ๏ญ9, x ๏น 4๏ฝ
Range: ๏ป๏ญ2,3,5, 7๏ฝ
c.
This relation is not a function because the
graph fails the vertical line test.
(note: there is a common factor of x ๏ญ 4 but we
must determine the domain prior to simplifying)
Domain: ๏ ๏ญ1, ๏ฅ ๏ฉ
h ๏จ ๏ญ1๏ฉ ๏ฝ
Range: ๏ป x x is any real number๏ฝ
d. This relation is a function because it passes
the vertical line test.
Domain: ๏ป x x is any real number๏ฝ
5. a.
Range: ๏ป y | y ๏ณ 2๏ฝ or ๏ 2, ๏ฅ ๏ฉ
2.
f ๏จ x ๏ฉ ๏ฝ 4 ๏ญ 5x
The function tells us to take the square root of
4 ๏ญ 5x . Only nonnegative numbers have real
square roots so we need 4 ๏ญ 5 x ๏ณ 0 .
4 ๏ญ 5x ๏ณ 0
4 ๏ญ 5x ๏ญ 4 ๏ณ 0 ๏ญ 4
๏ญ5 x ๏ณ ๏ญ4
๏ญ5 x ๏ญ4
๏ฃ
๏ญ5 ๏ญ5
4
x๏ฃ
5
๏ฌ
4๏ผ
4๏น
๏ฆ
Domain: ๏ญ x x ๏ฃ ๏ฝ or ๏ง ๏ญ๏ฅ, ๏บ
5
5
๏จ
๏ป
๏ฎ
๏พ
๏จ ๏ญ1๏ฉ ๏ญ 4
๏ญ5 1
๏ฝ
๏ฝ
๏จ ๏ญ1๏ฉ ๏ซ 5 ๏จ ๏ญ1๏ฉ ๏ญ 36 ๏ญ40 8
2
To find the domain, note that all the points
on the graph will have an x-coordinate
between ๏ญ5 and 5, inclusive. To find the
range, note that all the points on the graph
will have a y-coordinate between ๏ญ3 and 3,
inclusive.
Domain: ๏ป x | ๏ญ5 ๏ฃ x ๏ฃ 5๏ฝ or ๏ ๏ญ5, 5๏
Range: ๏ป y | ๏ญ3 ๏ฃ y ๏ฃ 3๏ฝ or ๏ ๏ญ3, 3๏
b. The intercepts are ๏จ 0, 2 ๏ฉ , ๏จ ๏ญ2, 0 ๏ฉ , and ๏จ 2, 0 ๏ฉ .
x-intercepts: ๏ญ2, 2
y-intercept: 2
c.
f ๏จ1๏ฉ is the value of the function when
x ๏ฝ 1 . According to the graph, f ๏จ1๏ฉ ๏ฝ 3 .
d. Since ๏จ ๏ญ5, ๏ญ3๏ฉ and ๏จ 3, ๏ญ3๏ฉ are the only
points on the graph for which
y ๏ฝ f ๏จ x ๏ฉ ๏ฝ ๏ญ3 , we have f ๏จ x ๏ฉ ๏ฝ ๏ญ3 when
x ๏ฝ ๏ญ5 and x ๏ฝ 3 .
f ๏จ ๏ญ1๏ฉ ๏ฝ 4 ๏ญ 5 ๏จ ๏ญ1๏ฉ ๏ฝ 4 ๏ซ 5 ๏ฝ 9 ๏ฝ 3
3. g ๏จ x ๏ฉ ๏ฝ
๏จ ๏ญ1๏ฉ ๏ซ 2 1
๏ฝ ๏ฝ1
๏จ ๏ญ1๏ฉ ๏ซ 2 1
e.
x๏ซ2
x๏ซ2
To solve f ๏จ x ๏ฉ ๏ผ 0 , we want to find xvalues such that the graph is below the xaxis. The graph is below the x-axis for
values in the domain that are less than ๏ญ2
and greater than 2. Therefore, the solution
set is ๏ป x | ๏ญ5 ๏ฃ x ๏ผ ๏ญ2 or 2 ๏ผ x ๏ฃ 5๏ฝ . In
The function tells us to divide x ๏ซ 2 by x ๏ซ 2 .
Division by 0 is undefined, so the denominator
172
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Chapter Test
keep the part for which x ๏ณ ๏ญ1 .
interval notation we would write the
solution set as ๏ ๏ญ5, ๏ญ2 ๏ฉ ๏ ๏จ 2,5๏ .
6.
f ๏จ x ๏ฉ ๏ฝ ๏ญ x 4 ๏ซ 2 x3 ๏ซ 4 x 2 ๏ญ 2
We set Xmin = ๏ญ5 and Xmax = 5. The standard
Ymin and Ymax will not be good enough to see the
whole picture so some adjustment must be made.
b. To find the intercepts, notice that the only
piece that hits either axis is y ๏ฝ x ๏ญ 4 .
y ๏ฝ x๏ญ4
y ๏ฝ x๏ญ4
y ๏ฝ 0๏ญ4
0 ๏ฝ x๏ญ4
y ๏ฝ ๏ญ4
4๏ฝx
The intercepts are ๏จ 0, ๏ญ4 ๏ฉ and ๏จ 4, 0 ๏ฉ .
c.
To find g ๏จ ๏ญ5 ๏ฉ we first note that x ๏ฝ ๏ญ5 so
we must use the first โpieceโ because ๏ญ5 ๏ผ ๏ญ1 .
g ๏จ ๏ญ5 ๏ฉ ๏ฝ 2 ๏จ ๏ญ5 ๏ฉ ๏ซ 1 ๏ฝ ๏ญ10 ๏ซ 1 ๏ฝ ๏ญ9
d. To find g ๏จ 2 ๏ฉ we first note that x ๏ฝ 2 so we
We see that the graph has a local maximum
value of ๏ญ0.86 (rounded to two places) when
x ๏ฝ ๏ญ0.85 and another local maximum value of
15.55 when x ๏ฝ 2.35 . There is a local minimum
value of ๏ญ2 when x ๏ฝ 0 . Thus, we have
Local maxima: f ๏จ ๏ญ0.85 ๏ฉ ๏ป ๏ญ0.86
must use the second โpieceโ because 2 ๏ณ ๏ญ1 .
g ๏จ 2 ๏ฉ ๏ฝ 2 ๏ญ 4 ๏ฝ ๏ญ2
8. a. The average rate of change from 3 to 4 is
given by
f ๏จ 4 ๏ฉ ๏ญ f ๏จ 3๏ฉ
4๏ญ3
f ๏จ 2.35 ๏ฉ ๏ป 15.55
Local minima: f ๏จ 0 ๏ฉ ๏ฝ ๏ญ2
๏จ 3 ๏จ 4 ๏ฉ ๏ญ 3 ๏จ 4 ๏ฉ ๏ซ 4 ๏ฉ ๏ญ ๏จ 3 ๏จ 3๏ฉ ๏ญ 3 ๏จ 3๏ฉ ๏ซ 4 ๏ฉ
๏ฝ
2
The function is increasing on the intervals
๏ ๏ญ5, ๏ญ0.85๏ and ๏0, 2.35๏ and decreasing on the
4๏ญ3
40 ๏ญ 22 18
๏ฝ
๏ฝ
๏ฝ 18
4๏ญ3
1
intervals ๏ ๏ญ0.85, 0๏ and ๏ 2.35,5๏ .
7. a.
2
x ๏ผ ๏ญ1
๏ฌ2 x ๏ซ 1
f ๏จ x๏ฉ ๏ฝ ๏ญ
x ๏ณ ๏ญ1
๏ฎ x๏ญ4
To graph the function, we graph each
โpiece.โ First we graph the line y ๏ฝ 2 x ๏ซ 1
but only keep the part for which x ๏ผ ๏ญ1 .
Then we plot the line y ๏ฝ x ๏ญ 4 but only
b.
y ๏ซ 40 ๏ฝ 18( x ๏ญ 4)
y ๏ซ 40 ๏ฝ 18 x ๏ญ 72
y ๏ฝ 18 x ๏ญ 32
9. a.
๏จ
๏ฉ
( f ๏ญ g )( x) ๏ฝ 2 x 2 ๏ซ 1 ๏ญ ๏จ 3 x ๏ญ 2๏ฉ
2
๏ฝ 2 x ๏ซ 1 ๏ญ 3x ๏ซ 2 ๏ฝ 2 x 2 ๏ญ 3x ๏ซ 3
b.
๏จ
๏ฉ
( f ๏ g )( x) ๏ฝ 2 x 2 ๏ซ 1 ๏จ 3 x ๏ญ 2๏ฉ
3
๏ฝ 6 x ๏ญ 4 x 2 ๏ซ 3x ๏ญ 2
173
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
c.
y
f ๏จ x ๏ซ h๏ฉ ๏ญ f ๏จ x๏ฉ
๏ฑ๏ฐ
๏จ
๏ฉ ๏จ ๏ฉ
๏ฝ ๏จ 2 ๏จ x ๏ซ 2 xh ๏ซ h ๏ฉ ๏ซ 1๏ฉ ๏ญ ๏จ 2 x ๏ซ 1๏ฉ
๏ฝ 2 ๏จ x ๏ซ h ๏ฉ ๏ซ 1 ๏ญ 2 x2 ๏ซ 1
2
2
2
๏จ๏ญ๏ฒ๏ฌ๏ ๏ฒ๏ฉ
๏จ๏ฐ๏ฌ๏ ๏ญ๏ฒ๏ฉ
2
๏ญ๏ฒ
x
๏ฒ
๏ฝ 2 x 2 ๏ซ 4 xh ๏ซ 2h 2 ๏ซ 1 ๏ญ 2 x 2 ๏ญ 1
๏ญ๏ฑ๏ฐ
๏ฝ 4 xh ๏ซ 2h 2
10. a.
y ๏ฝ ๏ญ2 ๏จx ๏ซ 1๏ฉ
3
3
The basic function is y ๏ฝ x so we start with
the graph of this function.
y
The last step is to shift this graph up 3 units
to obtain the graph of y ๏ฝ ๏ญ2 ๏จ x ๏ซ 1๏ฉ ๏ซ 3 .
3
y ๏ฝ x3
๏ฑ๏ฐ
y
๏จ๏ญ๏ฑ๏ฌ๏ ๏ญ๏ฑ๏ฉ
๏จ๏ฑ๏ฌ๏ ๏ฑ๏ฉ
๏ญ๏ฒ
๏ฒ
๏ฑ๏ฐ
๏จ๏ญ๏ฒ๏ฌ๏ ๏ต๏ฉ
๏จ๏ฐ๏ฌ๏ ๏ฑ๏ฉ
x
๏ญ๏ฒ
x
๏ฒ
๏ญ๏ฑ๏ฐ
๏ญ๏ฑ๏ฐ
Next we shift this graph 1 unit to the left to
y ๏ฝ ๏ญ2 ๏จx ๏ซ 1๏ฉ ๏ซ 3
3
obtain the graph of y ๏ฝ ๏จ x ๏ซ 1๏ฉ .
3
y ๏ฝ ๏จ x ๏ซ 1๏ฉ
3
y
b. The basic function is y ๏ฝ x so we start
with the graph of this function.
๏ฑ๏ฐ
y
y๏ฝ x
๏จ๏ฐ๏ฌ๏ ๏ฑ๏ฉ
๏จ๏ญ๏ฒ๏ฌ๏ ๏ญ๏ฑ๏ฉ
๏ญ๏ฒ
๏ธ
x
๏ฒ
๏จ๏ฒ๏ฌ๏ ๏ฒ๏ฉ
๏จ๏ญ๏ฒ๏ฌ๏ ๏ฒ๏ฉ
x
๏ธ
๏ญ๏ฑ๏ฐ
Next we reflect this graph about the x-axis
to obtain the graph of y ๏ฝ ๏ญ ๏จ x ๏ซ 1๏ฉ .
3
Next we shift this graph 4 units to the left to
obtain the graph of y ๏ฝ x ๏ซ 4 .
y
๏ฑ๏ฐ
๏จ๏ญ๏ฒ๏ฌ๏ ๏ฑ๏ฉ
y
๏จ๏ฐ๏ฌ๏ ๏ญ๏ฑ๏ฉ
๏ฒ
๏ญ๏ฒ
y ๏ฝ x๏ซ4
๏ธ
x
๏จ๏ญ๏ถ๏ฌ๏ ๏ฒ๏ฉ
๏ญ๏ฑ๏ฐ
๏จ๏ญ๏ฒ๏ฌ๏ ๏ฒ๏ฉ
y ๏ฝ ๏ญ ๏จ x ๏ซ 1๏ฉ
3
Next we stretch this graph vertically by a
factor of 2 to obtain the graph of
๏ธ
x
Next we shift this graph up 2 units to obtain
y ๏ฝ ๏ญ2 ๏จ x ๏ซ 1๏ฉ .
3
174
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Cumulative Review
b. If the rink is 90 feet wide, then we have
x ๏ฝ 90 .
the graph of y ๏ฝ x ๏ซ 4 ๏ซ 2 .
y
y ๏ฝ x๏ซ4 ๏ซ2
V ๏จ 90 ๏ฉ ๏ฝ
๏ธ
๏ธ
2
The volume of ice is roughly 3460.29 ft 3 .
๏จ๏ญ๏ฒ๏ฌ๏ ๏ด๏ฉ
๏จ๏ญ๏ถ๏ฌ๏ ๏ด๏ฉ
902 10 ๏จ 90 ๏ฉ ๏ฐ ๏จ 90 ๏ฉ
๏ญ
๏ซ
๏ป 3460.29
3
3
24
x
13.
f ๏จ ๏ญ x ๏ฉ ๏ฝ ๏ญ( ๏ญ x ) 2 ๏ญ 7
๏ฝ ๏ญ x 2 ๏ญ 7 same
The function is even.
11. a.
f ( x ๏ซ h) ๏ญ f ( x) ( x ๏ซ h) 2 ๏ญ 3( x ๏ซ h) ๏ญ ( x 2 ๏ญ 3 x)
๏ฝ
h
h
2
2
x ๏ซ 2 xh ๏ซ h ๏ญ 3 x ๏ญ 3h ๏ญ x 2 ๏ซ 3x
๏ฝ
h
2 xh ๏ซ h 2 ๏ญ 3h
๏ฝ
h
h(2 x ๏ซ h ๏ญ 3)
๏ฝ
๏ฝ 2x ๏ซ h ๏ญ 3
h
12. a.
Let x = width of the rink in feet. Then the
length of the rectangular portion is given by
2 x ๏ญ 20 . The radius of the semicircular
x
portions is half the width, or r ๏ฝ .
2
To find the volume, we first find the area of
the surface and multiply by the thickness of
the ice. The two semicircles can be
combined to form a complete circle, so the
area is given by
A ๏ฝ l ๏ w ๏ซ ๏ฐ r2
๏ฆ x๏ถ
๏ฝ ๏จ 2 x ๏ญ 20 ๏ฉ๏จ x ๏ฉ ๏ซ ๏ฐ ๏ง ๏ท
๏จ2๏ธ
2
๏ฝ 2 x ๏ญ 20 x ๏ซ
1.
3 x ๏ญ 8 ๏ฝ 10
3x ๏ญ 8 ๏ซ 8 ๏ฝ 10 ๏ซ 8
3 x ๏ฝ 18
3x 18
๏ฝ
3
3
x๏ฝ6
The solution set is ๏ป6๏ฝ .
2.
3x 2 ๏ญ x ๏ฝ 0
x ๏จ 3 x ๏ญ 1๏ฉ ๏ฝ 0
x ๏ฝ 0 or 3x ๏ญ 1 ๏ฝ 0
3x ๏ฝ 1
1
3
๏ฌ 1๏ผ
The solution set is ๏ญ0, ๏ฝ .
๏ฎ 3๏พ
x๏ฝ
2
3.
๏ฐ x2
x2 ๏ญ 8x ๏ญ 9 ๏ฝ 0
๏จ x ๏ญ 9 ๏ฉ๏จ x ๏ซ 1๏ฉ ๏ฝ 0
4
We have expressed our measures in feet so
we need to convert the thickness to feet as
well.
1 ft
2
1
2 in ๏
๏ฝ
ft ๏ฝ ft
12 in 12
6
Now we multiply this by the area to obtain
the volume. That is,
1๏ฆ
๏ฐ x2 ๏ถ
V ๏จ x ๏ฉ ๏ฝ ๏ง 2 x 2 ๏ญ 20 x ๏ซ
6๏จ
4 ๏ท๏ธ
V ๏จ x๏ฉ ๏ฝ
Chapter 2 Cumulative Review
x ๏ญ 9 ๏ฝ 0 or x ๏ซ 1 ๏ฝ 0
x๏ฝ9
x ๏ฝ ๏ญ1
The solution set is ๏ป๏ญ1,9๏ฝ .
x 2 10 x ๏ฐ x 2
๏ญ
๏ซ
3
3
24
175
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
4.
6 x2 ๏ญ 5x ๏ซ 1 ๏ฝ 0
4๏ถ
๏ฆ
Interval notation: ๏ง ๏ญ๏ฅ, ๏ญ ๏ท
3๏ธ
๏จ
๏จ 3x ๏ญ 1๏ฉ๏จ 2 x ๏ญ 1๏ฉ ๏ฝ 0
3x ๏ญ 1 ๏ฝ 0 or 2 x ๏ญ 1 ๏ฝ 0
3x ๏ฝ 1
2x ๏ฝ 1
1
2
๏ฌ1 1 ๏ผ
The solution set is ๏ญ , ๏ฝ .
๏ฎ3 2 ๏พ
x๏ฝ
5.
1
3
x๏ฝ
8.
๏ญ3 ๏ผ 2 x ๏ญ 5 ๏ผ 3
2 ๏ผ 2x ๏ผ 8
1๏ผ x ๏ผ 4
Solution set: ๏ป x |1 ๏ผ x ๏ผ 4๏ฝ
2x ๏ซ 3 ๏ฝ 4
2 x ๏ซ 3 ๏ฝ ๏ญ4 or 2 x ๏ซ 3 ๏ฝ 4
2 x ๏ฝ ๏ญ7
2x ๏ฝ 1
6.
7
2
Interval notation: ๏จ1, 4 ๏ฉ
1
2
๏ฌ 7 1๏ผ
The solution set is ๏ญ๏ญ , ๏ฝ .
๏ฎ 2 2๏พ
x๏ฝ๏ญ
x๏ฝ
9.
๏จ 2x ๏ซ 3 ๏ฉ ๏ฝ 2
2
4x ๏ซ1 ๏ณ 7
4 x ๏ซ 1 ๏ฃ ๏ญ7 or 4 x ๏ซ 1 ๏ณ 7
4 x ๏ฃ ๏ญ8
4x ๏ณ 6
3
x ๏ฃ ๏ญ2
x๏ณ
2
3๏ผ
๏ฌ
Solution set: ๏ญ x | x ๏ฃ ๏ญ2 or x ๏ณ ๏ฝ
2๏พ
๏ฎ
๏ฉ3 ๏ถ
Interval notation: ๏จ ๏ญ๏ฅ, ๏ญ2 ๏น๏ป ๏ ๏ช , ๏ฅ ๏ท
๏ซ2 ๏ธ
2x ๏ซ 3 ๏ฝ 2
2
2x ๏ซ 3 ๏ฝ 4
2x ๏ฝ 1
x๏ฝ
2x ๏ญ 5 ๏ผ 3
1
2
Check:
?
๏ฆ1๏ถ
2๏ง ๏ท ๏ซ 3 ๏ฝ 2
๏จ2๏ธ
?
1๏ซ 3 ๏ฝ 2
10. a.
?
4 ๏ฝ2
2๏ฝ2 T
๏ฌ1 ๏ผ
The solution set is ๏ญ ๏ฝ .
๏ฎ2๏พ
๏จ x2 ๏ญ x1 ๏ฉ ๏ซ ๏จ y2 ๏ญ y1 ๏ฉ
2
2
๏ฝ
๏จ 3 ๏ญ ๏จ ๏ญ2 ๏ฉ๏ฉ ๏ซ ๏จ ๏ญ5 ๏ญ ๏จ ๏ญ3๏ฉ๏ฉ
๏ฝ
๏จ 3 ๏ซ 2 ๏ฉ ๏ซ ๏จ ๏ญ5 ๏ซ 3๏ฉ
2
2
2
๏ฝ 52 ๏ซ ๏จ ๏ญ2 ๏ฉ ๏ฝ 25 ๏ซ 4
2
7. 2 ๏ญ 3x ๏พ 6
๏ญ3x ๏พ 4
x๏ผ๏ญ
d๏ฝ
๏ฝ 29
4
3
4๏ผ
๏ฌ
Solution set: ๏ญ x | x ๏ผ ๏ญ ๏ฝ
3๏พ
๏ฎ
176
Copyright ยฉ 2021 Pearson Education, Inc.
2
Chapter 2 Cumulative Review
b.
c.
๏ฆ x ๏ซ x y ๏ซ y2 ๏ถ
M ๏ฝ๏ง 1 2 , 1
๏ท
2 ๏ธ
๏จ 2
๏ฆ ๏ญ2 ๏ซ 3 ๏ญ3 ๏ซ ๏จ ๏ญ5 ๏ฉ ๏ถ
๏ท
,
๏ฝ๏ง
๏ง 2
๏ท
2
๏จ
๏ธ
๏ฆ1
๏ถ
๏ฝ ๏ง , ๏ญ4 ๏ท
๏จ2
๏ธ
m๏ฝ
12. x ๏ฝ y 2
๏จ x, y ๏ฉ
2
๏ญ2 x ๏ฝ ๏จ ๏ญ2 ๏ฉ ๏ฝ 4 ๏จ 4, ๏ญ2 ๏ฉ
2
๏ญ1 x ๏ฝ ๏จ ๏ญ1๏ฉ ๏ฝ 1 ๏จ1, ๏ญ1๏ฉ
0
x ๏ฝ 02 ๏ฝ 0
๏จ 0, 0 ๏ฉ
1
x ๏ฝ 12 ๏ฝ 1
๏จ1,1๏ฉ
2
2
x๏ฝ2 ๏ฝ4
๏จ 4, 2 ๏ฉ
y
y2 ๏ญ y1 ๏ญ5 ๏ญ ๏จ ๏ญ3๏ฉ ๏ญ2
2
๏ฝ
๏ฝ
๏ฝ๏ญ
x2 ๏ญ x1
5
5
3 ๏ญ ๏จ ๏ญ2 ๏ฉ
x ๏ฝ y2
11. 3 x ๏ญ 2 y ๏ฝ 12
x-intercept:
3x ๏ญ 2 ๏จ 0 ๏ฉ ๏ฝ 12
3 x ๏ฝ 12
x๏ฝ4
The point ๏จ 4, 0 ๏ฉ is on the graph.
y-intercept:
3 ๏จ 0 ๏ฉ ๏ญ 2 y ๏ฝ 12
13. x 2 ๏ซ ๏จ y ๏ญ 3๏ฉ ๏ฝ 16
2
๏ญ2 y ๏ฝ 12
y ๏ฝ ๏ญ6
This is the equation of a circle with radius
r ๏ฝ 16 ๏ฝ 4 and center at ๏จ 0,3๏ฉ . Starting at the
The point ๏จ 0, ๏ญ6 ๏ฉ is on the graph.
center we can obtain some points on the graph by
moving 4 units up, down, left, and right. The
corresponding points are ๏จ 0, 7 ๏ฉ , ๏จ 0, ๏ญ1๏ฉ ,
๏จ ๏ญ4,3๏ฉ , and ๏จ 4,3๏ฉ , respectively.
177
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
The graph of the equation has y-axis symmetry.
14. y ๏ฝ x
x
0
1
4
๏จ x, y ๏ฉ
y ๏ฝ 0 ๏ฝ 0 ๏จ 0, 0 ๏ฉ
y ๏ฝ 1 ๏ฝ 1 ๏จ1,1๏ฉ
y ๏ฝ 4 ๏ฝ 2 ๏จ 4, 2 ๏ฉ
16. First we find the slope:
8๏ญ4
4 1
m๏ฝ
๏ฝ ๏ฝ
8
2
6 ๏ญ ๏จ ๏ญ2 ๏ฉ
y๏ฝ x
Next we use the slope and the given point ๏จ 6,8 ๏ฉ
in the point-slope form of the equation of a line:
y ๏ญ y1 ๏ฝ m ๏จ x ๏ญ x1 ๏ฉ
1
๏จ x ๏ญ 6๏ฉ
2
1
y ๏ญ8 ๏ฝ x ๏ญ3
2
1
y ๏ฝ x๏ซ5
2
y ๏ญ8 ๏ฝ
17.
15. 3 x 2 ๏ญ 4 y ๏ฝ 12
x-intercepts:
3x 2 ๏ญ 4 ๏จ 0 ๏ฉ ๏ฝ 12
f ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ซ 2๏ฉ ๏ญ 3
2
Starting with the graph of y ๏ฝ x 2 , shift the graph
2 units to the left ๏ฉ y ๏ฝ ๏จ x ๏ซ 2 ๏ฉ ๏น and down 3
๏ซ๏ช
๏ป๏บ
2
2
units ๏ฉ y ๏ฝ ๏จ x ๏ซ 2 ๏ฉ ๏ญ 3๏น .
๏ซ๏ช
๏ป๏บ
3 x 2 ๏ฝ 12
x2 ๏ฝ 4
x ๏ฝ ๏ฑ2
y-intercept:
3 ๏จ 0 ๏ฉ ๏ญ 4 y ๏ฝ 12
2
๏ญ4 y ๏ฝ 12
y ๏ฝ ๏ญ3
The intercepts are ๏จ ๏ญ2, 0 ๏ฉ , ๏จ 2, 0 ๏ฉ , and ๏จ 0, ๏ญ3๏ฉ .
Check x-axis symmetry:
3x 2 ๏ญ 4 ๏จ ๏ญ y ๏ฉ ๏ฝ 12
3x 2 ๏ซ 4 y ๏ฝ 12 different
Check y-axis symmetry:
3 ๏จ ๏ญ x ๏ฉ ๏ญ 4 y ๏ฝ 12
2
3 x 2 ๏ญ 4 y ๏ฝ 12 same
Check origin symmetry:
3 ๏จ ๏ญ x ๏ฉ ๏ญ 4 ๏จ ๏ญ y ๏ฉ ๏ฝ 12
2
3x 2 ๏ซ 4 y ๏ฝ 12 different
178
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Projects
18.
f ๏จ x๏ฉ ๏ฝ
Project II
1
x
1
x
y๏ฝ
x
1
๏ญ1 y ๏ฝ
๏ฝ ๏ญ1
๏ญ1
1
y ๏ฝ ๏ฝ1
1
1
1
y๏ฝ
2
2
1. Silver: C ๏จ x ๏ฉ ๏ฝ 20 ๏ซ 0.16 ๏จ x ๏ญ 200 ๏ฉ ๏ฝ 0.16 x ๏ญ 12
๏จ x, y ๏ฉ
20
๏ฌ
C ( x) ๏ฝ ๏ญ
๏ฎ0.16 x ๏ญ 12
๏จ ๏ญ1, ๏ญ1๏ฉ
0 ๏ฃ x ๏ฃ 200
x ๏พ 200
Gold: C ๏จ x ๏ฉ ๏ฝ 50 ๏ซ 0.08 ๏จ x ๏ญ 1000 ๏ฉ ๏ฝ 0.08 x ๏ญ 30
๏จ1,1๏ฉ
50.00
0 ๏ฃ x ๏ฃ 1000
๏ฌ
C ( x) ๏ฝ ๏ญ
0.08
x
๏ญ
30
x
๏พ
1000
๏ฎ
๏ฆ 1๏ถ
๏ง 2, ๏ท
๏จ 2๏ธ
Platinum: C ๏จ x ๏ฉ ๏ฝ 100 ๏ซ 0.04 ๏จ x ๏ญ 3000 ๏ฉ
๏ฝ 0.04 x ๏ญ 20
C ( x) ๏ฝ ๏ฌ100.00
0 ๏ฃ x ๏ฃ 3000
๏ญ
๏ญ
0.04
x
20
x ๏พ 3000
๏ฎ
Cost (dollars)
C(x)
300
๏ฌ๏ฏ2 ๏ญ x if x ๏ฃ 2
19. f ๏จ x ๏ฉ ๏ฝ ๏ญ
if x ๏พ 2
๏ฏ๏ฎ x
Graph the line y ๏ฝ 2 ๏ญ x for x ๏ฃ 2 . Two points
Silver
Gold
200
Platinum
100
0
1000
2000
3000
4000 x
K-Bytes
on the graph are ๏จ 0, 2 ๏ฉ and ๏จ 2, 0 ๏ฉ .
3. Let y = #K-bytes of service over the plan
minimum.
Graph the line y ๏ฝ x for x ๏พ 2 . There is a hole
in the graph at x ๏ฝ 2 .
Silver: 20 ๏ซ 0.16 y ๏ฃ 50
0.16 y ๏ฃ 30
y ๏ฃ 187.5
Silver is the best up to 187.5 ๏ซ 200 ๏ฝ 387.5
K-bytes of service.
Gold: 50 ๏ซ 0.08 y ๏ฃ 100
0.08 y ๏ฃ 50
y ๏ฃ 625
Gold is the best from 387.5 K-bytes to
625 ๏ซ 1000 ๏ฝ 1625 K-bytes of service.
Platinum: Platinum will be the best if more than
1625 K-bytes is needed.
4. Answers will vary.
Chapter 2 Projects
Project I โ Internet-based Project โ Answers will
vary
179
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2: Functions and Their Graphs
Project III
6. C(4.5) = 100(4.5) + 140 4 ๏ซ (5 ๏ญ 4.5) 2
1.
๏ป $738.62
The cost for the Stevenโs cable would be
$738.62.
Possible route 1
Driveway
2 miles
7. 5000(738.62) = $3,693,100 State legislated
5000(695.96) = $3,479,800 cheapest cost
It will cost the company $213,300 more.
Cable box
5 miles
Possible route 2
Highway
House
2.
$140/mile
L๏ฝ
4 ๏ซ (5 ๏ญ x )2
Project IV
2 miles
1. A ๏ฝ ๏ฐ r 2
Cable box
2. r ๏ฝ 2.2t
5 miles $10 0/mile
C ( x) ๏ฝ 100 x ๏ซ 140 L
3. r ๏ฝ 2.2 ๏จ 2 ๏ฉ ๏ฝ 4.4 ft
C ( x) ๏ฝ 100 x ๏ซ 140 4 ๏ซ (5 ๏ญ x)
3.
2
r ๏ฝ 2.2 ๏จ 2.5 ๏ฉ ๏ฝ 5.5 ft
x C ๏จ x๏ฉ
4. A ๏ฝ ๏ฐ (4.4) 2 ๏ฝ 60.82 ft 2
0 100 ๏จ 0 ๏ฉ ๏ซ 140 4 ๏ซ 25 ๏ป $753.92
A ๏ฝ ๏ฐ (5.5)2 ๏ฝ 95.03 ft 2
1 100 ๏จ1๏ฉ ๏ซ 140 4 ๏ซ 16 ๏ป $726.10
5. A ๏ฝ ๏ฐ (2.2t ) 2 ๏ฝ 4.84๏ฐ t 2
2 100 ๏จ 2 ๏ฉ ๏ซ 140 4 ๏ซ 9 ๏ป $704.78
6. A ๏ฝ 4.84๏ฐ (2) 2 ๏ฝ 60.82 ft 2
3 100 ๏จ 3๏ฉ ๏ซ 140 4 ๏ซ 4 ๏ป $695.98
A ๏ฝ 4.84๏ฐ (2.5) 2 ๏ฝ 95.03 ft 2
4 100 ๏จ 4 ๏ฉ ๏ซ 140 4 ๏ซ 1 ๏ป $713.05
5 100 ๏จ 5 ๏ฉ ๏ซ 140 4 ๏ซ 0 ๏ฝ $780.00
The choice where the cable goes 3 miles down
the road then cutting up to the house seems to
yield the lowest cost.
4. Since all of the costs are less than $800, there
would be a profit made with any of the plans.
๏ฐ
A(2.5) ๏ญ A(2) 95.03 ๏ญ 60.82
๏ฝ
๏ฝ 68.42 ft/hr
2.5 ๏ญ 2
0.5
8.
A(3.5) ๏ญ A(3) 186.27 ๏ญ 136.85
๏ฝ
๏ฝ 98.84 ft/hr
3.5 ๏ญ 3
0.5
9. The average rate of change is increasing.
10. 150 yds = 450 ft
r ๏ฝ 2.2t
450
t๏ฝ
๏ฝ 204.5 hours
2.2
C(x ) dollars
๏ธ๏ฐ๏ฐ
๏ถ๏ฐ๏ฐ
7.
11. 6 miles = 31680 ft
Therefore, we need a radius of 15,840 ft.
15,840
t๏ฝ
๏ฝ 7200 hours
2.2
๏ต x miles
Using the MINIMUM function on a graphing
calculator, the minimum occurs at x ๏ป 2.96 .
C(x) dollars
๏ธ๏ฐ๏ฐ
๏ถ๏ฐ๏ฐ
๏ฐ
๏ต x miles
The minimum cost occurs when the cable runs
for 2.96 mile along the road.
180
Copyright ยฉ 2021 Pearson Education, Inc.
Document Preview (98 of 1593 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Precalculus Enhanced with Graphing Utilities, 8th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Henry Lewis
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)