Solution Manual For Mechanics Of Materials, 7th Edition

Preview Extract
CHAPTER 2 PROBLEM 2.1 A nylon thread is subjected to a 8.5-N tension force. Knowing that E ๏€ฝ 3.3 GPa and that the length of the thread increases by 1.1%, determine (a) the diameter of the thread, (b) the stress in the thread. SOLUTION (a) 1.1 ๏€ฝ 0.011 100 ๏ฅ๏€ฝ Stress: ๏ณ ๏€ฝ E๏ฅ ๏€ฝ (3.3 ๏‚ด 109 )(0.011) ๏€ฝ 36.3 ๏‚ด 106 Pa ๏ณ ๏€ฝ (b) ๏ค Strain: Area: A๏€ฝ Diameter: d ๏€ฝ ๏€ฝ L P A P ๏ณ ๏€ฝ 4A ๏ฐ 8.5 ๏€ฝ 234.16 ๏‚ด 10๏€ญ9 m 2 36.3 ๏‚ด 106 ๏€ฝ (4)(234.16 ๏‚ด 10๏€ญ9 ) ๏ฐ ๏€ฝ 546 ๏‚ด 10๏€ญ6 m d ๏€ฝ 0.546 mm ๏ด ๏ณ ๏€ฝ 36.3 MPa ๏ด๏€  Stress: PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 93 PROBLEM 2.2 A 4.8-ft-long steel wire of 14 -in.-diameter is subjected to a 750-lb tensile load. Knowing that E = 29 ร— 106 psi, determine (a) the elongation of the wire, (b) the corresponding normal stress. SOLUTION (a) Deformation: Area: ๏ค๏€ฝ A๏€ฝ ๏ค๏€ฝ PL ; AE A๏€ฝ ๏ฐ (0.25 in.)2 4 ๏ฐd2 4 ๏€ฝ 4.9087 ๏‚ด 10 ๏€ญ2 in 2 (750 lb)(4.8 ft ๏‚ด 12 in./ft) (4.9087 ๏‚ด 10๏€ญ2 in 2 )(29 ๏‚ด 106 psi) ๏ค ๏€ฝ 3.0347 ๏‚ด 10 ๏€ญ2 in. (b) Stress: ๏ณ๏€ฝ P A Area: ๏ณ๏€ฝ (750lb) (4.9087 ๏‚ด 10๏€ญ2 in 2 ) ๏ค ๏€ฝ 0.0303 in. ๏ด๏€  ๏ณ ๏€ฝ 1.52790 ๏‚ด 10 4 psi ๏ณ ๏€ฝ 15.28 ksi ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 94 PROBLEM 2.3 An 18-m-long steel wire of 5-mm diameter is to be used in the manufacture of a prestressed concrete beam. It is observed that the wire stretches 45 mm when a tensile force P is applied. Knowing that E ๏€ฝ 200 GPa, determine (a) the magnitude of the force P, (b) the corresponding normal stress in the wire. SOLUTION (a) ๏ค๏€ฝ PL , or AE P๏€ฝ ๏ค AE L 1 1 with A ๏€ฝ ๏ฐ d 2 ๏€ฝ ๏ฐ (0.005)2 ๏€ฝ 19.6350 ๏‚ด 10๏€ญ6 m 2 4 4 P๏€ฝ (0.045 m)(19.6350 ๏‚ด 10๏€ญ6 m 2 )(200 ๏‚ด 109 N/m 2 ) ๏€ฝ 9817.5 N 18 m P ๏€ฝ 9.82 kN ๏ด๏€  (b) ๏ณ๏€ฝ P A ๏€ฝ 9817.5 N 19.6350 ๏‚ด 10 ๏€ญ6 6 m 2 ๏ณ ๏€ฝ 500 MPa ๏ด๏€  ๏€ฝ 500 ๏‚ด 10 Pa PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 95 PROBLEM 2.4 Two gage marks are placed exactly 250 mm apart on a 12-mm-diameter aluminum rod with E = 73 GPa and an ultimate strength of 140 MPa. Knowing that the distance between the gage marks is 250.28 mm after a load is applied, determine (a) the stress in the rod, (b) the factor of safety. SOLUTION (a) ๏ค ๏€ฝ L ๏€ญ L0 ๏€ฝ 250.28 mm ๏€ญ 250 mm ๏€ฝ 0.28 mm ๏ฅ๏€ฝ ๏€ฝ ๏ค L0 0.28 mm 250 mm ๏€ฝ 1.11643 ๏‚ด 10 ๏€ญ4 ๏ณ ๏€ฝ E๏ฅ ๏€ฝ (73 ๏‚ด 109 Pa)(1.11643 ๏‚ด 10 ๏€ญ4 ) ๏€ฝ 8.1760 ๏‚ด 107 Pa ๏ณ ๏€ฝ 81.8 MPa ๏ด๏€  (b) F.S. ๏€ฝ ๏€ฝ ๏ณu ๏ณ 140 MPa 81.760 MPa ๏€ฝ 1.71233 F.S. ๏€ฝ 1.712 ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 96 PROBLEM 2.5 An aluminum pipe must not stretch more than 0.05 in. when it is subjected to a tensile load. Knowing that E ๏€ฝ 10.1 ๏‚ด 106 psi and that the maximum allowable normal stress is 14 ksi, determine (a) the maximum allowable length of the pipe, (b) the required area of the pipe if the tensile load is 127.5 kips. SOLUTION (a) ๏ค๏€ฝ PL AE Thus, L๏€ฝ EA๏ค E๏ค (10.1 ๏‚ด 106 ) (0.05) ๏€ฝ ๏€ฝ ๏ณ P 14 ๏‚ด 103 L ๏€ฝ 36.1 in. ๏ด (b) ๏ณ ๏€ฝ P A Thus, A๏€ฝ P ๏ณ ๏€ฝ 127.5 ๏‚ด 103 14 ๏‚ด 103 A ๏€ฝ 9.11 in 2 ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 97 PROBLEM 2.6 A control rod made of yellow brass must not stretch more than 3 mm when the tension in the wire is 4 kN. Knowing that E = 105 GPa and that the maximum allowable normal stress is 180 MPa, determine (a) the smallest diameter rod that should be used, (b) the corresponding maximum length of the rod. SOLUTION (a) ๏ณ๏€ฝ P ; A A๏€ฝ ๏ฐd2 4 Substituting, we have ๏ณ ๏€ฝ P ๏ƒฆ ๏ฐd2 ๏ƒถ ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒจ 4 ๏ƒธ ๏ƒž d ๏€ฝ d ๏€ฝ 4P ๏ณ๏ฐ 4(4 ๏‚ด 103 N) (180 ๏‚ด 106 Pa) ๏ฐ d ๏€ฝ 5.3192 ๏‚ด 10๏€ญ3 m d ๏€ฝ 5.32 mm ๏ด (b) ๏ณ ๏€ฝ E๏ฅ ; ๏ฅ๏€ฝ ๏ค L Substituting, we have ๏ณ ๏€ฝE ๏ค L ๏ƒž L๏€ฝ L๏€ฝ E๏‚ถ ๏ณ (105 ๏‚ด 109 Pa) (3 ๏‚ด 10๏€ญ3 m) (180 ๏‚ด 106 Pa) L ๏€ฝ 1.750 m ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 98 PROBLEM 2.7 A steel control rod is 5.5 ft long and must not stretch more than 0.04 in. when a 2-kip tensile load is applied to it. Knowing that E ๏€ฝ 29 ๏‚ด 106 psi, determine (a) the smallest diameter rod that should be used, (b) the corresponding normal stress caused by the load. SOLUTION (a) ๏ค๏€ฝ PL AE : 0.04 in. ๏€ฝ (2000 lb) (5.5 ๏‚ด 12 in.) 6 A (29 ๏‚ด 10 psi) A๏€ฝ 1 2 ๏ฐ d ๏€ฝ 0.113793 in 2 4 d ๏€ฝ 0.38063 in. (b) ๏ณ๏€ฝ P A ๏€ฝ 2000 lb 0.113793 in 2 d ๏€ฝ 0.381 in. ๏ด๏€  ๏ณ ๏€ฝ 17.58 ksi ๏ด๏€  ๏€ฝ 17575.8 psi PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 99 PROBLEM 2.8 A cast-iron tube is used to support a compressive load. Knowing that E ๏€ฝ 10 ๏‚ด 106 psi and that the maximum allowable change in length is 0.025%, determine (a) the maximum normal stress in the tube, (b) the minimum wall thickness for a load of 1600 lb if the outside diameter of the tube is 2.0 in. SOLUTION (a) ๏ค L ๏€ฝ ๏ค 100 ๏€ฝ 0.00025 ๏ณ ๏€ฝ E๏ฅ ; ๏œ ๏ณ ๏€ฝE ๏ฅ๏€ฝ ๏ค L ๏ค L ๏ณ ๏€ฝ (10 ๏‚ด 106 psi)(0.00025) ๏ณ ๏€ฝ 2.50 ๏‚ด 103 psi ๏ณ ๏€ฝ 2.50 ksi ๏ด (b) ๏ณ ๏€ฝ A๏€ฝ P ; A ๏ฐ 4 ๏œ A๏€ฝ ๏ณ ๏€ฝ 1600 lb ๏€ฝ 0.64 in 2 2.50 ๏‚ด 103 psi ๏€จd ๏€ญ d ๏€ฉ 2 o di2 ๏€ฝ d o2 ๏€ญ 2 i 4A ๏ฐ di2 ๏€ฝ (2.0 in.) 2 ๏€ญ 4(0.64 in 2 ) ๏ฐ ๏œ t ๏€ฝ P ๏€ฝ 3.1851 in 2 di ๏€ฝ 1.78469 in. 1 1 (d o ๏€ญ di ) ๏€ฝ (2.0 in. ๏€ญ 1.78469 in.) 2 2 t ๏€ฝ 0.107655 in. t ๏€ฝ 0.1077 ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 100 PROBLEM 2.9 A 4-m-long steel rod must not stretch more than 3 mm and the normal stress must not exceed 150 MPa when the rod is subjected to a 10-kN axial load. Knowing that E ๏€ฝ 200 GPa, determine the required diameter of the rod. SOLUTION L ๏€ฝ4m ๏ค ๏€ฝ 3 ๏‚ด 10๏€ญ3 m, ๏ณ ๏€ฝ 150 ๏‚ด 106 Pa E ๏€ฝ 200 ๏‚ด 109 Pa, P ๏€ฝ 10 ๏‚ด 103 N Stress: ๏ณ ๏€ฝ A๏€ฝ Deformation: P A P ๏ณ ๏€ฝ 10 ๏‚ด 103 N ๏€ฝ 66.667 ๏‚ด 10๏€ญ6 m 2 ๏€ฝ 66.667 mm 2 6 150 ๏‚ด 10 Pa ๏ค ๏€ฝ PL AE A๏€ฝ PL (10 ๏‚ด 103 )(4) ๏€ฝ ๏€ฝ 66.667 ๏‚ด 10๏€ญ6 m 2 ๏€ฝ 66.667 mm 2 E๏ค (200 ๏‚ด 109 )(3 ๏‚ด 10๏€ญ3 ) The larger value of A governs: A ๏€ฝ 66.667 mm 2 A๏€ฝ ๏ฐ 4 d2 d๏€ฝ 4A ๏ฐ ๏€ฝ 4(66.667) ๏ฐ d ๏€ฝ 9.21 mm ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 101 PROBLEM 2.10 A nylon thread is to be subjected to a 10-N tension. Knowing that E ๏€ฝ 3.2 GPa, that the maximum allowable normal stress is 40 MPa, and that the length of the thread must not increase by more than 1%, determine the required diameter of the thread. SOLUTION Stress criterion: ๏ณ ๏€ฝ 40 MPa ๏€ฝ 40 ๏‚ด 106 Pa P ๏€ฝ 10 N ๏ณ ๏€ฝ A๏€ฝ P P 10 N : A๏€ฝ ๏€ฝ ๏€ฝ 250 ๏‚ด 10๏€ญ9 m 2 A ๏ณ 40 ๏‚ด 106 Pa ๏ฐ 4 d 2: d ๏€ฝ 2 A ๏ฐ 250 ๏‚ด 10๏€ญ9 ๏€ฝ2 ๏ฐ ๏€ฝ 564.19 ๏‚ด 10๏€ญ6 m d ๏€ฝ 0.564 mm Elongation criterion: ๏ค L ๏€ฝ 1% ๏€ฝ 0.01 ๏ค ๏€ฝ PL : AE A๏€ฝ P /E 10 N/3.2 ๏‚ด 109 Pa ๏€ฝ ๏€ฝ 312.5 ๏‚ด 10๏€ญ9 m 2 ๏ค /L 0.01 d ๏€ฝ2 A ๏ฐ ๏€ฝ2 312.5 ๏‚ด 10๏€ญ9 ๏ฐ ๏€ฝ 630.78 ๏‚ด 10๏€ญ6 m 2 d ๏€ฝ 0.631 mm d ๏€ฝ 0.631 mm ๏ด๏€  The required diameter is the larger value: PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 102 PROBLEM 2.11 A block of 10-in. length and 1.8 ร— 1.6-in. cross section is to support a centric compressive load P. The material to be used is a bronze for which E ๏€ฝ 14 ร— 106 psi. Determine the largest load that can be applied, knowing that the normal stress must not exceed 18 ksi and that the decrease in length of the block should be at most 0.12% of its original length. SOLUTION Considering allowable stress, ๏ณ ๏€ฝ 18 ksi Cross-sectional area: A ๏€ฝ (1.8 in.)(1.6 in.) ๏€ฝ 2.880 in 2 ๏ณ๏€ฝ P A or 18 ๏‚ด 103 psi P ๏€ฝ๏ณ A ๏ƒž ๏€ฝ (18 ๏‚ด 103 psi)(2.880 in 2 ) ๏€ฝ 5.1840 ๏‚ด 104 lb or 51.840 kips Considering allowable deformation, ๏ค๏€ฝ PL AE ๏ค L ๏ƒž ๏€ฝ 0.12% or 0.0012 in. ๏ƒฆ๏ค ๏ƒถ P ๏€ฝ AE ๏ƒง ๏ƒท ๏ƒจL๏ƒธ P ๏€ฝ (2.880 in 2 )(14 ๏‚ด 106 psi)(0.0012 in.) ๏€ฝ 4.8384 ๏‚ด 104 lb or 48.384 kips The smaller value for P resulting from the required deformation criteria governs. 48.4 kips ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 103 PROBLEM 2.12 A square yellow-brass bar must not stretch more than 2.5 mm when it is subjected to a tensile load. Knowing that E ๏€ฝ 105 GPa and that the allowable tensile strength is 180 MPa, determine (a) the maximum allowable length of the bar, (b) the required dimensions of the cross section if the tensile load is 40 kN. SOLUTION ๏ณ ๏€ฝ 180 ๏‚ด 106 Pa P ๏€ฝ 40 ๏‚ด 103 N E ๏€ฝ 105 ๏‚ด 109 Pa ๏ค ๏€ฝ 2.5 ๏‚ด 10๏€ญ3 m (a) PL ๏ณ L ๏€ฝ AE E E๏ค (105 ๏‚ด 109 )(2.5 ๏‚ด 10๏€ญ3 ) ๏€ฝ ๏€ฝ 1.45833 m L๏€ฝ ๏ณ 180 ๏‚ด 106 ๏ค๏€ฝ L ๏€ฝ 1.458 m ๏ด (b) ๏ณ ๏€ฝ A๏€ฝ P A P ๏ณ A ๏€ฝ a2 ๏€ฝ 40 ๏‚ด 103 ๏€ฝ 222.22 ๏‚ด 10๏€ญ6 m 2 ๏€ฝ 222.22 mm 2 180 ๏‚ด 106 a๏€ฝ A ๏€ฝ a ๏€ฝ 14.91 mm ๏ด๏€  222.22 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 104 P โซฝ 130 kips PROBLEM 2.13 Rod BD is made of steel ( E ๏€ฝ 29 ๏‚ด 106 psi) and is used to brace the axially compressed member ABC. The maximum force that can be developed in member BD is 0.02P. If the stress must not exceed 18 ksi and the maximum change in length of BD must not exceed 0.001 times the length of ABC, determine the smallest-diameter rod that can be used for member BD. A 72 in. D B 72 in. C 54 in. SOLUTION FBD ๏€ฝ 0.02 P ๏€ฝ (0.02)(130) ๏€ฝ 2.6 kips ๏€ฝ 2.6 ๏‚ด 103 lb Considering stress, ๏ณ ๏€ฝ 18 ksi ๏€ฝ 18 ๏‚ด 103 psi ๏ณ๏€ฝ FBD A ๏œ A๏€ฝ FBD ๏€ฝ ๏ณ 2.6 ๏€ฝ 0.14444 in 2 18 Considering deformation, ๏ค ๏€ฝ (0.001)(144) ๏€ฝ 0.144 in. ๏ค๏€ฝ FBD LBD AE ๏œ A๏€ฝ FBD LBD (2.6 ๏‚ด 103 )(54) ๏€ฝ ๏€ฝ 0.03362 in 2 6 E๏ค (29 ๏‚ด 10 )(0.144) Larger area governs. A ๏€ฝ 0.14444 in 2 A๏€ฝ ๏ฐ 4 d2 ๏œ d๏€ฝ 4A ๏ฐ ๏€ฝ (4)(0.14444) ๏ฐ d ๏€ฝ 0.429 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 105 PROBLEM 2.14 B 2.5 m The 4-mm-diameter cable BC is made of a steel with E ๏€ฝ 200 GPa. Knowing that the maximum stress in the cable must not exceed 190 MPa and that the elongation of the cable must not exceed 6 mm, find the maximum load P that can be applied as shown. P 3.5 m A C 4.0 m SOLUTION LBC ๏€ฝ 62 ๏€ซ 42 ๏€ฝ 7.2111 m Use bar AB as a free body. ๏ƒฆ 4 ๏ƒถ FBC ๏ƒท ๏€ฝ 0 3.5P ๏€ญ (6) ๏ƒง 7.2111 ๏ƒจ ๏ƒธ P ๏€ฝ 0.9509 FBC ๏“ M A ๏€ฝ 0: Considering allowable stress, ๏ณ ๏€ฝ 190 ๏‚ด 106 Pa A๏€ฝ ๏ฐ d2 ๏€ฝ 4 FBC ๏ณ๏€ฝ A ๏ฐ 4 (0.004) 2 ๏€ฝ 12.566 ๏‚ด 10๏€ญ6 m 2 ๏œ FBC ๏€ฝ ๏ณ A ๏€ฝ (190 ๏‚ด 106 )(12.566 ๏‚ด 10๏€ญ6 ) ๏€ฝ 2.388 ๏‚ด 103 N Considering allowable elongation, ๏ค ๏€ฝ 6 ๏‚ด 10๏€ญ3 m ๏ค๏€ฝ FBC LBC AE ๏œ FBC ๏€ฝ AE๏ค (12.566 ๏‚ด 10๏€ญ6 )(200 ๏‚ด 109 )(6 ๏‚ด 10๏€ญ3 ) ๏€ฝ ๏€ฝ 2.091 ๏‚ด 103 N 7.2111 LBC Smaller value governs. FBC ๏€ฝ 2.091 ๏‚ด 103 N P ๏€ฝ 0.9509 FBC ๏€ฝ (0.9509)(2.091 ๏‚ด 103 ) ๏€ฝ 1.988 ๏‚ด 103 N P ๏€ฝ 1.988 kN ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 106 PROBLEM 2.15 1.25-in. diameter d A single axial load of magnitude P = 15 kips is applied at end C of the steel rod ABC. Knowing that E = 30 ร— 106 psi, determine the diameter d of portion BC for which the deflection of point C will be 0.05 in. A 4 ft B 3 ft C P SOLUTION ๏คC ๏€ฝ ๏ƒฅ PLi ๏ƒฆ PL ๏ƒถ ๏ƒฆ PL ๏ƒถ ๏€ฝ๏ƒง ๏€ซ๏ƒง ๏ƒท Ai Ei ๏ƒจ AE ๏ƒธ AB ๏ƒจ AE ๏ƒท๏ƒธ BC LAB ๏€ฝ 4 ft ๏€ฝ 48 in.; AAB ๏€ฝ ๏ฐd2 4 ๏€ฝ LBC ๏€ฝ 3 ft ๏€ฝ 36 in. ๏ฐ (1.25 in.)2 4 ๏€ฝ 1.22718 in 2 Substituting, we have ๏ƒฆ 15 ๏‚ด 103 lb ๏ƒถ๏ƒฆ 48 in. 36 in. ๏ƒถ 0.05 in. ๏€ฝ ๏ƒง๏ƒง ๏€ซ ๏ƒท๏ƒง ๏ƒท 6 2 ๏ƒท ABC ๏ƒธ ๏ƒจ 30 ๏‚ด 10 psi ๏ƒธ ๏ƒจ 1.22718 in ABC ๏€ฝ 0.59127 in 2 ABC ๏€ฝ or d ๏€ฝ d ๏€ฝ ๏ฐd2 4 4 ABC ๏ฐ 4(0.59127 in 2 ) ๏ฐ d ๏€ฝ 0.86766 in. d ๏€ฝ 0.868 in. ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 107 PROBLEM 2.16 36 mm A 250-mm-long aluminum tube ( E ๏€ฝ 70 GPa) of 36-mm outer diameter and 28-mm inner diameter can be closed at both ends by means of single-threaded screw-on covers of 1.5-mm pitch. With one cover screwed on tight, a solid brass rod ( E ๏€ฝ 105 GPa) of 25-mm diameter is placed inside the tube and the second cover is screwed on. Since the rod is slightly longer than the tube, it is observed that the cover must be forced against the rod by rotating it one-quarter of a turn before it can be tightly closed. Determine (a) the average normal stress in the tube and in the rod, (b) the deformations of the tube and of the rod. 28 mm 25 mm 250 mm SOLUTION Atube ๏€ฝ A rod ๏€ฝ ๏ค tube ๏€ฝ ๏ฐ 4 ๏ฐ 4 (d o2 ๏€ญ di2 ) ๏€ฝ d2 ๏€ฝ ๏ฐ 4 ๏ฐ 4 (362 ๏€ญ 282 ) ๏€ฝ 402.12 mm 2 ๏€ฝ 402.12 ๏‚ด 10๏€ญ6 m 2 (25)2 ๏€ฝ 490.87 mm 2 ๏€ฝ 490.87 ๏‚ด 10๏€ญ6 m 2 PL P(0.250) ๏€ฝ ๏€ฝ 8.8815 ๏‚ด 10๏€ญ9 P 9 Etube Atube (70 ๏‚ด 10 )(402.12 ๏‚ด 10๏€ญ6 ) ๏ค rod ๏€ฝ ๏€ญ PL P(0.250) ๏€ฝ ๏€ฝ ๏€ญ4.8505 ๏‚ด 10๏€ญ9 P Erod Arod (105 ๏‚ด 106 )(490.87 ๏‚ด 10๏€ญ6 ) ๏ƒฆ1 ๏ƒถ turn ๏ƒท ๏‚ด 1.5 mm ๏€ฝ 0.375 mm ๏€ฝ 375 ๏‚ด 10๏€ญ6 m ๏ƒจ4 ๏ƒธ ๏ค* ๏€ฝ ๏ƒง ๏ค tube ๏€ฝ ๏ค * ๏€ซ ๏ค rod or ๏ค tube ๏€ญ ๏ค rod ๏€ฝ ๏ค * 8.8815 ๏‚ด 10๏€ญ9 P ๏€ซ 4.8505 ๏‚ด 10๏€ญ9 P ๏€ฝ 375 ๏‚ด 10๏€ญ6 P๏€ฝ (a) ๏ณ tube ๏€ฝ P 27.308 ๏‚ด 103 ๏€ฝ ๏€ฝ 67.9 ๏‚ด 106 Pa ๏€ญ6 Atube 402.12 ๏‚ด 10 ๏ณ rod ๏€ฝ ๏€ญ (b) 0.375 ๏‚ด 10๏€ญ3 ๏€ฝ 27.308 ๏‚ด 103 N (8.8815 ๏€ซ 4.8505)(10๏€ญ9 ) ๏ณ tube ๏€ฝ 67.9 MPa ๏ด P 27.308 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ55.6 ๏‚ด 106 Pa ๏€ญ6 Arod 490.87 ๏‚ด 10 ๏ค tube ๏€ฝ (8.8815 ๏‚ด 10๏€ญ9 )(27.308 ๏‚ด 103 ) ๏€ฝ 242.5 ๏‚ด 10๏€ญ6 m ๏ค rod ๏€ฝ ๏€ญ(4.8505 ๏‚ด 10๏€ญ9 )(27.308 ๏‚ด 103 ) ๏€ฝ ๏€ญ132.5 ๏‚ด 10๏€ญ6 m ๏ณ rod ๏€ฝ ๏€ญ55.6 MPa ๏ด ๏ค tube ๏€ฝ 0.243 mm ๏ด ๏ค rod ๏€ฝ ๏€ญ0.1325 mm ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 108 P 5 350 lb B 0.4 in. C A 1 in. 1.6 in. D PROBLEM 2.17 P 5 350 lb 1 in. The specimen shown has been cut from a 14 -in.-thick sheet of vinyl (E = 0.45 ร— 106 psi) and is subjected to a 350-lb tensile load. Determine (a) the total deformation of the specimen, (b) the deformation of its central portion BC. 2 in. 1.6 in. ๏ค AB ๏€ฝ PLAB (350 lb)(1.6 in.) ๏€ฝ ๏€ฝ 4.9778 ๏‚ด 10๏€ญ3 in. EAAB (0.45 ๏‚ด 106 psi)(1 in.)(0.25 in.) ๏ค BC ๏€ฝ PLBC (350 lb)(2 in.) ๏€ฝ ๏€ฝ 15.5556 ๏‚ด 10๏€ญ3 in. EABC (0.45 ๏‚ด 106 psi)(0.4 in.)(0.25 in.) SOLUTION ๏ค CD ๏€ฝ ๏ค AB ๏€ฝ 4.9778 ๏‚ด 10๏€ญ3 in. (a) Total deformation: ๏ค ๏€ฝ ๏ค AB ๏€ซ ๏ค BC ๏€ซ ๏ค CD ๏ค ๏€ฝ 25.511 ๏‚ด 10๏€ญ3 in. ๏ค ๏€ฝ 25.5 ๏‚ด 10๏€ญ3 in. ๏ด (b) Deformation of portion BC : ๏ค BC ๏€ฝ 15.56 ๏‚ด 10 ๏€ญ3 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 109 PROBLEM 2.18 P D 1 mm A The brass tube AB ( E ๏€ฝ 105 GPa) has a cross-sectional area of 140 mm2 and is fitted with a plug at A. The tube is attached at B to a rigid plate that is itself attached at C to the bottom of an aluminum cylinder ( E ๏€ฝ 72 GPa) with a cross-sectional area of 250 mm2. The cylinder is then hung from a support at D. In order to close the cylinder, the plug must move down through 1 mm. Determine the force P that must be applied to the cylinder. 375 mm B C SOLUTION Shortening of brass tube AB: LAB ๏€ฝ 375 ๏€ซ 1 ๏€ฝ 376 mm ๏€ฝ 0.376 m AAB ๏€ฝ 140 mm 2 ๏€ฝ 140 ๏‚ด 10๏€ญ6 m 2 E AB ๏€ฝ 105 ๏‚ด 109 Pa ๏ค AB ๏€ฝ PLAB P(0.376) ๏€ฝ ๏€ฝ 25.578 ๏‚ด 10๏€ญ9P ๏€ญ6 9 E AB AAB (105 ๏‚ด 10 )(140 ๏‚ด 10 ) Lengthening of aluminum cylinder CD: LCD ๏€ฝ 0.375 m ๏ค CD ๏€ฝ ACD ๏€ฝ 250 mm 2 ๏€ฝ 250 ๏‚ด 10๏€ญ6 m 2 ECD ๏€ฝ 72 ๏‚ด 109 Pa PLCD P(0.375) ๏€ฝ ๏€ฝ 20.833 ๏‚ด 10๏€ญ9 P ECD ACD (72 ๏‚ด 109 )(250 ๏‚ด 10๏€ญ6 ) ๏ค A ๏€ฝ ๏ค AB ๏€ซ ๏ค CD where ๏ค A ๏€ฝ 0.001 m Total deflection: 0.001 ๏€ฝ (25.578 ๏‚ด 10๏€ญ9 ๏€ซ 20.833 ๏‚ด 10๏€ญ9 ) P P ๏€ฝ 21.547 ๏‚ด 103 N P ๏€ฝ 21.5 kN ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 110 PROBLEM 2.19 P Both portions of the rod ABC are made of an aluminum for which E ๏€ฝ 70 GPa. Knowing that the magnitude of P is 4 kN, determine (a) the value of Q so that the deflection at A is zero, (b) the corresponding deflection of B. A 20-mm diameter 0.4 m B Q 0.5 m 60-mm diameter C SOLUTION (a) AAB ๏€ฝ ABC ๏€ฝ ๏ฐ 4 ๏ฐ 4 2 d AB ๏€ฝ 2 d BC ๏€ฝ ๏ฐ 4 ๏ฐ 4 (0.020) 2 ๏€ฝ 314.16 ๏‚ด 10๏€ญ6 m 2 (0.060)2 ๏€ฝ 2.8274 ๏‚ด 10๏€ญ3 m 2 Force in member AB is P tension. Elongation: ๏ค AB ๏€ฝ PLAB (4 ๏‚ด 103 )(0.4) ๏€ฝ ๏€ฝ 72.756 ๏‚ด 10๏€ญ6 m EAAB (70 ๏‚ด 109 )(314.16 ๏‚ด 10๏€ญ6 ) Force in member BC is Q ๏€ญ P compression. Shortening: ๏ค BC ๏€ฝ (Q ๏€ญ P) LBC (Q ๏€ญ P)(0.5) ๏€ฝ ๏€ฝ 2.5263 ๏‚ด 10๏€ญ9(Q ๏€ญ P) 9 ๏€ญ3 EABC (70 ๏‚ด 10 )(2.8274 ๏‚ด 10 ) For zero deflection at A, ๏ค BC ๏€ฝ ๏ค AB 2.5263 ๏‚ด 10๏€ญ9(Q ๏€ญ P) ๏€ฝ 72.756 ๏‚ด 10๏€ญ6 ๏œ Q ๏€ญ P ๏€ฝ 28.8 ๏‚ด 103 N Q ๏€ฝ 28.3 ๏‚ด 103 ๏€ซ 4 ๏‚ด 103 ๏€ฝ 32.8 ๏‚ด 103 N (b) ๏ค AB ๏€ฝ ๏ค BC ๏€ฝ ๏ค B ๏€ฝ 72.756 ๏‚ด 10๏€ญ6 m Q ๏€ฝ 32.8 kN ๏ด ๏ค AB ๏€ฝ 0.0728 mm ๏‚ฏ ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 111 PROBLEM 2.20 P The rod ABC is made of an aluminum for which E ๏€ฝ 70 GPa. Knowing that P ๏€ฝ 6 kN and Q ๏€ฝ 42 kN, determine the deflection of (a) point A, (b) point B. A 20-mm diameter 0.4 m B Q 0.5 m 60-mm diameter C SOLUTION AAB ๏€ฝ ABC ๏€ฝ ๏ฐ 4 ๏ฐ 4 2 d AB ๏€ฝ 2 d BC ๏€ฝ ๏ฐ 4 ๏ฐ 4 (0.020)2 ๏€ฝ 314.16 ๏‚ด 10๏€ญ6 m 2 (0.060)2 ๏€ฝ 2.8274 ๏‚ด 10๏€ญ3 m 2 PAB ๏€ฝ P ๏€ฝ 6 ๏‚ด 103 N PBC ๏€ฝ P ๏€ญ Q ๏€ฝ 6 ๏‚ด 103 ๏€ญ 42 ๏‚ด 103 ๏€ฝ ๏€ญ36 ๏‚ด 103 N LAB ๏€ฝ 0.4 m LBC ๏€ฝ 0.5 m ๏ค AB ๏€ฝ PAB LAB (6 ๏‚ด 103 )(0.4) ๏€ฝ ๏€ฝ 109.135 ๏‚ด 10๏€ญ6 m ๏€ญ6 9 AAB E A (314.16 ๏‚ด 10 )(70 ๏‚ด 10 ) ๏ค BC ๏€ฝ PBC LBC (๏€ญ36 ๏‚ด 103 )(0.5) ๏€ฝ ๏€ฝ ๏€ญ90.947 ๏‚ด 10๏€ญ6 m ABC E (2.8274 ๏‚ด 10๏€ญ3 )(70 ๏‚ด 109 ) (a) ๏ค A ๏€ฝ ๏ค AB ๏€ซ ๏ค BC ๏€ฝ 109.135 ๏‚ด 10๏€ญ6 ๏€ญ 90.947 ๏‚ด 10๏€ญ6 m ๏€ฝ 18.19 ๏‚ด 10๏€ญ6 m (b) ๏ค B ๏€ฝ ๏ค BC ๏€ฝ ๏€ญ90.9 ๏‚ด 10๏€ญ6 m ๏€ฝ ๏€ญ0.0909 mm or ๏ค A ๏€ฝ 0.01819 mm ๏‚ญ ๏ด ๏ค B ๏€ฝ 0.0909 mm ๏‚ฏ ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 112 228 kN PROBLEM 2.21 D For the steel truss ( E ๏€ฝ 200 GPa) and loading shown, determine the deformations of the members AB and AD, knowing that their cross-sectional areas are 2400 mm2 and 1800 mm2, respectively. B A 4.0 m 2.5 m C 4.0 m SOLUTION Statics: Reactions are 114 kN upward at A and C. Member BD is a zero force member. LAB ๏€ฝ 4.02 ๏€ซ 2.52 ๏€ฝ 4.717 m Use joint A as a free body. ๏“Fy ๏€ฝ 0 : 114 ๏€ซ 2.5 FAB ๏€ฝ 0 4.717 FAB ๏€ฝ ๏€ญ215.10 kN ๏“Fx ๏€ฝ 0 : FAD ๏€ซ FAD ๏€ฝ ๏€ญ 4 FAB ๏€ฝ 0 4.717 (4)(๏€ญ215.10) ๏€ฝ 182.4 kN 4.717 Member AB: ๏ค AB ๏€ฝ FAB LAB (๏€ญ215.10 ๏‚ด 103 )(4.717) ๏€ฝ EAAB (200 ๏‚ด 109 )(2400 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ2.11 ๏‚ด 10๏€ญ3 m Member AD: ๏ค AD ๏€ฝ ๏ค AB ๏€ฝ ๏€ญ2.11 mm ๏ด FAD LAD (182.4 ๏‚ด 103 )(4.0) ๏€ฝ EAAD (200 ๏‚ด 109 )(1800 ๏‚ด 10๏€ญ6 ) ๏€ฝ 2.03 ๏‚ด 10๏€ญ3 m ๏ค AD ๏€ฝ 2.03 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 113 30 kips A PROBLEM 2.22 30 kips B For the steel truss ( E ๏€ฝ 29 ๏‚ด 106 psi) and loading shown, determine the deformations of the members BD and DE, knowing that their crosssectional areas are 2 in2 and 3 in2, respectively. 8 ft C 8 ft 30 kips D E 8 ft F G 15 ft SOLUTION Free body: Portion ABC of truss ๏“M E ๏€ฝ 0 : FBD (15 ft) ๏€ญ (30 kips)(8 ft) ๏€ญ (30 kips)(16 ft) ๏€ฝ 0 FBD ๏€ฝ ๏€ซ 48.0 kips Free body: Portion ABEC of truss ๏“Fx ๏€ฝ 0 : 30 kips ๏€ซ 30 kips ๏€ญ FDE ๏€ฝ 0 ๏€  FDE ๏€ฝ ๏€ซ 60.0 kips ๏€  ๏ค BD ๏€ฝ PL (๏€ซ48.0 ๏‚ด 103 lb)(8 ๏‚ด 12 in.) ๏€ฝ AE (2 in 2 )(29 ๏‚ด 106 psi) ๏ค BD ๏€ฝ ๏€ซ79.4 ๏‚ด 10๏€ญ3 in. ๏ด๏€  ๏ค DE ๏€ฝ PL (๏€ซ60.0 ๏‚ด 103 lb)(15 ๏‚ด 12 in.) ๏€ฝ AE (3 in 2 )(29 ๏‚ด 106 psi) ๏ค DE ๏€ฝ ๏€ซ124.1 ๏‚ด 10๏€ญ3 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 114 6 ft PROBLEM 2.23 6 ft C B 5 ft A D 28 kips Members AB and BC are made of steel ( E ๏€ฝ 29 ๏‚ด 106 psi) with crosssectional areas of 0.80 in2 and 0.64 in2, respectively. For the loading shown, determine the elongation of (a) member AB, (b) member BC. E 54 kips SOLUTION (a) LAB ๏€ฝ 62 ๏€ซ 52 ๏€ฝ 7.810 ft ๏€ฝ 93.72 in. Use joint A as a free body. 5 FAB ๏€ญ 28 ๏€ฝ 0 7.810 FAB ๏€ฝ 43.74 kip ๏€ฝ 43.74 ๏‚ด 103 lb ๏“Fy ๏€ฝ 0: ๏ค AB ๏€ฝ (b) FAB LAB (43.74 ๏‚ด 103 )(93.72) ๏€ฝ EAAB (29 ๏‚ด 106 )(0.80) ๏ค AB ๏€ฝ 0.1767 in. ๏ด Use joint B as a free body. ๏“Fx ๏€ฝ 0: FBC ๏€ญ FBC ๏€ฝ ๏ค BC ๏€ฝ 6 FAB ๏€ฝ 0 7.810 (6)(43.74) ๏€ฝ 33.60 kip ๏€ฝ 33.60 ๏‚ด 103 lb 7.810 FBC LBC (33.60 ๏‚ด 103 )(72) ๏€ฝ EABC (29 ๏‚ด 106 )(0.64) ๏ค BC ๏€ฝ 0.1304 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 115 P B C A D PROBLEM 2.24 The steel frame ( E ๏€ฝ 200 GPa) shown has a diagonal brace BD with an area of 1920 mm2. Determine the largest allowable load P if the change in length of member BD is not to exceed 1.6 mm. 6m 5m SOLUTION ๏ค BD ๏€ฝ 1.6 ๏‚ด 10๏€ญ3 m, ABD ๏€ฝ 1920 mm 2 ๏€ฝ 1920 ๏‚ด 10๏€ญ6 m 2 LBD ๏€ฝ 52 ๏€ซ 62 ๏€ฝ 7.810 m, EBD ๏€ฝ 200 ๏‚ด 109 Pa ๏ค BD ๏€ฝ FBD LBD EBD ABD FBD ๏€ฝ (200 ๏‚ด 109 )(1920 ๏‚ด 10๏€ญ6 )(1.6 ๏‚ด 10๏€ญ3 ) EBD ABD๏ค BD ๏€ฝ 7.81 LBD ๏€ฝ 78.67 ๏‚ด 103 N Use joint B as a free body. ๏“Fx ๏€ฝ 0: 5 FBD ๏€ญ P ๏€ฝ 0 7.810 P๏€ฝ 5 (5)(78.67 ๏‚ด 103 ) FBD ๏€ฝ 7.810 7.810 ๏€ฝ 50.4 ๏‚ด 103 N P ๏€ฝ 50.4 kN ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 116 PROBLEM 2.25 D 225 mm C A B 150 mm P Link BD is made of brass ( E ๏€ฝ 105 GPa) and has a cross-sectional area of 240 mm2. Link CE is made of aluminum ( E ๏€ฝ 72 GPa) and has a crosssectional area of 300 mm2. Knowing that they support rigid member ABC, determine the maximum force P that can be applied vertically at point A if the deflection of A is not to exceed 0.35 mm. E 125 mm 225 mm SOLUTION Free body member AC: ๏“M C ๏€ฝ 0: 0.350 P ๏€ญ 0.225FBD ๏€ฝ 0 FBD ๏€ฝ 1.55556 P ๏“M B ๏€ฝ 0: 0.125P ๏€ญ 0.225 FCE ๏€ฝ 0 FCE ๏€ฝ 0.55556 P ๏ค B ๏€ฝ ๏ค BD ๏€ฝ FBD LBD (1.55556 P)(0.225) ๏€ฝ ๏€ฝ 13.8889 ๏‚ด 10๏€ญ9 P EBD ABD (105 ๏‚ด 109 )(240 ๏‚ด 10๏€ญ6 ) ๏ค C ๏€ฝ ๏ค CE ๏€ฝ FCE LCE (0.55556 P)(0.150) ๏€ฝ ๏€ฝ 3.8581 ๏‚ด 10๏€ญ9 P ECE ACE (72 ๏‚ด 109 )(300 ๏‚ด 10๏€ญ6 ) Deformation Diagram: From the deformation diagram, Slope: ๏ฑ๏€ฝ ๏ค B ๏€ซ ๏คC ๏€ฝ LBC ๏ค A ๏€ฝ ๏ค B ๏€ซ LAB๏ฑ 17.7470 ๏‚ด 10๏€ญ9 P ๏€ฝ 78.876 ๏‚ด 10๏€ญ9 P 0.225 ๏€ฝ 13.8889 ๏‚ด 10๏€ญ9 P ๏€ซ (0.125)(78.876 ๏‚ด 10๏€ญ9 P) ๏€ฝ 23.748 ๏‚ด 10๏€ญ9 P Apply displacement limit. ๏ค A ๏€ฝ 0.35 ๏‚ด 10๏€ญ3 m ๏€ฝ 23.748 ๏‚ด 10๏€ญ9P P ๏€ฝ 14.7381 ๏‚ด 103 N P ๏€ฝ 14.74 kN ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 117 PROBLEM 2.26 F C 180 mm B E A D Members ABC and DEF are joined with steel links (E ๏€ฝ 200 GPa). Each of the links is made of a pair of 25 ร— 35-mm plates. Determine the change in length of (a) member BE, (b) member CF. 260 mm 18 kN 240 mm 18 kN SOLUTION Free body diagram of Member ABC: ๏“M B ๏€ฝ 0: (0.26 m)(18 kN) ๏€ญ (0.18 m) FCF ๏€ฝ 0 FCF ๏€ฝ 26.0 kN ๏“Fx ๏€ฝ 0: 18 kN ๏€ซ FBE ๏€ซ 26.0 kN ๏€ฝ 0 FBE ๏€ฝ ๏€ญ44.0 kN Area for link made of two plates: A ๏€ฝ 2(0.025 m)(0.035 m) ๏€ฝ 1.750 ๏‚ด 10๏€ญ3 m 2 (a) ๏ค BE ๏€ฝ FBE L (๏€ญ44.0 ๏‚ด 103 N)(0.240 m) ๏€ฝ EA (200 ๏‚ด 109 Pa)(1.75 ๏‚ด 10๏€ญ3 m 2 ) ๏€ฝ ๏€ญ30.171 ๏‚ด 10๏€ญ6 m ๏ค BE ๏€ฝ ๏€ญ0.0302 mm ๏ด (b) ๏ค CF ๏€ฝ FBF L (26.0 ๏‚ด 103 N)(0.240 m) ๏€ฝ EA (200 ๏‚ด 109 Pa)(1.75 ๏‚ด 10๏€ญ3 m 2 ) ๏€ฝ 17.8286 ๏‚ด 10๏€ญ6 m ๏ค CF ๏€ฝ 0.01783 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 118 A D P = 1 kip Each of the links AB and CD is made of aluminum ( E ๏€ฝ 10.9 ๏‚ด 106 psi) and has a cross-sectional area of 0.2 in2. Knowing that they support the rigid member BC, determine the deflection of point E. 18 in. E B 22 in. PROBLEM 2.27 C 10 in. SOLUTION Free body BC: ๏“M C ๏€ฝ 0: ๏€ญ (32) FAB ๏€ซ (22) (1 ๏‚ด 103 ) ๏€ฝ 0 FAB ๏€ฝ 687.5 lb ๏“Fy ๏€ฝ 0: 687.5 ๏€ญ 1 ๏‚ด 103 ๏€ซ FCD ๏€ฝ 0 FCD ๏€ฝ 312.5 lb ๏ค AB ๏€ฝ FAB LAB (687.5)(18) ๏€ฝ ๏€ฝ 5.6766 ๏‚ด 10๏€ญ3 in. ๏€ฝ ๏ค B EA (10.9 ๏‚ด 106 )(0.2) ๏ค CD ๏€ฝ FCD LCD (312.5)(18) ๏€ฝ ๏€ฝ 2.5803 ๏‚ด 10๏€ญ3 in. ๏€ฝ ๏ค C EA (10.9 ๏‚ด 106 )(0.2) Deformation diagram: Slope ๏ฑ ๏€ฝ ๏ค B ๏€ญ ๏คC LBC ๏€ฝ 3.0963 ๏‚ด 10๏€ญ3 32 ๏€ฝ 96.759 ๏‚ด 10๏€ญ6 rad ๏ค E ๏€ฝ ๏ค C ๏€ซ LEC๏ฑ ๏€ฝ 2.5803 ๏‚ด 10๏€ญ3 ๏€ซ (22)(96.759 ๏‚ด 10๏€ญ6 ) ๏€ฝ 4.7090 ๏‚ด 10๏€ญ3 in. ๏ค E ๏€ฝ 4.71 ๏‚ด 10 ๏€ญ3 in. ๏‚ฏ ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 119 PROBLEM 2.28 D 3 The length of the 32 -in.-diameter steel wire CD has been adjusted so that with no load applied, a gap of 161 in. exists between the end B of the rigid beam ACB and a contact point E. Knowing that E ๏€ฝ 29 ๏‚ด 106 psi, determine where a 50-lb block should be placed on the beam in order to cause contact between B and E. 12.5 in. x C 50 lb B A E 16 in. 1 16 in. 4 in. SOLUTION Rigid beam ACB rotates through angle ๏ฑ to close gap. ๏ฑ๏€ฝ 1/16 ๏€ฝ 3.125 ๏‚ด 10๏€ญ3 rad 20 Point C moves downward. ๏ค C ๏€ฝ 4๏ฑ ๏€ฝ 4(3.125 ๏‚ด 10๏€ญ3 ) ๏€ฝ 12.5 ๏‚ด 10๏€ญ3 in. ๏ค CD ๏€ฝ ๏ค C ๏€ฝ 12.5 ๏‚ด 10๏€ญ3 in. ACD ๏€ฝ ๏ฐ 2 d ๏€ฝ ๏ฐ๏ƒฆ 3 ๏ƒถ d F L ๏ค CD ๏€ฝ CD CD EACD FCD ๏€ฝ 2 ๏€ฝ 6.9029 ๏‚ด 10๏€ญ3 in 2 ๏ƒง ๏ƒท 4 ๏ƒจ 32 ๏ƒธ EACD๏ค CD (29 ๏‚ด 106 )(6.9029 ๏‚ด 10๏€ญ3 )(12.5 ๏‚ด 10๏€ญ3 ) ๏€ฝ LCD 12.5 ๏€ฝ 200.18 lb Free body ACB: ๏“M A ๏€ฝ 0: 4 FCD ๏€ญ (50)(20 ๏€ญ x) ๏€ฝ 0 (4)(200.18) ๏€ฝ 16.0144 50 x ๏€ฝ 3.9856 in. 20 ๏€ญ x ๏€ฝ x ๏€ผ 3.99 in. ๏ด For contact, PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 120 PROBLEM 2.29 A homogeneous cable of length L and uniform cross section is suspended from one end. (a) Denoting by ๏ฒ the density (mass per unit volume) of the cable and by E its modulus of elasticity, determine the elongation of the cable due to its own weight. (b) Show that the same elongation would be obtained if the cable were horizontal and if a force equal to half of its weight were applied at each end. SOLUTION (a) For element at point identified by coordinate y, P ๏€ฝ weight of portion below the point ๏€ฝ ๏ฒ gA(L ๏€ญ y ) d๏ค ๏€ฝ ๏ค๏€ฝ Pdy ๏ฒ gA( L ๏€ญ y )dy ๏ฒ g ( L ๏€ญ y ) ๏€ฝ ๏€ฝ dy EA EA E ๏ƒฒ ๏€ฝ (b) Total weight: L ๏ฒ g ( L ๏€ญ y) 0 E ๏ฒg ๏ƒฆ L 1 ๏ƒถ dy ๏€ฝ Ly ๏€ญ y 2 ๏ƒท ๏ƒง 2 ๏ƒธ0 E ๏ƒจ ๏ฒg ๏ƒฆ 2 L2 ๏ƒถ ๏ƒง๏ƒง L ๏€ญ ๏ƒท 2 ๏ƒท๏ƒธ E ๏ƒจ ๏ค๏€ฝ 1 ๏ฒ gL2 ๏ด 2 E W ๏€ฝ ๏ฒ gAL F๏€ฝ EA๏ค EA 1 ๏ฒ gL2 1 ๏€ฝ ๏ƒ— ๏€ฝ ๏ฒ gAL 2 L L 2 E 1 F๏€ฝ W ๏ด 2 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 121 PROBLEM 2.30 P A a A vertical load P is applied at the center A of the upper section of a homogeneous frustum of a circular cone of height h, minimum radius a, and maximum radius b. Denoting by E the modulus of elasticity of the material and neglecting the effect of its weight, determine the deflection of point A. h b SOLUTION Extend the slant sides of the cone to meet at a point O and place the origin of the coordinate system there. tan ๏ก ๏€ฝ From geometry, a1 ๏€ฝ b๏€ญa h a b , b1 ๏€ฝ , tan ๏ก tan ๏ก r ๏€ฝ y tan ๏ก At coordinate point y, A ๏€ฝ ๏ฐ r 2 Deformation of element of height dy: d๏ค ๏€ฝ Pdy AE d๏ค ๏€ฝ P dy P dy ๏€ฝ E๏ฐ r 2 ๏ฐ E tan 2 ๏ก y 2 Total deformation: P ๏คA ๏€ฝ ๏ฐ E tan 2 ๏ก ๏€ฝ ๏ƒฒ b1 ๏ƒฆ1 1๏ƒถ ๏ƒฆ 1๏ƒถ P P ๏€ฝ ๏€ญ ๏ƒท ๏€ฝ ๏€ญ ๏ƒท ๏ƒง ๏ƒง 2 2 2 a1 y ๏ฐ E tan ๏ก ๏ƒจ y ๏ƒธ a ๏ฐ E tan ๏ก ๏ƒจ a1 b1 ๏ƒธ b1 dy 1 b1 ๏€ญ a1 P(b1 ๏€ญ a1 ) P ๏€ฝ 2 ๏ฐ Eab ๏ฐ E tan ๏ก a1b1 ๏คA ๏€ฝ Ph ๏‚ฏ ๏ด ๏ฐ Eab PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 122 PROBLEM 2.31 Denoting by ๏ฅ the โ€œengineering strainโ€ in a tensile specimen, show that the true strain is ๏ฅ t ๏€ฝ ln (1 ๏€ซ ๏ฅ ). SOLUTION ๏ฅ t ๏€ฝ ln ๏ƒฆ L ๏€ซ๏ค ๏ค ๏ƒถ L ๏€ฝ ln 0 ๏€ฝ ln ๏ƒง1 ๏€ซ ๏ƒท ๏€ฝ ln (1 ๏€ซ ๏ฅ ) L0 L0 L0 ๏ƒธ ๏ƒจ ๏ฅ t ๏€ฝ ln (1 ๏€ซ ๏ฅ ) ๏ด Thus, PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 123 PROBLEM 2.32 The volume of a tensile specimen is essentially constant while plastic deformation occurs. If the initial diameter of the specimen is d1, show that when the diameter is d, the true strain is ๏ฅ t ๏€ฝ 2 ln(d1 /d ). SOLUTION If the volume is constant, ๏ฐ 4 d 2L ๏€ฝ ๏ฐ 4 d12 L0 L d12 ๏ƒฆ d1 ๏ƒถ ๏€ฝ ๏€ฝ L0 d 2 ๏ƒง๏ƒจ d ๏ƒท๏ƒธ ๏ฅ t ๏€ฝ ln 2 L ๏ƒฆd ๏ƒถ ๏€ฝ ln ๏ƒง 1 ๏ƒท L0 ๏ƒจd ๏ƒธ 2 d d ๏ฅ t ๏€ฝ 2ln 1 ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 124 Brass core (E = 105 GPa) Aluminum plates (E = 70 GPa) P PROBLEM 2.33 Rigid end plate An axial centric force of magnitude P ๏€ฝ 450 kN is applied to the composite block shown by means of a rigid end plate. Knowing that h ๏€ฝ 10 mm, determine the normal stress in (a) the brass core, (b) the aluminum plates. 300 mm 60 mm h 40 mm h SOLUTION ๏ค A ๏€ฝ ๏ค B ๏€ฝ ๏ค; ๏ค๏€ฝ PA L E A AA P ๏€ฝ PA ๏€ซ PB and ๏ค ๏€ฝ PB L EB AB Therefore, ๏ƒฆ๏ค ๏ƒถ PA ๏€ฝ ( E A AA ) ๏ƒง ๏ƒท ; ๏ƒจL๏ƒธ Substituting, ๏ƒฆ๏ค๏ƒถ PA ๏€ฝ ๏€จ E A AA ๏€ซ E B AB ๏€ฉ ๏ƒง ๏ƒท ๏ƒจ L๏ƒธ ๏ƒŽ๏€ฝ ๏ƒŽ๏€ฝ L ๏€ฝ P ๏€จ E A AA ๏€ซ EB AB ๏€ฉ (450 ๏‚ด 103 N) (70 ๏‚ด 109 Pa)(2)(0.06 m)(0.01 m) ๏€ซ (105 ๏‚ด 109 Pa)(0.06 m)(0.04 m) ๏ƒŽ๏€ฝ 1.33929 ๏‚ด 10๏€ญ3 ๏ณ ๏€ฝ E๏ƒŽ Now, (a) ๏ค ๏ƒฆ๏ค ๏ƒถ PB ๏€ฝ ( EB AB ) ๏ƒง ๏ƒท ๏ƒจL๏ƒธ Brass-core: ๏ณ B ๏€ฝ (105 ๏‚ด 109 Pa)(1.33929 ๏‚ด 10๏€ญ3 ) ๏€ฝ 1.40625 ๏‚ด 108 Pa ๏ณ B ๏€ฝ 140.6 MPa ๏ด๏€  (b) Aluminum: ๏ณ A ๏€ฝ (70 ๏‚ด 109 Pa)(1.33929 ๏‚ด 10๏€ญ3 ) ๏€ฝ 9.3750 ๏‚ด 107 Pa ๏ณ A ๏€ฝ 93.8 MPa ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 125 Brass core (E = 105 GPa) Aluminum plates (E = 70 GPa) P Rigid end plate PROBLEM 2.34 For the composite block shown in Prob. 2.33, determine (a) the value of h if the portion of the load carried by the aluminum plates is half the portion of the load carried by the brass core, (b) the total load if the stress in the brass is 80 MPa. PROBLEM 2.33. An axial centric force of magnitude P ๏€ฝ 450 kN is applied to the composite block shown by means of a rigid end plate. Knowing that h ๏€ฝ 10 mm, determine the normal stress in (a) the brass core, (b) the aluminum plates. 300 mm 60 mm h 40 mm h SOLUTION ๏ค ๏€ฝ ๏ค a ๏€ฝ ๏ค b; ๏ค๏€ฝ Pa L Ea Aa P ๏€ฝ Pa ๏€ซ Pb and ๏ค๏€ฝ Pb L Eb Ab Therefore, ๏ค Pa ๏€ฝ ( Ea Aa ) ; L Pa ๏€ฝ (a) ๏ƒฆ๏ค๏ƒถ Pb ๏€ฝ ( Eb Ab ) ๏ƒง ๏ƒท ๏ƒจ L๏ƒธ 1 Pb 2 ๏ƒฆ๏ค๏ƒถ 1 ๏ƒฆ๏ค๏ƒถ ( Ea Aa ) ๏ƒง ๏ƒท ๏€ฝ ( Eb Ab ) ๏ƒง ๏ƒท ๏ƒจ L๏ƒธ 2 ๏ƒจ L๏ƒธ Aa ๏€ฝ 1 ๏ƒฆ Eb ๏ƒถ Ab 2 ๏ƒง๏ƒจ E a ๏ƒท๏ƒธ Aa ๏€ฝ 1 ๏ƒฆ 105 GPa ๏ƒถ ๏ƒง ๏ƒท (40 mm)(60 mm) 2 ๏ƒจ 70 GPa ๏ƒธ Aa ๏€ฝ 1800 mm 2 1800 mm 2 ๏€ฝ 2(60 mm)(h) h ๏€ฝ 15.00 mm ๏ด๏€  (b) ๏ณb ๏€ฝ Pb 1 ๏ƒž Pb ๏€ฝ ๏ณ b Ab and Pa ๏€ฝ Pb 2 Ab P ๏€ฝ Pa ๏€ซ Pb PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 126 PROBLEM 2.34 (Continued) P ๏€ฝ 1 (๏ณ b Ab ) ๏€ซ ๏ณ b Ab 2 P ๏€ฝ (๏ณ b Ab )1.5 P ๏€ฝ (80 ๏‚ด 106 Pa)(0.04 m)(0.06 m)(1.5) P ๏€ฝ 2.880 ๏‚ด 105 N P ๏€ฝ 288 kN ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 127 PROBLEM 2.35 P The 4.5-ft concrete post is reinforced with six steel bars, each with a 1 18 -in. diameter. Knowing that Es ๏€ฝ 29 ร— 106 psi and Ec = 4.2 ร— 106 psi, determine the normal stresses in the steel and in the concrete when a 350-kip axial centric force P is applied to the post. 18 in. 4.5 ft SOLUTION Let Pc ๏€ฝ portion of axial force carried by concrete. Ps ๏€ฝ portion carried by the six steel rods. ๏ค๏€ฝ Pc L Ec Ac Pc ๏€ฝ Ec Ac๏ค L ๏ค๏€ฝ Ps L Es As Ps ๏€ฝ Es As๏ค L P ๏€ฝ Pc ๏€ซ Ps ๏€ฝ ( Ec Ac ๏€ซ Es As ) ๏ฅ๏€ฝ ๏ค L As ๏€ฝ 6 Ac ๏€ฝ ๏ฐ ๏€ฝ ๏ฐ 4 ๏ค L ๏€ญP Ec Ac ๏€ซ Es As d s2 ๏€ฝ 6๏ฐ (1.125 in.) 2 ๏€ฝ 5.9641 in 2 4 d c2 ๏€ญ As ๏€ฝ 4 ๏€ฝ 248.51 in 2 ๏ฐ 4 (18 in.)2 ๏€ญ 5.9641 in 2 L ๏€ฝ 4.5 ft ๏€ฝ 54 in. ๏ฅ๏€ฝ ๏€ญ350 ๏‚ด 103 lb ๏€ฝ ๏€ญ2.8767 ๏‚ด 10๏€ญ4 6 2 6 2 (4.2 ๏‚ด 10 psi)(248.51 in ) ๏€ซ (29 ๏‚ด 10 psi)(5.9641 in ) ๏ณ s ๏€ฝ Es ๏ฅ ๏€ฝ (29 ๏‚ด 106 psi)( ๏€ญ2.8767 ๏‚ด 10 ๏€ญ4 ) ๏€ฝ ๏€ญ8.3424 ๏‚ด 10๏€ณ psi ๏ณ s ๏€ฝ ๏€ญ8.34 ksi ๏ด๏€  ๏ณ c ๏€ฝ Ec๏ฅ ๏€ฝ (4.2 ๏‚ด 106 psi)(๏€ญ2.8767 ๏‚ด 10๏€ญ4 ) ๏€ฝ 1.20821 ๏‚ด 103 psi ๏ณ c ๏€ฝ ๏€ญ1.208 ksi ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 128 PROBLEM 2.36 P 18 in. For the post of Prob. 2.35, determine the maximum centric force that can be applied if the allowable normal stress is 20 ksi in the steel and 2.4 ksi in the concrete. PROBLEM 2.35 The 4.5-ft concrete post is reinforced with six steel bars, each with a 1 18 -in. diameter. Knowing that Es ๏€ฝ 29 ร— 106 psi and Ec ๏€ฝ 4.2 ร— 106 psi, determine the normal stresses in the steel and in the concrete when a 350-kip axial centric force P is applied to the post. 4.5 ft SOLUTION Allowable strain in each material: Steel: ๏ฅs ๏€ฝ Concrete: ๏ฅc ๏€ฝ ๏ฅ๏€ฝ Smaller value governs. ๏ณs Es ๏ณc Ec ๏ค L ๏€ฝ 20 ๏‚ด 103 psi ๏€ฝ 6.8966 ๏‚ด 10๏€ญ4 6 29 ๏‚ด 10 psi ๏€ฝ 2.4 ๏‚ด 103 psi ๏€ฝ 5.7143 ๏‚ด 10๏€ญ4 4.2 ๏‚ด 106 psi ๏€ฝ 5.7143 ๏‚ด 10๏€ญ4 Let Pc = Portion of load carried by concrete. Ps = Portion of load carried by 6 steel rods. ๏ค๏€ฝ Pc L E c Ac ๏œ ๏ƒฆ๏ค ๏ƒถ Pc ๏€ฝ Ec Ac ๏ƒง ๏ƒท ๏€ฝ Ec Ac ๏ƒŽ ๏ƒจL๏ƒธ ๏ค๏€ฝ Ps L E s As ๏œ ๏ƒฆ๏ค ๏ƒถ Ps ๏€ฝ Es As ๏ƒง ๏ƒท ๏€ฝ Es As ๏ƒŽ ๏ƒจL๏ƒธ 6๏ฐ ๏ƒฆ๏ฐ ๏ƒถ As ๏€ฝ 6 ๏ƒง ๏ƒท d s2 ๏€ฝ (1.125 in.) 2 ๏€ฝ 5.9641 in 2 4 ๏ƒจ4๏ƒธ ๏ฐ ๏ƒฆ๏ฐ ๏ƒถ Ac ๏€ฝ ๏ƒง ๏ƒท d c2 ๏€ญ As ๏€ฝ (18 in.) 2 ๏€ญ 5.9641 in 2 ๏€ฝ 2.4851 ๏‚ด 102 in 2 4 ๏ƒจ4๏ƒธ P ๏€ฝ Pc ๏€ซ Ps ๏€ฝ Ec Ac๏ƒŽ ๏€ซ Es As๏ƒŽ P ๏€ฝ [(4.2 ๏‚ด 106 psi)(2.4851 ๏‚ด 102 in 2 ) ๏€ซ (29 ๏‚ด 106 psi)(5.9641 in 2 )](5.7143 ๏‚ด 10๏€ญ4 ) P ๏€ฝ 6.9526 ๏‚ด 105 lb P ๏€ฝ 695 kips ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 129 PROBLEM 2.37 25 mm Brass core E 105 GPa An axial force of 200 kN is applied to the assembly shown by means of rigid end plates. Determine (a) the normal stress in the aluminum shell, (b) the corresponding deformation of the assembly. 300 mm Aluminium shell E 70 GPa 60 mm SOLUTION Let Pa = Portion of axial force carried by shell. Pb = Portion of axial force carried by core. ๏ค๏€ฝ Pa L , or Ea Aa Pa ๏€ฝ Ea Aa ๏ค L ๏ค๏€ฝ Pb L , or Eb Ab Pb ๏€ฝ Eb Ab ๏ค L Thus, P ๏€ฝ Pa ๏€ซ Pb ๏€ฝ ( Ea Aa ๏€ซ Eb Ab ) with Aa ๏€ฝ Ab ๏€ฝ ๏ฐ 4 ๏ฐ 4 ๏ค L [(0.060) 2 ๏€ญ (0.025)2 ] ๏€ฝ 2.3366 ๏‚ด 10๏€ญ3 m 2 (0.025)2 ๏€ฝ 0.49087 ๏‚ด 10๏€ญ3 m 2 P ๏€ฝ [(70 ๏‚ด 109 )(2.3366 ๏‚ด 10๏€ญ3 ) ๏€ซ (105 ๏‚ด 109 )(0.49087 ๏‚ด 10๏€ญ3 )] P ๏€ฝ 215.10 ๏‚ด 10 ๏ฅ ๏€ฝ Strain: ๏ค L ๏€ฝ 6๏ค ๏ค L L P 200 ๏‚ด 103 ๏€ฝ ๏€ฝ 0.92980 ๏‚ด 10๏€ญ3 6 6 215.10 ๏‚ด 10 215.10 ๏‚ด 10 (a) ๏ณ a ๏€ฝ Ea ๏ฅ ๏€ฝ (70 ๏‚ด 109 ) (0.92980 ๏‚ด 10๏€ญ3 ) ๏€ฝ 65.1 ๏‚ด 106 Pa ๏ณ a ๏€ฝ 65.1 MPa ๏ด๏€  (b) ๏ค ๏€ฝ ๏ฅ L ๏€ฝ (0.92980 ๏‚ด 10๏€ญ3 ) (300 mm) ๏ค ๏€ฝ 0.279 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 130 25 mm Brass core E 105 GPa PROBLEM 2.38 The length of the assembly shown decreases by 0.40 mm when an axial force is applied by means of rigid end plates. Determine (a) the magnitude of the applied force, (b) the corresponding stress in the brass core. 300 mm Aluminium shell E 70 GPa 60 mm SOLUTION Let Pa = Portion of axial force carried by shell and Pb = Portion of axial force carried by core. ๏ค๏€ฝ Pa L , or Ea Aa Pa ๏€ฝ Ea Aa ๏ค L ๏ค๏€ฝ Pb L , or Eb Ab Pb ๏€ฝ Eb Ab ๏ค L Thus, P ๏€ฝ Pa ๏€ซ Pb ๏€ฝ ( Ea Aa ๏€ซ Eb Ab ) with Aa ๏€ฝ Ab ๏€ฝ ๏ฐ 4 ๏ฐ 4 ๏ค L [(0.060) 2 ๏€ญ (0.025)2 ] ๏€ฝ 2.3366 ๏‚ด 10๏€ญ3 m 2 (0.025)2 ๏€ฝ 0.49087 ๏‚ด 10๏€ญ3 m 2 P ๏€ฝ [(70 ๏‚ด 109 )(2.3366 ๏‚ด 10๏€ญ3 ) ๏€ซ (105 ๏‚ด 109 )(0.49087 ๏‚ด 10๏€ญ3 )] with ๏ค L ๏€ฝ 215.10 ๏‚ด 106 ๏ค L ๏ค ๏€ฝ 0.40 mm, L ๏€ฝ 300 mm (a) P ๏€ฝ (215.10 ๏‚ด 106 ) (b) ๏ณb ๏€ฝ 0.40 ๏€ฝ 286.8 ๏‚ด 103 N 300 P ๏€ฝ 287 kN ๏ด๏€  Pb E๏ค (105 ๏‚ด 109 )(0.40 ๏‚ด 10๏€ญ3 ) ๏€ฝ b ๏€ฝ ๏€ฝ 140 ๏‚ด 106 Pa Ab L 300 ๏‚ด 10๏€ญ3 ๏ณ b ๏€ฝ 140.0 MPa ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 131 PROBLEM 2.39 A 25 in. 1.25 in. 6 kips 6 kips B A polystyrene rod consisting of two cylindrical portions AB and BC is restrained at both ends and supports two 6-kip loads as shown. Knowing that E ๏€ฝ 0.45 ๏‚ด 106 psi, determine (a) the reactions at A and C, (b) the normal stress in each portion of the rod. 2 in. 15 in. C SOLUTION (a) We express that the elongation of the rod is zero. P L P L ๏ค ๏€ฝ ๏ฐ AB 2 AB ๏€ซ ๏ฐ BC 2 BC ๏€ฝ 0 4 But d AB E PAB ๏€ฝ ๏€ซ RA 4 d BC E PBC ๏€ฝ ๏€ญ RC Substituting and simplifying, RA LAB RC LBC ๏€ญ 2 ๏€ฝ0 2 d AB d BC 2 2 L ๏ƒฆd ๏ƒถ 25 ๏ƒฆ 2 ๏ƒถ RC ๏€ฝ AB ๏ƒง BC ๏ƒท RA ๏€ฝ RA LBC ๏ƒจ d AB ๏ƒธ 15 ๏ƒง๏ƒจ 1.25 ๏ƒท๏ƒธ RC ๏€ฝ 4.2667 RA From the free body diagram, RA ๏€ซ RC ๏€ฝ 12 kips Substituting (1) into (2), 5.2667 RA ๏€ฝ 12 RA ๏€ฝ 2.2785 kips From (1), (1) (2) RA ๏€ฝ 2.28 kips ๏‚ญ ๏ด RC ๏€ฝ 4.2667 (2.2785) ๏€ฝ 9.7217 kips RC ๏€ฝ 9.72 kips ๏‚ญ ๏ด (b) ๏ณ AB ๏€ฝ PAB ๏€ซ RA 2.2785 ๏€ฝ ๏€ฝ๏ฐ AAB AAB (1.25) 2 4 ๏ณ AB ๏€ฝ ๏€ซ1.857 ksi ๏ด ๏ณ BC ๏€ฝ PBC ๏€ญ RC ๏€ญ9.7217 ๏€ฝ ๏€ฝ ๏ฐ (2) 2 ABC ABC 4 ๏ณ BC ๏€ฝ ๏€ญ3.09 ksi ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 132 PROBLEM 2.40 C A P Three steel rods (E = 29 ร— 106 psi) support an 8.5-kip load P. Each of the rods AB and CD has a 0.32-in2 cross-sectional area and rod EF has a 1-in2 cross-sectional area. Neglecting the deformation of bar BED, determine (a) the change in length of rod EF, (b) the stress in each rod. 20 in. B D E 16 in. F SOLUTION Use member BED as a free body. By symmetry, or by ๏ƒฅ M E ๏€ฝ 0 : PCD ๏€ฝ PAB ๏ƒฅ Fy ๏€ฝ 0: PAB ๏€ซ PCD ๏€ซ PEF ๏€ญ P ๏€ฝ 0 P ๏€ฝ 2 PAB ๏€ซ PEF ๏ค AB ๏€ฝ PAB LAB EAAB ๏ค CD ๏€ฝ PCD LCD EACD ๏ค EF ๏€ฝ PEF LEF EAEF LAB ๏€ฝ LCD and AAB ๏€ฝ ACD , ๏ค AB ๏€ฝ ๏ค CD Since Since points A, C, and F are fixed, ๏ค B ๏€ฝ ๏ค AB , ๏ค D ๏€ฝ ๏ค CD , ๏ค E ๏€ฝ ๏ค EF Since member BED is rigid, ๏ค E ๏€ฝ ๏ค B ๏€ฝ ๏ค C PAB LAB PEF LEF ๏€ฝ EAAB EAEF ๏œ PAB ๏€ฝ AAB LEF 0.32 16 PEF ๏€ฝ ๏ƒ— ๏ƒ— PEF ๏€ฝ 0.256 PEF 1 20 AEF LAB P ๏€ฝ 2 PAB ๏€ซ PEF ๏€ฝ 2(0.256 PEF ) ๏€ซ PEF ๏€ฝ 1.512 PEF P 8.5 ๏€ฝ ๏€ฝ 5.6217 kips 1.512 1.512 PAB ๏€ฝ PCD ๏€ฝ 0.256(5.6217) ๏€ฝ 1.43916 kips PEF ๏€ฝ PEF LEF (5.6217)(16) ๏€ฝ ๏€ฝ 0.0031016 in. EAEF (29 ๏‚ด 103 )(1) P 1.43916 (b)๏€  ๏ณ AB ๏€ฝ ๏ณ CD ๏€ฝ AB ๏€ฝ ๏€ฝ 4.4974 ksi ๏€  ๏€  0.32 AAB (a) ๏ค EF ๏€ฝ ๏ณ EF ๏€ฝ PEF 5.6217 ๏€ฝ ๏€ฝ 5.6217 ksi 1 AEF ๏ค EF ๏€ฝ 0.00310 in. ๏ด๏€  ๏ณ AB ๏€ฝ ๏ณ CD ๏€ฝ 4.50 ksi ๏ด๏€  ๏ณ EF ๏€ฝ 5.62 ksi ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 133 PROBLEM 2.41 Dimensions in mm 180 100 120 A C Steel B D Brass 60 kN 40-mm diam. 100 E 40 kN Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that Es ๏€ฝ 200 GPa and Eb ๏€ฝ 105 GPa, determine (a) the reactions at A and E, (b) the deflection of point C. 30-mm diam. SOLUTION A to C: E ๏€ฝ 200 ๏‚ด 109 Pa A๏€ฝ ๏ฐ (40) 2 ๏€ฝ 1.25664 ๏‚ด 103 mm 2 ๏€ฝ 1.25664 ๏‚ด 10๏€ญ3 m 2 4 EA ๏€ฝ 251.327 ๏‚ด 106 N C to E: E ๏€ฝ 105 ๏‚ด 109 Pa A๏€ฝ ๏ฐ (30)2 ๏€ฝ 706.86 mm 2 ๏€ฝ 706.86 ๏‚ด 10๏€ญ6 m 2 4 EA ๏€ฝ 74.220 ๏‚ด 106 N A to B: P ๏€ฝ RA L ๏€ฝ 180 mm ๏€ฝ 0.180 m ๏ค AB ๏€ฝ RA (0.180) PL ๏€ฝ EA 251.327 ๏‚ด 106 ๏€ฝ 716.20 ๏‚ด 10๏€ญ12 RA B to C: P ๏€ฝ RA ๏€ญ 60 ๏‚ด 103 L ๏€ฝ 120 mm ๏€ฝ 0.120 m ๏ค BC ๏€ฝ PL ( RA ๏€ญ 60 ๏‚ด 103 )(0.120) ๏€ฝ EA 251.327 ๏‚ด 106 ๏€ฝ 447.47 ๏‚ด 10๏€ญ12 RA ๏€ญ 26.848 ๏‚ด 10๏€ญ6 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 134 PROBLEM 2.41 (Continued) C to D: P ๏€ฝ RA ๏€ญ 60 ๏‚ด 103 L ๏€ฝ 100 mm ๏€ฝ 0.100 m ๏ค BC ๏€ฝ PL ( RA ๏€ญ 60 ๏‚ด 103 )(0.100) ๏€ฝ EA 74.220 ๏‚ด 106 ๏€ฝ 1.34735 ๏‚ด 10๏€ญ9 RA ๏€ญ 80.841 ๏‚ด 10๏€ญ6 D to E: P ๏€ฝ RA ๏€ญ 100 ๏‚ด 103 L ๏€ฝ 100 mm ๏€ฝ 0.100 m ๏ค DE ๏€ฝ PL ( RA ๏€ญ 100 ๏‚ด 103 )(0.100) ๏€ฝ EA 74.220 ๏‚ด 106 ๏€ฝ 1.34735 ๏‚ด 10๏€ญ9 RA ๏€ญ 134.735 ๏‚ด 10๏€ญ6 A to E: ๏ค AE ๏€ฝ ๏ค AB ๏€ซ ๏ค BC ๏€ซ ๏ค CD ๏€ซ ๏ค DE ๏€ฝ 3.85837 ๏‚ด 10๏€ญ9 RA ๏€ญ 242.424 ๏‚ด 10๏€ญ6 Since point E cannot move relative to A, (a) (b) ๏ค AE ๏€ฝ 0 3.85837 ๏‚ด 10๏€ญ9 RA ๏€ญ 242.424 ๏‚ด 10๏€ญ6 ๏€ฝ 0 RA ๏€ฝ 62.831 ๏‚ด 103 N RA ๏€ฝ 62.8 kN ๏‚ฌ ๏ด RE ๏€ฝ RA ๏€ญ 100 ๏‚ด 103 ๏€ฝ 62.8 ๏‚ด 103 ๏€ญ 100 ๏‚ด 103 ๏€ฝ ๏€ญ37.2 ๏‚ด 103 N RE ๏€ฝ 37.2 kN ๏‚ฌ ๏ด ๏ค C ๏€ฝ ๏ค AB ๏€ซ ๏ค BC ๏€ฝ 1.16367 ๏‚ด 10๏€ญ9 RA ๏€ญ 26.848 ๏‚ด 10๏€ญ6 ๏€ฝ (1.16369 ๏‚ด 10๏€ญ9 )(62.831 ๏‚ด 103 ) ๏€ญ 26.848 ๏‚ด 10๏€ญ6 ๏€ฝ 46.3 ๏‚ด 10๏€ญ6 m ๏ค C ๏€ฝ 46.3 ๏ญ m ๏‚ฎ ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 135 PROBLEM 2.42 Dimensions in mm 180 100 120 A C Steel B D Brass 60 kN 40-mm diam. 100 E 40 kN 30-mm diam. Solve Prob. 2.41, assuming that rod AC is made of brass and rod CE is made of steel. PROBLEM 2.41 Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that Es ๏€ฝ 200 GPa and Eb ๏€ฝ 105 GPa, determine (a) the reactions at A and E, (b) the deflection of point C. SOLUTION A to C: E ๏€ฝ 105 ๏‚ด 109 Pa ๏ฐ (40) 2 ๏€ฝ 1.25664 ๏‚ด 103 mm 2 ๏€ฝ 1.25664 ๏‚ด 10๏€ญ3 m 2 4 EA ๏€ฝ 131.947 ๏‚ด 106 N A๏€ฝ C to E: E ๏€ฝ 200 ๏‚ด 109 Pa ๏ฐ (30)2 ๏€ฝ 706.86 mm 2 ๏€ฝ 706.86 ๏‚ด 10๏€ญ6 m 2 4 EA ๏€ฝ 141.372 ๏‚ด 106 N A๏€ฝ A to B: P ๏€ฝ RA L ๏€ฝ 180 mm ๏€ฝ 0.180 m ๏ค AB ๏€ฝ RA (0.180) PL ๏€ฝ EA 131.947 ๏‚ด 106 ๏€ฝ 1.36418 ๏‚ด 10๏€ญ9 RA B to C: P ๏€ฝ RA ๏€ญ 60 ๏‚ด 103 L ๏€ฝ 120 mm ๏€ฝ 0.120 m ๏ค BC ๏€ฝ PL ( RA ๏€ญ 60 ๏‚ด 103 )(0.120) ๏€ฝ EA 131.947 ๏‚ด 106 ๏€ฝ 909.456 ๏‚ด 10๏€ญ12 RA ๏€ญ 54.567 ๏‚ด 10๏€ญ6 C to D: P ๏€ฝ RA ๏€ญ 60 ๏‚ด 103 L ๏€ฝ 100 mm ๏€ฝ 0.100 m ๏ค CD ๏€ฝ PL ( RA ๏€ญ 60 ๏‚ด 103 )(0.100) ๏€ฝ EA 141.372 ๏‚ด 106 ๏€ฝ 707.354 ๏‚ด 10๏€ญ12 RA ๏€ญ 42.441 ๏‚ด 10๏€ญ6 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 136 PROBLEM 2.42 (Continued) D to E: P ๏€ฝ RA ๏€ญ 100 ๏‚ด 103 L ๏€ฝ 100 mm ๏€ฝ 0.100 m ๏ค DE ๏€ฝ PL ( RA ๏€ญ 100 ๏‚ด 103 )(0.100) ๏€ฝ EA 141.372 ๏‚ด 106 ๏€ฝ 707.354 ๏‚ด 10๏€ญ12 RA ๏€ญ 70.735 ๏‚ด 10๏€ญ6 A to E: ๏ค AE ๏€ฝ ๏ค AB ๏€ซ ๏ค BC ๏€ซ ๏ค CD ๏€ซ ๏ค DE ๏€ฝ 3.68834 ๏‚ด 10๏€ญ9 RA ๏€ญ 167.743 ๏‚ด 10๏€ญ6 Since point E cannot move relative to A, (a) (b) ๏ค AE ๏€ฝ 0 3.68834 ๏‚ด 10๏€ญ9 RA ๏€ญ 167.743 ๏‚ด 10๏€ญ6 ๏€ฝ 0 RA ๏€ฝ 45.479 ๏‚ด 103 N R A ๏€ฝ 45.5 kN ๏‚ฌ ๏ด RE ๏€ฝ RA ๏€ญ 100 ๏‚ด 103 ๏€ฝ 45.479 ๏‚ด 103 ๏€ญ 100 ๏‚ด 103 ๏€ฝ ๏€ญ54.521 ๏‚ด 103 RE ๏€ฝ 54.5 kN ๏‚ฌ ๏ด ๏ค C ๏€ฝ ๏ค AB ๏€ซ ๏ค BC ๏€ฝ 2.27364 ๏‚ด 10๏€ญ9 RA ๏€ญ 54.567 ๏‚ด 10๏€ญ6 ๏€ฝ (2.27364 ๏‚ด 10๏€ญ9 )(45.479 ๏‚ด 103 ) ๏€ญ 54.567 ๏‚ด 10๏€ญ6 ๏€ฝ 48.8 ๏‚ด 10๏€ญ6 m ๏ค C ๏€ฝ 48.8 ๏ญ m ๏‚ฎ ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 137 D PROBLEM 2.43 E 2 kN 225 mm B A F C Each of the rods BD and CE is made of brass (E ๏€ฝ 105 GPa) and has a cross-sectional area of 200 mm2. Determine the deflection of end A of the rigid member ABC caused by the 2-kN load. 550 mm 75 mm 100 mm SOLUTION Let ๏ฑ be the rotation of member ABC as shown. Then ๏ค A ๏€ฝ 0.625๏ฑ1 But ๏ค B ๏€ฝ 0.075๏ฑ1 ๏ค C ๏€ฝ 0.1๏ฑ ๏คB ๏€ฝ PBD LBD AE PBD ๏€ฝ EA๏ค B (105 ๏‚ด 109 )(200 ๏‚ด 10 ๏€ญ6 )(0.075๏ฑ ) ๏€ฝ 0.225 LBD ๏€ฝ 7 ๏‚ด 106 ๏ฑ Free body ABC: ๏คC ๏€ฝ PCE LCE AE PCE ๏€ฝ EA๏ค C (105 ๏‚ด 109 )(200 ๏‚ด 10 ๏€ญ6 )(0.1 ๏ฑ ) ๏€ฝ 0.225 LCE ๏€ฝ 9.3333 ๏‚ด 106 ๏ฑ From free body of member ABC: ๏ƒฅ M F ๏€ฝ 0 : (0.625)(2000) ๏€ญ 0.075 PBD ๏€ญ 0.1PCE ๏€ฝ 0 or (0.625)(2000) ๏€ญ 0.075(7 ๏‚ด 106 ๏ฑ ) ๏€ญ 0.1(9.3333 ๏‚ด 106 ๏ฑ ) ๏€ฝ 0 ๏ฑ ๏€ฝ 0.85714 ๏‚ด 10๏€ญ3 rad and ๏ค A ๏€ฝ 0.625๏ฑ ๏€ฝ 0.625(0.85714 ๏‚ด 10๏€ญ3 ) ๏€ฝ 0.53571 ๏‚ด 10๏€ญ3 m ๏ค A ๏€ฝ 0.536 mm ๏‚ฏ ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 138 PROBLEM 2.44 F 8 in. E 10 in. A B C P D 12 in. 12 in. The rigid bar AD is supported by two steel wires of 161 -in. diameter (E ๏€ฝ 29 ร— 106 psi) and a pin and bracket at A. Knowing that the wires were initially taut, determine (a) the additional tension in each wire when a 220-lb load P is applied at D, (b) the corresponding deflection of point D. 12 in. SOLUTION Let ๏ฑ be the notation of bar ABCD. Then ๏ค B ๏€ฝ 12 ๏ฑ ๏ค C ๏€ฝ 24 ๏ฑ ๏คB ๏€ฝ PBE LBE AE EA๏ค BE ๏€ฝ PBE ๏€ฝ LBE (29 ๏‚ด 106 ) ๏ฐ ๏ƒฆ1๏ƒถ 2 (12 ๏ฑ ) 4 ๏ƒง๏ƒจ 6 ๏ƒท๏ƒธ 10 ๏€ฝ 106.765 ๏‚ด 103 ๏ฑ ๏คC ๏€ฝ PCF LCF EA EA๏ค CE ๏€ฝ PCF ๏€ฝ LCF (29 ๏‚ด 106 ) ๏ฐ๏ƒฆ1๏ƒถ 2 (24 ๏ฑ ) 4 ๏ƒง๏ƒจ 16 ๏ƒท๏ƒธ 18 ๏€ฝ 118.628 ๏‚ด 103 ๏ฑ Using free body ABCD, ๏ƒฅMA ๏€ฝ 0 : 12 PBE ๏€ซ 24 PCF ๏€ญ 36 P ๏€ฝ 0 (12)(106.765 ๏‚ด 103 ๏ฑ ) ๏€ซ (24)(118.628 ๏‚ด 106 ๏ฑ ) ๏€ญ (36)(220) ๏€ฝ 0 4.1283 ๏‚ด 106 ๏ฑ ๏€ฝ (36)(220) ๏ฑ ๏€ฝ 1.91847 ๏‚ด 10๏€ญ3 rad (a) (b) PBE ๏€ฝ (106.765 ๏‚ด 103 )(1.91847 ๏‚ด 10๏€ญ3 ) ๏€ฝ 204.83 lb PBE ๏€ฝ 205 lb ๏ด PCF ๏€ฝ (118.628 ๏‚ด 103 )(1.91847 ๏‚ด 10 ๏€ญ3 ) ๏€ฝ 227.58 lb PCF ๏€ฝ 228 lb ๏ด ๏ค D ๏€ฝ 36 ๏ฑ ๏€ฝ (36)(1.91847 ๏‚ด 10๏€ญ3 ) ๏€ฝ 69.1 ๏‚ด 10๏€ญ3 in. 0.0691 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 139 L B D A 3 4L PROBLEM 2.45 L C The rigid bar ABC is suspended from three wires of the same material. The crosssectional area of the wire at B is equal to half of the cross-sectional area of the wires at A and C. Determine the tension in each wire caused by the load P shown. P SOLUTION ๏ƒฅ M A ๏€ฝ 0: PC ๏€ฝ 3 LP ๏€ฝ 0 4 3 1 P ๏€ญ PB 8 2 ๏ƒฅ M C ๏€ฝ 0: PA ๏€ฝ 2 LPC ๏€ซ LPB ๏€ญ ๏€ญ 2 LPA ๏€ญ LPB ๏€ซ 5 LP ๏€ฝ 0 4 5 1 P ๏€ญ PB 8 2 Let l be the length of the wires. ๏คA ๏€ฝ PAl l ๏ƒฆ5 1 ๏ƒถ ๏€ฝ P ๏€ญ PB ๏ƒท ๏ƒง 2 ๏ƒธ EA EA ๏ƒจ 8 ๏คB ๏€ฝ PB l 2l PB ๏€ฝ E ( A/2) EA ๏คC ๏€ฝ PC l 1 ๏ƒถ l ๏ƒฆ3 ๏€ฝ P ๏€ญ PB ๏ƒท 2 ๏ƒธ EA EA ๏ƒง๏ƒจ 8 From the deformation diagram, ๏ค A ๏€ญ ๏ค B ๏€ฝ ๏ค B ๏€ญ ๏คC or 1 2 ๏ค B ๏€ฝ (๏ค A ๏€ซ ๏ค c ) l 1 l ๏ƒฆ5 1 3 1 ๏ƒถ PB ๏€ฝ P ๏€ญ PB ๏€ซ P ๏€ญ PB ๏ƒท ๏ƒง 2 EA ๏ƒจ 8 2 8 2 ๏ƒธ E ( A / 2) 5 1 PB ๏€ฝ P; 2 2 PB ๏€ฝ 1 P 5 PB ๏€ฝ 0.200 P ๏ด ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 140 PROBLEM 2.45 (Continued) PA ๏€ฝ 5 1 ๏ƒฆ P ๏ƒถ 21 P๏€ญ ๏ƒง ๏ƒท ๏€ฝ P 8 2 ๏ƒจ 5 ๏ƒธ 40 PA ๏€ฝ 0.525 P ๏ด๏€  PC ๏€ฝ 3 1 ๏ƒฆ P ๏ƒถ 11 P๏€ญ ๏ƒง ๏ƒท ๏€ฝ P 8 2 ๏ƒจ 5 ๏ƒธ 40 PC ๏€ฝ 0.275P ๏ด๏€  Check: PA ๏€ซ PB ๏€ซ PC ๏€ฝ 1.000 P Ok ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 141 PROBLEM 2.46 E The rigid bar AD is supported by two steel wires of 161 -in. diameter ( E ๏€ฝ 29 ๏‚ด 106 psi) and a pin and bracket at D. Knowing that the wires were initially taut, determine (a) the additional tension in each wire when a 120-lb load P is applied at B, (b) the corresponding deflection of point B. F 15 in. 8 in. A B C 8 in. 8 in. D 8 in. P SOLUTION Let ๏ฑ be the rotation of bar ABCD. Then ๏ค A ๏€ฝ 24๏ฑ ๏ค C ๏€ฝ 8๏ฑ ๏€  ๏คA ๏€ฝ PAE LAE AE 6 2 EA๏ค A (29 ๏‚ด 10 ) ๏ฐ4 ( 161 ) (24๏ฑ ) PAE ๏€ฝ ๏€ฝ LAE 15 ๏€ฝ 142.353 ๏‚ด 103๏ฑ ๏คC ๏€ฝ PCF LCF AE EA๏ค C (29 ๏‚ด 10 ) 4 ๏€จ 16 ๏€ฉ (8๏ฑ ) ๏€ฝ PCF ๏€ฝ 8 LCF 6 ๏ฐ 1 2 ๏€ฝ 88.971 ๏‚ด 103๏ฑ Using free body ABCD, ๏“M D ๏€ฝ 0 : ๏€ญ24PAE ๏€ซ 16 P ๏€ญ 8PCF ๏€ฝ 0 ๏€ญ24(142.353 ๏‚ด 103๏ฑ ) ๏€ซ 16(120) ๏€ญ 8(88.971 ๏‚ด 103๏ฑ ) ๏€ฝ 0 ๏ฑ ๏€ฝ 0.46510 ๏‚ด 10๏€ญ3 radๅ“ท (a) (b) PAE ๏€ฝ (142.353 ๏‚ด 103 )(0.46510 ๏‚ด 10๏€ญ3 ) PAE ๏€ฝ 66.2 lb ๏ด PCF ๏€ฝ (88.971 ๏‚ด 103 )(0.46510 ๏‚ด 10๏€ญ3 ) PCF ๏€ฝ 41.4 lb ๏ด ๏ค B ๏€ฝ 7.44 ๏‚ด 10๏€ญ3 in. ๏‚ฏ ๏ด ๏ค B ๏€ฝ 16๏ฑ ๏€ฝ 16(0.46510 ๏‚ด 10๏€ญ3 ) PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 142 PROBLEM 2.47 25 mm The aluminum shell is fully bonded to the brass core and the assembly is unstressed at a temperature of 15๏‚ฐC. Considering only axial deformations, determine the stress in the aluminum when the temperature reaches 195๏‚ฐC. Brass core E 105 GPa 20.9 10โ€“6/C Aluminum shell E 70 GPa 23.6 10โ€“6/C 60 mm SOLUTION Brass core: E ๏€ฝ 105 GPa ๏ก ๏€ฝ 20.9 ๏‚ด 10๏€ญ6/ ๏‚ฐC Aluminum shell: E ๏€ฝ 70 GPa ๏ก ๏€ฝ 23.6 ๏‚ด 10๏€ญ6 / ๏‚ฐC Let L be the length of the assembly. Free thermal expansion: ๏„T ๏€ฝ 195 ๏€ญ 15 ๏€ฝ 180 ๏‚ฐC Brass core: (๏คT )b ๏€ฝ L๏ก b (๏„T ) Aluminum shell: (๏คT ) a ๏€ฝ L๏ก a (๏„T ) Net expansion of shell with respect to the core: ๏ค ๏€ฝ L(๏ก a ๏€ญ ๏ก b )(๏„T ) Let P be the tensile force in the core and the compressive force in the shell. Brass core: Eb ๏€ฝ 105 ๏‚ด 109 Pa ๏ฐ (25)2 ๏€ฝ 490.87 mm 2 4 ๏€ฝ 490.87 ๏‚ด 10๏€ญ6 m 2 Ab ๏€ฝ (๏ค P )b ๏€ฝ PL Eb Ab PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 143 PROBLEM 2.47 (Continued) Aluminum shell: (๏ค p )a ๏€ฝ PL Ea Aa Ea ๏€ฝ 70 ๏‚ด 109 Pa ๏ฐ (602 ๏€ญ 252 ) 4 ๏€ฝ 2.3366 ๏‚ด 103 mm 2 Aa ๏€ฝ ๏€ฝ 2.3366 ๏‚ด 10๏€ญ3 m 2 ๏ค ๏€ฝ (๏ค P )b ๏€ซ (๏ค P ) a L(๏ก b ๏€ญ ๏ก a )(๏„T ) ๏€ฝ PL PL ๏€ซ ๏€ฝ KPL Eb Ab Ea Aa where K๏€ฝ ๏€ฝ 1 1 ๏€ซ Eb Ab Ea Aa 1 1 ๏€ซ ๏€ญ6 9 (105 ๏‚ด 10 )(490.87 ๏‚ด 10 ) (70 ๏‚ด 10 )(2.3366 ๏‚ด 10๏€ญ3 ) 9 ๏€ฝ 25.516 ๏‚ด 10๏€ญ9 N ๏€ญ1 Then (๏ก b ๏€ญ ๏ก a )(๏„T ) K (23.6 ๏‚ด 10๏€ญ6 ๏€ญ 20.9 ๏‚ด 10๏€ญ6 )(180) ๏€ฝ 25.516 ๏‚ด 10๏€ญ9 ๏€ฝ 19.047 ๏‚ด 103 N P๏€ฝ Stress in aluminum: ๏ณa ๏€ฝ ๏€ญ P 19.047 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ8.15 ๏‚ด 106 Pa ๏€ญ3 Aa 2.3366 ๏‚ด 10 ๏ณ a ๏€ฝ ๏€ญ8.15 MPa ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 144 PROBLEM 2.48 25 mm Solve Prob. 2.47, assuming that the core is made of steel (Es ๏€ฝ 200 GPa, ๏ก s ๏€ฝ 11.7 ๏‚ด 10๏€ญ6 / ๏‚ฐC) instead of brass. Brass core E 105 GPa 20.9 10โ€“6/C PROBLEM 2.47 The aluminum shell is fully bonded to the brass core and the assembly is unstressed at a temperature of 15๏‚ฐC. Considering only axial deformations, determine the stress in the aluminum when the temperature reaches 195๏‚ฐC. Aluminum shell E 70 GPa 23.6 10โ€“6/C 60 mm SOLUTION E ๏€ฝ 70 GPa ๏ก ๏€ฝ 23.6 ๏‚ด 10๏€ญ6 / ๏‚ฐC Aluminum shell: Let L be the length of the assembly. ๏„T ๏€ฝ 195 ๏€ญ 15 ๏€ฝ 180 ๏‚ฐC Free thermal expansion: Steel core: (๏คT ) s ๏€ฝ L๏ก s (๏„T ) Aluminum shell: (๏คT )a ๏€ฝ L๏ก a (๏„T ) ๏ค ๏€ฝ L(๏ก a ๏€ญ ๏ก s )(๏„T ) Net expansion of shell with respect to the core: Let P be the tensile force in the core and the compressive force in the shell. Es ๏€ฝ 200 ๏‚ด 109 Pa, As ๏€ฝ Steel core: ๏ฐ 4 (25) 2 ๏€ฝ 490.87 mm 2 ๏€ฝ 490.87 ๏‚ด 10๏€ญ6 m 2 PL (๏ค P ) s ๏€ฝ Es As Ea ๏€ฝ 70 ๏‚ด 109 Pa Aluminum shell: (๏ค P )a ๏€ฝ PL Ea Aa ๏ฐ (602 ๏€ญ 25)2 ๏€ฝ 2.3366 ๏‚ด 103 mm 2 ๏€ฝ 2.3366 ๏‚ด 10๏€ญ3 m 2 4 ๏ค ๏€ฝ (๏ค P ) s ๏€ซ (๏ค P ) a Aa ๏€ฝ L(๏ก a ๏€ญ ๏ก s )(๏„T ) ๏€ฝ PL PL ๏€ซ ๏€ฝ KPL Es As Ea Aa where K๏€ฝ ๏€ฝ 1 1 ๏€ซ Es As Ea Aa 1 1 ๏€ซ ๏€ญ6 9 (200 ๏‚ด 10 )(490.87 ๏‚ด 10 ) (70 ๏‚ด 10 )(2.3366 ๏‚ด 10๏€ญ3 ) 9 ๏€ฝ 16.2999 ๏‚ด 10๏€ญ9 N ๏€ญ1 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 145 PROBLEM 2.48 (Continued) Then P๏€ฝ (๏ก a ๏€ญ ๏ก s )( ๏„T ) (23.6 ๏‚ด 10 ๏€ญ6 ๏€ญ 11.7 ๏‚ด 10 ๏€ญ6 )(180) ๏€ฝ ๏€ฝ 131.412 ๏‚ด 103 N K 16.2999 ๏‚ด 10 ๏€ญ9 Stress in aluminum: ๏ณ a ๏€ฝ ๏€ญ P 131.412 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ56.241 ๏‚ด 106 Pa ๏€ญ3 Aa 2.3366 ๏‚ด 10 ๏ณ a ๏€ฝ ๏€ญ56.2 MPa ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 146 1 in. 4 1 in. 1 in. 4 1 in. 4 PROBLEM 2.49 1 in. 1 in. 4 Steel core E 29 106 psi Brass shell E 15 106 psi The brass shell (๏ก b ๏€ฝ 11.6 ๏‚ด 10๏€ญ6 /๏‚ฐF) is fully bonded to the steel core (๏ก s ๏€ฝ 6.5 ๏‚ด 10๏€ญ6 /๏‚ฐF). Determine the largest allowable increase in temperature if the stress in the steel core is not to exceed 8 ksi. 12 in. SOLUTION Let Ps ๏€ฝ axial force developed in the steel core. For equilibrium with zero total force, the compressive force in the brass shell is Ps . ๏ฅs ๏€ฝ Strains: Ps ๏€ซ ๏ก s (๏„T ) Es As ๏ฅb ๏€ฝ ๏€ญ Ps ๏€ซ ๏ก b (๏„T ) Eb Ab ๏ฅ s ๏€ฝ ๏ฅb Matching: Ps P ๏€ซ ๏ก s (๏„T ) ๏€ฝ ๏€ญ s ๏€ซ ๏ก b (๏„T ) Es As Eb Ab ๏ƒฆ 1 1 ๏ƒถ ๏€ซ ๏ƒง ๏ƒท Ps ๏€ฝ (๏ก b ๏€ญ ๏ก s )(๏„T ) ๏ƒจ Es As Eb Ab ๏ƒธ (1) Ab ๏€ฝ (1.5)(1.5) ๏€ญ (1.0)(1.0) ๏€ฝ 1.25 in 2 As ๏€ฝ (1.0)(1.0) ๏€ฝ 1.0 in 2 ๏ก b ๏€ญ ๏ก s ๏€ฝ 5.1 ๏‚ด 10๏€ญ6 /๏‚ฐF Ps ๏€ฝ ๏ณ s As ๏€ฝ (8 ๏‚ด 103 )(1.0) ๏€ฝ 8 ๏‚ด 103 lb 1 1 1 1 ๏€ซ ๏€ฝ ๏€ซ ๏€ฝ 87.816 ๏‚ด 10๏€ญ9 lb ๏€ญ1 6 Es As Eb Ab (29 ๏‚ด 10 )(1.0) (15 ๏‚ด 106 )(1.25) From (1), (87.816 ๏‚ด 10๏€ญ9 )(8 ๏‚ด 103 ) ๏€ฝ (5.1 ๏‚ด 10๏€ญ6 )(๏„T ) ๏„T ๏€ฝ 137.8 ๏‚ฐF ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 147 PROBLEM 2.50 The concrete post ( Ec ๏€ฝ 3.6 ๏‚ด 106 psi and ๏ก c ๏€ฝ 5.5 ๏‚ด 10๏€ญ6 / ๏‚ฐF) is reinforced with six steel bars, each of 78 -in. diameter ( Es ๏€ฝ 29 ๏‚ด 106 psi and ๏ก s ๏€ฝ 6.5 ๏‚ด 10๏€ญ6 / ๏‚ฐF). Determine the normal stresses induced in the steel and in the concrete by a temperature rise of 65ยฐF. 6 ft 10 in. 10 in. SOLUTION As ๏€ฝ 6 ๏ฐ 4 2 d ๏€ฝ6 ๏ฐ ๏ƒฆ7๏ƒถ 2 ๏€ฝ 3.6079 in 2 ๏ƒง ๏ƒท 4๏ƒจ8๏ƒธ Ac ๏€ฝ 102 ๏€ญ As ๏€ฝ 102 ๏€ญ 3.6079 ๏€ฝ 96.392 in 2 Let Pc ๏€ฝ tensile force developed in the concrete. For equilibrium with zero total force, the compressive force in the six steel rods equals Pc . Strains: ๏ฅs ๏€ฝ ๏€ญ Pc ๏€ซ ๏ก s (๏„T ) Es As ๏ฅc ๏€ฝ Pc ๏€ซ ๏ก c (๏„T ) Ec Ac Pc P ๏€ซ ๏ก c (๏„T ) ๏€ฝ ๏€ญ c ๏€ซ ๏ก s (๏„T ) Ec Ac Es As Matching: ๏ฅ c ๏€ฝ ๏ฅ s ๏ƒฆ 1 1 ๏ƒถ ๏€ซ ๏ƒง ๏ƒท Pc ๏€ฝ (๏ก s ๏€ญ ๏ก c )(๏„T ) ๏ƒจ Ec Ac Es As ๏ƒธ ๏ƒฉ ๏ƒน 1 1 ๏€ญ6 ๏€ซ ๏ƒช ๏ƒบ Pc ๏€ฝ (1.0 ๏‚ด 10 )(65) 6 6 ๏ƒซ (3.6 ๏‚ด 10 )(96.392) (29 ๏‚ด 10 )(3.6079) ๏ƒป Pc ๏€ฝ 5.2254 ๏‚ด 103 lb ๏ณc ๏€ฝ ๏€  Pc 5.2254 ๏‚ด 103 ๏€ฝ ๏€ฝ 54.210 psi 96.392 Ac ๏ณs ๏€ฝ ๏€ญ ๏ณ c ๏€ฝ 54.2 psi Pc 5.2254 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ1448.32 psi ๏€  3.6079 As ๏ณ s ๏€ฝ ๏€ญ1.448 ksi ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 148 PROBLEM 2.51 A A rod consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of steel ( Es ๏€ฝ 200 GPa, ๏ก s ๏€ฝ 11.7 ๏‚ด 10๏€ญ6 / ๏‚ฐC) and portion BC is made of brass ( Eb ๏€ฝ 105 GPa, ๏ก b ๏€ฝ 20.9 ๏‚ด 10๏€ญ6 / ๏‚ฐC). Knowing that the rod is initially unstressed, determine the compressive force induced in ABC when there is a temperature rise of 50 ๏‚ฐC. 30-mm diameter 250 mm B 50-mm diameter 300 mm C SOLUTION AAB ๏€ฝ ABC ๏€ฝ ๏ฐ 4 ๏ฐ 4 2 d AB ๏€ฝ 2 d BC ๏€ฝ ๏ฐ 4 ๏ฐ 4 (30) 2 ๏€ฝ 706.86 mm 2 ๏€ฝ 706.86 ๏‚ด 10๏€ญ6 m 2 (50)2 ๏€ฝ 1.9635 ๏‚ด 103 mm 2 ๏€ฝ 1.9635 ๏‚ด 10๏€ญ3 m 2 Free thermal expansion: ๏คT ๏€ฝ LAB๏ก s (๏„T ) ๏€ซ LBC๏ก b (๏„T ) ๏€ฝ (0.250)(11.7 ๏‚ด 10๏€ญ6 )(50) ๏€ซ (0.300)(20.9 ๏‚ด 10 ๏€ญ6 )(50) ๏€ฝ 459.75 ๏‚ด 10๏€ญ6 m Shortening due to induced compressive force P: ๏คP ๏€ฝ ๏€ฝ PL PL ๏€ซ Es AAB Eb ABC 0.250 P 0.300 P ๏€ซ ๏€ญ6 9 (200 ๏‚ด 10 )(706.86 ๏‚ด 10 ) (105 ๏‚ด 10 )(1.9635 ๏‚ด 10๏€ญ3 ) 9 ๏€ฝ 3.2235 ๏‚ด 10๏€ญ9 P For zero net deflection, ๏ค P ๏€ฝ ๏คT 3.2235 ๏‚ด 10๏€ญ9 P ๏€ฝ 459.75 ๏‚ด 10๏€ญ6 P ๏€ฝ 142.624 ๏‚ด 103 N P ๏€ฝ 142.6 kN ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 149 24 in. A PROBLEM 2.52 32 in. B C 1 2 14 -in. diameter 1 2 -in. diameter A rod consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of steel ( Es ๏€ฝ 29 ๏‚ด 106 psi, ๏ก s ๏€ฝ 6.5 ๏‚ด 10๏€ญ6 / ๏‚ฐF) and portion BC is made of aluminum ( Ea ๏€ฝ 10.4 ๏‚ด 106 psi, ๏ก a ๏€ฝ 13.3 ๏‚ด 10๏€ญ6 /ยฐF). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions AB and BC by a temperature rise of 70ยฐF, (b) the corresponding deflection of point B. SOLUTION AAB ๏€ฝ Free thermal expansion. ๏ฐ 4 (2.25) 2 ๏€ฝ 3.9761 in 2 ABC ๏€ฝ ๏ฐ 4 (1.5)2 ๏€ฝ 1.76715 in 2 ๏„T ๏€ฝ 70๏‚ฐF (๏คT ) AB ๏€ฝ LAB๏ก s (๏„T ) ๏€ฝ (24)(6.5 ๏‚ด 10๏€ญ6 )(70) ๏€ฝ 10.92 ๏‚ด 10๏€ญ3 in. (๏คT ) BC ๏€ฝ LBC๏ก a (๏„T ) ๏€ฝ (32)(13.3 ๏‚ด 10๏€ญ6 )(70) ๏€ฝ 29.792 ๏‚ด 10๏€ญ3 in. ๏คT ๏€ฝ (๏คT ) AB ๏€ซ (๏คT ) BC ๏€ฝ 40.712 ๏‚ด 10๏€ญ3 in. Total: Shortening due to induced compressive force P. For zero net deflection, ๏ค P ๏€ฝ ๏คT (b) PLAB 24 P ๏€ฝ ๏€ฝ 208.14 ๏‚ด 10๏€ญ9 P Es AAB (29 ๏‚ด 106 )(3.9761) (๏ค P ) BC ๏€ฝ PLBC 32 P ๏€ฝ ๏€ฝ 1741.18 ๏‚ด 10๏€ญ9 P 6 Ea ABC (10.4 ๏‚ด 10 )(1.76715) ๏ค P ๏€ฝ (๏ค P ) AB ๏€ซ (๏ค P ) BC ๏€ฝ 1949.32 ๏‚ด 10๏€ญ9 P Total: (a) (๏ค P ) AB ๏€ฝ 1949.32 ๏‚ด 10๏€ญ9 P ๏€ฝ 40.712 ๏‚ด 10๏€ญ3 P ๏€ฝ 20.885 ๏‚ด 103 lb ๏ณ AB ๏€ฝ ๏€ญ P 20.885 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ5.25 ๏‚ด 103 psi AAB 3.9761 ๏ณ AB ๏€ฝ ๏€ญ5.25 ksi ๏ด ๏ณ BC ๏€ฝ ๏€ญ P 20.885 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ11.82 ๏‚ด 103 psi ABC 1.76715 ๏ณ BC ๏€ฝ ๏€ญ11.82 ksi ๏ด (๏ค P ) AB ๏€ฝ (208.14 ๏‚ด 10๏€ญ9 )(20.885 ๏‚ด 103 ) ๏€ฝ 4.3470 ๏‚ด 10๏€ญ3 in. ๏ค B ๏€ฝ (๏คT ) AB ๏‚ฎ ๏€ซ (๏ค P ) AB ๏‚ฌ ๏€ฝ 10.92 ๏‚ด 10๏€ญ3 ๏‚ฎ ๏€ซ 4.3470 ๏‚ด 10๏€ญ3 ๏‚ฌ ๏ค B ๏€ฝ 6.57 ๏‚ด 10๏€ญ3 in. ๏‚ฎ ๏ด or (๏ค P ) BC ๏€ฝ (1741.18 ๏‚ด 10๏€ญ9 )(20.885 ๏‚ด 103 ) ๏€ฝ 36.365 ๏‚ด 10๏€ญ3 in. ๏ค B ๏€ฝ (๏คT ) BC ๏‚ฌ ๏€ซ (๏ค P ) BC ๏‚ฎ ๏€ฝ 29.792 ๏‚ด 10๏€ญ3 ๏‚ฌ ๏€ซ 36.365 ๏‚ด 10๏€ญ3 ๏‚ฎ ๏€ฝ 6.57 ๏‚ด 10๏€ญ3 in. ๏‚ฎ (checks) PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 150 PROBLEM 2.53 24 in. A Solve Prob. 2.52, assuming that portion AB of the composite rod is made of aluminum and portion BC is made of steel. 32 in. B C 1 2 14 -in. diameter 1 2 -in. diameter PROBLEM 2.52 A rod consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of steel ( Es ๏€ฝ 29 ๏‚ด 106 psi, ๏ก s ๏€ฝ 6.5 ๏‚ด 10๏€ญ6 /๏‚ฐF) and portion BC is made of aluminum ( Ea ๏€ฝ 10.4 ๏‚ด 106 psi, ๏ก a ๏€ฝ 13.3 ๏‚ด 10๏€ญ6 /ยฐF). Knowing that the rod is initially unstressed, determine (a) the normal stresses induced in portions AB and BC by a temperature rise of 70ยฐF, (b) the corresponding deflection of point B. SOLUTION AAB ๏€ฝ ๏ฐ 4 (2.25) 2 ๏€ฝ 3.9761 in 2 Free thermal expansion. ABC ๏€ฝ ๏ฐ 4 (1.5)2 ๏€ฝ 1.76715 in 2 ๏„T ๏€ฝ 70๏‚ฐF (๏คT ) AB ๏€ฝ LAB๏ก a (๏„T ) ๏€ฝ (24)(13.3 ๏‚ด 10๏€ญ6 )(70) ๏€ฝ 22.344 ๏‚ด 10๏€ญ3 in. (๏ค T ) BC ๏€ฝ LBC๏ก s (๏„T ) ๏€ฝ (32)(6.5 ๏‚ด 10๏€ญ6 )(70) ๏€ฝ 14.56 ๏‚ด 10๏€ญ3 in. ๏คT ๏€ฝ (๏คT ) AB ๏€ซ (๏คT ) BC ๏€ฝ 36.904 ๏‚ด 10๏€ญ3 in. Total: Shortening due to induced compressive force P. PLAB 24 P ๏€ฝ ๏€ฝ 580.39 ๏‚ด 10๏€ญ9 P Ea AAB (10.4 ๏‚ด 106 )(3.9761) (๏ค P ) BC ๏€ฝ PLBC 32 P ๏€ฝ ๏€ฝ 624.42 ๏‚ด 10๏€ญ9 P Es ABC (29 ๏‚ด 106 )(1.76715) ๏ค P ๏€ฝ (๏ค P ) AB ๏€ซ (๏ค P ) BC ๏€ฝ 1204.81 ๏‚ด 10๏€ญ9 P Total: For zero net deflection, ๏ค P ๏€ฝ ๏คT (a) (๏ค P ) AB ๏€ฝ 1204.81 ๏‚ด 10๏€ญ9 P ๏€ฝ 36.904 ๏‚ด 10๏€ญ3 P ๏€ฝ 30.631 ๏‚ด 103 lb ๏ณ AB ๏€ฝ ๏€ญ P 30.631 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ7.70 ๏‚ด 103 psi AAB 3.9761 ๏ณ AB ๏€ฝ ๏€ญ7.70 ksi ๏ด ๏ณ BC ๏€ฝ ๏€ญ P 30.631 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ17.33 ๏‚ด 103 psi ABC 1.76715 ๏ณ BC ๏€ฝ ๏€ญ17.33 ksi ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 151 PROBLEM 2.53 (Continued) (b) (๏ค P ) AB ๏€ฝ (580.39 ๏‚ด 10๏€ญ9 )(30.631 ๏‚ด 103 ) ๏€ฝ 17.7779 ๏‚ด 10๏€ญ3 in. ๏ค B ๏€ฝ (๏คT ) AB ๏‚ฎ ๏€ซ (๏ค P ) AB ๏‚ฌ ๏€ฝ 22.344 ๏‚ด 10๏€ญ3 ๏‚ฎ ๏€ซ 17.7779 ๏‚ด 10๏€ญ3 ๏‚ฌ ๏€  or ๏ค B ๏€ฝ 4.57 ๏‚ด 10๏€ญ3 in. ๏‚ฎ ๏ด (๏ค P ) BC ๏€ฝ (624.42 ๏‚ด 10๏€ญ9 )(30.631 ๏‚ด 103 ) ๏€ฝ 19.1266 ๏‚ด 10๏€ญ3 in. ๏ค B ๏€ฝ (๏คT ) BC ๏‚ฌ ๏€ซ (๏ค P ) BC ๏‚ฎ ๏€ฝ 14.56 ๏‚ด 10๏€ญ3 ๏‚ฌ ๏€ซ 19.1266 ๏‚ด 10๏€ญ3 ๏‚ฎ ๏€ฝ 4.57 ๏‚ด 10๏€ญ3 in. ๏‚ฎ (checks) PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 152 PROBLEM 2.54 The steel rails of a railroad track (Es ๏€ฝ 200 GPa, ฮฑs ๏€ฝ 11.7 ร— 102โ€“6/๏‚ฐC) were laid at a temperature of 6๏‚ฐC. Determine the normal stress in the rails when the temperature reaches 48๏‚ฐC, assuming that the rails (a) are welded to form a continuous track, (b) are 10 m long with 3-mm gaps between them. SOLUTION (a) ๏คT ๏€ฝ ๏ก (๏„T ) L ๏€ฝ (11.7 ๏‚ด 10๏€ญ6 )(48 ๏€ญ 6)(10) ๏€ฝ 4.914 ๏‚ด 10๏€ญ3 m ๏คP ๏€ฝ PL L๏ณ (10)๏ณ ๏€ฝ ๏€ฝ ๏€ฝ 50 ๏‚ด 10๏€ญ12 ๏ณ 9 AE E 200 ๏‚ด 10 ๏ค ๏€ฝ ๏คT ๏€ซ ๏ค P ๏€ฝ 4.914 ๏‚ด 10๏€ญ3 ๏€ซ 50 ๏‚ด 10๏€ญ12 ๏ณ ๏€ฝ 0 ๏ณ ๏€ฝ ๏€ญ98.3 ๏‚ด 106 Pa (b) ๏ณ ๏€ฝ ๏€ญ98.3 MPa ๏ค ๏€ฝ ๏คT ๏€ซ ๏ค P ๏€ฝ 4.914 ๏‚ด 10๏€ญ3 ๏€ซ 50 ๏‚ด 10๏€ญ12 ๏ณ ๏€ฝ 3 ๏‚ด 10๏€ญ3 3 ๏‚ด 10๏€ญ3 ๏€ญ 4.914 ๏‚ด 10๏€ญ3 50 ๏‚ด 10๏€ญ12 ๏€ฝ ๏€ญ38.3 ๏‚ด 106 Pa ๏ณ๏€ฝ ๏ณ ๏€ฝ ๏€ญ38.3 MPa ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 153 PROBLEM 2.55 Pโฌ˜ 2m 15 mm Steel 5 mm Brass P Steel 40 mm Two steel bars ( Es ๏€ฝ 200 GPa and ๏ก s ๏€ฝ 11.7 ๏‚ด 10๏€ญ6/ ๏‚ฐC) are used to reinforce a brass bar ( Eb ๏€ฝ 105 GPa, ๏ก b ๏€ฝ 20.9 ๏‚ด 10๏€ญ6/ ๏‚ฐC) that is subjected to a load P ๏€ฝ 25 kN. When the steel bars were fabricated, the distance between the centers of the holes that were to fit on the pins was made 0.5 mm smaller than the 2 m needed. The steel bars were then placed in an oven to increase their length so that they would just fit on the pins. Following fabrication, the temperature in the steel bars dropped back to room temperature. Determine (a) the increase in temperature that was required to fit the steel bars on the pins, (b) the stress in the brass bar after the load is applied to it. SOLUTION (a) Required temperature change for fabrication: ๏คT ๏€ฝ 0.5 mm ๏€ฝ 0.5 ๏‚ด 10๏€ญ3 m Temperature change required to expand steel bar by this amount: ๏คT ๏€ฝ L๏ก s ๏„T , 0.5 ๏‚ด 10๏€ญ3 ๏€ฝ (2.00)(11.7 ๏‚ด 10๏€ญ6 )(๏„T ), ๏„T ๏€ฝ 0.5 ๏‚ด 10๏€ญ3 ๏€ฝ (2)(11.7 ๏‚ด 10๏€ญ6 )(๏„T ) ๏„T ๏€ฝ 21.368 ๏‚ฐC (b) 21.4 ๏‚ฐC ๏ด * * Once assembled, a tensile force P develops in the steel, and a compressive force P develops in the brass, in order to elongate the steel and contract the brass. Elongation of steel: As ๏€ฝ (2)(5)(40) ๏€ฝ 400 mm 2 ๏€ฝ 400 ๏‚ด 10๏€ญ6 m 2 (๏ค P ) s ๏€ฝ F *L P* (2.00) ๏€ฝ ๏€ฝ 25 ๏‚ด 10๏€ญ9 P* As Es (400 ๏‚ด 10๏€ญ6 )(200 ๏‚ด 109 ) Contraction of brass: Ab ๏€ฝ (40)(15) ๏€ฝ 600 mm 2 ๏€ฝ 600 ๏‚ด 10๏€ญ6 m 2 (๏ค P )b ๏€ฝ P* L P* (2.00) ๏€ฝ ๏€ฝ 31.746 ๏‚ด 10๏€ญ9 P* Ab Eb (600 ๏‚ด 10๏€ญ6 )(105 ๏‚ด 109 ) But (๏ค P ) s ๏€ซ (๏ค P )b is equal to the initial amount of misfit: (๏ค P ) s ๏€ซ (๏ค P )b ๏€ฝ 0.5 ๏‚ด 10๏€ญ3 , 56.746 ๏‚ด 10๏€ญ9 P* ๏€ฝ 0.5 ๏‚ด 10๏€ญ3 P* ๏€ฝ 8.8112 ๏‚ด 103 N Stresses due to fabrication: Steel: ๏ณ *s ๏€ฝ P * 8.8112 ๏‚ด 103 ๏€ฝ ๏€ฝ 22.028 ๏‚ด 106 Pa ๏€ฝ 22.028 MPa ๏€ญ6 As 400 ๏‚ด 10 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 154 PROBLEM 2.55 (Continued) Brass: ๏ณ b* ๏€ฝ ๏€ญ P* 8.8112 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ14.6853 ๏‚ด 106 Pa ๏€ฝ ๏€ญ14.685 MPa ๏€ญ6 Ab 600 ๏‚ด 10 To these stresses must be added the stresses due to the 25-kN load. For the added load, the additional deformation is the same for both the steel and the brass. Let ๏ค ๏‚ข be the additional displacement. Also, let Ps and Pb be the additional forces developed in the steel and brass, respectively. ๏ค๏‚ข ๏€ฝ Ps L PL ๏€ฝ b As Es Ab Eb As Es (400 ๏‚ด 10๏€ญ6 )(200 ๏‚ด 109 ) ๏ค๏‚ข ๏€ฝ ๏ค ๏‚ข ๏€ฝ 40 ๏‚ด 106 ๏ค ๏‚ข L 2.00 AE (600 ๏‚ด 10๏€ญ6 )(105 ๏‚ด 109 ) Pb ๏€ฝ b b ๏ค ๏‚ข ๏€ฝ ๏ค ๏‚ข ๏€ฝ 31.5 ๏‚ด 106 ๏ค ๏‚ข L 2.00 Ps ๏€ฝ P ๏€ฝ Ps ๏€ซ Pb ๏€ฝ 25 ๏‚ด 103 N Total: 40 ๏‚ด 106 ๏ค ๏‚ข ๏€ซ 31.5 ๏‚ด 106 ๏ค ๏‚ข ๏€ฝ 25 ๏‚ด 103 ๏ค ๏‚ข ๏€ฝ 349.65 ๏‚ด 10๏€ญ6 m Ps ๏€ฝ (40 ๏‚ด 106 )(349.65 ๏‚ด 10๏€ญ6 ) ๏€ฝ 13.9860 ๏‚ด 103 N Pb ๏€ฝ (31.5 ๏‚ด 106 )(349.65 ๏‚ด 10 ๏€ญ6 ) ๏€ฝ 11.0140 ๏‚ด 103 N ๏ณs ๏€ฝ Ps 13.9860 ๏‚ด 103 ๏€ฝ ๏€ฝ 34.965 ๏‚ด 106 Pa ๏€ญ6 As 400 ๏‚ด 10 ๏ณb ๏€ฝ Pb 11.0140 ๏‚ด 103 ๏€ฝ ๏€ฝ 18.3566 ๏‚ด 106 Pa Ab 600 ๏‚ด 10 ๏€ญ6 Add stress due to fabrication. Total stresses: ๏ณ s ๏€ฝ 34.965 ๏‚ด 106 ๏€ซ 22.028 ๏‚ด 106 ๏€ฝ 56.991 ๏‚ด 106 Pa ๏ณ s ๏€ฝ 57.0 MPa ๏ณ b ๏€ฝ 18.3566 ๏‚ด 106 ๏€ญ 14.6853 ๏‚ด 106 ๏€ฝ 3.6713 ๏‚ด 106 Pa ๏ณ b ๏€ฝ 3.67 MPa ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 155 PROBLEM 2.56 Pโฌ˜ 2m 15 mm Steel 5 mm Brass P Steel 40 mm Determine the maximum load P that may be applied to the brass bar of Prob. 2.55 if the allowable stress in the steel bars is 30 MPa and the allowable stress in the brass bar is 25 MPa. PROBLEM 2.55 Two steel bars ( Es ๏€ฝ 200 GPa and ๏ก s ๏€ฝ 11.7 ๏‚ด 10โ€“6/๏‚ฐC) are used to reinforce a brass bar ( Eb ๏€ฝ 105 GPa, ๏ก b ๏€ฝ 20.9 ๏‚ด 10โ€“6/๏‚ฐC) that is subjected to a load P ๏€ฝ 25 kN. When the steel bars were fabricated, the distance between the centers of the holes that were to fit on the pins was made 0.5 mm smaller than the 2 m needed. The steel bars were then placed in an oven to increase their length so that they would just fit on the pins. Following fabrication, the temperature in the steel bars dropped back to room temperature. Determine (a) the increase in temperature that was required to fit the steel bars on the pins, (b) the stress in the brass bar after the load is applied to it. SOLUTION See solution to Problem 2.55 to obtain the fabrication stresses. ๏ณ *s ๏€ฝ 22.028 MPa ๏ณ b* ๏€ฝ 14.6853 MPa Allowable stresses: ๏ณ s ,all ๏€ฝ 30 MPa, ๏ณ b,all ๏€ฝ 25 MPa Available stress increase from load. ๏ณ s ๏€ฝ 30 ๏€ญ 22.028 ๏€ฝ 7.9720 MPa ๏ณ b ๏€ฝ 25 ๏€ซ 14.6853 ๏€ฝ 39.685 MPa Corresponding available strains. ๏ฅs ๏€ฝ ๏ฅb ๏€ฝ ๏ณs Es ๏ณb Eb ๏€ฝ 7.9720 ๏‚ด 106 ๏€ฝ 39.860 ๏‚ด 10 ๏€ญ6 200 ๏‚ด 109 ๏€ฝ 39.685 ๏‚ด 106 ๏€ฝ 377.95 ๏‚ด 10 ๏€ญ6 105 ๏‚ด 109 Smaller value governs ๏œ ๏ฅ ๏€ฝ 39.860 ๏‚ด 10 ๏€ญ6 Areas: As ๏€ฝ (2)(5)(40) ๏€ฝ 400 mm 2 ๏€ฝ 400 ๏‚ด 10๏€ญ6 m 2 Ab ๏€ฝ (15)(40) ๏€ฝ 600 mm 2 ๏€ฝ 600 ๏‚ด 10๏€ญ6 m 2 Forces Ps ๏€ฝ Es As ๏ฅ ๏€ฝ (200 ๏‚ด 109 )(400 ๏‚ด 10 ๏€ญ6 )(39.860 ๏‚ด 10 ๏€ญ6 ) ๏€ฝ 3.1888 ๏‚ด 103 N Pb ๏€ฝ Eb Ab ๏ฅ ๏€ฝ (105 ๏‚ด 109 )(600 ๏‚ด 10๏€ญ6 )(39.860 ๏‚ด 10 ๏€ญ6 ) ๏€ฝ 2.5112 ๏‚ด 10 ๏€ญ3 N Total allowable additional force: P ๏€ฝ Ps ๏€ซ Pb ๏€ฝ 3.1888 ๏‚ด 103 ๏€ซ 2.5112 ๏‚ด 103 ๏€ฝ 5.70 ๏‚ด 103 N P ๏€ฝ 5.70 kN ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 156 PROBLEM 2.57 Dimensions in mm 0.15 20 20 200 A An aluminum rod (Ea ๏€ฝ 70 GPa, ฮฑa ๏€ฝ 23.6 ร— 10๏€ญ6/๏‚ฐC) and a steel link (Es ร— 200 GPa, ฮฑa ๏€ฝ 11.7 ร— 10๏€ญ6/๏‚ฐC) have the dimensions shown at a temperature of 20๏‚ฐC. The steel link is heated until the aluminum rod can be fitted freely into the link. The temperature of the whole assembly is then raised to 150๏‚ฐC. Determine the final normal stress (a) in the rod, (b) in the link. 30 A 20 Section A-A SOLUTION ๏„T ๏€ฝ T f ๏€ญ Ti ๏€ฝ 150๏‚ฐC ๏€ญ 20๏‚ฐC ๏€ฝ 130๏‚ฐC Unrestrained thermal expansion of each part: Aluminum rod: (๏ค T )a ๏€ฝ L๏ก a ( ๏„T ) (๏ค T ) a ๏€ฝ (0.200 m)(23.6 ๏‚ด 10๏€ญ6 / ๏‚ฐC)(130๏‚ฐC) ๏€ฝ 6.1360 ๏‚ด 10 ๏€ญ4 m Steel link: (๏ค T ) s ๏€ฝ L๏ก s ( ๏„T ) (๏ค T ) s ๏€ฝ (0.200 m)(11.7 ๏‚ด 10๏€ญ6 /๏‚ฐC)(130๏‚ฐC) ๏€ฝ 3.0420 ๏‚ด 10 ๏€ญ4 m Let P be the compressive force developed in the aluminum rod. It is also the tensile force in the steel link. Aluminum rod: (๏ค P )a ๏€ฝ ๏€ฝ PL Ea Aa P (0.200 m) (70 ๏‚ด 10 Pa)(๏ฐ /4)(0.03 m)2 9 ๏€ฝ 4.0420 ๏‚ด 10๏€ญ9 P Steel link: (๏ค P ) s ๏€ฝ ๏€ฝ PL Es As P (0.200) (200 ๏‚ด 109 Pa)(2)(0.02 m)2 ๏€ฝ 1.250 ๏‚ด 10๏€ญ9 P Setting the total deformed lengths in the link and rod equal gives (0.200) ๏€ซ (๏คT ) s ๏€ซ (๏ค P ) s ๏€ฝ (0.200) ๏€ซ (0.15 ๏‚ด 10๏€ญ3 ) ๏€ซ (๏คT )a ๏€ญ (๏ค P )a PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 157 PROBLEM 2.57 (Continued) (๏ค P ) s ๏€ซ (๏ค P )a ๏€ฝ 0.15 ๏‚ด 10๏€ญ3 ๏€ซ (๏คT )a ๏€ญ (๏คT ) s 1.25 ๏‚ด 10๏€ญ9 P ๏€ซ 4.0420 ๏‚ด 10๏€ญ9 P ๏€ฝ 0.15 ๏‚ด 10๏€ญ3 ๏€ซ 6.1360 ๏‚ด 10๏€ญ4 ๏€ญ 3.0420 ๏‚ด 10๏€ญ4 P ๏€ฝ 8.6810 ๏‚ด 104 N (a) Stress in rod: ๏ณ ๏€ฝ P A ๏ณR ๏€ฝ ๏€ญ8.6810 ๏‚ด 104 N ๏€ฝ ๏€ญ1.22811 ๏‚ด 108 Pa 2 (๏ฐ /4)(0.030 m) ๏ณ R ๏€ฝ ๏€ญ122.8 MPa ๏ด๏€  (b) Stress in link: ๏ณL ๏€ฝ 8.6810 ๏‚ด 104 N ๏€ฝ 1.08513 ๏‚ด 108 Pa (2)(0.020 m)2 ๏ณ L ๏€ฝ 108.5 MPa ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 158 PROBLEM 2.58 0.02 in. 14 in. Bronze A 2.4 in2 E 15 106 psi 12 10 โ€“6/F 18 in. Knowing that a 0.02-in. gap exists when the temperature is 75 ๏‚ฐF, determine (a) the temperature at which the normal stress in the aluminum bar will be equal to ๏€ญ11 ksi, (b) the corresponding exact length of the aluminum bar. Aluminum A 2.8 in2 E 10.6 106 psi 12.9 10 โ€“6/F SOLUTION ๏ณ a ๏€ฝ ๏€ญ11 ksi ๏€ฝ ๏€ญ11 ๏‚ด 103 psi P ๏€ฝ ๏€ญ๏ณ a Aa ๏€ฝ (11 ๏‚ด 103 )(2.8) ๏€ฝ 30.8 ๏‚ด 103 lb Shortening due to P: ๏คP ๏€ฝ ๏€ฝ PLb PLa ๏€ซ Eb Ab Ea Aa (30.8 ๏‚ด 103 )(14) (30.8 ๏‚ด 103 )(18) ๏€ซ (15 ๏‚ด 106 )(2.4) (10.6 ๏‚ด 106 )(2.8) ๏€ฝ 30.657 ๏‚ด 10๏€ญ3 in. Available elongation for thermal expansion: ๏ค T ๏€ฝ 0.02 ๏€ซ 30.657 ๏‚ด 10๏€ญ3 ๏€ฝ 50.657 ๏‚ด 10๏€ญ3 in. But ๏คT ๏€ฝ Lb๏ก b (๏„T ) ๏€ซ La๏ก a (๏„T ) ๏€ฝ (14)(12 ๏‚ด 10๏€ญ6 )(๏„T ) ๏€ซ (18)(12.9 ๏‚ด 10๏€ญ6 )(๏„T ) ๏€ฝ (400.2 ๏‚ด 10๏€ญ6 )๏„T Equating, (400.2 ๏‚ด 10๏€ญ6 )๏„T ๏€ฝ 50.657 ๏‚ด 10๏€ญ3 (a) Thot ๏€ฝ Tcold ๏€ซ ๏„T ๏€ฝ 75 ๏€ซ 126.6 ๏€ฝ 201.6๏‚ฐF (b) ๏ค a ๏€ฝ La๏ก a (๏„T ) ๏€ญ ๏„T ๏€ฝ 126.6๏‚ฐF Thot ๏€ฝ 201.6๏‚ฐF ๏ด PLa Ea Aa ๏€ฝ (18)(12.9 ๏‚ด 10๏€ญ6 )(26.6) ๏€ญ (30.8 ๏‚ด 103 )(18) ๏€ฝ 10.712 ๏‚ด 10๏€ญ3 in. (10.6 ๏‚ด 106 )(2.8) Lexact ๏€ฝ 18 ๏€ซ 10.712 ๏‚ด 10๏€ญ3 ๏€ฝ 18.0107 in. L ๏€ฝ 18.0107 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 159 PROBLEM 2.59 0.02 in. 14 in. 18 in. Determine (a) the compressive force in the bars shown after a temperature rise of 180๏‚ฐF, (b) the corresponding change in length of the bronze bar. Bronze A 2.4 in2 E 15 106 psi 12 10 โ€“6/F Aluminum A 2.8 in2 E 10.6 106 psi 12.9 10 โ€“6/F SOLUTION Thermal expansion if free of constraint: ๏คT ๏€ฝ Lb๏ก b (๏„T ) ๏€ซ La๏ก a (๏„T ) ๏€ฝ (14)(12 ๏‚ด 10๏€ญ6 )(180) ๏€ซ (18)(12.9 ๏‚ด 10๏€ญ6 )(180) ๏€ฝ 72.036 ๏‚ด 10๏€ญ3 in. Constrained expansion: ๏ค ๏€ฝ 0.02 in. Shortening due to induced compressive force P: ๏ค P ๏€ฝ 72.036 ๏‚ด 10๏€ญ3 ๏€ญ 0.02 ๏€ฝ 52.036 ๏‚ด 10๏€ญ3 in. ๏คP ๏€ฝ But PLb PLa ๏ƒฆ Lb L ๏ƒถ ๏€ซ ๏€ฝ๏ƒง ๏€ซ a ๏ƒทP Eb Ab Ea Aa ๏ƒจ Eb Ab Ea Aa ๏ƒธ ๏ƒฆ ๏ƒถ 14 18 ๏€ญ9 ๏€ฝ๏ƒง ๏€ซ ๏ƒท P ๏€ฝ 995.36 ๏‚ด 10 P 6 6 (15 10 )(2.4) (10.6 10 )(2.8) ๏‚ด ๏‚ด ๏ƒจ ๏ƒธ 995.36 ๏‚ด 10๏€ญ9 P ๏€ฝ 52.036 ๏‚ด 10๏€ญ3 Equating, P ๏€ฝ 52.279 ๏‚ด 103 lb P ๏€ฝ 52.3 kips ๏ด (a) (b) ๏ค b ๏€ฝ Lb๏ก b (๏„T ) ๏€ญ PLb Eb Ab ๏€ฝ (14)(12 ๏‚ด 10๏€ญ6 )(180) ๏€ญ (52.279 ๏‚ด 103 )(14) ๏€ฝ 9.91 ๏‚ด 10๏€ญ3 in. 6 (15 ๏‚ด 10 )(2.4) ๏ค b ๏€ฝ 9.91 ๏‚ด 10๏€ญ3 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 160 PROBLEM 2.60 0.5 mm 300 mm At room temperature (20๏‚ฐC) a 0.5-mm gap exists between the ends of the rods shown. At a later time when the temperature has reached 140๏‚ฐC, determine (a) the normal stress in the aluminum rod, (b) the change in length of the aluminum rod. 250 mm A B Aluminum A 5 2000 mm2 E 5 75 GPa a 5 23 3 10โ€“6/8C Stainless steel A 5 800 mm2 E 5 190 GPa a 5 17.3 3 10โ€“6/8C SOLUTION ๏„T ๏€ฝ 140 ๏€ญ 20 ๏€ฝ 120๏‚ฐC Free thermal expansion: ๏คT ๏€ฝ La๏ก a (๏„T ) ๏€ซ Ls๏ก s (๏„T ) ๏€ฝ (0.300)(23 ๏‚ด 10๏€ญ6 )(120) ๏€ซ (0.250)(17.3 ๏‚ด 10๏€ญ6 )(120) ๏€ฝ 1.347 ๏‚ด 10๏€ญ3 m Shortening due to P to meet constraint: ๏ค P ๏€ฝ 1.347 ๏‚ด 10๏€ญ3 ๏€ญ 0.5 ๏‚ด 10๏€ญ3 ๏€ฝ 0.847 ๏‚ด 10๏€ญ3 m ๏คP ๏€ฝ PLa PLs ๏ƒฆ La L ๏ƒถ ๏€ซ ๏€ฝ๏ƒง ๏€ซ s ๏ƒทP Ea Aa Es As ๏ƒจ Ea Aa Es As ๏ƒธ ๏ƒฆ ๏ƒถ 0.300 0.250 P ๏€ฝ๏ƒง ๏€ซ 9 ๏€ญ6 9 ๏€ญ6 ๏ƒท ๏ƒจ (75 ๏‚ด 10 )(2000 ๏‚ด 10 ) (190 ๏‚ด 10 )(800 ๏‚ด 10 ) ๏ƒธ ๏€ฝ 3.6447 ๏‚ด 10๏€ญ9 P 3.6447 ๏‚ด 10๏€ญ9 P ๏€ฝ 0.847 ๏‚ด 10๏€ญ3 Equating, P ๏€ฝ 232.39 ๏‚ด 103 N P 232.39 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ116.2 ๏‚ด 106 Pa Aa 2000 ๏‚ด 10๏€ญ6 (a) ๏ณa ๏€ฝ ๏€ญ (b) ๏ค a ๏€ฝ La๏ก a (๏„T ) ๏€ญ ๏ณ a ๏€ฝ ๏€ญ116.2 MPa ๏ด PLa Ea Aa ๏€ฝ (0.300)(23 ๏‚ด 10๏€ญ6 )(120) ๏€ญ (232.39 ๏‚ด 103 )(0.300) ๏€ฝ 363 ๏‚ด 10๏€ญ6 m (75 ๏‚ด 109 )(2000 ๏‚ด 10๏€ญ6 ) ๏ค a ๏€ฝ 0.363 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 161 PROBLEM 2.61 P 5 in. diameter 8 5.0 in. A standard tension test is used to determine the properties of an experimental plastic. The test specimen is a 85 -in.-diameter rod and it is subjected to an 800-lb tensile force. Knowing that an elongation of 0.45 in. and a decrease in diameter of 0.025 in. are observed in a 5-in. gage length, determine the modulus of elasticity, the modulus of rigidity, and Poissonโ€™s ratio for the material. P’ SOLUTION A๏€ฝ ๏ฐ 4 d2 ๏€ฝ ๏ฐ ๏ƒฆ5๏ƒถ 2 2 ๏ƒง ๏ƒท ๏€ฝ 0.306796 in 4 ๏ƒจ8๏ƒธ P ๏€ฝ 800 lb ๏ณy ๏€ฝ ๏ฅy ๏€ฝ ๏ฅx ๏€ฝ E๏€ฝ ๏คy L ๏คx d ๏€ฝ 0.45 ๏€ฝ 0.090 5.0 ๏€ฝ ๏€ญ0.025 ๏€ฝ ๏€ญ0.040 0.625 ๏ค y 2.6076 ๏‚ด 103 ๏€ฝ ๏€ฝ 28.973 ๏‚ด 103 psi 0.090 ๏ฅy v๏€ฝ๏€ญ ๏ณ๏€ฝ P 800 ๏€ฝ ๏€ฝ 2.6076 ๏‚ด 103 psi A 0.306796 E ๏€ฝ 29.0 ๏‚ด 103 psi ๏ด ๏ฅ x ๏€ญ0.040 ๏€ฝ ๏€ฝ 0.44444 0.090 ๏ฅy v ๏€ฝ 0.444 ๏ด๏€  E 28.973 ๏‚ด 103 ๏€ฝ ๏€ฝ 10.0291 ๏‚ด 103 psi 2(1 ๏€ซ v) (2)(1 ๏€ซ 0.44444) ๏ณ ๏€ฝ 10.03 ๏‚ด 103 psi ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 162 PROBLEM 2.62 640 kN A 2-m length of an aluminum pipe of 240-mm outer diameter and 10-mm wall thickness is used as a short column to carry a 640-kN centric axial load. Knowing that E ๏€ฝ 73 GPa and v ๏€ฝ 0.33, determine (a) the change in length of the pipe, (b) the change in its outer diameter, (c) the change in its wall thickness. 2m SOLUTION d o ๏€ฝ 0.240 t ๏€ฝ 0.010 L ๏€ฝ 2.0 di ๏€ฝ d o ๏€ญ 2t ๏€ฝ 0.240 ๏€ญ 2(0.010) ๏€ฝ 0.220 m P ๏€ฝ 640 ๏‚ด 103 N A๏€ฝ (a) ๏ค ๏€ฝ๏€ญ ๏ฐ 4 ๏€จ do2 ๏€ญ di2 ๏€ฉ ๏€ฝ ๏ฐ4 (0.240 ๏€ญ 0.220) ๏€ฝ 7.2257 ๏‚ด 10๏€ญ3 m2 PL (640 ๏‚ด 103 )(2.0) ๏€ฝ๏€ญ EA (73 ๏‚ด 109 )(7.2257 ๏‚ด 10๏€ญ3 ) ๏€ฝ ๏€ญ2.4267 ๏‚ด 10๏€ญ3 m ๏ฅ๏€ฝ ๏ค L ๏€ฝ ๏ค ๏€ฝ ๏€ญ2.43 mm ๏ด๏€  ๏€ญ2.4267 ๏€ฝ ๏€ญ1.21335 ๏‚ด 10๏€ญ3 2.0 ๏ฅ LAT ๏€ฝ ๏€ญv๏ฅ ๏€ฝ ๏€ญ(0.33)(๏€ญ1.21335 ๏‚ด 10๏€ญ3 ) ๏€ฝ 4.0041 ๏‚ด 10๏€ญ4 (b) ๏„d o ๏€ฝ d o๏ฅ LAT ๏€ฝ (240 mm)(4.0041 ๏‚ด 10๏€ญ4 ) ๏€ฝ 9.6098 ๏‚ด 10๏€ญ2 mm ๏„d o ๏€ฝ 0.0961 mm ๏ด๏€  ๏„t ๏€ฝ t๏ฅ LAT ๏€ฝ (10 mm)(4.0041 ๏‚ด 10๏€ญ4 ) ๏€ฝ 4.0041 ๏‚ด 10๏€ญ3 mm ๏„t ๏€ฝ 0.00400 mm ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 163 PROBLEM 2.63 200 kN 4 200 kN 10 200 mm 150 mm A line of slope 4:10 has been scribed on a cold-rolled yellow-brass plate, 150 mm wide and 6 mm thick. Knowing that E ๏€ฝ 105 GPa and v ๏€ฝ 0.34, determine the slope of the line when the plate is subjected to a 200-kN centric axial load as shown. SOLUTION A ๏€ฝ (0.150)(0.006) ๏€ฝ 0.9 ๏‚ด 10๏€ญ3 m 2 ๏ณx ๏€ฝ ๏ฅx ๏€ฝ P 200 ๏‚ด 103 ๏€ฝ ๏€ฝ 222.22 ๏‚ด 106 Pa A 0.9 ๏‚ด 10๏€ญ3 ๏ณx E ๏€ฝ 222.22 ๏‚ด 106 ๏€ฝ 2.1164 ๏‚ด 10๏€ญ3 9 105 ๏‚ด 10 ๏ฅ y ๏€ฝ ๏€ญ๏ต๏ฅ x ๏€ฝ ๏€ญ(0.34)(2.1164 ๏‚ด 10๏€ญ3 ) ๏€ฝ ๏€ญ0.71958 ๏‚ด 10๏€ญ3 ๏€  tan ๏ฑ ๏€ฝ 4(1 ๏€ซ ๏ฅ y ) 10(1 ๏€ซ ๏ฅ x ) 4(1 ๏€ญ 0.71958 ๏‚ด 10๏€ญ3 ) 10(1 ๏€ซ 2.1164 ๏‚ด 10๏€ญ3 ) ๏€ฝ 0.39887 ๏€ฝ tan ๏ฑ ๏€ฝ 0.399 ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 164 PROBLEM 2.64 50 mm 2.75 kN 2.75 kN A B 12 mm A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E ๏€ฝ 200 GPa, v ๏€ฝ 0.30). Determine the resulting change (a) in the 50-mm gage length, (b) in the width of portion AB of the test coupon, (c) in the thickness of portion AB, (d) in the crosssectional area of portion AB. SOLUTION A ๏€ฝ (1.6)(12) ๏€ฝ 19.20 mm 2 ๏€ฝ 19.20 ๏‚ด 10๏€ญ6 m 2 P ๏€ฝ 2.75 ๏‚ด 103 N ๏ณx ๏€ฝ P 2.75 ๏‚ด 103 ๏€ฝ A 19.20 ๏‚ด 10๏€ญ6 ๏€ฝ 143.229 ๏‚ด 106 Pa ๏ฅx ๏€ฝ ๏ณx E ๏€ฝ 143.229 ๏‚ด 106 ๏€ฝ 716.15 ๏‚ด 10๏€ญ6 9 200 ๏‚ด 10 ๏ฅ y ๏€ฝ ๏ฅ z ๏€ฝ ๏€ญ๏ต๏ฅ x ๏€ฝ ๏€ญ(0.30)(716.15 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ214.84 ๏‚ด 10๏€ญ6 (a) L ๏€ฝ 0.050 m ๏ค x ๏€ฝ L๏ฅ x ๏€ฝ (0.50)(716.15 ๏‚ด 10๏€ญ6 ) ๏€ฝ 35.808 ๏‚ด 10๏€ญ6 m 0.0358 mm ๏ด (b) w ๏€ฝ 0.012 m ๏ค y ๏€ฝ w๏ฅ y ๏€ฝ (0.012)(๏€ญ214.84 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ2.5781 ๏‚ด 10๏€ญ6 m ๏€ญ0.00258 mm ๏ด (c) t ๏€ฝ 0.0016 m ๏ค z ๏€ฝ t๏ฅ z ๏€ฝ (0.0016)(๏€ญ214.84 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ343.74 ๏‚ด 10๏€ญ9 m ๏€ญ0.000344 mm ๏ด๏€  (d) A ๏€ฝ w0 (1 ๏€ซ ๏ฅ y )t0 (1 ๏€ซ ๏ฅ z ) ๏€ฝ w0t0 (1 ๏€ซ ๏ฅ y ๏€ซ ๏ฅ z ๏€ซ ๏ฅ y ๏ฅ z ) A0 ๏€ฝ w0 t0 ๏„ A ๏€ฝ A ๏€ญ A0 ๏€ฝ w0t0 (๏ฅ y ๏€ซ ๏ฅ z ๏€ซ negligible term) ๏€ฝ 2w0 t0๏ฅ y ๏€ฝ (2)(0.012)(0.0016)(๏€ญ214.84 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ8.25 ๏‚ด 10๏€ญ9 m 2 ๏€ญ0.00825 mm 2 ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 165 PROBLEM 2.65 22-mm diameter 75 kN 75 kN 200 mm In a standard tensile test, a steel rod of 22-mm diameter is subjected to a tension force of 75 kN. Knowing that v ๏€ฝ 0.3 and E ๏€ฝ 200 GPa, determine (a) the elongation of the rod in a 200-mm gage length, (b) the change in diameter of the rod. SOLUTION P ๏€ฝ 75 kN ๏€ฝ 75 ๏‚ด 103 N A๏€ฝ ๏ณ ๏€ฝ ๏ฅx ๏€ฝ ๏ฐ 4 d2 ๏€ฝ ๏ฐ 4 (0.022)2 ๏€ฝ 380.13 ๏‚ด 10๏€ญ6 m 2 P 75 ๏‚ด 103 ๏€ฝ ๏€ฝ 197.301 ๏‚ด 106 Pa A 380.13 ๏‚ด 10๏€ญ6 ๏ณ E ๏€ฝ 197.301 ๏‚ด 106 ๏€ฝ 986.51 ๏‚ด 10๏€ญ6 200 ๏‚ด 109 ๏ค x ๏€ฝ L๏ฅ x ๏€ฝ (200 mm)(986.51 ๏‚ด 10๏€ญ6 ) (a) ๏ค x ๏€ฝ 0.1973 mm ๏ด๏€  ๏€  ๏ฅ y ๏€ฝ ๏€ญv๏ฅ x ๏€ฝ ๏€ญ(0.3)(986.51 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ295.95 ๏‚ด 10๏€ญ6 ๏€  ๏€  ๏ค y ๏€ฝ d๏ฅ y ๏€ฝ (22 mm)(๏€ญ295.95 ๏‚ด 10๏€ญ6 )๏€  ๏€ ๏€ ๏€ (b) ๏ค y ๏€ฝ ๏€ญ0.00651 mm ๏ด ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 166 2.5 in. PROBLEM 2.66 The change in diameter of a large steel bolt is carefully measured as the nut is tightened. Knowing that E ๏€ฝ 29 ๏‚ด 106 psi and v ๏€ฝ 0.30, determine the internal force in the bolt if the diameter is observed to decrease by 0.5 ๏‚ด 10๏€ญ3 in. SOLUTION ๏ค y ๏€ฝ ๏€ญ0.5 ๏‚ด 10๏€ญ3 in. ๏ฅy ๏€ฝ ๏ฅy d v๏€ฝ๏€ญ ๏€ฝ๏€ญ d ๏€ฝ 2.5 in. 0.5 ๏‚ด 10๏€ญ3 ๏€ฝ ๏€ญ0.2 ๏‚ด 10๏€ญ3 2.5 ๏ฅy : ๏ฅx ๏ฅx ๏€ฝ ๏€ญ๏ฅ y v ๏€ฝ 0.2 ๏‚ด 10๏€ญ3 ๏€ฝ 0.66667 ๏‚ด 10๏€ญ3 0.3 ๏ณ x ๏€ฝ E๏ฅ x ๏€ฝ (29 ๏‚ด 106 )(0.66667 ๏‚ด 10๏€ญ3 ) ๏€ฝ 19.3334 ๏‚ด 103 psi A๏€ฝ ๏ฐ 4 d2 ๏€ฝ ๏ฐ 4 (2.5) 2 ๏€ฝ 4.9087 in 2 F ๏€ฝ ๏ณ x A ๏€ฝ (19.3334 ๏‚ด 103 )(4.9087) ๏€ฝ 94.902 ๏‚ด 103 lb F ๏€ฝ 94.9 kips ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 167 PROBLEM 2.67 A The brass rod AD is fitted with a jacket that is used to apply a hydrostatic pressure of 48 MPa to the 240-mm portion BC of the rod. Knowing that E ๏€ฝ 105 GPa and v ๏€ฝ 0.33, determine (a) the change in the total length AD, (b) the change in diameter at the middle of the rod. B 240 mm 600 mm C D 50 mm SOLUTION ๏ณ x ๏€ฝ ๏ณ z ๏€ฝ ๏€ญ p ๏€ฝ ๏€ญ48 ๏‚ด 106 Pa, ๏ณy ๏€ฝ 0 1 (๏ณ x ๏€ญ ๏ต๏ณ y ๏€ญ ๏ต๏ณ z ) E 1 ๏€ฝ ๏› ๏€ญ48 ๏‚ด 106 ๏€ญ (0.33)(0) ๏€ญ (0.33)(๏€ญ48 ๏‚ด 106 )๏ 105 ๏‚ด 109 ๏€ฝ 306.29 ๏‚ด 10๏€ญ6 ๏ฅx ๏€ฝ 1 (๏€ญ๏ต๏ณ x ๏€ญ ๏ณ y ๏€ญ ๏ต๏ณ z ) E 1 ๏€ฝ ๏› ๏€ญ(0.33)(๏€ญ48 ๏‚ด 106 ) ๏€ซ 0 ๏€ญ (0.33)(๏€ญ48 ๏‚ด 106 )๏ 105 ๏‚ด 109 ๏€ฝ 301.71 ๏‚ด 10๏€ญ6 ๏ฅy ๏€ฝ (a) Change in length: only portion BC is strained. L ๏€ฝ 240 mm ๏ค y ๏€ฝ L๏ฅ y ๏€ฝ (240)(๏€ญ301.71 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ0.0724 mm (b) ๏ด Change in diameter: d ๏€ฝ 50 mm ๏ค x ๏€ฝ ๏ค z ๏€ฝ d๏ฅ x ๏€ฝ (50)(๏€ญ306.29 ๏‚ด 10๏€ญ6 ) ๏€ฝ ๏€ญ0.01531 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 168 PROBLEM 2.68 y 4 in. 3 in. A B D z C z x x A fabric used in air-inflated structures is subjected to a biaxial loading that results in normal stresses ๏ณ x ๏€ฝ 18 ksi and ๏ณ z ๏€ฝ 24 ksi . Knowing that the properties of the fabric can be approximated as E ๏€ฝ 12.6 ร— 106 psi and v ๏€ฝ 0.34, determine the change in length of (a) side AB, (b) side BC, (c) diagonal AC. SOLUTION ๏ณ x ๏€ฝ 18 ksi ๏ณy ๏€ฝ 0 ๏ณ z ๏€ฝ 24 ksi 1 1 (๏ณ x ๏€ญ ๏ต๏ณ y ๏€ญ ๏ต๏ณ z ) ๏€ฝ ๏›18,000 ๏€ญ (0.34)(24, 000)๏ ๏€ฝ 780.95 ๏‚ด 10๏€ญ6 E 12.6 ๏‚ด 106 1 1 ๏ฅ z ๏€ฝ (๏€ญ๏ต๏ณ x ๏€ญ ๏ต๏ณ y ๏€ซ ๏ณ z ) ๏€ฝ ๏› ๏€ญ(0.34)(18,000) ๏€ซ 24,000๏ ๏€ฝ 1.41905 ๏‚ด 10๏€ญ3 6 E 12.6 ๏‚ด 10 ๏ฅ x๏€ฝ (a) ๏ค AB ๏€ฝ ( AB)๏ฅ x ๏€ฝ (4 in.)(780.95 ๏‚ด 10๏€ญ6 ) ๏€ฝ 0.0031238 in. 0.00312 in. ๏ด๏€  (b) ๏ค BC ๏€ฝ ( BC )๏ฅ z ๏€ฝ (3 in.)(1.41905 ๏‚ด 10๏€ญ3 ) ๏€ฝ 0.0042572 in. 0.00426 in. ๏ด๏€  Label sides of right triangle ABC as a, b, c. Then c2 ๏€ฝ a 2 ๏€ซ b2 Obtain differentials by calculus. 2cdc ๏€ฝ 2ada ๏€ซ 2bdb dc ๏€ฝ But a ๏€ฝ 4 in. b ๏€ฝ 3 in. da ๏€ฝ ๏ค AB ๏€ฝ 0.0031238 in. (c) 4 5 a b da ๏€ซ db c c c ๏€ฝ 42 ๏€ซ 32 ๏€ฝ 5 in. db ๏€ฝ ๏ค BC ๏€ฝ 0.0042572 in. 3 5 ๏ค AC ๏€ฝ dc ๏€ฝ (0.0031238) ๏€ซ (0.0042572) 0.00505 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 169 PROBLEM 2.69 y 6 ksi A B x 12 ksi 1 in. A 1-in. square was scribed on the side of a large steel pressure vessel. After pressurization the biaxial stress condition at the square is as shown. Knowing that E ๏€ฝ 29 ร— 106 psi and v ๏€ฝ 0.30, determine the change in length of (a) side AB, (b) side BC, (c) diagonal AC. C D 1 in. SOLUTION ๏ฅx ๏€ฝ 1 1 ๏ƒฉ12 ๏‚ด 103 ๏€ญ (0.30)(6 ๏‚ด 103 ) ๏ƒน๏ƒป (๏ณ x ๏€ญ ๏ต๏ค y ) ๏€ฝ 6 ๏ƒซ E 29 ๏‚ด 10 ๏€ฝ 351.72 ๏‚ด 10๏€ญ6 1 1 ๏ƒฉ๏ƒซ6 ๏‚ด 103 ๏€ญ (0.30)(12 ๏‚ด 103 ) ๏ƒน๏ƒป ๏ฅ y ๏€ฝ (๏ณ y ๏€ญ ๏ต๏ค x ) ๏€ฝ E 29 ๏‚ด 106 ๏€ฝ 82.759 ๏‚ด 10๏€ญ6 (a) ๏ค AB ๏€ฝ ( AB)0 ๏ฅ x ๏€ฝ (1.00)(351.72 ๏‚ด 10๏€ญ6 ) ๏€ฝ 352 ๏‚ด 10๏€ญ6 in. ๏ด๏€  (b) ๏ค BC ๏€ฝ ( BC )0 ๏ฅ y ๏€ฝ (1.00)(82.759 ๏‚ด 10๏€ญ6 ) ๏€ฝ 82.8 ๏‚ด 10๏€ญ6 in. ๏ด (c) ( AC ) ๏€ฝ ( AB) 2 ๏€ซ ( BC ) 2 ๏€ฝ ( AB0 ๏€ซ ๏ค x )2 ๏€ซ ( BC0 ๏€ซ ๏ค y )2 ๏€ฝ (1 ๏€ซ 351.72 ๏‚ด 10๏€ญ6 )2 ๏€ซ (1 ๏€ซ 82.759 ๏‚ด 10๏€ญ6 ) 2 ๏€ฝ 1.41452 AC ๏€ญ ( AC )0 ๏€ฝ 307 ๏‚ด 10๏€ญ6 ( AC )0 ๏€ฝ 2 ๏ด or use calculus as follows:๏€  Label sides using a, b, and c as shown. c2 ๏€ฝ a 2 ๏€ซ b2 Obtain differentials. dc ๏€ฝ from which 2cdc ๏€ฝ 2ada ๏€ซ 2bdc a b da ๏€ซ dc c c But a ๏€ฝ 100 in., b ๏€ฝ 1.00 in., c ๏€ฝ 2 in. da ๏€ฝ ๏ค AB ๏€ฝ 351.72 ๏‚ด 10๏€ญ6 in., db ๏€ฝ ๏ค BC ๏€ฝ 82.8 ๏‚ด 10๏€ญ6 in. ๏ค AC ๏€ฝ dc ๏€ฝ 1.00 2 (351.7 ๏‚ด 10๏€ญ6 ) ๏€ซ 1.00 2 (82.8 ๏‚ด 10๏€ญ6 ) ๏€ฝ 307 ๏‚ด 10๏€ญ6 in. PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 170 PROBLEM 2.70 The block shown is made of a magnesium alloy, for which E ๏€ฝ 45 GPa and v ๏€ฝ 0.35. Knowing that ๏ณ x ๏€ฝ ๏€ญ180 MPa, determine (a) the magnitude of ๏ณ y for which the change in the height of the block will be zero, (b) the corresponding change in the area of the face ABCD, (c) the corresponding change in the volume of the block. SOLUTION (a) ๏คy ๏€ฝ 0 ๏ฅy ๏€ฝ 0 ๏ณz ๏€ฝ 0 1 (๏ณ x ๏€ญ v๏ณ y ๏€ญ v๏ณ z ) E ๏ณ y ๏€ฝ v๏ณ x ๏€ฝ (0.35)(๏€ญ180 ๏‚ด 106 ) ๏ฅy ๏€ฝ ๏ณ y ๏€ฝ ๏€ญ63.0 MPa ๏ด ๏€ฝ ๏€ญ63 ๏‚ด 106 Pa 1 v (0.35)(๏€ญ243 ๏‚ด 106 ) (๏ณ z ๏€ญ v๏ณ x ๏€ญ v๏ณ y ) ๏€ฝ ๏€ญ (๏ณ x ๏€ซ ๏ณ y ) ๏€ฝ ๏€ญ ๏€ฝ ๏€ซ1.890 ๏‚ด 10๏€ญ3 E E 45 ๏‚ด 109 ๏ณ x ๏€ญ v๏ณ y 1 157.95 ๏‚ด 106 ๏ฅ x ๏€ฝ (๏ณ x ๏€ญ v๏ณ y ๏€ญ v๏ณ Z ) ๏€ฝ ๏€ฝ๏€ญ ๏€ฝ ๏€ญ3.510 ๏‚ด 10๏€ญ3 E E 45 ๏‚ด 109 ๏ฅz ๏€ฝ (b) A0 ๏€ฝ Lx Lz A ๏€ฝ Lx (1 ๏€ซ ๏ฅ x ) Lz (1 ๏€ซ ๏ฅ z ) ๏€ฝ Lx Lz (1 ๏€ซ ๏ฅ x ๏€ซ ๏ฅ z ๏€ซ ๏ฅ x๏ฅ z ) ๏„ A ๏€ฝ A ๏€ญ A0 ๏€ฝ Lx Lz (๏ฅ x ๏€ซ ๏ฅ z ๏€ซ ๏ฅ x ๏ฅ z ) ๏‚ป Lx Lz (๏ฅ x ๏€ซ ๏ฅ z ) ๏„ A ๏€ฝ (100 mm)(25 mm)(๏€ญ3.510 ๏‚ด 10๏€ญ3 ๏€ซ 1.890 ๏‚ด 10๏€ญ3 ) (c) ๏„ A ๏€ฝ ๏€ญ4.05 mm 2 ๏ด V0 ๏€ฝ Lx Ly Lz V ๏€ฝ Lx (1 ๏€ซ ๏ฅ x ) Ly (1 ๏€ซ ๏ฅ y ) Lz (1 ๏€ซ ๏ฅ z ) ๏€ฝ Lx Ly Lz (1 ๏€ซ ๏ฅ x ๏€ซ ๏ฅ y ๏€ซ ๏ฅ z ๏€ซ ๏ฅ x๏ฅ y ๏€ซ ๏ฅ y ๏ฅ z ๏€ซ ๏ฅ z ๏ฅ x ๏€ซ ๏ฅ x๏ฅ y ๏ฅ z ) ๏„V ๏€ฝ V ๏€ญ V0 ๏€ฝ Lx Ly Lz (๏ฅ x ๏€ซ ๏ฅ y ๏€ซ ๏ฅ z ๏€ซ small terms) ๏„V ๏€ฝ (100)(40)(25)(๏€ญ3.510 ๏‚ด 10๏€ญ3 ๏€ซ 0 ๏€ซ 1.890 ๏‚ด 10๏€ญ3 ) ๏„V ๏€ฝ ๏€ญ162.0 mm3 ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 171 PROBLEM 2.71 y A B D z C โดz x โดx The homogeneous plate ABCD is subjected to a biaxial loading as shown. It is known that ๏ณ z ๏€ฝ ๏ณ 0 and that the change in length of the plate in the x direction must be zero, that is, ๏ฅ x ๏€ฝ 0. Denoting by E the modulus of elasticity and by v Poissonโ€™s ratio, determine (a) the required magnitude of ๏ณ x , (b) the ratio ๏ณ 0 / ๏ฅ z . SOLUTION ๏ณ z ๏€ฝ ๏ณ 0 , ๏ณ y ๏€ฝ 0, ๏ฅ x ๏€ฝ 0 ๏ฅx ๏€ฝ 1 1 (๏ณ x ๏€ญ v๏ณ y ๏€ญ v๏ณ z ) ๏€ฝ (๏ณ x ๏€ญ v๏ณ 0 ) E E ๏ณ x ๏€ฝ v๏ณ 0 ๏ด (a) (b) ๏ฅz ๏€ฝ 1 1 1 ๏€ญ v2 (๏€ญv๏ณ x ๏€ญ v๏ณ y ๏€ซ ๏ณ z ) ๏€ฝ (๏€ญv 2๏ณ 0 ๏€ญ 0 ๏€ซ ๏ณ 0 ) ๏€ฝ ๏ณ0 E E E ๏ณ0 E ๏€ฝ ๏ด๏€  ๏ฅ z 1 ๏€ญ v2 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 172 y P’ PROBLEM 2.72 P โดx โดx โซฝ P A z (a) P’ โด’ โด’ โถm โซฝ P โถm 45โฌš 2A โด’ x For a member under axial loading, express the normal strain ๏ฅ๏‚ข in a direction forming an angle of 45๏‚ฐ with the axis of the load in terms of the axial strain ๏ฅx by (a) comparing the hypotenuses of the triangles shown in Fig. 2.43, which represent, respectively, an element before and after deformation, (b) using the values of the corresponding stresses of ๏ณ ๏‚ข and ๏ณx shown in Fig. 1.38, and the generalized Hookeโ€™s law. P โด’ โซฝ P 2A (b) SOLUTION Figure 2.49 (a) [ 2(1 ๏€ซ ๏ฅ ๏‚ข)]2 ๏€ฝ (1 ๏€ซ ๏ฅ x )2 ๏€ซ (1 ๏€ญ v๏ฅ x )2 2(1 ๏€ซ 2๏ฅ ๏‚ข ๏€ซ ๏ฅ ๏‚ข2 ) ๏€ฝ 1 ๏€ซ 2๏ฅ x ๏€ซ ๏ฅ x2 ๏€ซ 1 ๏€ญ 2v๏ฅ x ๏€ซ v 2๏ฅ x2 4๏ฅ ๏‚ข ๏€ซ 2๏ฅ ๏‚ข2 ๏€ฝ 2๏ฅ x ๏€ซ ๏ฅ x2 ๏€ญ 2v๏ฅ x ๏€ซ v 2๏ฅ x2 4๏ฅ ๏‚ข ๏€ฝ 2๏ฅ x ๏€ญ 2v๏ฅ x Neglect squares as small. (A) ๏ฅ๏‚ข ๏€ฝ 1๏€ญ v ๏ฅx ๏ด 2 (B) PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 173 PROBLEM 2.72 (Continued) (b) v๏ณ ๏‚ข E E 1๏€ญ v P ๏€ฝ ๏ƒ— E 2A 1๏€ญ v ๏ณx ๏€ฝ 2E ๏ฅ๏‚ข ๏€ฝ ๏€ฝ ๏ณ๏‚ข ๏€ญ 1๏€ญ v ๏ฅx 2 ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 174 โดy PROBLEM 2.73 โดx In many situations, it is known that the normal stress in a given direction is zero. For example, ๏ณ z ๏€ฝ 0 in the case of the thin plate shown. For this case, which is known as plane stress, show that if the strains ๏ฅx and ๏ฅy have been determined experimentally, we can express ๏ณ x , ๏ณ y , and ๏ฅ z as follows: ๏ณx ๏€ฝ E ๏ฅ x ๏€ซ v๏ฅ y 1๏€ญ v 2 ๏ณy ๏€ฝ E ๏ฅ y ๏€ซ v๏ฅ x 1๏€ญ v 2 ๏ฅz ๏€ฝ ๏€ญ v (๏ฅ x ๏€ซ ๏ฅ y ) 1๏€ญ v SOLUTION ๏ณz ๏€ฝ 0 ๏ฅx ๏€ฝ 1 (๏ณ x ๏€ญ v๏ณ y ) E (1) ๏ฅy ๏€ฝ 1 (๏€ญv๏ณ x ๏€ซ ๏ณ y ) E (2) Multiplying (2) by v and adding to (1), ๏ฅ x ๏€ซ v๏ฅ y ๏€ฝ 1 ๏€ญ v2 ๏ณx E or ๏ณx ๏€ฝ E (๏ฅ x ๏€ซ v๏ฅ y ) 1 ๏€ญ v2 ๏ด or ๏ณy ๏€ฝ E (๏ฅ y ๏€ซ v๏ฅ x ) 1 ๏€ญ v2 ๏ด Multiplying (1) by v and adding to (2), ๏ฅ y ๏€ซ v๏ฅ x ๏€ฝ 1 ๏€ญ v2 ๏ณy E 1 v E (๏€ญv๏ณ x ๏€ญ v๏ณ y ) ๏€ฝ ๏€ญ ๏ƒ— (๏ฅ x ๏€ซ v๏ฅ y ๏€ซ ๏ฅ y ๏€ซ v๏ฅ x ) E E 1 ๏€ญ v2 v(1 ๏€ซ v) v ๏€ฝ๏€ญ (๏ฅ x ๏€ซ ๏ฅ y ) ๏€ฝ ๏€ญ (๏ฅ x ๏€ซ ๏ฅ y ) 2 1๏€ญ v 1๏€ญ v ๏ฅz ๏€ฝ ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 175 PROBLEM 2.74 y โดy โดx x z (a) โดz In many situations, physical constraints prevent strain from occurring in a given direction. For example, ๏ฅ z ๏€ฝ 0 in the case shown, where longitudinal movement of the long prism is prevented at every point. Plane sections perpendicular to the longitudinal axis remain plane and the same distance apart. Show that for this situation, which is known as plane strain, we can express ๏ณ z , ๏ฅ x , and ๏ฅ y as follows: ๏ณ z ๏€ฝ v(๏ณ x ๏€ซ ๏ณ y ) (b) 1 [(1 ๏€ญ v 2 )๏ณ x ๏€ญ v(1 ๏€ซ v)๏ณ y ] E 1 ๏ฅ y ๏€ฝ [(1 ๏€ญ v 2 )๏ณ y ๏€ญ v(1 ๏€ซ v)๏ณ x ] E ๏ฅx ๏€ฝ SOLUTION ๏ฅz ๏€ฝ 0 ๏€ฝ 1 (๏€ญv๏ณ x ๏€ญ v๏ณ y ๏€ซ ๏ณ z ) or ๏ณ z ๏€ฝ v(๏ณ x ๏€ซ ๏ณ y ) E 1 (๏ณ x ๏€ญ v๏ณ y ๏€ญ v๏ณ z ) E 1 ๏€ฝ [๏ณ x ๏€ญ v๏ณ y ๏€ญ v 2 (๏ณ x ๏€ซ ๏ณ y )] E 1 ๏€ฝ [(1 ๏€ญ v 2 )๏ณ x ๏€ญ v(1 ๏€ซ v)๏ณ y ] E ๏ด ๏ฅx ๏€ฝ 1 (๏€ญv๏ณ x ๏€ซ ๏ณ y ๏€ญ v๏ณ z ) E 1 ๏€ฝ [๏€ญv๏ณ x ๏€ซ ๏ณ y ๏€ญ v 2 (๏ณ x ๏€ซ ๏ณ y )] E 1 ๏€ฝ [(1 ๏€ญ v 2 )๏ณ y ๏€ญ v(1 ๏€ซ v)๏ณ x ] E ๏ด ๏ฅy ๏€ฝ ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 176 PROBLEM 2.75 3.2 in. The plastic block shown is bonded to a rigid support and to a vertical plate to which a 55-kip load P is applied. Knowing that for the plastic used G ๏€ฝ 150 ksi, determine the deflection of the plate. 4.8 in. P 2 in. ๏€  SOLUTION A ๏€ฝ (3.2)(4.8) ๏€ฝ 15.36 in 2 P ๏€ฝ 55 ๏‚ด 103 lb ๏ด ๏€ฝ P 55 ๏‚ด 103 ๏€ฝ ๏€ฝ 3580.7 psi A 15.36 G ๏€ฝ 150 ๏‚ด 103 psi ๏ง ๏€ฝ ๏€  ๏ด ๏€ฝ G h ๏€ฝ 2 in. 3580.7 ๏€ฝ 23.871 ๏‚ด 10๏€ญ3 150 ๏‚ด 103 ๏ค ๏€ฝ h๏ง ๏€ฝ (2)(23.871 ๏‚ด 10๏€ญ3 ) ๏€ฝ 47.7 ๏‚ด 10๏€ญ3 in. ๏ค ๏€ฝ 0.0477 in. ๏‚ฏ ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 177 PROBLEM 2.76 3.2 in. What load P should be applied to the plate of Prob. 2.75 to produce a 161 -in. deflection? PROBLEM 2.75 The plastic block shown is bonded to a rigid support and to a vertical plate to which a 55-kip load P is applied. Knowing that for the plastic used G ๏€ฝ 150 ksi, determine the deflection of the plate. 4.8 in. 2 in. P SOLUTION๏€  1 in. ๏€ฝ 0.0625 in. 16 h ๏€ฝ 2 in. ๏ค ๏€ฝ ๏ง ๏€ฝ ๏ค h ๏€ฝ 0.0625 ๏€ฝ 0.03125 2 G ๏€ฝ 150 ๏‚ด 103 psi ๏ด ๏€ฝ G๏ง ๏€ฝ (150 ๏‚ด 103 )(0.03125) ๏€ฝ 4687.5 psi A ๏€ฝ (3.2)(4.8) ๏€ฝ 15.36 in 2 P ๏€ฝ ๏ด A ๏€ฝ (4687.5)(15.36) ๏€ฝ 72.0 ๏‚ด 103 lb 72.0 kips ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 178 b PROBLEM 2.77 a a Two blocks of rubber with a modulus of rigidity G ๏€ฝ 12 MPa are bonded to rigid supports and to a plate AB. Knowing that c ๏€ฝ 100 mm and P ๏€ฝ 45 kN, determine the smallest allowable dimensions a and b of the blocks if the shearing stress in the rubber is not to exceed 1.4 MPa and the deflection of the plate is to be at least 5 mm. B A P c SOLUTION Shearing strain: ๏ง๏€ฝ a๏€ฝ ๏ค a G๏ค ๏ด 1 Shearing stress: ๏€ฝ ๏ด๏€ฝ 2 P A b๏€ฝ ๏ด G ๏€ฝ (12 ๏‚ด 106 Pa)(0.005 m) ๏€ฝ 0.0429 m 1.4 ๏‚ด 106 Pa ๏€ฝ P 2bc 45 ๏‚ด 103 N P ๏€ฝ ๏€ฝ 0.1607 m 2c๏ด 2(0.1 m)(1.4 ๏‚ด 106 Pa) a ๏€ฝ 42.9 mm ๏ด b ๏€ฝ 160.7 mm ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 179 b PROBLEM 2.78 a a Two blocks of rubber with a modulus of rigidity G ๏€ฝ 10 MPa are bonded to rigid supports and to a plate AB. Knowing that b ๏€ฝ 200 mm and c ๏€ฝ 125 mm, determine the largest allowable load P and the smallest allowable thickness a of the blocks if the shearing stress in the rubber is not to exceed 1.5 MPa and the deflection of the plate is to be at least 6 mm. B A P c SOLUTION 1 Shearing stress: ๏ด๏€ฝ 2 P A ๏€ฝ P 2bc P ๏€ฝ 2bc๏ด ๏€ฝ 2(0.2 m)(0.125 m)(1.5 ๏‚ด 103 kPa) Shearing strain: ๏ง๏€ฝ a๏€ฝ ๏ค a ๏€ฝ G๏ค ๏ด P ๏€ฝ 75.0 kN ๏ด ๏ด G ๏€ฝ (10 ๏‚ด 106 Pa)(0.006 m) ๏€ฝ 0.04 m 1.5 ๏‚ด 106 Pa a ๏€ฝ 40.0 mm ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 180 PROBLEM 2.79 An elastomeric bearing (G ๏€ฝ 130 psi) is used to support a bridge girder as shown to provide flexibility during earthquakes. The beam must not displace more than 83 in. when a 5-kip lateral load is applied as shown. Knowing that the maximum allowable shearing stress is 60 psi, determine (a) the smallest allowable dimension b, (b) the smallest required thickness a. P a b 8 in. SOLUTION Shearing force: P ๏€ฝ 5 kips ๏€ฝ 5000 lb Shearing stress: ๏ด ๏€ฝ 60 psi ๏ด๏€ฝ and (a) b๏€ฝ ๏€  ๏ง๏€ฝ (b) P , A or A๏€ฝ P ๏ด ๏€ฝ 5000 ๏€ฝ 83.333 in 2 60 A ๏€ฝ (8 in.)(b) A 83.333 ๏€ฝ ๏€ฝ 10.4166 in. 8 8 b ๏€ฝ 10.42 in. ๏ด๏€  ๏ด 60 ๏€ฝ ๏€ฝ 461.54 ๏‚ด 10๏€ญ3 rad ๏€  ๏ณ 130 ๏ค ๏ค 0.375 in. But ๏ง ๏€ฝ , or a ๏€ฝ ๏€ฝ a ๏ง 461.54 ๏‚ด 10๏€ญ3 a ๏€ฝ 0.813 in. ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 181 PROBLEM 2.80 For the elastomeric bearing in Prob. 2.79 with b ๏€ฝ 10 in. and a ๏€ฝ 1 in., determine the shearing modulus G and the shear stress ๏ด for a maximum lateral load P ๏€ฝ 5 kips and a maximum displacement ๏ค ๏€ฝ 0.4 in. P a b 8 in. SOLUTION ๏€  Shearing force: P ๏€ฝ 5 kips ๏€ฝ 5000 lb Area: A ๏€ฝ (8 in.)(10 in.) ๏€ฝ 80 in 2 Shearing stress: ๏ด๏€ฝ Shearing strain: ๏ง๏€ฝ Shearing modulus: G๏€ฝ ๏ค a ๏€ฝ P 5000 ๏€ฝ 80 A ๏ด ๏€ฝ 62.5 psi ๏ด๏€  0.4 in. ๏€ฝ 0.400 rad๏€  1 in. ๏ด 62.5 ๏€ฝ ๏ง 0.400 G ๏€ฝ 156.3 psi ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 182 PROBLEM 2.81 P A 150 mm 100 mm A vibration isolation unit consists of two blocks of hard rubber bonded to a plate AB and to rigid supports as shown. Knowing that a force of magnitude P ๏€ฝ 25 kN causes a deflection ๏ค ๏€ฝ 1.5 mm of plate AB, determine the modulus of rigidity of the rubber used. B 30 mm 30 mm SOLUTION๏€  F ๏€ฝ 1 1 P ๏€ฝ (25 ๏‚ด 103 N) ๏€ฝ 12.5 ๏‚ด 103 N 2 2 ๏ด ๏€ฝ F (12.5 ๏‚ด 103 N) ๏€ฝ ๏€ฝ 833.33 ๏‚ด 103 Pa A (0.15 m)(0.1 m) ๏ค ๏€ฝ 1.5 ๏‚ด 10๏€ญ3 m h ๏€ฝ 0.03 m 1.5 ๏‚ด 10๏€ญ3 ๏€ฝ 0.05 h 0.03 ๏ด 833.33 ๏‚ด 103 G ๏€ฝ ๏€ฝ ๏€ฝ 16.67 ๏‚ด 106 Pa ๏ง 0.05 ๏ง๏€ฝ ๏ค ๏€ฝ G ๏€ฝ 16.67 MPa ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 183 PROBLEM 2.82 P A 150 mm 100 mm A vibration isolation unit consists of two blocks of hard rubber with a modulus of rigidity G ๏€ฝ 19 MPa bonded to a plate AB and to rigid supports as shown. Denoting by P the magnitude of the force applied to the plate and by ๏ค the corresponding deflection, determine the effective spring constant, k ๏€ฝ P/๏ค , of the system. B 30 mm 30 mm SOLUTION๏€  ๏ค Shearing strain: ๏ง ๏€ฝ Shearing stress: ๏ด ๏€ฝ G๏ง ๏€ฝ h G๏ค h GA๏ค 1 P ๏€ฝ A๏ด ๏€ฝ h 2 Force: P P๏€ฝ k ๏€ฝ with A ๏€ฝ (0.15)(0.1) ๏€ฝ 0.015 m 2 k ๏€ฝ 2GA๏ค h 2GA h Effective spring constant: ๏ค ๏€ฝ or h ๏€ฝ 0.03 m 2(19 ๏‚ด 106 Pa)(0.015 m 2 ) ๏€ฝ 19.00 ๏‚ด 106 N/m 0.03 m k ๏€ฝ 19.00 ๏‚ด 103 kN/m ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 184 PROBLEM 2.83๏€ช A 6-in.-diameter solid steel sphere is lowered into the ocean to a point where the pressure is 7.1 ksi (about 3 miles below the surface). Knowing that E ๏€ฝ 29 ๏‚ด 106 psi and v ๏€ฝ 0.30, determine (a) the decrease in diameter of the sphere, (b) the decrease in volume of the sphere, (c) the percent increase in the density of the sphere. SOLUTION For a solid sphere, V0 ๏€ฝ ๏ฐ 6 d 03 ๏ฐ (6.00)3 6 ๏€ฝ 113.097 in 3 ๏€ฝ ๏ณx ๏€ฝ๏ณy ๏€ฝ๏ณz ๏€ฝ ๏€ญp ๏€ฝ ๏€ญ7.1 ๏‚ด 103 psi 1 (๏ณ x ๏€ญ v๏ณ y ๏€ญ v๏ณ z ) E (1 ๏€ญ 2v) p (0.4)(7.1 ๏‚ด 103 ) ๏€ฝ๏€ญ ๏€ฝ๏€ญ E 29 ๏‚ด 106 ๏ฅx ๏€ฝ ๏€ฝ ๏€ญ97.93 ๏‚ด 10๏€ญ6 Likewise, ๏ฅ y ๏€ฝ ๏ฅ z ๏€ฝ ๏€ญ97.93 ๏‚ด 10๏€ญ6 e ๏€ฝ ๏ฅ x ๏€ซ ๏ฅ y ๏€ซ ๏ฅ z ๏€ฝ ๏€ญ293.79 ๏‚ด 10๏€ญ6 (a) ๏€ญ๏„d ๏€ฝ ๏€ญd 0๏ฅ x ๏€ฝ ๏€ญ(6.00)(๏€ญ97.93 ๏‚ด 10๏€ญ6 ) ๏€ฝ 588 ๏‚ด 10๏€ญ6 in. ๏€ญ๏„d ๏€ฝ 588 ๏‚ด 10๏€ญ6 in. ๏ด (b) ๏€ญ๏„V ๏€ฝ ๏€ญV0 e ๏€ฝ ๏€ญ(113.097)(๏€ญ293.79 ๏‚ด 10๏€ญ6 ) ๏€ฝ 33.2 ๏‚ด 10๏€ญ3 in 3 ๏€ญ๏„V ๏€ฝ 33.2 ๏‚ด 10๏€ญ3 in 3 ๏ด (c) Let m ๏€ฝ mass of sphere. m ๏€ฝ constant. m ๏€ฝ ๏ฒ0V0 ๏€ฝ ๏ฒV ๏€ฝ ๏ฒV0 (1 ๏€ซ e) ๏ฒ ๏€ญ ๏ฒ0 ๏ฒ V 1 m ๏€ฝ ๏€ญ1 ๏€ฝ ๏‚ด 0 ๏€ญ1 ๏€ฝ ๏€ญ1 1๏€ซ e ๏ฒ0 ๏ฒ0 V0 (1 ๏€ซ e) m ๏€ฝ (1 ๏€ญ e ๏€ซ e 2 ๏€ญ e3 ๏€ซ ๏Œ) ๏€ญ 1 ๏€ฝ ๏€ญe ๏€ซ e 2 ๏€ญ e3 ๏€ซ ๏Œ ๏‚ป ๏€ญe ๏€ฝ 293.79 ๏‚ด 10๏€ญ6 ๏ฒ ๏€ญ ๏ฒ0 ๏‚ด 100% ๏€ฝ (293.79 ๏‚ด 10๏€ญ6 )(100%) ๏ฒ0 0.0294% ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 185 PROBLEM 2.84๏€ช 85 mm (a) For the axial loading shown, determine the change in height and the change in volume of the brass cylinder shown. (b) Solve part a, assuming that the loading is hydrostatic with ๏ณ x ๏€ฝ ๏ณ y ๏€ฝ ๏ณ z ๏€ฝ ๏€ญ70 MPa. sy 5 258 MPa E 5 105 GPa n 5 0.33 135 mm SOLUTION h0 ๏€ฝ 135 mm ๏€ฝ 0.135 m A 0๏€ฝ ๏ฐ d 02 ๏€ฝ ๏ฐ (85) 2 ๏€ฝ 5.6745 ๏‚ด 103 mm 2 ๏€ฝ 5.6745 ๏‚ด 10๏€ญ3 m 2 4 4 V0 ๏€ฝ A0 h0 ๏€ฝ 766.06 ๏‚ด 103 mm3 ๏€ฝ 766.06 ๏‚ด 10๏€ญ6 m3 (a) ๏ณ x ๏€ฝ 0, ๏ณ y ๏€ฝ ๏€ญ58 ๏‚ด 106 Pa, ๏ณ z ๏€ฝ 0 ๏ฅy ๏€ฝ ๏ณy 1 58 ๏‚ด 106 (๏€ญv๏ณ x ๏€ซ ๏ณ y ๏€ญ v๏ณ z ) ๏€ฝ ๏€ฝ๏€ญ ๏€ฝ ๏€ญ552.38 ๏‚ด 10๏€ญ6 9 E E 105 ๏‚ด 10 ๏„h ๏€ฝ h 0๏ฅ y ๏€ฝ (135 mm)( ๏€ญ 552.38 ๏‚ด 10๏€ญ6 ) e๏€ฝ ๏„h ๏€ฝ ๏€ญ0.0746 mm ๏ด๏€  (1 ๏€ญ 2v)๏ณ y (0.34)(๏€ญ58 ๏‚ด 106 ) 1 ๏€ญ 2v (๏ณ x ๏€ซ ๏ณ y ๏€ซ ๏ณ z ) ๏€ฝ ๏€ฝ ๏€ฝ ๏€ญ187.81 ๏‚ด 10๏€ญ6 9 E E 105 ๏‚ด 10 ๏„V ๏€ฝ V0 e ๏€ฝ (766.06 ๏‚ด 103 mm3 )(๏€ญ187.81 ๏‚ด 10๏€ญ6 ) (b) ๏ณ x ๏€ฝ ๏ณ y ๏€ฝ ๏ณ z ๏€ฝ ๏€ญ70 ๏‚ด 106 Pa ๏ฅy ๏€ฝ ๏„V ๏€ฝ ๏€ญ143.9 mm3 ๏ด๏€  ๏ณ x ๏€ซ ๏ณ y ๏€ซ ๏ณ z ๏€ฝ ๏€ญ210 ๏‚ด 106 Pa 1 1 ๏€ญ 2v (0.34)(๏€ญ70 ๏‚ด 106 ) (๏€ญv๏ณ x ๏€ซ ๏ณ y ๏€ญ v๏ณ z ) ๏€ฝ ๏ณy ๏€ฝ ๏€ฝ ๏€ญ226.67 ๏‚ด 10๏€ญ6 E E 105 ๏‚ด 109 ๏„h ๏€ฝ h 0๏ฅ y ๏€ฝ (135 mm)( ๏€ญ226.67 ๏‚ด 10๏€ญ6 ) e๏€ฝ ๏„h ๏€ฝ ๏€ญ0.0306 mm ๏ด 1 ๏€ญ 2v (0.34)(๏€ญ210 ๏‚ด 106 ) (๏ณ x ๏€ซ ๏ณ y ๏€ซ ๏ณ z ) ๏€ฝ ๏€ฝ ๏€ญ680 ๏‚ด 10๏€ญ6 E 105 ๏‚ด 109 ๏„V ๏€ฝ V0 e ๏€ฝ (766.06 ๏‚ด 103 mm3 )(๏€ญ680 ๏‚ด 10๏€ญ6 ) ๏„V ๏€ฝ ๏€ญ521 mm3 ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 186 PROBLEM 2.85* 1 in. diameter 11 kips 11 kips Determine the dilatation e and the change in volume of the 8-in. length of the rod shown if (a) the rod is made of steel with E ๏€ฝ 29 ร— 106 psi and v ๏€ฝ 0.30, (b) the rod is made of aluminum with E ๏€ฝ 10.6 ร— 106 psi and v ๏€ฝ 0.35. 8 in. SOLUTION A๏€ฝ ๏ฐ d2 ๏€ฝ ๏ฐ 4 4 3 P ๏€ฝ 11 ๏‚ด 10 lb (a) (1) 2 ๏€ฝ 0.78540 in 2 Stresses : P 11 ๏‚ด 103 ๏€ฝ ๏€ฝ 14.0056 ๏‚ด 103 psi A 0.78540 ๏ณy ๏€ฝ๏ณz ๏€ฝ 0 Steel. E ๏€ฝ 29 ๏‚ด 106 psi ๏ณx ๏€ฝ ๏ฅx ๏€ฝ ๏ฅy ๏€ฝ ๏ฅz ๏€ฝ v ๏€ฝ 0.30 ๏ณ 1 14.0056 ๏‚ด 103 (๏ณ x ๏€ญ v๏ณ y ๏€ญ v๏ณ z ) ๏€ฝ x ๏€ฝ ๏€ฝ 482.95 ๏‚ด 10๏€ญ6 E E 29 ๏‚ด 106 v๏ณ 1 (๏€ญv๏ณ x ๏€ซ ๏ณ y ๏€ญ v๏ณ z ) ๏€ฝ ๏€ญ x ๏€ฝ ๏€ญv๏ฅ x ๏€ฝ ๏€ญ(0.30)(482.95 ๏‚ด 10๏€ญ6 ) E E ๏€ฝ ๏€ญ144.885 ๏‚ด 10๏€ญ6 v๏ณ 1 (๏€ญv๏ณ x ๏€ญ v๏ณ y ๏€ซ ๏ณ z ) ๏€ฝ ๏€ญ x ๏€ฝ ๏ฅ y ๏€ฝ ๏€ญ144.885 ๏‚ด 10๏€ญ6 E E e ๏€ฝ ๏ฅ x ๏€ซ ๏ฅ y ๏€ซ ๏ฅ z ๏€ฝ 193.2 ๏‚ด 10๏€ญ6 ๏ด๏€  ๏„v ๏€ฝ ve ๏€ฝ ๏„Le ๏€ฝ (0.78540)(8)(193.2 ๏‚ด 10๏€ญ6 ) ๏€ฝ 1.214 ๏‚ด 10๏€ญ3 in 3 ๏ด๏€  ๏€  (b) Aluminum. E ๏€ฝ 10.6 ๏‚ด 106 psi ๏ฅx ๏€ฝ ๏ณx E ๏€ฝ v ๏€ฝ 0.35 14.0056 ๏‚ด 103 ๏€ฝ 1.32128 ๏‚ด 10๏€ญ3 10.6 ๏‚ด 106 ๏ฅ y ๏€ฝ ๏€ญv๏ฅ x ๏€ฝ ๏€ญ(0.35)(1.32128 ๏‚ด 10๏€ญ3 ) ๏€ฝ ๏€ญ462.45 ๏‚ด 10๏€ญ6 ๏ฅ z ๏€ฝ ๏ฅ y ๏€ฝ ๏€ญ462.45 ๏‚ด 10๏€ญ6 e ๏€ฝ ๏ฅ x ๏€ซ ๏ฅ y ๏€ซ ๏ฅ z ๏€ฝ 396 ๏‚ด 10๏€ญ6 ๏ด๏€  ๏„v ๏€ฝ ve ๏€ฝ ๏„Le ๏€ฝ (0.78540)(8)(396 ๏‚ด 10๏€ญ6 ) ๏€ฝ 2.49 ๏‚ด 10๏€ญ3 in 3 ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 187 PROBLEM 2.86 Determine the change in volume of the 50-mm gage length segment AB in Prob. 2.64 (a) by computing the dilatation of the material, (b) by subtracting the original volume of portion AB from its final volume. PROBLEM 2.64 A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E ๏€ฝ 200 GPa, v ๏€ฝ 0.30). Determine the resulting change (a) in the 50-mm gage length, (b) in the width of portion AB of the test coupon, (c) in the thickness of portion AB, (d) in the cross-sectional area of portion AB. 50 mm 2.75 kN 2.75 kN A B 12 mm SOLUTION (a) A0 ๏€ฝ (12)(1.6) ๏€ฝ 19.2 mm 2 ๏€ฝ 19.2 ๏‚ด 10๏€ญ6 m 2 Volume V0 ๏€ฝ L0 A0 ๏€ฝ (50)(19.2) ๏€ฝ 960 mm3 ๏ณx ๏€ฝ P 2.75 ๏‚ด 103 ๏€ฝ ๏€ฝ 143.229 ๏‚ด 106 Pa A0 19.2 ๏‚ด 10๏€ญ6 ๏ฅx ๏€ฝ ๏ณ 1 143.229 ๏‚ด 106 (๏ณ x ๏€ญ ๏ต๏ณ y ๏€ญ ๏ต๏ณ z ) ๏€ฝ x ๏€ฝ ๏€ฝ 716.15 ๏‚ด 10๏€ญ6 E E 200 ๏‚ด 109 ๏ณy ๏€ฝ๏ณz ๏€ฝ 0 ๏ฅ y ๏€ฝ ๏ฅ z ๏€ฝ ๏€ญ๏ต๏ฅ x ๏€ฝ ๏€ญ(0.30)(716.15 ๏‚ด 10๏€ญ3 ) ๏€ฝ ๏€ญ214.84 ๏‚ด 10๏€ญ6 e ๏€ฝ ๏ฅ x ๏€ซ ๏ฅ y ๏€ซ ๏ฅ z ๏€ฝ 286.46 ๏‚ด 10๏€ญ6 ๏€  ๏„v ๏€ฝ v0 e ๏€ฝ (960)(286.46 ๏‚ด 10๏€ญ6 ) ๏€ฝ 0.275 mm3 (b) ๏ด๏€  From the solution to problem 2.64, ๏ค x ๏€ฝ 0.035808 mm ๏ค y ๏€ฝ ๏€ญ0.0025781 ๏ค z ๏€ฝ ๏€ญ0.00034374 mm The dimensions when under the 2.75-kN load are Length: L ๏€ฝ L0 ๏€ซ ๏ค x ๏€ฝ 50 ๏€ซ 0.035808 ๏€ฝ 50.035808 mm Width: w ๏€ฝ w0 ๏€ซ ๏ค y ๏€ฝ 12 ๏€ญ 0.0025781 ๏€ฝ 11.997422 mm Thickness: t ๏€ฝ t0 ๏€ซ ๏ค z ๏€ฝ 1.6 ๏€ญ 0.00034374 ๏€ฝ 1.599656 mm Volume: V ๏€ฝ Lwt ๏€ฝ (50.03581)(11.997422)(1.599656) ๏€ฝ 960.275 mm3 ๏€  ๏„V ๏€ฝ V ๏€ญ V0 ๏€ฝ 960.275 ๏€ญ 960 ๏€ฝ 0.275 mm3 ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 188 PROBLEM 2.87๏€ช P A vibration isolation support consists of a rod A of radius R1 ๏€ฝ 10 mm and a tube B of inner radius R 2 ๏€ฝ 25 mm bonded to an 80-mm-long hollow rubber cylinder with a modulus of rigidity G ๏€ฝ 12 MPa. Determine the largest allowable force P that can be applied to rod A if its deflection is not to exceed 2.50 mm. R1 A R2 80 mm B SOLUTION Let r be a radial coordinate. Over the hollow rubber cylinder, R1 ๏‚ฃ r ๏‚ฃ R2 . Shearing stress ๏ด acting on a cylindrical surface of radius r is ๏ด๏€ฝ The shearing strain is ๏ง๏€ฝ P P ๏€ฝ A 2๏ฐ rh ๏ด ๏€ฝ G P 2๏ฐ Ghr Shearing deformation over radial length dr: d๏ค ๏€ฝ๏ง dr d ๏ค ๏€ฝ ๏ง dr ๏€ฝ P dr 2๏ฐ Gh r Total deformation. ๏ค๏€ฝ R2 P ๏ƒฒ d๏ค ๏€ฝ 2๏ฐ Gh ๏ƒฒ R2 dr r P P ln r (ln R2 ๏€ญ ln R1 ) ๏€ฝ ๏€ฝ R1 2๏ฐ Gh 2๏ฐ Gh R P 2๏ฐ Gh๏ค ln 2 or P ๏€ฝ ๏€ฝ R1 2๏ฐ Gh ln( R2 / R1 ) R1 R1 R2 Data: R1 ๏€ฝ 10 mm ๏€ฝ 0.010 m, R2 ๏€ฝ 25 mm ๏€ฝ 0.025 m, h ๏€ฝ 80 mm ๏€ฝ 0.080 m G ๏€ฝ 12 ๏‚ด 106 Pa P๏€ฝ ๏ค ๏€ฝ 2.50 ๏‚ด 10๏€ญ3 m (2๏ฐ )(12 ๏‚ด 106 ) (0.080) (2.50 ๏‚ด 10 ๏€ญ3 ) ๏€ฝ 16.46 ๏‚ด 103 N ln (0.025/0.010) 16.46 kN ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 189 PROBLEM 2.88 P A A vibration isolation support consists of a rod A of radius R1 and a tube B of inner radius R2 bonded to a 80-mm-long hollow rubber cylinder with a modulus of rigidity G ๏€ฝ 10.93 MPa. Determine the required value of the ratio R2/R1 if a 10-kN force P is to cause a 2-mm deflection of rod A. R1 R2 80 mm B SOLUTION Let r be a radial coordinate. Over the hollow rubber cylinder, R1 ๏‚ฃ r ๏‚ฃ R2 . Shearing stress ๏ด acting on a cylindrical surface of radius r is ๏ด๏€ฝ P P ๏€ฝ A 2๏ฐ rh The shearing strain is ๏ง๏€ฝ ๏ด G ๏€ฝ P 2๏ฐ Ghr Shearing deformation over radial length dr: d๏ค ๏€ฝ๏ง dr d ๏ค ๏€ฝ ๏ง dr dr๏ค ๏€ฝ P dr 2๏ฐ Gh r Total deformation. R2 dr P R1 2๏ฐ Gh R1 r R2 P P ln r (ln R2 ๏€ญ ln R1 ) ๏€ฝ ๏€ฝ R 1 2๏ฐ Gh 2๏ฐ Gh R P ln 2 ๏€ฝ R1 2๏ฐ Gh ๏ค๏€ฝ ln ๏ƒฒ R2 d๏ค ๏€ฝ ๏ƒฒ R2 2๏ฐ Gh๏ค (2๏ฐ ) (10.93 ๏‚ด 106 ) (0.080) (0.002) ๏€ฝ ๏€ฝ ๏€ฝ 1.0988 R1 P 10.103 R2 ๏€ฝ exp (1.0988) ๏€ฝ 3.00 R1 R2 /R1 ๏€ฝ 3.00 ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 190 PROBLEM 2.89๏€ช The material constants E, G, k, and v are related by Eqs. (2.33) and (2.43). Show that any one of these constants may be expressed in terms of any other two constants. For example, show that (a) k ๏€ฝ๏€  GE/(9G ๏€ญ 3E) and (b) v ๏€ฝ (3k ๏€ญ 2G)/(6k ๏€ซ 2G). SOLUTION k๏€ฝ (a) 1๏€ซ v ๏€ฝ and G๏€ฝ E 2(1 ๏€ซ v) E E ๏€ญ1 or v ๏€ฝ 2G 2G k๏€ฝ (b) E 3(1 ๏€ญ 2v) 2 EG 2 EG E ๏€ฝ ๏€ฝ ๏ƒฉ ๏ƒฆ E ๏ƒถ ๏ƒน 3[2G ๏€ญ 2 E ๏€ซ 4G ] 18G ๏€ญ 6 E 3 ๏ƒช1 ๏€ญ 2 ๏ƒง ๏€ญ 1๏ƒท ๏ƒบ ๏ƒจ 2G ๏ƒธ ๏ƒป ๏ƒซ k๏€ฝ EG ๏ด๏€  9G ๏€ญ 6 E v๏€ฝ 3k ๏€ญ 2G ๏ด 6k ๏€ซ 2G k 2(1 ๏€ซ v) ๏€ฝ G 3(1 ๏€ญ 2v) 3k ๏€ญ 6kv ๏€ฝ 2G ๏€ซ 2Gv 3k ๏€ญ 2G ๏€ฝ 2G ๏€ซ 6k PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 191 PROBLEM 2.90๏€ช Show that for any given material, the ratio G/E of the modulus of rigidity over the modulus of elasticity is always less than 12 but more than 13 . [Hint: Refer to Eq. (2.43) and to Sec. 2.13.] SOLUTION G๏€ฝ E 2(1 ๏€ซ v) E ๏€ฝ 2(1 ๏€ซ v) G or Assume v ๏€พ 0 for almost all materials, and v < 12 for a positive bulk modulus. E ๏ƒฆ 1๏ƒถ ๏คY ๏€  ๏ค๏‚ข๏€ฝ so that Pm ๏€ฝ 44.2 kips ๏ด๏€  Pm L ๏ณ Y L ๏€ฝ ๏€ฝ ๏ค Y ๏€ฝ 0.089379 AE E ๏ค p ๏€ฝ ๏ค m ๏€ญ ๏ค ๏‚ข ๏€ฝ 0.125 ๏€ญ 0.089379 ๏€ฝ 0.356 in. ๏ด๏€  (b) ๏ค m ๏€ฝ 0.250 in. >๏คY ๏ด๏€  ๏€  ๏ค ๏‚ข ๏€ฝ ๏คY so that Pm ๏€ฝ 44.2 kips ๏ค p ๏€ฝ ๏ค m ๏€ญ ๏ค ๏‚ข ๏€ฝ 0.250 ๏€ญ 0.089379 ๏€ฝ 0.1606 in. ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 206 PROBLEM 2.103 A Rod AB is made of a mild steel that is assumed to be elastoplastic with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 345 MPa . After the rod has been attached to the rigid lever CD, it is found that end C is 6 mm too high. A vertical force Q is then applied at C until this point has moved to position C๏‚ข . Determine the required magnitude of Q and the deflection ๏ค1 if the lever is to snap back to a horizontal position after Q is removed. 9-mm diameter 1.25 m C B D 6 mm d1 Cโฌ˜ 0.4 m 0.7 m SOLUTION AAB ๏€ฝ ๏ฐ 4 (9)2 ๏€ฝ 63.617 mm 2 ๏€ฝ 63.617 ๏‚ด 10๏€ญ6 m 2 Since rod AB is to be stretched permanently, ( FAB )max ๏€ฝ AAB๏ณ Y ๏€ฝ (63.617 ๏‚ด 10๏€ญ6 )(345 ๏‚ด 106 ) ๏€ฝ 21.948 ๏‚ด 103 N ๏ƒฅ M D ๏€ฝ 0: 1.1Q ๏€ญ 0.7 FAB ๏€ฝ 0 Qmax ๏€ฝ ๏ค ๏‚ข AB ๏€ฝ ๏ฑ๏‚ข ๏€ฝ 0.7 (21.948 ๏‚ด 103 ) ๏€ฝ 13.9669 ๏‚ด 10๏€ญ3 N 1.1 13.97 kN ๏ด ( FAB ) max LAB (21.948 ๏‚ด 103 )(1.25) ๏€ฝ ๏€ฝ 2.15625 ๏‚ด 10๏€ญ3 m EAAB (200 ๏‚ด 109 )(63.617 ๏‚ด 10๏€ญ6 ) ๏ค AB๏‚ข 0.7 ๏€ฝ 3.0804 ๏‚ด 10๏€ญ3 rad ๏ค1 ๏€ฝ 1.1๏ฑ ๏‚ข ๏€ฝ 3.39 ๏‚ด 10๏€ญ3 m 3.39 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 207 PROBLEM 2.104 A Solve Prob. 2.103, assuming that the yield point of the mild steel is 250 MPa. 9-mm diameter 1.25 m C B PROBLEM 2.103 Rod AB is made of a mild steel that is assumed to be elastoplastic with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 345 MPa . After the rod has been attached to the rigid lever CD, it is found that end C is 6 mm too high. A vertical force Q is then applied at C until this point has moved to position C๏‚ข . Determine the required magnitude of Q and the deflection ๏ค1 if the lever is to snap back to a horizontal position after Q is removed. D 6 mm d1 Cโฌ˜ 0.4 m 0.7 m SOLUTION AAB ๏€ฝ ๏ฐ 4 (9)2 ๏€ฝ 63.617 mm 2 ๏€ฝ 63.617 ๏‚ด 10 ๏€ญ6 m 2 Since rod AB is to be stretched permanently, ( FAB ) max ๏€ฝ AAB๏ณ Y ๏€ฝ (63.617 ๏‚ด 10 ๏€ญ6 )(250 ๏‚ด 106 ) ๏€ฝ 15.9043 ๏‚ด 103 N ๏ƒฅ M D ๏€ฝ 0: 1.1Q ๏€ญ 0.7 FAB ๏€ฝ 0 Qmax ๏€ฝ ๏ค ๏‚ข AB ๏€ฝ ๏ฑ๏‚ข ๏€ฝ 0.7 (15.9043 ๏‚ด 103 ) ๏€ฝ 10.12 ๏‚ด 103 N 1.1 10.12 kN ๏ด ( FAB )max LAB (15.9043 ๏‚ด 103 )(1.25) ๏€ฝ ๏€ฝ 1.5625 ๏‚ด 10๏€ญ3 m EAAE (200 ๏‚ด 109 )(63.617 ๏‚ด 10๏€ญ6 ) ๏ค ๏‚ข AB 0.7 ๏€ฝ 2.2321 ๏‚ด 10๏€ญ3 rad ๏ค1 ๏€ฝ 1.1๏ฑ ๏‚ข ๏€ฝ 2.46 ๏‚ด 10๏€ญ3 m 2.46 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 208 PROBLEM 2.105 C 40-mm diameter 1.2 m B 30-mm diameter 0.8 m Rod ABC consists of two cylindrical portions AB and BC; it is made of a mild steel that is assumed to be elastoplastic with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 250 MPa. A force P is applied to the rod and then removed to give it a permanent set ๏ค p ๏€ฝ 2 mm. Determine the maximum value of the force P and the maximum amount ๏ค m by which the rod should be stretched to give it the desired permanent set. A P SOLUTION AAB ๏€ฝ ๏ฐ 4 (30)2 ๏€ฝ 706.86 mm 2 ๏€ฝ 706.86 ๏‚ด 10๏€ญ6 m 2 ๏ฐ (40)2 ๏€ฝ 1.25664 ๏‚ด 103 mm 2 ๏€ฝ 1.25664 ๏‚ด 10๏€ญ3 m 2 4 Pmax ๏€ฝ Amin๏ณ Y ๏€ฝ (706.86 ๏‚ด 10๏€ญ6 )(250 ๏‚ด 106 ) ๏€ฝ 176.715 ๏‚ด 103 N ABC ๏€ฝ Pmax ๏€ฝ 176.7 kN ๏ด ๏ค๏‚ข ๏€ฝ P๏‚ขLAB P๏‚ขLBC (176.715 ๏‚ด 103 )(0.8) (176.715 ๏‚ด 103 )(1.2) ๏€ซ ๏€ฝ ๏€ซ 9 ๏€ญ6 EAAB EABC (200 ๏‚ด 10 )(706.86 ๏‚ด 10 ) (200 ๏‚ด 109 )(1.25664 ๏‚ด 10๏€ญ3 ) ๏€ฝ 1.84375 ๏‚ด 10๏€ญ3 m ๏€ฝ 1.84375 mm ๏ค p ๏€ฝ ๏ค m ๏€ญ ๏ค ๏‚ข or ๏ค m ๏€ฝ ๏ค p ๏€ซ ๏ค ๏‚ข ๏€ฝ 2 ๏€ซ 1.84375 ๏ค m ๏€ฝ 3.84 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 209 PROBLEM 2.106 C Rod ABC consists of two cylindrical portions AB and BC; it is made of a mild steel that is assumed to be elastoplastic with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 250 MPa. A force P is applied to the rod until its end A has moved down by an amount ๏ค m ๏€ฝ 5 mm. Determine the maximum value of the force P and the permanent set of the rod after the force has been removed. 40-mm diameter 1.2 m B 30-mm diameter 0.8 m A P SOLUTION AAB ๏€ฝ ๏ฐ 4 (30)2 ๏€ฝ 706.86 mm 2 ๏€ฝ 706.86 ๏‚ด 10๏€ญ6 m 2 ๏ฐ (40)2 ๏€ฝ 1.25664 ๏‚ด 103 mm 2 ๏€ฝ 1.25644 ๏‚ด 10๏€ญ3 m 2 4 Pmax ๏€ฝ Amin๏ณ Y ๏€ฝ (706.86 ๏‚ด 10๏€ญ6 )(250 ๏‚ด 106 ) ๏€ฝ 176.715 ๏‚ด 103 N ABC ๏€ฝ Pmax ๏€ฝ 176.7 kN ๏ด ๏ค๏‚ข ๏€ฝ P๏‚ขLAB P๏‚ขLBC (176.715 ๏‚ด 103 )(0.8) (176.715 ๏‚ด 103 )(1.2) ๏€ซ ๏€ฝ ๏€ซ 9 ๏€ญ6 EAAB EABC (200 ๏‚ด 10 )(706.68 ๏‚ด 10 ) (200 ๏‚ด 109 )(1.25664 ๏‚ด 10๏€ญ3 ) ๏€ฝ 1.84375 ๏‚ด 10๏€ญ3 m ๏€ฝ 1.84375 mm ๏ค p ๏€ฝ ๏ค m ๏€ญ ๏ค ๏‚ข ๏€ฝ 5 ๏€ญ 1.84375 ๏€ฝ 3.16 mm ๏ค p ๏€ฝ 3.16 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 210 PROBLEM 2.107 A Rod AB consists of two cylindrical portions AC and BC, each with a cross-sectional area of 1750 mm2. Portion AC is made of a mild steel with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 250 MPa, and portion CB is made of a high-strength steel with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 345 MPa. A load P is applied at C as shown. Assuming both steels to be elastoplastic, determine (a) the maximum deflection of C if P is gradually increased from zero to 975 kN and then reduced back to zero, (b) the maximum stress in each portion of the rod, (c) the permanent deflection of C. 190 mm C 190 mm P B SOLUTION Displacement at C to cause yielding of AC. L ๏ณ (0.190)(250 ๏‚ด 106 ) ๏€ฝ 0.2375 ๏‚ด 10๏€ญ3 m ๏ค C ,Y ๏€ฝ LAC ๏ฅ Y , AC ๏€ฝ AC Y , AC ๏€ฝ 9 E 200 ๏‚ด 10 FAC ๏€ฝ A๏ณ Y , AC ๏€ฝ (1750 ๏‚ด 10๏€ญ6 )(250 ๏‚ด 106 ) ๏€ฝ 437.5 ๏‚ด 103 N Corresponding force. FCB ๏€ฝ ๏€ญ EA๏ค C (200 ๏‚ด 109 )(1750 ๏‚ด 10๏€ญ6 )(0.2375 ๏‚ด 10๏€ญ3 ) ๏€ฝ๏€ญ ๏€ฝ ๏€ญ437.5 ๏‚ด 103 N 0.190 LCB For equilibrium of element at C, FAC ๏€ญ ( FCB ๏€ซ PY ) ๏€ฝ 0 PY ๏€ฝ FAC ๏€ญ FCB ๏€ฝ 875 ๏‚ด 103 N Since applied load P ๏€ฝ 975 ๏‚ด 103 N ๏€พ 875 ๏‚ด 103 N, portion AC yields. FCB ๏€ฝ FAC ๏€ญ P ๏€ฝ 437.5 ๏‚ด 103 ๏€ญ 975 ๏‚ด 103 N ๏€ฝ ๏€ญ537.5 ๏‚ด 103 N (a) ๏คC ๏€ฝ ๏€ญ FCB LCD (537.5 ๏‚ด 103 )(0.190) ๏€ฝ ๏€ฝ 0.29179 ๏‚ด 10๏€ญ3 m EA (200 ๏‚ด 109 )(1750 ๏‚ด 10๏€ญ6 ) 0.292 mm ๏ด (b) Maximum stresses: ๏ณ AC ๏€ฝ ๏ณ Y , AC ๏€ฝ 250 MPa (c) FBC 537.5 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ307.14 ๏‚ด 106 Pa ๏€ฝ ๏€ญ307 MPa A 1750 ๏‚ด 10๏€ญ6 Deflection and forces for unloading. P๏‚ข L P๏‚ข L L ๏‚ข ๏€ฝ ๏€ญ PAC ๏‚ข AC ๏€ฝ ๏€ญ PAC ๏‚ข ๏ค ๏‚ข ๏€ฝ AC AC ๏€ฝ ๏€ญ CB CB ๏œ PCB EA EA LAB 250 MPa ๏ด ๏ณ BC ๏€ฝ ๏€  ๏€ญ307 MPa ๏ด๏€  ๏‚ข ๏€ญ PCB ๏‚ข ๏€ฝ 2 PAC ๏‚ข PAC ๏‚ข ๏€ฝ 487.5 ๏‚ด 10๏€ญ3 N P๏‚ข ๏€ฝ 975 ๏‚ด 103 ๏€ฝ PAC ๏ค๏‚ข ๏€ฝ (487.5 ๏‚ด 103 )(0.190) ๏€ฝ 0.26464 ๏‚ด 103 m ๏€ญ6 9 (200 ๏‚ด 10 )(1750 ๏‚ด 10 ) ๏ค p ๏€ฝ ๏ค m ๏€ญ ๏ค ๏‚ข ๏€ฝ 0.29179 ๏‚ด 10๏€ญ3 ๏€ญ 0.26464 ๏‚ด 10๏€ญ3 ๏€ฝ 0.02715 ๏‚ด 10๏€ญ3 m 0.0272 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 211 PROBLEM 2.108 A 190 mm C 190 mm P B For the composite rod of Prob. 2.107, if P is gradually increased from zero until the deflection of point C reaches a maximum value of ๏ค m ๏€ฝ 0.3 mm and then decreased back to zero, determine (a) the maximum value of P, (b) the maximum stress in each portion of the rod, (c) the permanent deflection of C after the load is removed. PROBLEM 2.107 Rod AB consists of two cylindrical portions AC and BC, each with a cross-sectional area of 1750 mm2. Portion AC is made of a mild steel with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 250 MPa, and portion CB is made of a high-strength steel with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 345 MPa. A load P is applied at C as shown. Assuming both steels to be elastoplastic, determine (a) the maximum deflection of C if P is gradually increased from zero to 975 kN and then reduced back to zero, (b) the maximum stress in each portion of the rod, (c) the permanent deflection of C. SOLUTION Displacement at C is ๏ค m ๏€ฝ 0.30 mm. The corresponding strains are ๏ฅ AC ๏€ฝ ๏คm LAC ๏ฅ CB ๏€ฝ ๏€ญ ๏€ฝ ๏คm LCB 0.30 mm ๏€ฝ 1.5789 ๏‚ด 10๏€ญ3 190 mm ๏€ฝ๏€ญ 0.30 mm ๏€ฝ ๏€ญ1.5789 ๏‚ด 10๏€ญ3 190 mm Strains at initial yielding: ๏ณ Y, AC 250 ๏‚ด 106 ๏€ฝ 1.25 ๏‚ด 10๏€ญ3 (yielding) E 200 ๏‚ด 109 ๏ณ Y, BC 345 ๏‚ด 106 ๏ฅ Y, CB ๏€ฝ ๏€ฝ๏€ญ ๏€ฝ ๏€ญ1.725 ๏‚ด 10๏€ญ3 (elastic) E 200 ๏‚ด 109 ๏ฅ Y, AC ๏€ฝ (a) ๏€ฝ Forces: FAC ๏€ฝ A๏ณ Y ๏€ฝ (1750 ๏‚ด 10๏€ญ6 )(250 ๏‚ด 106 ) ๏€ฝ 437.5 ๏‚ด 10๏€ญ3 N FCB ๏€ฝ EA๏ฅ CB ๏€ฝ (200 ๏‚ด 109 )(1750 ๏‚ด 10๏€ญ6 )(๏€ญ1.5789 ๏‚ด 10๏€ญ3 ) ๏€ฝ ๏€ญ552.6 ๏‚ด 10๏€ญ3 N For equilibrium of element at C, FAC ๏€ญ FCB ๏€ญ P ๏€ฝ 0 P ๏€ฝ FAC ๏€ญ FCD ๏€ฝ 437.5 ๏‚ด 103 ๏€ซ 552.6 ๏‚ด 103 ๏€ฝ 990.1 ๏‚ด 103 N (b) Stresses: AC : ๏ณ AC ๏€ฝ ๏ณ Y, AC CB : ๏ณ CB ๏€ฝ 990 kN ๏ด 250 MPa ๏ด FCB 552.6 ๏‚ด 103 ๏€ฝ๏€ญ ๏€ฝ ๏€ญ316 ๏‚ด 106 Pa ๏€ญ6 A 1750 ๏‚ด 10 ๏€ญ316 MPa ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 212 PROBLEM 2.108 (Continued) (c) Deflection and forces for unloading. ๏ค๏‚ข ๏€ฝ ๏‚ข LAC PAC P๏‚ข L L ๏‚ข ๏€ฝ ๏€ญ PAC ๏‚ข AC ๏€ฝ ๏€ญ PAC ๏€ฝ ๏€ญ CB CB ๏œ PCB EA EA LAB ๏‚ข ๏€ญ PCB ๏‚ข ๏€ฝ 2 PAC ๏‚ข ๏€ฝ 990.1 ๏‚ด 103 N ๏œ PAC ๏‚ข ๏€ฝ 495.05 ๏‚ด 103 N P๏‚ข ๏€ฝ PAC ๏ค๏‚ข ๏€ฝ (495.05 ๏‚ด 103 )(0.190) ๏€ฝ 0.26874 ๏‚ด 10๏€ญ3 m ๏€ฝ 0.26874 mm (200 ๏‚ด 109 )(1750 ๏‚ด 10๏€ญ6 ) ๏ค p ๏€ฝ ๏ค m ๏€ญ ๏ค ๏‚ข ๏€ฝ 0.30 mm ๏€ญ 0.26874 mm 0.0313mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 213 PROBLEM 2.109 E D 2m C B A Each cable has a cross-sectional area of 100 mm2 and is made of an elastoplastic material for which ๏ณ Y ๏€ฝ 345 MPa and E ๏€ฝ 200 GPa. A force Q is applied at C to the rigid bar ABC and is gradually increased from 0 to 50 kN and then reduced to zero. Knowing that the cables were initially taut, determine (a) the maximum stress that occurs in cable BD, (b) the maximum deflection of point C, (c) the final displacement of point C. (Hint: In part c, cable CE is not taut.) Q 1m 1m SOLUTION Elongation constraints for taut cables. Let ๏ฑ ๏€ฝ rotation angle of rigid bar ABC. ๏ฑ๏€ฝ ๏ค BD ๏€ฝ ๏ค BD LAB ๏€ฝ ๏ค CE LAC LAB 1 ๏ค CE ๏€ฝ ๏ค CE 2 LAC (1) Equilibrium of bar ABC. M A ๏€ฝ 0 : LAB FBD ๏€ซ LAC FCE ๏€ญ LAC Q ๏€ฝ 0 Q ๏€ฝ FCE ๏€ซ LAB 1 FBD ๏€ฝ FCE ๏€ซ FBD LAC 2 Assume cable CE is yielded. FCE ๏€ฝ A๏ณ Y ๏€ฝ (100 ๏‚ด 10๏€ญ6 )(345 ๏‚ด 106 ) ๏€ฝ 34.5 ๏‚ด 103 N From (2), FBD ๏€ฝ 2(Q ๏€ญ FCE ) ๏€ฝ (2)(50 ๏‚ด 103 ๏€ญ 34.5 ๏‚ด 103 ) ๏€ฝ 31.0 ๏‚ด 103 N (2) Since FBD PY; therefore, mild steel yields. P1 ๏€ฝ force carried by mild steel Let P2 ๏€ฝ force carried by tempered steel P1 ๏€ฝ A1๏ณ Y 1 ๏€ฝ (1.00)(50 ๏‚ด 103 ) ๏€ฝ 50 ๏‚ด 103 lb P1 ๏€ซ P2 ๏€ฝ P, P2 ๏€ฝ P ๏€ญ P1 ๏€ฝ 98 ๏‚ด 103 ๏€ญ 50 ๏‚ด 103 ๏€ฝ 48 ๏‚ด 103 lb ๏ณ2 ๏€ฝ P2 48 ๏‚ด 103 ๏€ฝ ๏€ฝ 64 ๏‚ด 103 psi A2 0.75 Unloading. ๏ณ ๏‚ข ๏€ฝ P 98 ๏‚ด 103 ๏€ฝ ๏€ฝ 56 ๏‚ด 103 psi A 1.75 Residual stresses. Mild steel: ๏ณ 1,res ๏€ฝ ๏ณ1 ๏€ญ ๏ณ ๏‚ข ๏€ฝ 50 ๏‚ด 103 ๏€ญ 56 ๏‚ด 103 ๏€ฝ ๏€ญ6 ๏‚ด 10๏€ญ3 psi ๏€ฝ ๏€ญ6 ksi Tempered steel: ๏ณ 2,res ๏€ฝ ๏ณ 2 ๏€ญ ๏ณ 1 ๏€ฝ 64 ๏‚ด 103 ๏€ญ 56 ๏‚ด 103 ๏€ฝ 8 ๏‚ด 103 psi 8.00 ksi ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 229 PROBLEM 2.120๏€ช P’ 3 16 in. 3 16 in. 1 in. 2 14 in. For the composite bar in Prob. 2.111, determine the residual stresses in the tempered-steel bars if P is gradually increased from zero until the deformation of the bar reaches a maximum value ๏ค m ๏€ฝ 0.04 in. and is then decreased back to zero. PROBLEM 2.111 Two tempered-steel bars, each 163 in. thick, are bonded to a 12 -in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with E ๏€ฝ 29 ๏‚ด 106 psi and with yield strengths equal to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value ๏ค m ๏€ฝ 0.04 in. and then decreased back to zero. Determine (a) the maximum value of P, (b) the maximum stress in the tempered-steel bars, (c) the permanent set after the load is removed. 2.0 in. P SOLUTION L๏ค (14)(50 ๏‚ด 10 ) ๏ƒฆ1๏ƒถ A1 ๏€ฝ ๏ƒง ๏ƒท (2) ๏€ฝ 1.00 in 2 ๏คY 1 ๏€ฝ Y 1 ๏€ฝ ๏€ฝ 0.024138 in. E 29 ๏‚ด 106 ๏ƒจ2๏ƒธ 3 For the mild steel, L๏ค (14)(100 ๏‚ด 10 ) ๏ƒฆ 3๏ƒถ For the tempered steel, A2 ๏€ฝ 2 ๏ƒง ๏ƒท (2) ๏€ฝ 0.75 in 2 ๏คY 2 ๏€ฝ Y 2 ๏€ฝ ๏€ฝ 0.048276 in. E 29 ๏‚ด 106 ๏ƒจ 16 ๏ƒธ 3 A ๏€ฝ A1 ๏€ซ A2 ๏€ฝ 1.75 in 2 Total area: ๏คY 1 ๏€ผ ๏ค m ๏€ผ ๏คY 2 The mild steel yields. Tempered steel is elastic. P1 ๏€ฝ A1๏คY 1 ๏€ฝ (1.00)(50 ๏‚ด 103 ) ๏€ฝ 50 ๏‚ด 103 lb Forces: P2 ๏€ฝ Stresses: ๏ณ1 ๏€ฝ EA2๏ค m (29 ๏‚ด 106 )(0.75)(0.04) ๏€ฝ ๏€ฝ 62.14 ๏‚ด 103 lb L 14 P1 P 62.14 ๏‚ด 103 ๏€ฝ ๏คY 1 ๏€ฝ 50 ๏‚ด 103 psi ๏ณ 2 ๏€ฝ 2 ๏€ฝ ๏€ฝ 82.86 ๏‚ด 103 psi A1 A2 0.75 ๏ณ๏‚ข๏€ฝ Unloading: P 112.14 ๏€ฝ ๏€ฝ 64.08 ๏‚ด 103 psi A 1.75 Residual stresses. ๏ณ 1,res ๏€ฝ ๏ณ 1 ๏€ญ ๏ณ ๏‚ข ๏€ฝ 50 ๏‚ด 103 ๏€ญ 64.08 ๏‚ด 103 ๏€ฝ ๏€ญ14.08 ๏‚ด 103 psi ๏€ฝ ๏€ญ14.08 ksi ๏ณ 2,res ๏€ฝ ๏ณ 2 ๏€ญ ๏ณ ๏‚ข ๏€ฝ 82.86 ๏‚ด 103 ๏€ญ 64.08 ๏‚ด 103 ๏€ฝ 18.78 ๏‚ด 103 psi ๏€ฝ 18.78 ksi ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 230 PROBLEM 2.121๏€ช Narrow bars of aluminum are bonded to the two sides of a thick steel plate as shown. Initially, at T1 ๏€ฝ 70๏‚ฐF, all stresses are zero. Knowing that the temperature will be slowly raised to T2 and then reduced to T1, determine (a) the highest temperature T2 that does not result in residual stresses, (b) the temperature T2 that will result in a residual stress in the aluminum equal to 58 ksi. Assume ๏ก a ๏€ฝ 12.8 ๏‚ด 10๏€ญ6 / ๏‚ฐF for the aluminum and ๏ก s ๏€ฝ 6.5 ๏‚ด 10๏€ญ6 / ๏‚ฐF for the steel. Further assume that the aluminum is elastoplastic, with E ๏€ฝ 10.9 ๏‚ด 106 psi and ๏ณ Y ๏€ฝ 58 ksi. (Hint: Neglect the small stresses in the plate.) SOLUTION Determine temperature change to cause yielding. ๏ค๏€ฝ PL ๏€ซ L๏ก a (๏„T )Y ๏€ฝ L๏ก s (๏„T )Y EA P ๏€ฝ ๏ณ ๏€ฝ ๏€ญ E (๏ก a ๏€ญ ๏ก s )(๏„T )Y ๏€ฝ ๏€ญ๏ณ Y A ๏ณY 58 ๏‚ด 103 (๏„T )Y ๏€ฝ ๏€ฝ ๏€ฝ 844.62๏‚ฐF E (๏ก a ๏€ญ ๏ก s ) (10.9 ๏‚ด 106 )(12.8 ๏€ญ 6.5)(10๏€ญ6 ) (a) T2Y ๏€ฝ T1 ๏€ซ (๏„T )Y ๏€ฝ 70 ๏€ซ 844.62 ๏€ฝ 915๏‚ฐF 915๏‚ฐF ๏ด After yielding, ๏ค๏€ฝ ๏ณY L E ๏€ซ L๏ก a (๏„T ) ๏€ฝ L๏ก s (๏„T ) Cooling: ๏ค๏‚ข๏€ฝ P๏‚ขL ๏€ซ L๏ก a (๏„T )๏‚ข ๏€ฝ L๏ก s (๏„T )๏‚ข AE The residual stress is ๏ณ res ๏€ฝ ๏ณ Y ๏€ญ Set ๏ณ res ๏€ฝ ๏€ญ๏ณ Y ๏€ญ๏ณ Y ๏€ฝ ๏ณ Y ๏€ญ E (๏ก a ๏€ญ ๏ก s )(๏„T ) ๏„T ๏€ฝ (b) P๏‚ข ๏€ฝ ๏ณ Y ๏€ญ E (๏ก a ๏€ญ ๏ก s )(๏„T ) A 2๏ณ Y (2)(58 ๏‚ด 103 ) ๏€ฝ ๏€ฝ 1689๏‚ฐF E (๏ก a ๏€ญ ๏ก s ) (10.9 ๏‚ด 106 )(12.8 ๏€ญ 6.5)(10๏€ญ6 ) T2 ๏€ฝ T1 ๏€ซ ๏„T ๏€ฝ 70 ๏€ซ 1689 ๏€ฝ 1759๏‚ฐF 1759๏‚ฐF ๏ด If T2 ๏€พ 1759๏‚ฐF, the aluminum bar will most likely yield in compression.๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 231 A C B F a โซฝ 120 mm 440 mm PROBLEM 2.122๏€ช Bar AB has a cross-sectional area of 1200 mm2 and is made of a steel that is assumed to be elastoplastic with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 250 MPa. Knowing that the force F increases from 0 to 520 kN and then decreases to zero, determine (a) the permanent deflection of point C, (b) the residual stress in the bar. SOLUTION A ๏€ฝ 1200 mm 2 ๏€ฝ 1200 ๏‚ด 10๏€ญ6 m 2 Force to yield portion AC: PAC ๏€ฝ A๏ณ Y ๏€ฝ (1200 ๏‚ด 10๏€ญ6 )(250 ๏‚ด 106 ) ๏€ฝ 300 ๏‚ด 103 N For equilibrium, F ๏€ซ PCB ๏€ญ PAC ๏€ฝ 0. PCB ๏€ฝ PAC ๏€ญ F ๏€ฝ 300 ๏‚ด 103 ๏€ญ 520 ๏‚ด 103 ๏€ฝ ๏€ญ220 ๏‚ด 103 N P L EA ๏ค C ๏€ฝ ๏€ญ CB CB ๏€ฝ (220 ๏‚ด 103 )(0.440 ๏€ญ 0.120) (200 ๏‚ด 109 )(1200 ๏‚ด 10๏€ญ6 ) ๏€ฝ 0.29333 ๏‚ด 10๏€ญ3 m ๏ณ CB ๏€ฝ PCB 220 ๏‚ด 103 ๏€ฝ A 1200 ๏‚ด 10๏€ญ6 ๏€ฝ ๏€ญ183.333 ๏‚ด 106 Pa PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 232 PROBLEM 2.122๏€ช (Continued) Unloading: ๏ค C๏‚ข ๏€ฝ ๏‚ข LAC ๏‚ข ) LCB PAC P๏‚ข L ( F ๏€ญ PAC ๏€ฝ ๏€ญ CB CB ๏€ฝ EA EA EA L ๏ƒถ FL ๏ƒฆL ๏‚ข ๏ƒง AC ๏€ซ BC ๏ƒท ๏€ฝ CB PAC EA ๏ƒธ EA ๏ƒจ EA ๏‚ข ๏€ฝ PAC FLCB (520 ๏‚ด 103 )(0.440 ๏€ญ 0.120) ๏€ฝ ๏€ฝ 378.18 ๏‚ด 103 N 0.440 LAC ๏€ซ LCB ๏‚ข ๏€ฝ PAC ๏‚ข ๏€ญ F ๏€ฝ 378.18 ๏‚ด 103 ๏€ญ 520 ๏‚ด 103 ๏€ฝ ๏€ญ141.820 ๏‚ด 103 N PCB ๏‚ข PAC 378.18 ๏‚ด 103 ๏€ฝ ๏€ฝ 315.150 ๏‚ด 106 Pa ๏€ญ6 A 1200 ๏‚ด 10 P๏‚ข 141.820 ๏‚ด 103 ๏‚ข ๏€ฝ BC ๏€ฝ ๏€ญ ๏€ฝ ๏€ญ118.183 ๏‚ด 106 Pa ๏ณ BC ๏€ญ6 A 1200 ๏‚ด 10 (378.18 ๏‚ด 103 )(0.120) ๏€ฝ 0.189090 ๏‚ด 10๏€ญ3 m ๏ค C๏‚ข ๏€ฝ (200 ๏‚ด 109 )(1200 ๏‚ด 10๏€ญ6 ) ๏ณ ๏‚ขAC ๏€ฝ (a) ๏ค C , p ๏€ฝ ๏ค C ๏€ญ ๏ค C๏‚ข ๏€ฝ 0.29333 ๏‚ด 10 ๏€ญ3 ๏€ญ 0.189090 ๏‚ด 10 ๏€ญ3 ๏€ฝ 0.104240 ๏‚ด 10 ๏€ญ3 m ๏€ฝ 0.1042 mm ๏ด (b) ๏ณ AC , res ๏€ฝ ๏ณ Y ๏€ญ ๏ณ AC ๏‚ข ๏€ฝ 250 ๏‚ด 106 ๏€ญ 315.150 ๏‚ด 106 ๏€ฝ ๏€ญ65.150 ๏‚ด 106 Pa ๏€ฝ ๏€ญ65.2 MPa ๏ด ๏ณ CB, res ๏€ฝ ๏ณ CB ๏€ญ ๏ณ CB ๏‚ข ๏€ฝ ๏€ญ183.333 ๏‚ด 106 ๏€ซ 118.183 ๏‚ด 106 ๏€ฝ ๏€ญ65.150 ๏‚ด 106 Pa ๏€ฝ ๏€ญ65.2 MPa ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 233 PROBLEM 2.123๏€ช A C B F a โซฝ 120 mm 440 mm Solve Prob. 2.122, assuming that a ๏€ฝ 180 mm. PROBLEM 2.122 Bar AB has a cross-sectional area of 1200 mm2 and is made of a steel that is assumed to be elastoplastic with E ๏€ฝ 200 GPa and ๏ณ Y ๏€ฝ 250 MPa. Knowing that the force F increases from 0 to 520 kN and then decreases to zero, determine (a) the permanent deflection of point C, (b) the residual stress in the bar. SOLUTION A ๏€ฝ 1200 mm 2 ๏€ฝ 1200 ๏‚ด 10๏€ญ6 m 2 Force to yield portion AC: PAC ๏€ฝ A๏ณ Y ๏€ฝ (1200 ๏‚ด 10๏€ญ6 )(250 ๏‚ด 106 ) ๏€ฝ 300 ๏‚ด 103 N For equilibrium, F ๏€ซ PCB ๏€ญ PAC ๏€ฝ 0. PCB ๏€ฝ PAC ๏€ญ F ๏€ฝ 300 ๏‚ด 103 ๏€ญ 520 ๏‚ด 103 ๏€ฝ ๏€ญ220 ๏‚ด 103 N P L EA ๏ค C ๏€ฝ ๏€ญ CB CB ๏€ฝ (220 ๏‚ด 103 )(0.440 ๏€ญ 0.180) (200 ๏‚ด 109 )(1200 ๏‚ด 10๏€ญ6 ) ๏€ฝ 0.23833 ๏‚ด 10๏€ญ3 m ๏ณ CB ๏€ฝ PCB 220 ๏‚ด 103 ๏€ฝ๏€ญ A 1200 ๏‚ด 10๏€ญ6 ๏€ฝ ๏€ญ183.333 ๏‚ด 106 Pa PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 234 PROBLEM 2.123๏€ช (Continued) Unloading: ๏‚ข LAC ๏‚ข ) LCB PAC P๏‚ข L ( F ๏€ญ PAC ๏€ฝ ๏€ญ CB CB ๏€ฝ EA EA EA L ๏ƒถ FL ๏ƒฆL ๏‚ข ๏ƒง AC ๏€ซ BC ๏ƒท ๏€ฝ CB ๏€ฝ PAC EA ๏ƒธ EA ๏ƒจ EA ๏ค C๏‚ข ๏€ฝ ๏‚ข ๏€ฝ PAC FLCB (520 ๏‚ด 103 )(0.440 ๏€ญ 0.180) ๏€ฝ ๏€ฝ 307.27 ๏‚ด 103 N LAC ๏€ซ LCB 0.440 ๏‚ข ๏€ฝ PAC ๏‚ข ๏€ญ F ๏€ฝ 307.27 ๏‚ด 103 ๏€ญ 520 ๏‚ด 103 ๏€ฝ ๏€ญ212.73 ๏‚ด 103 N PCB ๏ค C๏‚ข ๏€ฝ (307.27 ๏‚ด 103 )(0.180) ๏€ฝ 0.23045 ๏‚ด 10๏€ญ3 m ๏€ญ6 9 (200 ๏‚ด 10 )(1200 ๏‚ด 10 ) ๏‚ข PAC 307.27 ๏‚ด 103 ๏€ฝ ๏€ฝ 256.058 ๏‚ด 106 Pa A 1200 ๏‚ด 10๏€ญ6 P๏‚ข ๏€ญ212.73 ๏‚ด 103 ๏‚ข ๏€ฝ CB ๏€ฝ ๏€ฝ ๏€ญ177.275 ๏‚ด 106 Pa ๏ณ CB A 1200 ๏‚ด 10๏€ญ6 ๏ณ ๏‚ขAC ๏€ฝ (a) ๏ค C , p ๏€ฝ ๏ค C ๏€ญ ๏ค C๏‚ข ๏€ฝ 0.23833 ๏‚ด 10 ๏€ญ3 ๏€ญ 0.23045 ๏‚ด 10 ๏€ญ3 ๏€ฝ 0.00788 ๏‚ด 10 ๏€ญ3 m ๏€ฝ 0.00788 mm ๏ด (b) ๏ณ AC ,res ๏€ฝ ๏ณ AC ๏€ญ ๏ณ AC ๏‚ข ๏€ฝ 250 ๏‚ด 106 ๏€ญ 256.058 ๏‚ด 106 ๏€ฝ ๏€ญ6.0580 ๏‚ด 106 Pa ๏€ฝ ๏€ญ6.06 MPa ๏ด ๏ณ CB,res ๏€ฝ ๏ณ CB ๏€ญ ๏ณ CB ๏‚ข ๏€ฝ ๏€ญ183.333 ๏‚ด 106 ๏€ซ 177.275 ๏‚ด 106 ๏€ฝ ๏€ญ6.0580 ๏‚ด 106 Pa ๏€ฝ ๏€ญ6.06 MPa ๏ด ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 235 PROBLEM 2.124 l โฆ The uniform wire ABC, of unstretched length 2l, is attached to the supports shown and a vertical load P is applied at the midpoint B. Denoting by A the cross-sectional area of the wire and by E the modulus of elasticity, show that, for ๏ค ๏€ฝ l , the deflection at the midpoint B is l A C B P ๏ค ๏€ฝl3 P AE SOLUTION Use approximation. sin ๏ฑ ๏‚ป tan ๏ฑ ๏‚ป Statics: l ๏“FY ๏€ฝ 0 : 2 PAB sin ๏ฑ ๏€ญ P ๏€ฝ 0 PAB ๏€ฝ Elongation: ๏ค P Pl ๏‚ป 2sin ๏ฑ 2๏ค ๏ค AB ๏€ฝ PAB l Pl 2 ๏€ฝ AE 2 AE๏ค Deflection: From the right triangle, (l ๏€ซ ๏ค AB ) 2 ๏€ฝ l 2 ๏€ซ ๏ค 2 2 ๏ค 2 ๏€ฝ l 2 ๏€ซ 2l๏ค AB ๏€ซ ๏ค AB ๏€ญ l2 ๏ƒฆ 1 ๏ค AB ๏ƒถ ๏€ฝ 2l๏ค AB ๏ƒง1 ๏€ซ ๏ƒท ๏‚ป 2l๏ค AB ๏ƒจ 2 l ๏ƒธ ๏‚ป ๏ค3 ๏‚ป Pl 3 AE๏ค Pl 3 P ๏œ ๏ค ๏‚ป l3 AE AE ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 236 28 kips PROBLEM 2.125 28 kips The aluminum rod ABC ( E ๏€ฝ 10.1 ๏‚ด 106 psi), which consists of two cylindrical portions AB and BC, is to be replaced with a cylindrical steel rod DE ( E ๏€ฝ 29 ๏‚ด 106 psi) of the same overall length. Determine the minimum required diameter d of the steel rod if its vertical deformation is not to exceed the deformation of the aluminum rod under the same load and if the allowable stress in the steel rod is not to exceed 24 ksi. D A 1.5 in. 12 in. B 2.25 in. d 18 in. C E SOLUTION Deformation of aluminum rod. ๏คA ๏€ฝ PLAB PLBC ๏€ซ AAB E ABC E ๏€ฝ P ๏ƒฆ LAB LBC ๏ƒถ ๏€ซ ๏ƒง ๏ƒท E ๏ƒจ AAB ABC ๏ƒธ ๏€ฝ ๏ƒถ 28 ๏‚ด 103 ๏ƒฆ 12 18 ๏€ซ ๏ƒง ๏ƒท 10.1 ๏‚ด 106 ๏ƒง๏ƒจ ๏ฐ4 (1.5)2 ๏ฐ4 (2.25)2 ๏ƒท๏ƒธ ๏€ฝ 0.031376 in. Steel rod. ๏ค ๏€ฝ 0.031376 in. ๏ค๏€ฝ PL PL (28 ๏‚ด 103 )(30) ๏œ A๏€ฝ ๏€ฝ ๏€ฝ 0.92317 in 2 EA E๏ค (29 ๏‚ด 106 )(0.031376) ๏ณ๏€ฝ P A ๏œ A๏€ฝ P ๏ณ ๏€ฝ 28 ๏‚ด 103 ๏€ฝ 1.16667 in 2 3 24 ๏‚ด 10 Required area is the larger value. A ๏€ฝ 1.16667 in 2 Diameter: d๏€ฝ 4A ๏ฐ ๏€ฝ (4)(1.16667) ๏ฐ d ๏€ฝ 1.219 in. ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 237 PROBLEM 2.126 C Two solid cylindrical rods are joined at B and loaded as shown. Rod AB is made of steel ( E ๏€ฝ 29 ๏‚ด 106 psi), and rod BC of brass ( E ๏€ฝ 15 ๏‚ด 106 psi). Determine (a) the total deformation of the composite rod ABC, (b) the deflection of point B. 3 in. 30 in. B 30 kips 30 kips 2 in. 40 in. A P โซฝ 40 kips SOLUTION Portion AB: PAB ๏€ฝ 40 ๏‚ด 103 lb LAB ๏€ฝ 40 in. d ๏€ฝ 2 in. ๏ฐ ๏ค AB ๏€ฝ Portion BC: d2 ๏€ฝ ๏ฐ (2)2 ๏€ฝ 3.1416 in 2 4 4 E AB ๏€ฝ 29 ๏‚ด 106 psi AAB ๏€ฝ PAB LAB (40 ๏‚ด 103 )(40) ๏€ฝ ๏€ฝ 17.5619 ๏‚ด 10๏€ญ3 in. E AB AAB (29 ๏‚ด 106 )(3.1416) PBC ๏€ฝ ๏€ญ20 ๏‚ด 103 lb LBC ๏€ฝ 30 in. d ๏€ฝ 3 in. ๏ฐ ๏ค BC ๏€ฝ d2 ๏€ฝ ๏ฐ (3) 2 ๏€ฝ 7.0686 in 2 4 4 EBC ๏€ฝ 15 ๏‚ด 106 psi ABC ๏€ฝ PBC LBC (๏€ญ20 ๏‚ด 103 )(30) ๏€ฝ ๏€ฝ ๏€ญ5.6588 ๏‚ด 10๏€ญ3 in. EBC ABC (15 ๏‚ด 106 )(7.0686) (a) ๏ค ๏€ฝ ๏ค AB ๏€ซ ๏ค BC ๏€ฝ 17.5619 ๏‚ด 10๏€ญ6 ๏€ญ 5.6588 ๏‚ด 10๏€ญ6 ๏ค ๏€ฝ 11.90 ๏‚ด 10๏€ญ3 in. ๏‚ฏ ๏ด (b) ๏ค B ๏€ฝ ๏€ญ๏ค BC ๏ค B ๏€ฝ 5.66 ๏‚ด 10๏€ญ3 in. ๏‚ญ ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 238 Brass strip: E 5 105 GPa a 5 20 3 1026/8C PROBLEM 2.127 100 kg A 40 mm 3 mm 20 mm The brass strip AB has been attached to a fixed support at A and rests on a rough support at B. Knowing that the coefficient of friction is 0.60 between the strip and the support at B, determine the decrease in temperature for which slipping will impend. B SOLUTION Brass strip: E ๏€ฝ 105 GPa ๏ก ๏€ฝ 20 ๏‚ด 10๏€ญ6 / ๏‚ฐC ๏“Fy ๏€ฝ 0 : N ๏€ญ W ๏€ฝ 0 N ๏€ฝW ๏“Fx ๏€ฝ 0 : P ๏€ญ ๏ญ N ๏€ฝ 0 P ๏€ฝ ๏ญW ๏€ฝ ๏ญ mg ๏ค ๏€ฝ๏€ญ Data: PL ๏€ซ L๏ก (๏„T ) ๏€ฝ 0 EA ๏„T ๏€ฝ ๏ญ mg P ๏€ฝ EA๏ก EA๏ก ๏ญ ๏€ฝ 0.60 A ๏€ฝ (20)(3) ๏€ฝ 60 mm 2 ๏€ฝ 60 ๏‚ด 10๏€ญ6 m 2 m ๏€ฝ 100 kg g ๏€ฝ 9.81 m/s 2 E ๏€ฝ 105 ๏‚ด 109 Pa ๏„T ๏€ฝ (0.60)(100)(9.81) (105 ๏‚ด 109 )(60 ๏‚ด 10๏€ญ6 )(20 ๏‚ด 106 ) ๏„T ๏€ฝ 4.67๏‚ฐC ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 239 P’ 112 -in. diameter A 1-in. diameter B 112 -in. diameter C 2 in. D 3 in. P PROBLEM 2.128 The specimen shown is made from a 1-in.-diameter cylindrical steel rod with two 1.5-in.-outer-diameter sleeves bonded to the rod as shown. Knowing that E ๏€ฝ 29 ๏‚ด 106 psi, determine (a) the load P so that the total deformation is 0.002 in., (b) the corresponding deformation of the central portion BC. 2 in. SOLUTION (a) ๏ค ๏€ฝ๏“ Pi Li P Li ๏€ฝ ๏“ Ai Ei E Ai ๏€ญ1 ๏ƒฆ L ๏ƒถ ๏ฐ P ๏€ฝ E๏ค ๏ƒง ๏“ i ๏ƒท Ai ๏€ฝ di2 4 ๏ƒจ Ai ๏ƒธ L, in. d, in. A, in2 L/A, in๏€ญ1 AB 2 1.5 1.7671 1.1318 BC 3 1.0 0.7854 3.8197 CD 2 1.5 1.7671 1.1318 6.083 P ๏€ฝ (29 ๏‚ด 106 )(0.002)(6.083) ๏€ญ1 ๏€ฝ 9.353 ๏‚ด 103 lb (b) ๏ค BC ๏€ฝ PLBC P LBC 9.535 ๏‚ด 103 ๏€ฝ ๏€ฝ (3.8197) ABC E E ABC 29 ๏‚ด 106 ๏‚ฌ sum P ๏€ฝ 9.53 kips ๏ด ๏ค ๏€ฝ 1.254 ๏‚ด 10๏€ญ3 in. ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 240 PROBLEM 2.129 250 mm Each of the four vertical links connecting the two rigid horizontal members is made of aluminum ( E ๏€ฝ 70 GPa) and has a uniform rectangular cross section of 10 ๏‚ด 40 mm. For the loading shown, determine the deflection of (a) point E, (b) point F, (c) point G. 400 mm A 250 mm B 40 mm C D E 300 mm F G 24 kN SOLUTION Statics. Free body EFG: ๏“M F ๏€ฝ 0 : ๏€ญ (400)(2 FBE ) ๏€ญ (250)(24) ๏€ฝ 0 FBE ๏€ฝ ๏€ญ7.5 kN ๏€ฝ ๏€ญ7.5 ๏‚ด 103 N ๏“M E ๏€ฝ 0 : (400)(2 FCF ) ๏€ญ (650)(24) ๏€ฝ 0 FCF ๏€ฝ 19.5 kN ๏€ฝ 19.5 ๏‚ด 103 N Area of one link: A ๏€ฝ (10)(40) ๏€ฝ 400 mm 2 ๏€ฝ 400 ๏‚ด 10๏€ญ6 m 2 Length: L ๏€ฝ 300 mm ๏€ฝ 0.300 m Deformations. ๏ค BE ๏€ฝ FBE L (๏€ญ7.5 ๏‚ด 103 )(0.300) ๏€ฝ ๏€ฝ ๏€ญ80.357 ๏‚ด 10๏€ญ6 m ๏€ญ6 9 EA (70 ๏‚ด 10 )(400 ๏‚ด 10 ) ๏ค CF ๏€ฝ FCF L (19.5 ๏‚ด 103 )(0.300) ๏€ฝ ๏€ฝ 208.93 ๏‚ด 10๏€ญ6 m EA (70 ๏‚ด 109 )(400 ๏‚ด 10๏€ญ6 ) PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 241 PROBLEM 2.129 (Continued) (a) Deflection of Point E. ๏ค E ๏€ฝ |๏ค BF | ๏ค E ๏€ฝ 80.4 ๏ญ m ๏‚ญ ๏ด (b) Deflection of Point F. ๏ค F ๏€ฝ ๏ค CF ๏ค F ๏€ฝ 209 ๏ญ m ๏‚ฏ ๏ด Geometry change. Let ๏ฑ be the small change in slope angle. ๏ฑ๏€ฝ (c) ๏คE ๏€ซ ๏คF LEF Deflection of Point G. ๏€ฝ 80.357 ๏‚ด 10๏€ญ6 ๏€ซ 208.93 ๏‚ด 10๏€ญ6 ๏€ฝ 723.22 ๏‚ด 10๏€ญ6 radians 0.400 ๏ค G ๏€ฝ ๏ค F ๏€ซ LFG ๏ฑ ๏ค G ๏€ฝ ๏ค F ๏€ซ LFG ๏ฑ ๏€ฝ 208.93 ๏‚ด 10๏€ญ6 ๏€ซ (0.250)(723.22 ๏‚ด 10๏€ญ6 ) ๏€ฝ 389.73 ๏‚ด 10๏€ญ6 m ๏ค G ๏€ฝ 390 ๏ญ m ๏‚ฏ ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 242 PROBLEM 2.130 P A 4-ft concrete post is reinforced with four steel bars, each with a 34 -in. diameter. Knowing that Es ๏€ฝ 29 ๏‚ด 106 psi and Ec ๏€ฝ 3.6 ๏‚ด 106 psi, determine the normal stresses in the steel and in the concrete when a 150-kip axial centric force P is applied to the post. 4 ft 8 in. 8 in. SOLUTION ๏ƒฉ ๏ฐ ๏ƒฆ 3 ๏ƒถ2 ๏ƒน As ๏€ฝ 4 ๏ƒช ๏ƒง ๏ƒท ๏ƒบ ๏€ฝ 1.76715 in 2 ๏ƒช๏ƒซ 4 ๏ƒจ 4 ๏ƒธ ๏ƒบ๏ƒป Ac ๏€ฝ 82 ๏€ญ As ๏€ฝ 62.233 in 2 ๏คs ๏€ฝ Ps L Ps (48) ๏€ฝ ๏€ฝ 0.93663 ๏‚ด 10๏€ญ6 Ps As Es (1.76715)(29 ๏‚ด 106 ) ๏คc ๏€ฝ Pc L Pc (48) ๏€ฝ ๏€ฝ 0.21425 ๏‚ด 10๏€ญ6 Pc Ac Ec (62.233)(3.6 ๏‚ด 106 ) But ๏ค s ๏€ฝ ๏ค c : 0.93663 ๏‚ด 10๏€ญ6 Ps ๏€ฝ 0.21425 ๏‚ด 10๏€ญ6 Pc Ps ๏€ฝ 0.22875Pc Also, Substituting (1) into (2), (1) Ps ๏€ซ Pc ๏€ฝ P ๏€ฝ 150 kips (2) 1.22875Pc ๏€ฝ 150 kips Pc ๏€ฝ 122.075 kips From (1), Ps ๏€ฝ 0.22875(122.075) ๏€ฝ 27.925 kips ๏ณs ๏€ฝ ๏€ญ Ps 27.925 ๏€ฝ๏€ญ 1.76715 As ๏ณ s ๏€ฝ ๏€ญ15.80 ksi ๏ด ๏ณc ๏€ฝ ๏€ญ Pc 122.075 ๏€ฝ๏€ญ 62.233 Ac ๏ณ c ๏€ฝ ๏€ญ1.962 ksi ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 243 PROBLEM 2.131 A The steel rods BE and CD each have a 16-mm diameter ( E ๏€ฝ 200 GPa); the ends of the rods are single-threaded with a pitch of 2.5 mm. Knowing that after being snugly fitted, the nut at C is tightened one full turn, determine (a) the tension in rod CD, (b) the deflection of point C of the rigid member ABC. 150 mm B 100 mm D E C 2m 3m SOLUTION Let ๏ฑ be the rotation of bar ABC as shown.๏€  Then ๏ค B ๏€ฝ 0.15๏ฑ But ๏ค C ๏€ฝ ๏ค turn ๏€ญ PCD ๏€ฝ ๏€ฝ ๏ค C ๏€ฝ 0.25๏ฑ PCD LCD ECD ACD ECD ACD (๏ค turn ๏€ญ ๏ค C ) LCD (200 ๏‚ด 109 Pa) ๏ฐ4 (0.016 m) 2 2m (0.0025 m ๏€ญ 0.25๏ฑ ) ๏€ฝ 50.265 ๏‚ด 103 ๏€ญ 5.0265 ๏‚ด 106๏ฑ ๏คB ๏€ฝ PBE ๏€ฝ PBE LBE EBE ABE or PBE ๏€ฝ EBE ABE ๏คB LBE (200 ๏‚ด 109 Pa) ๏ฐ4 (0.016 m)2 3m (0.15๏ฑ ) ๏€ฝ 2.0106 ๏‚ด 106๏ฑ From free body of member ABC: ๏“M A ๏€ฝ 0 : 0.15 PBE ๏€ญ 0.25 PCD ๏€ฝ 0 0.15(2.0106 ๏‚ด 106๏ฑ ) ๏€ญ 0.25(50.265 ๏‚ด 103 ๏€ญ 5.0265 ๏‚ด 106๏ฑ ) ๏€ฝ 0 ๏ฑ ๏€ฝ 8.0645 ๏‚ด 10๏€ญ3 rad (a) PCD ๏€ฝ 50.265 ๏‚ด 103 ๏€ญ 5.0265 ๏‚ด 106 (8.0645 ๏‚ด 10๏€ญ3 ) ๏€ฝ 9.7288 ๏‚ด 103 N (b) PCD ๏€ฝ 9.73 kN ๏ด ๏ค C ๏€ฝ 0.25๏ฑ ๏€ฝ 0.25(8.0645 ๏‚ด 10๏€ญ3 ) ๏€ฝ 2.0161 ๏‚ด 10๏€ญ3 m ๏ค C ๏€ฝ 2.02 mm ๏‚ฌ ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 244 PROBLEM 2.132 8 in. Aluminum shell 1.25 in. 0.75 in. Steel core The assembly shown consists of an aluminum shell ( Ea ๏€ฝ 10.6 ๏‚ด 106 psi, ๏กa ๏€ฝ 12.9 ๏‚ด 10๏€ญ6/ยฐF) fully bonded to a steel core ( Es ๏€ฝ 29 ๏‚ด 106 psi, ๏กs ๏€ฝ 6.5 ๏‚ด 10๏€ญ6/ยฐF) and is unstressed. Determine (a) the largest allowable change in temperature if the stress in the aluminum shell is not to exceed 6 ksi, (b) the corresponding change in length of the assembly. SOLUTION Since ๏ก a ๏€พ ๏ก s , the shell is in compression for a positive temperature rise. ๏ณ a ๏€ฝ ๏€ญ6 ksi ๏€ฝ ๏€ญ6 ๏‚ด 103 psi Let Aa ๏€ฝ As ๏€ฝ ๏ฐ ๏ฐ d ๏€ญ d ๏€ฉ ๏€ฝ (1.25 ๏€ญ 0.75 ) ๏€ฝ 0.78540 in ๏€จ 4 4 ๏ฐ 4 2 o 2 i d2 ๏€ฝ ๏ฐ 4 2 2 2 (0.75) 2 ๏€ฝ 0.44179 in 2 P ๏€ฝ ๏€ญ๏ณ a Aa ๏€ฝ ๏ณ s As where P is the tensile force in the steel core. ๏ณs ๏€ฝ ๏€ญ ๏ฅ๏€ฝ (๏ก a ๏€ญ ๏ก s )(๏„T ) ๏€ฝ (6.4 ๏‚ด 10๏€ญ6 )(๏„T ) ๏€ฝ (a) ๏„T ๏€ฝ 145.91๏‚ฐF (b) ๏ฅ๏€ฝ ๏ณ a Aa ๏ณs Es ๏ณs Es As ๏€ฝ (6 ๏‚ด 103 )(0.78540) ๏€ฝ 10.667 ๏‚ด 103 psi 0.44179 ๏€ซ ๏ก s (๏„T ) ๏€ฝ ๏€ญ ๏ณa Ea ๏€ซ ๏ก a (๏„T ) ๏ณa Ea 10.667 ๏‚ด 103 6 ๏‚ด 103 ๏€ซ ๏€ฝ 0.93385 ๏‚ด 10๏€ญ3 6 6 29 ๏‚ด 10 10.6 ๏‚ด 10 ๏„T ๏€ฝ 145.9๏‚ฐF ๏ด 10.667 ๏‚ด 103 ๏€ซ (6.5 ๏‚ด 10๏€ญ6 )(145.91) ๏€ฝ 1.3163 ๏‚ด 10๏€ญ3 6 29 ๏‚ด 10 or ๏ฅ๏€ฝ ๏€  ๏€ญ6 ๏‚ด 103 ๏€ซ (12.9 ๏‚ด 10๏€ญ6 )(145.91) ๏€ฝ 1.3163 ๏‚ด 10๏€ญ3 6 10.6 ๏‚ด 10 ๏ค ๏€ฝ L๏ฅ ๏€ฝ (8.0)(1.3163 ๏‚ด 10๏€ญ3 ) ๏€ฝ 0.01053 in. ๏€  ๏ค ๏€ฝ 0.01053 in. ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 245 PROBLEM 2.133 3.5 in. P 5.5 in. The plastic block shown is bonded to a fixed base and to a horizontal rigid plate to which a force P is applied. Knowing that for the plastic used G ๏€ฝ 55 ksi, determine the deflection of the plate when P ๏€ฝ 9 kips. 2.2 in. SOLUTION Consider the plastic block. The shearing force carried is P ๏€ฝ 9 ๏‚ด 103 lb The area is A ๏€ฝ (3.5)(5.5) ๏€ฝ 19.25 in 2 Shearing stress: ๏ด ๏€ฝ Shearing strain: ๏ง ๏€ฝ But ๏ง ๏€ฝ P 9 ๏‚ด 103 ๏€ฝ ๏€ฝ 467.52 psi A 19.25 ๏ด G ๏ค h ๏€ฝ 467.52 ๏€ฝ 0.0085006 55 ๏‚ด 103 ๏œ ๏ค ๏€ฝ h๏ง ๏€ฝ (2.2)(0.0085006) ๏ค ๏€ฝ 0.01870 in. ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 246 PROBLEM 2.134 P 150 75 15 300 60 r56 150 The aluminum test specimen shown is subjected to two equal and opposite centric axial forces of magnitude P. (a) Knowing that E ๏€ฝ 70 GPa and ๏ณ all ๏€ฝ 200 MPa, determine the maximum allowable value of P and the corresponding total elongation of the specimen. (b) Solve part a, assuming that the specimen has been replaced by an aluminum bar of the same length and a uniform 60 ๏‚ด 15-mm rectangular cross section. 75 Pโฌ˜ Dimensions in mm SOLUTION ๏ณ all ๏€ฝ 200 ๏‚ด 106 Pa E ๏€ฝ 70 ๏‚ด 109 Pa Amin ๏€ฝ (60 mm)(15 mm) ๏€ฝ 900 mm 2 ๏€ฝ 900 ๏‚ด 10๏€ญ6 m 2 (a) Test specimen. D ๏€ฝ 75 mm, d ๏€ฝ 60 mm, r ๏€ฝ 6 mm D 75 ๏€ฝ ๏€ฝ 1.25 d 60 From Fig. 2.60b, K ๏€ฝ 1.95 P๏€ฝ r 6 ๏€ฝ ๏€ฝ 0.10 d 60 ๏ณ max ๏€ฝ K P A A๏ณ max (900 ๏‚ด 10๏€ญ6 ) (200 ๏‚ด 106 ) ๏€ฝ ๏€ฝ 92.308 ๏‚ด 103 N K 1.95 P ๏€ฝ 92.3 kN ๏ด Wide area A* ๏€ฝ (75 mm)(15 mm) ๏€ฝ 1125 mm 2 ๏€ฝ 1.125 ๏‚ด 10๏€ญ3 m 2 ๏ค ๏€ฝ๏“ Pi Li 0.300 0.150 ๏ƒน P L 92.308 ๏‚ด 103 ๏ƒฉ 0.150 ๏€ฝ ๏“ i ๏€ฝ ๏€ซ ๏€ซ Ai Ei E Ai 70 ๏‚ด 109 ๏ƒช๏ƒซ1.125 ๏‚ด 10๏€ญ3 900 ๏‚ด 10๏€ญ6 1.125 ๏‚ด 10๏€ญ3 ๏ƒบ๏ƒป ๏€ฝ 7.91 ๏‚ด 10๏€ญ6 m (b) ๏ค ๏€ฝ 0.791 mm ๏ด Uniform bar. P ๏€ฝ A๏ณ all ๏€ฝ (900 ๏‚ด 10๏€ญ6 )(200 ๏‚ด 106 ) ๏€ฝ 180 ๏‚ด 103 N ๏€  ๏ค๏€ฝ (180 ๏‚ด 103 )(0.600) PL ๏€ฝ ๏€ฝ 1.714 ๏‚ด 10๏€ญ3 m ๏€  AE (900 ๏‚ด 10๏€ญ6 )(70 ๏‚ด 109 ) P ๏€ฝ 180.0 kN ๏ด๏€  ๏ค ๏€ฝ 1.714 mm ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 247 PROBLEM 2.135 L B C B’ k m C’ P P The uniform rod BC has a cross-sectional area A and is made of a mild steel that can be assumed to be elastoplastic with a modulus of elasticity E and a yield strength ๏ณ Y . Using the block-and-spring system shown, it is desired to simulate the deflection of end C of the rod as the axial force P is gradually applied and removed, that is, the deflection of points C and C๏‚ข should be the same for all values of P. Denoting by ๏ญ the coefficient of friction between the block and the horizontal surface, derive an expression for (a) the required mass m of the block, (b) the required constant k of the spring. SOLUTION Force-deflection diagram for Point C or rod BC. P ๏€ผ PY ๏€ฝ A๏ณ Y For PL EA Pmax ๏€ฝ PY ๏€ฝ A๏ณ Y ๏คC ๏€ฝ EA ๏คC L P๏€ฝ Force-deflection diagram for Point C๏‚ข of block-and-spring system. ๏“Fy ๏€ฝ 0 : N ๏€ญ mg ๏€ฝ 0 N ๏€ฝ mg ๏“Fx ๏€ฝ 0 : P ๏€ญ F f ๏€ฝ 0 P ๏€ฝ Ff If block does not move, i.e., F f ๏€ผ ๏ญ N ๏€ฝ ๏ญ mg or ๏ค c๏‚ข ๏€ฝ then P K P ๏€ผ ๏ญ mg , or P ๏€ฝ k๏ค c๏‚ข If P ๏€ฝ ๏ญ mg, then slip at P ๏€ฝ Fm ๏€ฝ ๏ญ mg occurs. ๏€  If the force P is the removed, the spring returns to its initial length. (a) Equating PY and Fmax, (b) Equating slopes, A๏ณ Y ๏€ฝ ๏ญ mg k๏€ฝ m๏€ฝ EA L A๏ณ Y ๏ญg ๏ด๏€  ๏ด๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 248 PROBLEM 2.C1 A rod consisting of n elements, each of which is homogeneous and of uniform cross section, is subjected to the loading shown. The length of element i is denoted by Li , its cross-sectional area by Ai , modulus of elasticity by Ei , and the load applied to its right end by Pi , the magnitude Pi of this load being assumed to be positive if Pi is directed to the right and negative otherwise. (a) Write a computer program that can be used to determine the average normal stress in each element, the deformation of each element, and the total deformation of the rod. (b) Use this program to solve Probs. 2.20 and 2.126. Element 1 Element n P1 Pn SOLUTION For each element, enter Li , Ai , Ei Compute deformation P ๏€ฝ P ๏€ซ Pi Update axial load Compute for each element ๏ณ i ๏€ฝ P/ Ai ๏ค i ๏€ฝ PLi / Ai Ei Total deformation: Update through n elements ๏ค ๏€ฝ ๏ค ๏€ซ ๏คi Program Outputs Problem 2.20 Element Stress (MPa) Deformation (mm) 1 19.0986 0.1091 2 ๏€ญ12.7324 ๏€ญ0.0909 Total Deformation ๏€ฝ 0.0182 mm Problem 2.126 Element Stress (ksi) Deformation (in.) 1 12.7324 0.0176 2 ๏€ญ2.8294 ๏€ญ0.0057 Total Deformation ๏€ฝ 0.01190 in. ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 249 PROBLEM 2.C2 A Element n Element 1 B Pn P2 Rod AB is horizontal with both ends fixed; it consists of n elements, each of which is homogeneous and of uniform cross section, and is subjected to the loading shown. The length of element i is denoted by Li , its crosssectional area by Ai , its modulus of elasticity by Ei , and the load applied to its right end by Pi , the magnitude Pi of this load being assumed to be positive if Pi is directed to the right and negative otherwise. (Note that P1 ๏€ฝ 0.) (a) Write a computer program which can be used to determine the reactions at A and B, the average normal stress in each element, and the deformation of each element. (b) Use this program to solve Probs. 2.41 and 2.42. SOLUTION We Consider the reaction at B redundant and release the rod at B Compute ๏ค B with RB ๏€ฝ 0 For each element, enter Li , Ai , Ei Update axial load P ๏€ฝ P ๏€ซ Pi Compute for each element ๏ณ i ๏€ฝ P/Ai ๏ค i ๏€ฝ PLi /Ai Ei Update total deformation ๏ค B ๏€ฝ ๏ค B ๏€ซ ๏คi Compute ๏ค B due to unit load at B Unit ๏ณ i ๏€ฝ 1/Ai Unit ๏ค i ๏€ฝ Li /Ai Ei Update total unit deformation Unit ๏ค B ๏€ฝ Unit ๏ค B ๏€ซ Unit ๏ค i Superposition B๏€ฝ0 For total displacement at ๏ค B ๏€ซ RB Unit ๏คB ๏€ฝ 0 Solving: RB ๏€ฝ ๏€ญ๏ค B /Unit ๏ค B Then: RA ๏€ฝ ๏“Pi ๏€ซ RB PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 250 PROBLEM 2.C2 (Continued) For each element ๏ณ ๏€ฝ ๏ณ i ๏€ซ RB Unit ๏ณ i ๏ค ๏€ฝ ๏ค i ๏€ซ RB Unit ๏ค i Program Outputs Problem 2.41 RA ๏€ฝ ๏€ญ62.809 kN RB ๏€ฝ ๏€ญ37.191 kN Element Stress (MPa) Deformation (mm) 1 ๏€ญ52.615 ๏€ญ0.05011 2 3.974 0.00378 3 2.235 0.00134 4 49.982 0.04498 Problem 2.42 RA ๏€ฝ ๏€ญ45.479 kN RB ๏€ฝ ๏€ญ54.521 kN Element Stress (MPa) Deformation (mm) 1 ๏€ญ77.131 ๏€ญ0.03857 2 ๏€ญ20.542 ๏€ญ0.01027 3 ๏€ญ11.555 ๏€ญ0.01321 4 36.191 0.06204 ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 251 PROBLEM 2.C3 Element n Element 1 A โฆ0 B Rod AB consists of n elements, each of which is homogeneous and of uniform cross section. End A is fixed, while initially there is a gap ๏ค 0 between end B and the fixed vertical surface on the right. The length of element i is denoted by Li , its cross-sectional area by Ai , its modulus of elasticity by Ei , and its coefficient of thermal expansion by ๏ก i . After the temperature of the rod has been increased by ๏„T , the gap at B is closed and the vertical surfaces exert equal and opposite forces on the rod. (a) Write a computer program which can be used to determine the magnitude of the reactions at A and B, the normal stress in each element, and the deformation of each element. (b) Use this program to solve Probs. 2.59 and 2.60. SOLUTION We compute the displacements at B. Assuming there is no support at B, enter Li , Ai , Ei , ๏ก i Enter temperature change T. Compute for each element. ๏ค i ๏€ฝ ๏ก i LiT Update total deformation. ๏ค B ๏€ฝ ๏ค B ๏€ซ ๏คi Compute ๏ค B due to unit load at B. Unit ๏ค i ๏€ฝ Li /Ai Ei Update total unit deformation. Unit ๏ค B ๏€ฝ Unit ๏ค B ๏€ซ Unit ๏ค i Compute reactions. From superposition, RB ๏€ฝ (๏ค B ๏€ญ ๏ค 0 )/Unit ๏ค B Then RA ๏€ฝ ๏€ญ RB For each element, ๏ณ i ๏€ฝ ๏€ญ RB /Ai ๏ค i ๏€ฝ ๏ก i LiT ๏€ซ RB Li /Ai Ei PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 252 PROBLEM 2.C3 (Continued) Program Outputs Problem 2.59. R ๏€ฝ 52.279 kips Element Stress (ksi) Deformation (10 * ๏€ญ3 in.) 1 ๏€ญ21.783 9.909 2 ๏€ญ18.671 10.091 Problem 2.60. R ๏€ฝ 232.390 kN Element Stress (MPa) Deformation (microm) 1 ๏€ญ116.195 363.220 2 ๏€ญ290.487 136.780 ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 253 PROBLEM 2.C4 A 1, E1, (โดY)1 L P A 2 , E2 , (โด Y)2 Plate Bar AB has a length L and is made of two different materials of given cross-sectional area, modulus of elasticity, and yield strength. The bar is subjected as shown to a load P that is gradually increased from zero until the deformation of the bar has reached a maximum value ๏ค m and then decreased back to zero. (a) Write a computer program that, for each of 25 values of ๏ค m equally spaced over a range extending from 0 to a value equal to 120% of the deformation causing both materials to yield, can be used to determine the maximum value Pm of the load, the maximum normal stress in each material, the permanent deformation ๏ค p of the bar, and the residual stress in each material. (b) Use this program to solve Probs. 2.111 and 2.112. SOLUTION (๏ณ Y )1 < (๏ณ Y )2 Note: The following assumes Displacement increment ๏ค m ๏€ฝ 0.05(๏ณ Y ) 2 L/E2 Displacements at yielding ๏ค A ๏€ฝ (๏ณ Y )1 L/E1 ๏ค B ๏€ฝ (๏ณ Y ) 2 L/E2 For each displacement If ๏ค m < ๏ค A: ๏ณ1 ๏€ฝ ๏ค m E1/L ๏ณ 2 ๏€ฝ ๏ค m E2 /L Pm ๏€ฝ (๏ค m /L) ( A1E1 ๏€ซ A2 E2 ) If ๏ค A <๏คm ๏คB: ๏ณ1 ๏€ฝ (๏ณ Y )1 ๏ณ 2 ๏€ฝ (๏ณ Y ) 2 Pm ๏€ฝ A1๏ณ 1 ๏€ซ A2๏ณ 2 PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 254 PROBLEM 2.C4 (Continued) Permanent deformations, residual stresses Slope of first (elastic) segment Slope ๏€ฝ ( A1E1 ๏€ซ A2 E2 )/L ๏ค P ๏€ฝ ๏ค m ๏€ญ ( Pm /Slope) (๏ณ 1 )res ๏€ฝ ๏ณ 1 ๏€ญ ( E1 Pm /( L Slope)) (๏ณ 2 )res ๏€ฝ ๏ณ 2 ๏€ญ ( E2 Pm /( L Slope)) Program Outputs Problems 2.111 and 2.112 DM 10** ๏€ญ 3 in. PM kips SIGM (1) ksi SIGM (2) ksi DP 10** ๏€ญ 3 in. SIGR (1) ksi SIG (2) ksi 0.000 2.414 4.828 7.241 9.655 12.069 14.483 16.897 19.310 21.724 24.138 26.552 0.000 8.750 17.500 26.250 35.000 43.750 52.500 61.250 70.000 78.750 87.500 91.250 0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 50.000 0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 55.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.379 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ๏€ญ2.143 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.857 28.966 95.000 50.000 60.000 2.759 ๏€ญ4.286 5.714 31.379 98.750 50.000 65.000 4.138 ๏€ญ6.429 8.571 33.793 102.500 50.000 70.000 5.517 ๏€ญ8.571 11.429 36.207 106.250 50.000 75.000 6.897 ๏€ญ10.714 14.286 38.621 110.000 50.000 80.000 8.276 ๏€ญ12.857 17.143 41.034 113.750 50.000 85.000 9.655 ๏€ญ15.000 20.000 43.448 117.500 50.000 90.000 11.034 ๏€ญ17.143 22.857 45.862 121.250 50.000 95.000 12.414 ๏€ญ19.286 25.714 48.276 125.000 50.000 100.000 13.793 ๏€ญ21.429 28.571 50.690 125.000 50.000 100.000 16.207 ๏€ญ21.429 28.571 53.103 125.000 50.000 100.000 18.621 ๏€ญ21.429 28.571 55.517 125.000 50.000 100.000 21.034 ๏€ญ21.429 57.931 125.000 50.000 100.000 23.448 ๏€ญ21.429 28.571 28.571 ๏€  ๏€  2.112 ๏ด 2.111 ๏ด PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 255 PROBLEM 2.C5 The plate has a hole centered across the width. The stress concentration factor for a flat bar under axial loading with a centric hole is P9 1 d 2 2 r D ๏ƒฆ 2r ๏ƒถ ๏ƒฆ 2r ๏ƒถ ๏ƒฆ 2r ๏ƒถ K ๏€ฝ 3.00 ๏€ญ 3.13 ๏ƒง ๏ƒท ๏€ซ 3.66 ๏ƒง ๏ƒท ๏€ญ 1.53 ๏ƒง ๏ƒท D D ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจD๏ƒธ P 1 d 2 3 where r is the radius of the hole and D is the width of the bar. Write a computer program to determine the allowable load P for the given values of r, D, the thickness t of the bar, and the allowable stress ๏ณ all of the material. Knowing that t ๏€ฝ 14 in., D ๏€ฝ 3.0 in., and ๏ณ all ๏€ฝ 16 ksi, determine the allowable load P for values of r from 0.125 in. to 0.75 in., using 0.125 in. increments. SOLUTION Enter r , D, t , ๏ณ all Compute K RD ๏€ฝ 2.0r/D K ๏€ฝ 3.00 ๏€ญ 3.13RD ๏€ซ 3.66 RD 2 ๏€ญ 1.53RD3 Compute average stress ๏ณ ave ๏€ฝ ๏ณ all /K Allowable load Pall ๏€ฝ ๏ณ ave ( D ๏€ญ 2.0r ) t Program Output Radius (in.) Allowable Load (kips) 0.1250 3.9802 0.2500 3.8866 0.3750 3.7154 0.5000 3.4682 0.6250 3.1523 0.7500 2.7794 ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 256 PROBLEM 2.C6 L A B P 2c c A solid truncated cone is subjected to an axial force P as shown. The exact elongation is ( PL) /(2๏ฐ c 2 E ). By replacing the cone by n circular cylinders of equal thickness, write a computer program that can be used to calculate the elongation of the truncated cone. What is the percentage error in the answer obtained from the program using (a) n ๏€ฝ 6, (b) n ๏€ฝ 12, (c) n ๏€ฝ 60? SOLUTION i ๏€ฝ 1 to n : Li ๏€ฝ (i ๏€ซ 0.5)(L/n) For ri ๏€ฝ 2c ๏€ญ c(Li /L) Area: A ๏€ฝ ๏ฐ ri2 Displacement: ๏ค ๏€ฝ ๏ค ๏€ซ P( L/n)/( AE ) Exact displacement: ๏ค exact ๏€ฝ PL/(2.0๏ฐ c 2 E ) Percentage error: Percent = 100(๏ค ๏€ญ ๏ค exact )/๏ค exact Program Output n Approximate Exact Percent 6 0.15852 0.15915 ๏€ญ0.40083 12 0.15899 0.15915 ๏€ญ0.10100 60 0.15915 0.15915 ๏€ญ0.00405 ๏€  PROPRIETARY MATERIAL. Copyright ยฉ 2015 McGraw-Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner. This document may not be copied, scanned, duplicated, forwarded, distributed, or posted on a website, in whole or part. 257

Document Preview (168 of 1834 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in