Solution Manual For Introduction To Electrodynamics, 4th Edition

Preview Extract
26 CHAPTER 2. ELECTROSTATICS Chapter 2 Electrostatics Problem 2.1 (a) Zero. 1 qQ , where r is the distance from center to each numeral. F points toward the missing q. 4ฯ€0 r2 Explanation: by superposition, this is equivalent to (a), with an extra โˆ’q at 6 oโ€™clockโ€”since the force of all twelve is zero, the net force is that of โˆ’q only. (b) F = (c) Zero. 1 qQ , pointing toward the missing q. Same reason as (b). Note, however, that if you explained (b) as 4ฯ€0 r2 a cancellation in pairs of opposite charges (1 oโ€™clock against 7 oโ€™clock; 2 against 8, etc.), with one unpaired q doing the job, then youโ€™ll need a different explanation for (d). (d) Problem 2.2 This time the โ€œverticalโ€ components cancel, leaving 1 E = 4ฯ€ 2 rq 2 sin ฮธ xฬ‚, or 0 E= 1 qd xฬ‚. 4ฯ€0 z 2 + d 2 3/2 2 – E AUA r ฮธ AA z A A s As- x q โˆ’q 1 qd From far away, (z d), the field goes like E โ‰ˆ 4ฯ€ 3 zฬ‚, which, as we shall see, is the field of a dipole. (If we 0 z set d โ†’ 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge from far away, the net charge is zero, so E โ†’ 0.) c 1 Problem 2.3 CHAPTER 2. ELECTROSTATICS 27 1 Problem 2.3 Problem 2.3 z z ” !” ! ฮธ ฮท z dq = ฮปdx #L !x “# $!x ฮธ r z dq = ฮปdx % L ฮป dx 1% 2 Ez =1 4ฯ€” =2 z 2 +2 x2 ; cos ฮธ z= ฮทz ) L 2 cos ฮธ; 2(ฮท R ฮป ฮทcos 0 dx 0 ฮป dx 2 2 ฮธ = ฮท) z EzE = =4ฯ€”01 0 L ฮธ; (ฮท = z 2 ฮท r =+z 2x+; xcos ; cos ฮธ = r ) z 4ฯ€0 0 r 2 cos ฮธ; ( % L 1 % 1 =1 4ฯ€”0 ฮปzLR L0 (z12 +x2 )3/2 dx 1ฮปz 1 = =4ฯ€” dxdx 2 3/2 ‘( ฮปz0 &(z2 +x 0 2 ) 2 )3/2 (L 4ฯ€ x ‘(L 10 & h0 1(zโˆš+x 1 ฮปโˆš L . =1 4ฯ€”0 ฮปz1 โˆšz2 x z2 +x(2i L ( =1 4ฯ€” L zL 2 +L2 1ฮป 0โˆš ฮปzโˆš . . = =4ฯ€”01ฮปzฮปz z%2 12 zโˆš2 +xx2 ( =0 =4ฯ€” 2 +L2 0 z z% z L 2 2 2 2 4ฯ€0 1% z ฮป dx 4ฯ€ 0 1 x dx z +x +L %0ฮปR zx dx 0 โˆ’ E = โˆ’1 4ฯ€”0LR L 2 sin ฮธ = 3/2 ฮป0 dx 1 4ฯ€” ฮทsin (x2x+z #L 1 1ฮป 0 dx2 ) ExEx=x =โˆ’ โˆ’ ฮธ= โˆ’ 4ฯ€” 2ฮป dx 2 +z 2 )3/2 & ‘( & ‘ ! sin ฮธ = โˆ’ ฮป 4ฯ€” ฮท 0 0 0 (x 2 L 2 2 )3/2 4ฯ€10 & 0 r 4ฯ€0 1 & (x +z ! “# $ ( ‘( 1 1 1’ i L x iL h zโˆ’โˆš = โˆ’1 4ฯ€”0 ฮปh โˆšโˆ’ โˆš = โˆ’ . ฮป ( ( 1 1 1 1 2 2 2 2 x 4ฯ€” x1 +z = z1 +L. 1ฮป โˆ’ โˆš 1ฮป 0 1 โˆšโˆš = =โˆ’ โˆ’ โˆ’โˆ’ โˆ’ 0= 2 +z 2 ( 2 +L2 ฮป โˆ’ ฮป โˆ’ . 4ฯ€” 4ฯ€” z 0 0 x z 2 2 2 2 4ฯ€0 z z +L )* + * 4ฯ€0 + x, +z 0 0 ฮป z + * L + , 1 )* โˆ’1 + โˆšz z xฬ‚ + โˆšL L zฬ‚ . E =1 1 ฮป ฮป โˆšโˆš z 2 + L2xฬ‚ + โˆšโˆš z 2 + L2zฬ‚ zฬ‚. . ++ EE = = 4ฯ€% 0 z โˆ’1 โˆ’1 xฬ‚ + 2 2 2 2 4ฯ€% z z+ L L2 z + L L2 0 z z 2+ 2+ 4ฯ€ 0 1 ฮปL For z # L you expect it to look like a pointz charge q = ฮปL: E โ†’1 4ฯ€” ฮปL z 2 zฬ‚. It checks, for with z # L the xฬ‚ 1 20ฮปL For z# L Lyou expect it ittotolook like a point charge q = ฮปL: E โ†’ zฬ‚. zฬ‚.It Itchecks, L Lthe 4ฯ€” For z you expect look like a point charge q = ฮปL: E โ†’ checks,forforwith withz # z thexฬ‚ xฬ‚ 1 ฮปL 0 z 2 4ฯ€ term โ†’ 0, and the zฬ‚ term โ†’1 4ฯ€” 0 z ฮป L z zฬ‚. 1 0ฮปzzฬ‚. L term โ†’ 0, and the zฬ‚ term โ†’ term โ†’ 0, and the zฬ‚ term โ†’4ฯ€”4ฯ€ zฬ‚. 0 z z 0 z z Problem 2.4 Problem 2.4 -q 2 . /. a /2 Problem 2.4 2.1, with L โ†’ a and z โ†’ z +a 222 (distance from center of edge to P ), field of one edge is: From Ex. 2 zโ†’ from center of of edge toto P ), field of of one is:is: z 2z+ From Ex. 2.1, with LL โ†’โ†’a2 aand 2 +2 a (distance From Ex. 2.2, with and z โ†’ (distance from center edge P ), field oneedge edge 2 2 1 ฮปa ฮปa. E =1 1 ฮปa -0q 2 .a2. E1E=1= 4ฯ€% a2q 2 a2 + z + z + 2 2 2 1 4ฯ€%0 a 4 2 a 24 a 24 4ฯ€0 z 2z+ 2 +4 a2 z z+ 2 +4 a+ 4a 4 4 + 4 z There are 4 sides, and we want vertical components only, so multiply by 4 cos ฮธ =q4 q z 2 a2 : There are 4 sides, and we want vertical components only, so multiply by 4 cos ฮธ = 4 z 2+ :4 z q There are 4 sides, and we want vertical components only, so multiply by 4 cos ฮธ = 4 z2 + a a2 : 4 z2 + 4 4ฮปaz 1 4ฮปaz E =1 1 . zฬ‚. / 4ฮปaz 2 2 EE = = 4ฯ€% . 0 z 2 a+2 /aq 2 2 azฬ‚. zฬ‚. 4ฯ€% 0 z2 + 4 2 z a+ 2 4ฯ€ 0 z 2 +4 a2 z z+ 2 +2 a2 4 Problem 2.5 Problem 2.5 Problem 2.5 ! ! ฮธ z ฮธ z r r r 2 0% 1 1 ฮธ o zฬ‚. 10%nR ฮปdl cos โ€œHorizontalโ€ components cancel, leaving: E =1 4ฯ€” 2 1 0 ฮปdlฮปdl ฮธ ฮธzฬ‚. zฬ‚. โ€œHorizontalโ€ components cancel, leaving: = =4ฯ€”4ฯ€ โ€œHorizontalโ€ components cancel, leaving:E E 2 % ฮทcos 2 cos 0 0 % ฮท Rrdl = 2ฯ€r. So Here,2 ฮท2 2 =2 r2 2 +2 z2 2 , cos ฮธ z= zฮทz (both constants), while Here, z z, cos ฮธ ฮธ==ฮท (both constants), while So So Here, ฮทr ==r r++ , cos constants), whiledl =dl2ฯ€r. = 2ฯ€r. r (both 1 ฮป(2ฯ€r)z ฮป(2ฯ€r)z E =1 1 ฮป(2ฯ€r)z zฬ‚. 3/2 EE = = 4ฯ€ zฬ‚. zฬ‚. 4ฯ€%00(r(r22++zz3/2 22 3/2 2 + z 2 ) )) 4ฯ€%0 (r Problem 2.6 Break it into rings of radius r, and thickness dr, and use Prob. 2.5 to express the field of each ring. Total charge of a ring is ฯƒ ยท 2ฯ€r ยท dr = ฮป ยท 2ฯ€r, so ฮป = ฯƒdr is the โ€œline chargeโ€ of each ring. 1 (ฯƒdr)2ฯ€rz 1 Ering = ; Edisk = 2ฯ€ฯƒz 3/2 2 2 4ฯ€0 (r + z ) 4ฯ€0 1 1 1 Z R r 0 3/2 (r2 + z 2 ) c “2005 Pearson Education, Inc., Upper Saddle River, rights reserved. Edisk = NJ. All2ฯ€ฯƒz โˆ’ โˆš This material zฬ‚. is 2 + z 2 may be protected under all copyright laws as they currently exist. 4ฯ€0No portionz of thisRmaterial reproduced, in any form or by any means, without permission in writing from the publisher. c c “2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. dr. 1 CHAPTER 2. ELECTROSTATICS 28 1 For R z the second term โ†’ 0, so Eplane = 4ฯ€ 2ฯ€ฯƒzฬ‚ = 0 ฯƒ zฬ‚. 20 โˆ’1/2 2 2 1 1 R2 R2 For z R, โˆšR21+z2 = z1 1 + R โ‰ˆ 1 โˆ’ , so [ ] โ‰ˆ z1 โˆ’ z1 + 12 R 2 2 z z 2 z z 3 = 2z 3 , 2 1 2ฯ€R ฯƒ 1 Q 2 and E = 4ฯ€ 2z 2 = 4ฯ€0 z 2 , where Q = ฯ€R ฯƒ. 0 Contents X z # Problem 2.7 E is clearly in the z direction. From the diagram, dq = ฯƒda = ฯƒR2 sin ฮธ dฮธ dฯ†, r 2 = R2 + z 2 โˆ’ 2Rz cos ฮธ, cos ฯˆ = zโˆ’Rrcos ฮธ . z ฯˆ r So ฮธ R ” y ฯ† Z R 1 ฯƒR2 sin ฮธ dฮธ dฯ†(z โˆ’ R cos ฮธ) Ez = . dฯ† = 2ฯ€. 4ฯ€0 (R2 + z 2 โˆ’ 2Rz cos ฮธ)3/2 ! Z ฯ€ x 1 (z โˆ’ R cos ฮธ) sin ฮธ ฮธ = 0 โ‡’ u = +1 = (2ฯ€R2 ฯƒ) dฮธ. Let u = cos ฮธ; du = โˆ’ sin ฮธ dฮธ; . 2 2 3/2 ฮธ = ฯ€ โ‡’ u = โˆ’1 4ฯ€0 0 (R + z โˆ’ 2Rz cos ฮธ) Z 1 1 !2 ฯƒR21sin ฮธ dฮธ dฯ†(z z โˆ’ Ru ” โˆ’ R cos ฮธ)du. Integral = can be done by partial fractionsโ€”or look it up. 2 + z 2 โˆ’ 2Rzu)3/2 . dฯ† = 2ฯ€. Ez4ฯ€ = 0 (2ฯ€R ฯƒ) โˆ’1 (R 2 2 3/2 4ฯ€%0 (R + z โˆ’ 2Rz cos ฮธ) 1 ! # $ 1 1 2 1 ฯ€ zu(zโˆ’โˆ’RR cos ฮธ) sin ฮธ 1 2ฯ€R2 ฯƒ (z โˆ’ R) (โˆ’z โˆ’ R) ฮธ = 0 โ‡’ u = +1 2 โˆš = = (2ฯ€R ฯƒ) = โˆ’ . dฮธ. z 2 Let |zu โˆ’ = R| cos ฮธ; du =R| โˆ’ sin ฮธ dฮธ; . 2 โˆ’22Rzu 3/2 0 4ฯ€04ฯ€%0 (2ฯ€R ฯƒ) z 2 0R2(R |z + +2z+ ฮธ = ฯ€ โ‡’ u = โˆ’1 z โˆ’ 2Rzโˆ’1 cos ฮธ)4ฯ€ ! 1 1 z โˆ’ Ru = (2ฯ€R2 ฯƒ) Integral can 1 be q done by partial fractionsโ€”or look it up. q 1 2 4ฯ€R2 ฯƒ 1 du. 2 4ฯ€%0the sphere),โˆ’1E(R For z > R (outside = 3/2 z0 โˆ’z2Rzu) 2 z =+ 4ฯ€ 4ฯ€0 z 2 , so E = 4ฯ€ z 2 zฬ‚. 0 &1 % # $ 1 2ฯ€R2 ฯƒ (z โˆ’ R) (โˆ’z โˆ’ R) 1 1 zu โˆ’ R 2 For z R (outside thecenter, sphere), Ez all = exterior 2 , so E wereFor concentrated at the while contribute nothing. Therefore: 4ฯ€”0 z 2 shells 2 0 z 4ฯ€% z 0 For z < R (inside), Ez = 0, so E = 0. E(r) = 1 Qint rฬ‚, 4ฯ€0 r2 Problem 2.8 to Prob. 2.7,interior all shells to Outside the pointthe (i.e. at smaller r) charge contribute as though where QAccording charge to interior the point. sphere, all the is interior, so their charge int is the total were concentrated at the center, while all exterior shells contribute nothing. Therefore: 1 Q E= 1 rฬ‚.Qint rฬ‚, E(r)4ฯ€ =0 r 2 4ฯ€%0 r2 Inside the Q sphere, only that fraction of the total which is interior to the point counts: where int is the total charge interior to the point. Outside the sphere, all the charge is interior, so 4 ฯ€r3 r3 1 r3 1 1 Q Q 2 rฬ‚ = r. Qint = 43 3 Q = 3 Q, so EE== 1 Q rฬ‚. 3 3 R 4ฯ€ R r 4ฯ€ ฯ€R 2 0 0 R 4ฯ€%0 r 3 Inside 2.9 the sphere, only that fraction of the total which is interior to the point counts: Problem โˆ‚ (a) ฯ = 0 โˆ‡ยทE = 0 r12 โˆ‚r r2 ยท kr3 = 0 r12 k(5r4 ) = 50 kr2 . c "2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by anycmeans, without permission in writing from the publisher. 4 ฯ€r43 3 r3 3 1 r3 31 1 Q r so E = 1 Qr rฬ‚ 1= 1 r.Q Qint = 43 33ฯ€r Q = 3 Q, 3 2 3 Qint = Q = Q, so E = Q rฬ‚ = r. R 4ฯ€" R r 4ฯ€" 0 0R 3 3 2 3 3 ฯ€R4 ฯ€R R r3 4ฯ€"10 Rr3 r 1 4ฯ€"10 R3Q 4 3 ฯ€r3 Qint = 43 3 Q = 3 Q, so E = Q rฬ‚ = r. Problem 2.9 R 4ฯ€"0 R3 r2 4ฯ€"0 R3 ! Problem 2.9 1 โˆ‚ 2 ! 3 " 3"ฯ€R1 2 (a) ฯ = "0 โˆ‡ยทE = "0 r2 โˆ‚r1 rโˆ‚ ยท kr = " k(5r4 ) = 5" kr . (a) ฯ = "0 โˆ‡ยทE = "0 r2 โˆ‚r r2 ยท kr3 0=r2"0 r12 k(5r4 ) = 0 5"0 kr2 . Problem 2.9 !#2 " 1 โˆ‚ 1 3 4 2 ) = 4ฯ€" (b) By law: =Q"enc )(4ฯ€R (a)Gaussโ€™s ฯ = "0 โˆ‡ยทE ยท #kr3 =="0"(kR ) = 5" kr2 . kR5 . 0 r 2=โˆ‚r"0 r Eยทda 0 r 2 k(5r (b) By Gaussโ€™s law: Qenc = "0$ Eยทda = "0 (kR3 )(4ฯ€R2 )0 = 04ฯ€"0 kR5 .$ $ R CHAPTER 2. ELECTROSTATICS 2 $ = R (5" $ R0 kr2 )(4ฯ€r By direct integration: Qenc = ฯ#dฯ„ dr) = 20ฯ€"0 k 5 0 r$4Rdr 429 = 4ฯ€" kR5 .! 0 3kr2 )(4ฯ€r 2 2 dr) = 20ฯ€" integration: ฯ dฯ„ = (5" k 0 r dr = 04ฯ€"0 kR5 .! 0 0 (b)ByBydirect Gaussโ€™s law: QencQenc = "= Eยทda = " (kR )(4ฯ€R ) = 4ฯ€" kR . 0 0 0 $ $ $R 4 Problem 2.10 2 2 5 Problem 2.10integration: QencH = ฯ dฯ„ = R (5" By direct kr )(4ฯ€r dr) = 20ฯ€" k r dr = 4ฯ€" .!the surface 5 0 0 0 kRup 3 2 0 0 Think this cube as one of the charge. of0the 24 which make (b)Think ByofGaussโ€™s = 80ofsurrounding = 0 (kR )(4ฯ€R )Each = Each 4ฯ€ kR . squares enc one of thislaw: cubeQas 8Eยทda surrounding the charge. of the 24 squares which make up the surface Rother RR 4 R Problem 2.10 of this larger cube gets the same fluxRas every one, 2 so: 2 5 By larger direct integration: ฯ dฯ„ (5 kr )(4ฯ€r dr) = 20ฯ€ k r dr = 4ฯ€ kR .X of this cube gets theQsame as=every other one, so: enc = flux 0 0 0 0 0 squares which make up the surface Think of this cube as one of 8 surrounding the charge. Each of the 24 Problem 2.10cube gets the same flux as of this larger every other one, so: % % % the 1charge.% Each of the 24 squares which make up the surface Think of this cube as one of 8 surrounding 1 Eยทda. Eยทda = =one, so:% Eยทda. of this larger cube gets the same flux as every other 24 %Eยทda 24 one whole 1 Z Z face one largewhole face Eยทda = 1 large Eยทda. cube Eยทda = 24cube Eยทda. one %face 24 whole large % one q whole q .cube The latter is "10 q, 1by Gaussโ€™s law. Therefore faceEยทda = large = 0cube . The latter is "0 q, by Gaussโ€™s law. Therefore %Eยทda24" 24" one q0 face one Z . The latter is "10 q, by Gaussโ€™s law. Therefore face Eยทda = q 1 The latter is 10 q, by Gaussโ€™s law. Therefore oneEยทda = 24"0. 240 face one Problem 2.11 face Problem 2.11 1 # # = E(4ฯ€r2 ) =2 1 Qenc Gaussian surface: Inside: Eยทda Problem 2.11 1 = 0 โ‡’ E = 0. " 0 Gaussian surface: Inside: Eยทda = E(4ฯ€r ) = "0 Qenc = 0 โ‡’ E = 0. Problem"2.11 " (As in Prob. 2.7.) 2 # (As in Prob. 2.7.) ! 2 2= 0. 1 2 1 Qenc = 0ฯƒR โ‡’ ฯƒR Gaussiansurface: surface:Outside: Inside: E(4ฯ€r Eยทda2= E(4ฯ€r E )= rฬ‚. r ! ! Gaussian 1 ) = ")0 โ‡’ 2 E= 2 "0 (ฯƒ4ฯ€R ! 2 Gaussian surface: Outside: E(4ฯ€r ) = "0 (ฯƒ4ฯ€R ) โ‡’ E"= rฬ‚. r r " 0 "0ฯƒR r2 2 (As in Prob. 2.7.) ! 1 2 2 ! Gaussian surface: Outside: E(4ฯ€r ) = "0 (ฯƒ4ฯ€R ) โ‡’ E = rฬ‚. r "0 r 2 Contents Contents Gaussian surface Problem 2.12 Problem 2.12 Problem 2.12 Problem 2.12 }} } # 1 4 1 34 #H = E ยท 4ฯ€r2 = 221 Qenc Eยทda ฯ€r ฯ. 3 So Eยทda = =E E ยทยท 4ฯ€r 4ฯ€r "0= = 110Q Q= enc"0=3 1 4 ฯ€r3 ฯ. So Eยทda "0 enc = "00 33ฯ€r ฯ. So # Gaussian surface 21 1 Eยทda = E ยทE4ฯ€r = ฯrrฬ‚. 1Qenc = "10 43 ฯ€r3 ฯ. So r " "1 =E = 0 # r# " ฯrrฬ‚. E = 3"0 30ฯrrฬ‚. Gaussian surface 3"01 r " Q = 1 ฯrrฬ‚. # Q in Prob. 2.8). Problem 3E= ฯ€R42ฯ€R ฯ, 2E rฬ‚ Q(as Since QtotQ=tot43 = 31 3" Since ฯ, E4ฯ€" E rฬ‚ in (asProb. in Prob. R 2.13 0 R14ฯ€ 0 ฯ, == rฬ‚3 (as 2.8).2.8). Since Qtot = 433ฯ€R 0 3R 4ฯ€"0 R $R % $ Gaussian surface Q 4 E 2ยท 2ฯ€s ยท l = 1!100 Q = !1in ฮปl. So 2.8). Prob. Since QEยทda tot = = 3 rฬ‚ (as R 3 ฯ€R ฯ, E = 4ฯ€" Renc 0 Problem 2.13 Problem 2.13 Problem 2.13 " $ Problem 2.13 ! s # %H Gaussian surface Gaussian surface ฮป= E ยท 2ฯ€s ยท l1= 1 1 Qenc1= 1 1 ฮปl. So #Eยทda Eยทda Gaussian surface Problem 2.13 Eยทda =E ยทE2ฯ€s ยทl= = So So sฬ‚ยท 2ฯ€s E = (same 2.1). == ยท l =asQEx. = ฮปl.10ฮปl. 10Qenc enc ! "# $ Eยทda 2ฯ€#0 sE ยท 2ฯ€s ยท l"0= !0"0 Qenc"0= !0"0 ฮปl. So & " % sl ! s% # & Gaussian surface s ฮป E ยท 2ฯ€s ยท l = 1 Q = 1 ฮปl. So Eยทda enc E =ฮป ฮปฮป ห† s (same as Eq. 2.9). "0 "2.1). 0 E= as Ex. sฬ‚=s(same E = 2ฯ€ E = (sameas asEx. Ex.2.1). 2.1). 0 sฬ‚sฬ‚ (same & & ! '( "# ) % 2ฯ€"2ฯ€# $ 0s 0s s & '( ) 2ฯ€"0ฮปs l l l E= sฬ‚ (same as Ex. 2.1). Problem 2.14 Problem 2.14 2ฯ€"0 s Problem Problem2.14 2.14& '( ) l H R R This2 material is Problem 2.14 c !2005 Pearson Education, Inc., Upper2 Saddle 1 River, NJ. 1 All rights reserved. =E ยท 4ฯ€r = currently QencRiver, = ฯ portion dฯ„ = 1of (krฬ„)(rฬ„ This sin ฮธmaterial drฬ„ dฮธ dฯ†) c !2005 Pearson Education, Inc., All rights reserved. is protected under all Eยทda copyright laws as Upper they exist. No Saddle 0 NJ. 0 0 this material may be Rasr they protected all copyright currently Nowriting portion of this may be 4 Problem 2.14 reproduced, in under any form or by1anylaws means, without permission in from the material publisher. 4ฯ€k rexist. ฯ€k 3 4 = or kInc., 4ฯ€ rฬ„ drฬ„Saddle = 0River, rinrights . writing in anyEducation, form any Upper means, without permission from the publisher. Gaussian reproduced, surface c !2005 Pearson NJ.0All reserved. This material is 0 by 4 = 0 protected under all copyright laws as they currently exist. No portion of this material may be r# $ reproduced, in any form means, without permission in writing from the publisher. 1 or by any 2 โˆด E = ฯ€kr rฬ‚. Gaussian surface 4ฯ€0 r $ # Problem 2.15 c (i) Qenc = 0, so E = 0. Problem % 2.15 & & (ii) Eยทda = E(4ฯ€r2 ) = !10 Qenc = !10 ฯ dฯ„ = !10 rฬ„k2 rฬ„2 sin ฮธ drฬ„ dฮธ dฯ† (i) Qenc = 0, so E = 0. ' ( &r k rโˆ’a 4ฯ€k 4ฯ€k &rฬ‚.k 2 =% !0 a drฬ„ = !02 (r โˆ’1a) โˆด E =1 & 2 1 |E| (ii) Eยทda = E(4ฯ€r ) = !0 Qenc = !0 #0ฯ dฯ„ r= dฯ† !0 rฬ„ 2 rฬ„ sin ฮธ drฬ„ dฮธ ! ' ( & k rโˆ’a & 4ฯ€k 2r 4ฯ€k4ฯ€kb(r โˆ’ a)4ฯ€k rฬ‚. โˆด E = so 2 (iii)=E(4ฯ€r == !0 a) drฬ„ |E| !0 !0a drฬ„ = !0 (b โˆ’ a), # r 0 ! ' ( k bโˆ’a & rฬ‚. E= 2 b 2 drฬ„ = 4ฯ€k (iii) E(4ฯ€r #0 ) =r4ฯ€k !0 !0 (b โˆ’ a), so a ' ( % Gaussian surface r $ # 111 Contents 30 CHAPTER 2. ELECTROSTATICS Problem 2.15 Qenc = 0, so E = 0. Problem(i)2.15 & & (i) Qenc =%0, so E = 0. 2 ) = !10 QencR= !10 ฯ dฯ„R= !10 rฬ„k2 rฬ„2 sin ฮธ drฬ„ dฮธ dฯ† H (ii) Eยทda = E(4ฯ€r 1 1 2 2 '1 k ( Problem 2.13 (ii) Eยทda = E(4ฯ€r 0 Qenc = 0 ฯ dฯ„ = & r ) =4ฯ€k k 0r โˆ’rฬ„2arฬ„ sin ฮธ drฬ„ dฮธ dฯ† 4ฯ€k Problem rฬ‚. drฬ„ = !0 (r โˆ’ a) โˆด kE =r โˆ’ a 2 = R r !0 a2.16 |E| #0 rrฬ‚. 4ฯ€k ! = 4ฯ€k drฬ„ = (r โˆ’ a) โˆด E = 0 0 a 2 0 r & 4ฯ€k 4ฯ€k b drฬ„ = (b โˆ’ a), so (iii) E(4ฯ€r2 ) = R !0 a b !0 ' a drฬ„ ( (iii) E(4ฯ€r2 ) = 4ฯ€k = 4ฯ€k 0 0 (b โˆ’ a), so k bโˆ’a ! E=b โˆ’ a 2 rฬ‚. Problem Problem 2.13 ! Eยทda = E ยท 2ฯ€s ยท l = !10 Qenc = !10 ฯฯ€s2 l; Problem2.13 2.13k(i) Gaussian surface #0 r E= rฬ‚. 2 % Problem 2.16 Problem Problem 2.16 2.16 0 r ฯs l r b sฬ‚. a E= 2#0 Problem 2.16 2.16 Problem H ! Eยทda = E ยท 2ฯ€s ยท l = 1 Q = 10 ฯฯ€s2 l; Gaussian c !2005 Pearson Education, Inc., Upper NJ. All! reserved. This material is0 enc !rights !surface " Saddle River, 222 under all copyright! laws they currently exist. No portion of may (i) Q l; Eยทda E 2ฯ€s s asGaussian (i) Q = ฯฯ€s l;l; ! Eยทda = EEยท!ยทฯs 2ฯ€s = (i) Qenc = !!110!010ฯฯ€s ฯฯ€s ! Eยทda= =this ยทmaterial 2ฯ€sยทยทยทlll= = !!110!010be (i) protected(ii) 1 1 enc 2 enc= surface Gaussian surface Gaussian surface Eยทda =E ยท 2ฯ€s ยทl = E= ห† s.publisher. reproduced, in any form or by any means, without permission in writing from the !0 Qenc = !0 ฯฯ€a l; ฯs ฯs ฯs 2 0 lll 2 sฬ‚. E sฬ‚. E = sฬ‚. E= = 2# 2# 2#000 E = ฯa sฬ‚. 2#0 s l Contents Contents (ii) (ii) (ii) (ii) " " " sss (iii) lll ! H ! ! "Gaussian Gaussian surface Gaussiansurface surface Eยทda = E ยท 2ฯ€s ยท1l = 10 Qenc = 10 ฯฯ€a2 l; ! Gaussian!!!surface s 222 Eยทda ยท!ยทยท2ฯ€s l; Eยทda = EEฯa 2ฯ€s = Q = ฯฯ€a l;l; Eยทda= =E 2ฯ€s = !!110!010Q Qenc = !!110!010ฯฯ€a ฯฯ€a 2 ยทยทยทlll= enc enc= 1 Q Eยทda = E ยท 2ฯ€s ยท l = E = 222 ห† s. !0 enc = 0; ฯa ฯa ฯa 20 s sฬ‚. E sฬ‚.sฬ‚.E = 0. E = E= = 2# 2# 2#000sss l ! ! ! Gaussian Gaussian surface Gaussiansurface surface " " " sss !!!H 1 = Eยทda ยทยทยทllยทl= Eยทda= ยท2ฯ€s 2ฯ€s l==!!110!01Q Q = 0; Eยทda = EEEยทยทยท2ฯ€s 2ฯ€s = QQ ==0; 0;0; Eยทda ==E enc enc enc enc 00 E = 0. E = 0. EE == 0.0. (iii) (iii) (iii) (iii) Contents |E| " lll Problem 2.17 # |E| |E| |E|a" On the x z plane E = 0 by symmetry. Set up Gaussian โ€œpillboxโ€ with and the a one face b in this plane s " " other at y. c2.17 Pearson Upper River, NJ. Allup rights reserved. This material with is Problem!2005 On theEducation, x z planeInc., E= 0 bySaddle symmetry. Set a Gaussian โ€œpillboxโ€ one face in this plane protected under all copyright laws as they currently exist. No portion of this material may be and the other at y. reproduced, in any form or by any means, without permission in writing from the publisher. Gaussian pillbox # # 1 1 # Eยทda = aa E a ยท A = 0bbbQenc = 0ssAyฯ; s ฯ E= y yฬ‚isisis(for |y| d). “0 E$ ฯd “0 โˆ’d d ! y Problem 2.17 On the x z plane E = 0 by symmetry. Set up a Gaussian โ€œpillboxโ€ with one face in this plane and the other at y. ! Gaussian pillbox # CHAPTER 2. ELECTROSTATICS Eยทda = E ยท A = !10 Qenc = !10 Ayฯ; ฯ E = y yฬ‚ (for |y| d). Qenc = 0 Adฯ โ‡’ E = “d0 yฬ‚ (for y > d). 0 E$ ฯd “0 โˆ’d d ! y Problem 2.18 Problem 2.18 From Prob. 2.12, the field inside the positive sphere is E+ = 3ฯ0ฯr+ , where r+ is the vector from the positive From Prob. 2.12, the field inside the positive sphere is E+ = 0 r+ , where rฯ+ is the vector from the positive center to the point in question. Likewise, the field of the negative3!sphere is โˆ’ 30ฯrโˆ’ . So the total field is center to the point in question. Likewise, the field of the negative sphere is โˆ’ 3!0 rโˆ’ . So the total field is ฯ EE== ฯ(r(r rโˆ’r) ) + โˆ’โˆ’ “rโˆ’rโˆ’ r + โˆ’ 33″ *&โˆ’โˆ’ 0 0 % r+r+ d ฯฯ d r But (see diagram) r โˆ’ r = d. So E = d. + โˆ’ But (see diagram) r+ โˆ’ rโˆ’ = d. So E =30 d. ++ 3″0 Problem Problem2.19 2.19 Z” rฬ‚ฮทฬ‚ ฯ dฯ„ = 11 Z” #โˆ‡ร— $ ฮทฬ‚rฬ‚ %& ฯ dฯ„ (since ฯ depends on “r0 , not r) 11 โˆ‡ร—E = โˆ‡ร— โˆ‡ร— r 22 ฯ dฯ„ = โˆ‡ร— r2 2 ฯ dฯ„ (since ฯ depends on r , not r) โˆ‡ร—E = 4ฯ€ 4ฯ€ 0 0 4ฯ€” ฮท 4ฯ€”00 ฮท $ % rฬ‚ ฮทฬ‚ ==0 0 (since 1.63). (sinceโˆ‡ร— โˆ‡ร— 22 = 0, from Prob. 1.62). rฮท Problem Problem2.20 2.20 ‘ ‘ ‘ xฬ‚ yฬ‚ yฬ‚ zฬ‚ zฬ‚ ‘ xฬ‚ ‘โˆ‚ โˆ‚ โˆ‚ โˆ‚ โˆ‚ โˆ‚ ‘ ‘ ‘ =k k[xฬ‚(0 (1) ==k kโˆ‚x (1)โˆ‡ร—E โˆ‡ร—E [xฬ‚(0โˆ’โˆ’2y) 2y)++yฬ‚(0 yฬ‚(0โˆ’โˆ’3z) 3z)++zฬ‚(0 zฬ‚(0โˆ’โˆ’x)] x)]6=#=0,0, 1 1 ‘ โˆ‚x โˆ‚yโˆ‚y โˆ‚zโˆ‚z = ‘ ‘ xy2yz xy 2yz3zx 3zx’ sosoEE ananimpossible impossibleelectrostatic electrostaticfield. field. 1 1is is ‘ ‘ ‘ xฬ‚ xฬ‚ yฬ‚ yฬ‚ zฬ‚ zฬ‚ ” ‘โˆ‚ โˆ‚ โˆ‚โˆ‚ โˆ‚โˆ‚ ‘ ‘ [xฬ‚(2zโˆ’โˆ’2z) 2z)++yฬ‚(0 yฬ‚(0โˆ’โˆ’0)0)++zฬ‚(2y zฬ‚(2yโˆ’โˆ’2y)] 2y)]==0,0, (2)โˆ‡ร—E โˆ‡ร—E (2) ==k kโˆ‚x [xฬ‚(2z 2 2 ‘ =k k ‘ โˆ‚x โˆ‚yโˆ‚y โˆ‚zโˆ‚z = 2 2 ‘ 2y 2xy + 2z 2yz ‘ y 2xy + z 2yz possibleelectrostatic electrostaticfield. field. sosoEE a apossible 2 2is is z 6 Letโ€™s go by the indicated path: c #2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be any form or by any means, without permission in writing from the publisher. 2 r(x0 , y0 , z0 ) Eยทdl = (y 2 dx + (2xy + zreproduced, )dy + 2yzindz)k 6 Step I: y = z = 0; dy = dz = 0. Eยทdl = ky 2 dx = 0. III Step II: x = x0 , y : 0 โ†’ y0 , z = 0. dx = dz = 0. Eยทdl = k(2xy + Rz 2 )dy = 2kx0 y dy. R y Eยทdl = 2kx0 0 0 y dy = kx0 y02 . II Step III : x = x0 , y = y0 , z : 0 โ†’ z0 ; dx = dy = 0. Eยทdl = 2kyz dz = 2ky0 z dz. c x I = = II – -y 32 R III CHAPTER 2. ELECTROSTATICS Rz Eยทdl = 2y0 k 0 0 z dz = ky0 z02 . (x0 ,y R0 ,z0 ) Eยทdl = โˆ’k(x0 y02 + y0 z02 ), or V (x, y, z) = โˆ’k(xy 2 + yz 2 ). V (x0 , y0 , z0 ) = โˆ’ 0 โˆ‚ โˆ‚ โˆ‚ Check : โˆ’โˆ‡V =k[ โˆ‚x (xy 2 +yz 2 ) xฬ‚+ โˆ‚y (xy 2 +yz 2 ) yฬ‚+ โˆ‚z (xy 2 +yz 2 ) zฬ‚]=k[y 2 xฬ‚+(2xy+z 2 ) yฬ‚+2yz zฬ‚]=E. X Problem 2.21 Rr V (r) = โˆ’ โˆž Eยทdl. ๏ฃฑ 1 q ๏ฃฒOutside the sphere (r > R) : E = 4ฯ€0 r2 rฬ‚. q 1 E = 4ฯ€ 3 rrฬ‚. 0 R ๏ฃณ Inside the sphere (r R: V (r) = โˆ’ โˆž 4ฯ€ drฬ„ = 4ฯ€ q 2 0 rฬ„ 0 1 rฬ„ r โˆž = q 1 , 4ฯ€0 r h 2 2 i RR 1 q Rr 1 q q 1 1 r โˆ’R and for r R, โˆ‡V = 4ฯ€ 0 โˆ‚r q q 1 1 rฬ‚ = โˆ’ 4ฯ€ 2 rฬ‚, so E = โˆ’โˆ‡V = 4ฯ€ r 2 rฬ‚. X 0 r 0 2 q q q q 1 โˆ‚ 1 2r r 1 When r < R, โˆ‡V = 4ฯ€ 3 โˆ’ Rr 2 rฬ‚ = 4ฯ€ โˆ’R rฬ‚ = โˆ’ 4ฯ€ 2 3 rฬ‚; so E = โˆ’โˆ‡V = 4ฯ€ R3 rrฬ‚.X 0 2R โˆ‚r 0 2R 0 R 0 1 r V(r) 1.6 1.4 1.2 1 (In the figure, r is in units of R, and V (r) is in units of q/4ฯ€0 R.) 0.8 0.6 0.4 0.2 0.5 1 1.5 2 2.5 3 r Problem 2.22 1 2ฮป E = 4ฯ€ sฬ‚ (Prob. 2.13). In this case we cannot set the reference point at โˆž, since the charge itself 0 s extends to โˆž. Letโ€™s set it at s = a. Then s R s 1 2ฮป 1 V (s) = โˆ’ a 4ฯ€ dsฬ„ = โˆ’ 2ฮป ln . 0 sฬ„ 4ฯ€0 a (In this form it is clear why a = โˆž would be no goodโ€”likewise the other โ€œnaturalโ€ point, a = 0.) 1 โˆ‚ 1 โˆ‡V = โˆ’ 4ฯ€ 2ฮป โˆ‚s ln as sฬ‚ = โˆ’ 4ฯ€ 2ฮป 1s ห† s = โˆ’E. X 0 0 Problem 2.23 R0 Rb Ra R0 V (0) = โˆ’ โˆž Eยทdl = โˆ’ โˆž k0 (bโˆ’a) dr โˆ’ b k0 (rโˆ’a) dr โˆ’ a (0)dr = k0 (bโˆ’a) โˆ’ k0 ln r2 r2 b k b = k0 1 โˆ’ ab โˆ’ ln ab โˆ’ 1 + ab = ln . 0 a Problem 2.24 Using Eq. 2.22 and the fields from Prob. 2.16: Rb Ra Rb Ra 2 Rb 1 V (b) โˆ’ V (0) = โˆ’ 0 Eยทdl = โˆ’ 0 Eยทdl โˆ’ a Eยทdl = โˆ’ 2ฯ0 0 s ds โˆ’ ฯa 20 a s ds c a b +a 1 1 a โˆ’ b Contents CHAPTER 2. ELECTROSTATICS =โˆ’ ฯ 20 s2 2 a 0 2 b + ฯa 20 ln s|a = โˆ’ 33 ฯa2 40 1 + 2 ln b . a Problem Problem2.25 2.25 11 2q 2q q .. ! 4ฯ€ 4ฯ€"00 z 22+ "dd#22 z + 22 โˆš R L L 1 ฮป โˆšz 2 + x2 ) %L $ L โˆš ฮป2ฮปdx (b) V = 4ฯ€ 10 โˆ’L dx2 = 4ฯ€ฮป0 ln(x + 2 + x2 )โˆ’L % z +x โˆš (b) V = 4ฯ€" z = ln(x + 4ฯ€"0 โˆ’L z 2 +x2 โˆ’L 0 " # ! โˆš โˆš ' & โˆš 2 2 ฮป L + z 2+ L 2 ฮป z2 + ( L+ ) L2 โˆš ฮป L + z + L โˆš = ln = ฮป ln L+ z2 +L2 . = 4ฯ€0 ln โˆ’L + โˆšz 2 + L2 . = 2ฯ€ 2ฯ€"00 ln z z 4ฯ€"0 โˆ’L + z 2 + L2 (a) (a) VV == z %R โˆš $ ฯƒ * 2 1 Z R ฯƒ 2ฯ€r dr 1 2p 2 )% = R (c) V = 4ฯ€" r + z = 2ฯ€ฯƒ ( 1 0 0 Rโˆšฯƒr22ฯ€r dr 1 ฯƒ R p+ z22 โˆ’ z2 . 2 4ฯ€"0 โˆš +z (c) V = = 2ฯ€ฯƒ ( r2 +0z 2 ) 2" =0 R +z โˆ’z . 4ฯ€0 0 4ฯ€0 20 0 r2 + z 2 โˆ‚V In each case, by symmetry โˆ‚V โˆด E = โˆ’ โˆ‚V โˆ‚y = โˆ‚x = 0. โˆ‚z zฬ‚. โˆ‚V In each case, by symmetry โˆ‚V = = 0. โˆด E = โˆ’ โˆ‚V โˆ‚y โˆ‚x โˆ‚z zฬ‚. ( ) r x " # 2qz 1 1 2z โ€3/2 zฬ‚ = (a) E = โˆ’ 4ฯ€" 2q โˆ’ 21 โ€œ " #3/2 zฬ‚ (agrees with Prob. 2.2a). 0 d 2 2 4ฯ€"0 z12 + " d #22qz 1 1 z +( 2 ) 2z 2 (a) E = โˆ’ 2q โˆ’ zฬ‚ = zฬ‚ (agrees with Ex. 2.1). 3/2 4ฯ€0 + 2 2 4ฯ€0 z 2 + d 2 3/2 , d 2 z + 2 1 โˆš 21 ฮป โˆš1 2z โˆ’ (โˆ’L+โˆš1z2 +L2 ) 12 โˆšz21+L2 2z zฬ‚ (b) E = โˆ’ 4ฯ€" 2 2 2 0 z 2 +L2 (L+ z +L ) ฮป 1+ 1 โˆš 1 1 1 , โˆš 1 1 2Lฮป 2 2 2 2 โˆš โˆ’Lโˆ’ z +L โˆš (agrees (b) E = โˆ’ 2z โˆ’ zฬ‚ = โˆš โˆš 2z with zฬ‚ Ex. 2.1). ฮป โˆš z โˆš โˆ’L+ z +L =4ฯ€ โˆ’ 4ฯ€" 2 2 2 + 2L2 (โˆ’L +4ฯ€"z02z+ zL22 + ) 2L2 zzฬ‚2 + L2 0 0 (L z 2+ +L2 z + L )(z22 +Lz2 )โˆ’L ( ) โˆš โˆš ฮป+ z โˆ’L + z 2 +-L2 โˆ’ L โˆ’ z 2 + 2Lฮป 1 . L2 , โˆš = โˆ’ฯƒ 1 โˆš 1 zฬ‚ = zฬ‚ (agrees with Ex. 2.2). ฯƒ2 z2 2 2 2 2 (z +1Lโˆ’)โˆš โˆ’L 4ฯ€0 zProb. z +2.6). L2 0 โˆš z 2 +2L zฬ‚ (agrees with (c) E = โˆ’ 2"4ฯ€ 2 R +z 2z โˆ’ 1 zฬ‚ = 2" 0 R2 + z 2 0 ฯƒ 1 1 ฯƒ z the in โˆ’ (a)1 is zฬ‚โˆ’q, 0 , which, naively, suggests E = โˆ’โˆ‡V โˆš charge 2z (c) EIf = โˆ’right-hand = then V 1 โˆ’= โˆš zฬ‚ (agrees with Prob. 2.6). = 0, in contradiction 2 + z2 2 20 2 toRProb. 20 is that R z 2 know V on the z axis, and from this we cannot with the answer 2.2b. The point we + only โˆ‚V hope to compute Ex = โˆ’ โˆ‚V โˆ‚x or Ey = โˆ’ โˆ‚y . That was OK in part (a), because we knew from symmetry that If the right-hand charge in (a) is โˆ’q, then V = 0 ,sowhich, naively, E =is โˆ’โˆ‡V = 0, in Ex = Ey = 0. But now E points in the x direction, knowing V onsuggests the z axis insufficient tocontradiction determine E. 2 with the answer to Prob. 2.2. The point is that we only know V on the z axis, and from this we cannot hope โˆ‚V to compute Ex = โˆ’ โˆ‚V โˆ‚x or Ey = โˆ’ โˆ‚y . That was OK in part (a), because we knew from symmetry that Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insufficient to determine E. Problem 2.26 " c #2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. b h Z โˆš2h 2ฯ€ฯƒ 1 โˆš ฯƒh โˆš ( 2h) = dr = r 4ฯ€ 2 2 0 0 0 โˆš (where r = r / 2) 1 V (a) = 4ฯ€0 c ฯƒ2ฯ€r h rฬ„ r a ! 34 1 V (b) = 4ฯ€0 Z โˆš2h 0 2ฯ€ฯƒ 1 โˆš 4ฯ€0 2 Z โˆš ฯƒ2ฯ€r rฬ„ CHAPTER 2. ELECTROSTATICS dr (where rฬ„ = q h2 + r 2 โˆ’ โˆš 2h r ) r 2h p dr โˆš 0 h2 + r 2 โˆ’ 2h r โˆš q 2h q โˆš โˆš โˆš ฯƒ h = โˆš h2 + r 2 โˆ’ 2h r + โˆš ln(2 h2 + r 2 โˆ’ 2h r + 2 r โˆ’ 2h) 2 20 2 = 0 โˆš โˆš โˆš ฯƒ h h = โˆš h + โˆš ln(2h + 2 2h โˆ’ 2h) โˆ’ h โˆ’ โˆš ln(2h โˆ’ 2h) 2 20 2 2 โˆš ! h i โˆš โˆš ฯƒ h ฯƒh 2+ 2 ฯƒh โˆš ln(2h + 2h) โˆ’ ln(2h โˆ’ 2h) = โˆš = โˆš ln = ln 40 40 2 20 2 2โˆ’ 2 โˆš โˆš i ฯƒh ฯƒh h = ln(1 + 2). โˆด V (a) โˆ’ V (b) = 1 โˆ’ ln(1 + 2) . 20 20 (2 + โˆš 2)2 ! 2 3 Problem 2.27 Problem 2.27 Cut the Cut cylinder into slabs, shownasinshown the figure, the cylinder intoasslabs, in theand figure, and use result of result Prob. of 2.25c, z โ†’with x and ฯƒ xโ†’and ฯ dx: use Prob.with 2.25c, zโ†’ ฯƒ โ†’ ฯ dx: zโˆ’ L 2 โˆšz+L/2 % &โˆš ' ฯ R2 + x2 โˆ’2x dx2 R + x โˆ’ x dx 2"0 zโˆ’L/2 zโˆ’L/2 V = 2ฯ0 V = # โˆš โˆš โˆš ( โˆš 2 z+L/2 2 )*z+L/2 = 2ฯ0 12 = x ฯR21 +xx2 R +2R+2 ln(x R2 ++x2 )Rโˆ’2 x x2 ++ R2 ln(x + x2zโˆ’L/2 )โˆ’x * 2"0 2 zโˆ’L/2 8 9 3 r 2 3 9 8 r 2 q q L + R2 + z+ L 2 < = z+ q q ( L +2 )R2 + z+ L 2 = < 2 2 ฯ z+ 2 L L 2 L 2 L 2 2 ( 4 2 5โˆ’2zL2 ) . 5 r 2 ฯ z+ R + z+ โˆ’ zโˆ’ R + zโˆ’ +R ln 2 L L L L ( ) ( ) ( ) ( ) 2 2 4 r2 40 : = 2 2 R +(z+ 2 ) โˆ’(zโˆ’ ) 2 R +(zโˆ’ ) +R ln โˆ’2zL . 4"0 :(z+ 2 ) 2 2 2 zโˆ’ L + R2 + zโˆ’ L 2 ; ( L +2 )R2 +(zโˆ’ L; 2 zโˆ’ ) 2 (Note: L "# $! x !" " ! "# $ z+L/2 R = ! $ dx 2 2 2 L2 L2 2' 2 2 2 โˆ’(Note: z + L2โˆ’ &z++zLโˆ’'2L2+ &z=โˆ’โˆ’z L 2โˆ’ zL โˆ’2 4 + z โˆ’ L zL +2 4 = โˆ’2zL.) = โˆ’z โˆ’ zL โˆ’ + z โˆ’ zL + L4 = โˆ’2zL.) 2 2 4 s (s 2 2 2 , , L 2& + ' '2 z + . .z2 โˆ’ L2 & โˆ‚V zฬ‚ฯ L L2 L 2 2 2 2 z + โˆ’2 R + z โˆ’2 z โˆ’ L2 E = โˆ’โˆ‡V = โˆ’zฬ‚ = โˆ’โˆ‚V Rzฬ‚ฯ+ z +2 + qL โˆ’ qL 2 2 / / โˆ‚z= โˆ’zฬ‚ 40 = โˆ’ 2 z+ 2 + 2 zโˆ’ 2 โˆ’ R + E = โˆ’โˆ‡V L L '2 โˆ’ R + '2 โˆ‚z 4$0 2R + z +22 & 2R + z โˆ’2 2 & R + z + L2 R + z โˆ’ L2 L L z+ 2 zโˆ’ 2 " ) 1 +0 q 1+ q zโˆ’ L # z+ L 2 L 2 1 2 2+ 1 (+zโˆ’qL2 )2 2 L 2 1 + R2 + z+q R ( ) 2 2 L 2 2 2 R +(z+ 2โˆ’) R +(zโˆ’ 2 )โˆ’ 2L q +R 2 q 2 2 โˆ’ +R 2+ / 2+ / ' โˆ’ 2L z + L2 + RL z +2L2 & z Lโˆ’'2L2 + RL z โˆ’2L2 & L 2 z + 2 + R + z{z+ 2 z โˆ’ 2 + R + }z โˆ’ 2 | $! 1 " # 1 q q โˆ’ 1 1 2 / โˆ’ / L 2& '22 + '2 R2 + z +2L2 & R z โˆ’22 R + z + L2 R + z โˆ’ L2 ๏ฃฑ s ๏ฃผ s 2 2 ๏ฃฒ ๏ฃฝ ๏ฃฑ ๏ฃผ , L , L zฬ‚ฯ .2 ๏ฃฝ E=โˆ’ 2 zฬ‚ฯ R2 ๏ฃฒ + z + – โˆ’ 2L .R22 + z โˆ’ – โˆ’ 2L 4E0 ๏ฃณ 2 z+ 2 z โˆ’ L ๏ฃพ โˆ’ 2L =โˆ’ โˆ’ 2 R2 + 2 R2 + ๏ฃพ 4$0 ๏ฃณ 2 2 ๏ฃฎ ๏ฃน , c .2 , .2 ฯ ๏ฃฐ L L ๏ฃป zฬ‚. = L โˆ’ R2 + z + + R2 + z โˆ’ 2$0 2 2 Problem 2.28 z $ Orient axes so P is on z axis. P V = 1 %ฯ dฯ„. = 2 Hereโˆšฯ is constant, dฯ„ = r sin ฮธ dr dฮธ dฯ†, z ฮธ r ! 1 Hello CHAPTER 2. ELECTROSTATICS 35 ๏ฃฎ ๏ฃน s 2 s 2 ฯ ๏ฃฐ L L ๏ฃป zฬ‚. = L โˆ’ R2 + z + + R2 + z โˆ’ 20 2 2 z # Problem 2.28 Orient axes so P is on z axis. R ฯ Here ฯโˆšis constant, dฯ„ = r2 sin ฮธ dr dฮธ dฯ†, 1 V = 4ฯ€0 r dฯ„. r = z 2 + r2 โˆ’ 2rz cos ฮธ. ฯ V = 4ฯ€ 0 Rฯ€ 0 โˆš โˆดV R 2 โˆšr sin ฮธ dr dฮธ dฯ† ; z 2 +r 2 โˆ’2rz cos ฮธ r P z ฮธ r "y ฯ† R 2ฯ€ 0 dฯ† = 2ฯ€. x! โˆš โˆš ฯ€ 1 r2 + z 2 โˆ’ 2rz cos ฮธ 0 = rz r2 + z 2 + 2rz โˆ’ r2 + z 2 โˆ’ 2rz 1 2/z , if r z. sin ฮธ 1 dฮธ = rz z 2 +r 2 โˆ’2rz cos ฮธ ฯ = 4ฯ€ ยท 2ฯ€ ยท 2 0 โˆš ( ) n 3 o Rz 1 2 RR 1 2 ฯ ฯ 1z R2 โˆ’z 2 z2 2 r dr + r dr = + = R โˆ’ . z r 0 z 3 2 20 3 z 0 q 3q q 1 z2 z2 2 But ฯ = 4 ฯ€R , so V (z) = R โˆ’ = 3 โˆ’ 3 20 4ฯ€R3 3 8ฯ€0 R R2 ; V (r) = Contents 3 q 8ฯ€0 R 3โˆ’ r2 R2 . X Problem 2.29 R R 1 1 โˆ‡2 V = 4ฯ€ โˆ‡2 rฯ dฯ„ = 4ฯ€ ฯ(r0 ) โˆ‡2 r1 dฯ„ (since ฯ is a function of r0 , not r) 0 0 R 1 = 4ฯ€ ฯ(r0 )[โˆ’4ฯ€ฮด 3 (r โˆ’ r0 )] dฯ„ = โˆ’ 10 ฯ(r). X 0 Problem 2.30. Problem 2.30. (a) (a)Ex. Ex.2.5: 2.4: EEabove = 2ฯƒ2″ฯƒ00nฬ‚; nฬ‚;EEbelow =โˆ’โˆ’2ฯƒ2″ฯƒ00nฬ‚nฬ‚(nฬ‚ (nฬ‚always alwayspointing pointingup); up);EEabove โˆ’EEbelow =ฯƒ0″ฯƒ0nฬ‚. nฬ‚.X! above= below= aboveโˆ’ below= Ex. Ex.2.6: 2.5: At Ateach eachsurface, surface,EE==00one oneside sideand andEE==ฯƒ0″ฯƒ0 other otherside, side,so soโˆ†E โˆ†E==ฯƒ0″ฯƒ0. .X! 22 ฯƒR Prob. rฬ‚ = ฯƒฯƒrฬ‚ ; Einin==00; ;so Prob.2.11: 2.11: EEout = ฯƒR soโˆ†E โˆ†E== ฯƒ0″ฯƒ0rฬ‚.rฬ‚.X! out= “0rr2 2 rฬ‚ = 0″0 rฬ‚ ; E 0 ! s (b) (b) ! R H! Outside: Eยทda Eยทda==E(2ฯ€s)l E(2ฯ€s)l== 1″10QQenc = ฯƒ”10(2ฯ€R)l (2ฯ€R)lโ‡’ โ‡’EE== ฯƒ”ฯƒ0RRssฬ‚sฬ‚== ฯƒ”ฯƒ0sฬ‚sฬ‚(at (atsurface). surface). enc= Outside: 0 0 0 s 0 c ฯƒ !2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is Inside: soEE== โˆ†E enc Inside: QQenc ==0,0, so 0.0. โˆดโˆด โˆ†E ==ฯƒ0″of0sฬ‚.sฬ‚. X!material may be protected all copyright laws as they currently exist. No portion this % ” #$ under reproduced, in any form or by any means, without permission in writing from the publisher. l 2 (c) Vout = RR0 r2ฯƒฯƒ = Rฯƒ (at surface); Vin = Rฯƒ ; so Vout = Vin . X Rฯƒ 0 0 (c) Vout = “0 r = Rฯƒ “0 (at surface); Vin = “0 ; so Vout = Vin . ! โˆ‚Vout โˆ‚Vin โˆ‚Vin R2 ฯƒ ฯƒ out = 0 ; so โˆ‚V = โˆ’ ฯƒ0ฯƒ. X โˆ‚rout = โˆ’ 0Rr22ฯƒ = โˆ’ 0ฯƒ (at surface); โˆ‚r โˆ‚rout โˆ’ โˆ‚r โˆ‚Vin โˆ‚V โˆ‚Vin โˆ‚V = โˆ’ = โˆ’ (at surface); = 0 ; so โˆ’ โˆ‚r “0 r 2 “0 โˆ‚r โˆ‚r โˆ‚r = โˆ’ “0 . ! c Problem 2.31 * ‘ ( ) โˆ’q q 1 โˆšq + โˆ’q โˆš1 . = โˆ’2 + = + rij 4ฯ€”0 a a 4ฯ€”0 a 2a 2 , + 2 q 1 . โˆด W4 = qV = โˆ’2 + โˆš 4ฯ€”0 a 2 1 (a) V = 4ฯ€” 0 & qi 1 ) โˆ’q2 * 1 ) q2 q2 * (1) (4) โˆ’ + + โˆ’ 36 CHAPTER 2. ELECTROSTATICS Problem 2.31 P qi n q2 โˆด W4 = qV = 4ฯ€0 a 1 (a) V = 4ฯ€ 0 1 rij = 4ฯ€0 โˆ’q โˆ’q โˆšq a + 2a + a 1 โˆ’2 + โˆš 2 o = 4ฯ€q0 a โˆ’2 + โˆš12 . (1) r . 2 2 โˆ’q q2 1 1 โˆšq (b) W1 = 0, W2 = 4ฯ€ ; W = โˆ’ 3 a 4ฯ€0 a ; W4 = (see (a)). 0 2a n o 2 1 2q 2 1 1 q โˆš1 โˆ’ 1 โˆ’ 2 + โˆš1 โˆš Wtot = 4ฯ€ โˆ’1 + = โˆ’2 + . 0 a 2 2 4ฯ€0 a 2 (2) r(4) โˆ’ + r+ โˆ’r (3) Problem 2.32 Conservation of energy (kinetic plus potential): 1 1 1 qA qB 2 2 mA vA + mB vB + = E. 2 2 4ฯ€0 r At release vA = vB = 0, r = a, so E= 1 qA qB . 4ฯ€0 a When they are very far apart (r โ†’ โˆž) the potential energy is zero, so 1 1 1 qA qB 2 2 mA vA + mB vB = . 2 2 4ฯ€0 a Meanwhile, conservation of momentum says mA vA = mB vB , or vB = (mA /mB )vA . So 1 1 2 mA vA + mB 2 2 s vA = mA mB 2 1 qA qB 2ฯ€0 (mA + mB )a 2 vA = 1 2 mA ; mB mA mB 2 (mA + mB )vA = s vB = 1 qA qB . 4ฯ€0 a 1 qA qB 2ฯ€0 (mA + mB )a mB . mA Problem 2.33 From Eq. 2.42, the energy of one charge is W = โˆž โˆž X 1 1 1 (โˆ’1)n q 2 q 2 X (โˆ’1)n qV = (2) = . 2 2 4ฯ€0 na 4ฯ€0 a 1 n n=1 (The factor of 2 out front counts the charges to the left as well as to the right of q.) The sum is โˆ’ ln 2 (you can get it from the Taylor expansion of ln(1 + x): 1 1 1 ln(1 + x) = x โˆ’ x2 + x3 โˆ’ x4 + ยท ยท ยท 2 3 4 with x = 1. Evidently ฮฑ = ln 2 . c 2 CHAPTER 2. ELECTROSTATICS 37 Problem 2.32 ! Problem 2.34 (a) W = 21 ฯV dฯ„ . From Prob. 2.21 (or P R 2 2 q 1 (a) W = 12 ฯV dฯ„ . From Prob. 2.21 (or Prob. 2.28): V = 2ฯ0 R2 โˆ’ r3 = 4ฯ€ 3 โˆ’ Rr 2 & $ R% 0 2R 1 1 q r2 W = ฯ 3 โˆ’ 2 4ฯ€r2 dr 3 Z R 2 R4ฯ€$ R 5 R 3 0 2R 0 1 1 q r2 qฯ r 1 r qฯ W = ฯ 3 โˆ’ 2 4ฯ€r2 dr = 3 โˆ’ 2 = R3 โˆ’ % 2 2 4ฯ€0 2R 0 R 40 R 3 R 5 0 40 R qฯ5 2 qR2 q 1 3q = = R = 4 2 3 5$ 5$ 4ฯ€$ 5 R 2 ฯ€R 0 0 3 0 qฯ 2 qR q 1 3q = R = = . 50 50 43 ฯ€R3 4ฯ€0 5 R ! (b) W = “20 E 2 dฯ„ . Outside (r > R) E = R q 1 q 1 *$ (b) W = 20 E 2 dฯ„ . Outside (r > R) E = 4ฯ€ 2 rฬ‚ ; Inside (r R. (c) W = 20 V Eยทda + V E 2 dฯ„ , where V is large enough to enclose all the charge, but otherwise S 1 q *$ % arbitrary. Letโ€™s use a sphere of radius a > R. Here V = 4ฯ€0 r . &% & 1 q 1 q $0 r2 sin W (Z ) 2 2= 2 Z R Z a 4ฯ€$ r 4ฯ€$ r 0 0 0 1 q 1 q 1 q 2r=a W = r2 sin ฮธ dฮธ dฯ† + E 2 dฯ„ + (4ฯ€r/ dr) 2 2 4ฯ€0 r 4ฯ€0 r2 4ฯ€ r 0 0 R $0 q2 1 q2 4ฯ€ r=a = 4ฯ€ + + 2 2 5R a 2 (4ฯ€$ ) a (4ฯ€$ ) ( 2 2 0 0 0 q 1 q 4ฯ€ 1 1 2 / 0 = 4ฯ€ + + 4ฯ€q โˆ’ 2 1 q 1 1 1 1 2 (4ฯ€0 )2 a (4ฯ€0 )2 5R (4ฯ€0 )2 r R = = + โˆ’ + 4ฯ€$ 2 a 5R a R 4ฯ€ 0 1 q2 1 1 1 1 1 3 q2 = + โˆ’ + = .X 4ฯ€0 2 a 5R a R 4ฯ€0 5 R As a โ†’ โˆž, the contribution from the surf ” # 2 1 q 1 q2 while As a โ†’ โˆž, the contribution from the surface integral 4ฯ€0 2a goes to 4ฯ€” zero, the picks volume ( 6a โˆ’ 1) up integral the slack. 0 2a 5R 2 1 q 6a Problem 2.33 4ฯ€0 2a ( 5R โˆ’ 1) picks up the slack. Problem 2.35 dW = dqฬ„ V = dqฬ„ qฬ„ = 4 3 r3 ฯ€r ฯ = q 3 3 R 1 4ฯ€0 qฬ„ , r (qฬ„ = charge on sphere of radius r). (q = total charge on sphere). 4ฯ€r2 3q dqฬ„ = 4ฯ€r dr ฯ = 4 3 q dr = 3 r2 dr. R ฯ€R 3 3 1 qr 1 3q 2 1 3q 2 4 dW = r dr = r dr 3 3 4ฯ€0 R r R 4ฯ€0 R6 2 Z 1 3q 2 R 4 1 3q 2 R5 1 3q W = r dr = = .X 6 6 4ฯ€0 R 0 4ฯ€0 R 5 4ฯ€0 5 R 2 c ! r ” dqฬ„ qฬ„ c “2005 Pearson Ed protected under al reproduced, in any 38 CHAPTER 2. ELECTROSTATICS Problem 2.36 R 1 q (a) W = 20 E 2 dฯ„. E = 4ฯ€ 2 (a < r a), E2 = 4ฯ€ r 2 rฬ‚ (r > b). 0 b 0 r 0 02 a 2 2 R R โˆ’q q2 1 1 2 โˆž 1 2 E1 ยท E2 = 4ฯ€0 E1 ยท E2 dฯ„ = โˆ’ 4ฯ€0 q b r4 4ฯ€r dr = โˆ’ 4ฯ€ . r 4 , (r > b), and hence 0b R 2 q 1 1 1 Wtot = W1 + W2 + 0 E1 ยท E2 dฯ„ = 8ฯ€ q 2 a1 + 1b โˆ’ 2b = 8ฯ€ a โˆ’ b .X 0 0 Problem 2.37 z r q2 a q 1 q1 rฬ‚; 4ฯ€0 r2 y q1 x E1 = b r E2 = 1 q2 rฬ‚ ; 4ฯ€0 r 2 r = p Wi = 0 q1 q2 (4ฯ€0 )2 Z 1 r2 2 r 2 cos ฮฒ r sin ฮธ dr dฮธ dฯ†, where (from the figure) r2 + a2 โˆ’ 2ra cos ฮธ, Therefore Wi = q1 q2 2ฯ€ (4ฯ€)2 0 Z cos ฮฒ = (r โˆ’ a cos ฮธ) (r โˆ’ a cos ฮธ) r . r 3 sin ฮธ dr dฮธ. Itโ€™s simplest to do the r integral first, changing variables to r : 2 r d r = (2r โˆ’ 2a cos ฮธ) dr โ‡’ (r โˆ’ a cos ฮธ) dr = r d r . As r : 0 โ†’ โˆž, r : a โ†’ โˆž, so Z Z โˆž q1 q2 ฯ€ 1 r Wi = d sin ฮธ dฮธ. r2 8ฯ€ 0 0 a q1 q2 8ฯ€0 a Z ฯ€ The r integral is 1/a, so Wi = sin ฮธ dฮธ = 0 q1 q2 . 4ฯ€0 a Of course, this is precisely the interaction energy of two point charges. Problem 2.38 (a) ฯƒR = q โˆ’q q ; ฯƒa = ; ฯƒb = . 2 2 4ฯ€R 4ฯ€a 4ฯ€b2 c Problem 2.34 ! 1 q (a) W = !20 E 2 dฯ„. E = 4ฯ€! 2 (a < r a), E2 = 4ฯ€! 2 rฬ‚ (r > b). 0 b 0 r 0 r ” ” #02 a 2 # CHAPTER 2. ELECTROSTATICS 39 2 ! ! โˆž q2 โˆ’q 1 1 E1 ยท E2 = 4ฯ€! E1 ยท E2 dฯ„ = โˆ’ 4ฯ€! . q 2 b r14 4ฯ€r2 dr = โˆ’ 4ฯ€! r 4 , (r > b), and hence 0 0 0b $ $ % % ! 2 q 1 1 2 1 1 WRtot = W1 + W โˆ’ 1b .! = R8ฯ€! R 2b + #10 qE1 ยท E2 Rdฯ„a = 8ฯ€!0 qR2 R a +1 b โˆ’ 1 q q q 0 0 0 a q b (b) V (0) = โˆ’ โˆž Eยทdl = โˆ’ โˆž 4ฯ€ dr โˆ’ (0)dr โˆ’ dr โˆ’ (0)dr = + โˆ’ . 2 2 b a 4ฯ€0 r R 0 r 4ฯ€0 b R a Problem 2.35 q โˆ’q q R0 (a) ฯƒR = ; ฯƒa = ; ฯƒ R=a . RR 1 q (c) ฯƒb โ†’ 0 (the charge โ€œdrains (0)2 = โˆ’b โˆž (0)dr 4ฯ€R2 offโ€); V4ฯ€a 4ฯ€b2 โˆ’ a 4ฯ€ 2 dr โˆ’ R (0)dr = 0 r 1 q q โˆ’ . 4ฯ€0 R a !a !0 ! R$ 1 q % !0 !b $ 1 q % q q# 1 “q Problem 2.39 + โˆ’ dr โˆ’ dr โˆ’ (0)dr โˆ’ (0)dr = (b) V (0) = โˆ’ โˆž Eยทdl = โˆ’ โˆž 4ฯ€! 2 2 b R a 4ฯ€!0 r 0 r 4ฯ€#0 b R a qa qb qa + qb (a) ฯƒa = โˆ’ ; ฯƒb = โˆ’ ; ฯƒR = . !0 !a ! R$ 1 q % 1 “q q 4ฯ€a2 4ฯ€b2 4ฯ€R2 (c) ฯƒb โ†’ 0 (the charge โ€œdrains offโ€); V (0) = โˆ’ โˆž (0)dr โˆ’ a 4ฯ€! โˆ’ 2 dr โˆ’ R (0)dr = 0 r 4ฯ€#0 R a 1 qa + qb (b) Eout = Problem2 2.36 rฬ‚, where r = vector from center of large sphere. 4ฯ€0 r qa qb qa + qb ฯƒa = โˆ’ ; qฯƒb = โˆ’ ; ฯƒR = . 2 2 2 1 q(a) 1 a b 4ฯ€a 4ฯ€b r (r ) is 4ฯ€R (c) Ea = rฬ‚ , E = rฬ‚ , where the vector from center of cavity a (b). a b b a b 4ฯ€0 ra2 4ฯ€0 rb2 1 qa + qb rฬ‚, where r = vector from center of large sphere. (b) Eout = 4ฯ€# r2 0 (d) Zero. 1 qb(but not Ea or Eb ); force on qa and qb still zero. (e) ฯƒR changes (but not ฯƒa 1or ฯƒqba); Eoutside changes rฬ‚a , Eb = rฬ‚b , where ra (rb ) is the vector from center of cavity a (b). (c) Ea = 2 4ฯ€#0 ra 4ฯ€#0 rb2 Problem 2.40 (a) No. For example, if it is very close to the wall, it will induce charge of the opposite sign on the wall, (d) Zero. and it will be attracted. (b) No. Typically itRwill be attractive, seeฯƒbfootnote 12changes for a extraordinary (e) ฯƒ changes (but not but ฯƒa or ); Eoutside (but not Ea counterexample. or Eb ); force on qa and qb still zero. Problem 2.41 Problem 2.37 Between plates, the E =plates 0; outside the 0plates = So ฯƒ/#0 = Q/#0 A. So Between the plates, E = the 0; outside E = ฯƒ/ = Q/E0 A. 2 2 0 2 0 PQ=2 #0 E 2 = Q2#0 Q = Q . P = E = = .2 2 2#0 A2 2 2 20 A2 2 20 A22 #0 A Problem 2.42 Problem 2.38 z! 1 Q 1 Q Inside, E = 0; outside, E= = 0;4ฯ€ Inside, E outside, 2 rฬ‚; soE = 4ฯ€! r 2 rฬ‚; so 0 r “E 0 ฮธ 1 Q Q )z ; ฯƒ = Q 2 . 1 EQ = 12z4ฯ€! f = ฯƒ(Eave ave Eave = 12 4ฯ€ =0ฯƒ(E R2 rฬ‚; 4ฯ€R 2 rฬ‚; f 2. ave )zz; ฯƒ = 4ฯ€R 0 R ! !$ Q % 1 $ 1 Q % R RF Q = f1z da1= Q 4ฯ€R cos ฮธ R2 sin ฮธ dฮธ dฯ† 2 Fz = fz da = z4ฯ€R cos2 ฮธ 2R24ฯ€! sin0 ฮธRdฮธ dฯ† 2 2 4ฯ€ R2 0 $ $ Q %2 $ 1 %( $ % % ! Q2 2 (ฯ€/2 1 2 Q 2 1 ฯ€/2 2ฮธ dฮธ R 1 Q 2 2ฯ€ ฯ€/2 sin Q 2 sin ฮธ = ฮธ cos = = . Q 2 = ฯ€/2 Q Q 2 1 1 1 1 ฯ€!0 4R = 2 2ฯ€!0 4R. 0= = 20 4ฯ€R 2ฯ€ 0 2!0sin4ฯ€R ฮธ cos ฮธ dฮธ0= ฯ€0 4R 32ฯ€R2 #0 2 sin ฮธ 0 2ฯ€0 4R 32ฯ€R2 0 Problem 2.43 #2005 c Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright as they No portion this material may be law: Say the charge on the inner cylinderlaws is Q, for acurrently length exist. L. The field isofgiven by Gaussโ€™s R reproduced, in1any form or1 by any means, without Q 1 permission in writing from the publisher. Eยทda = E ยท 2ฯ€s ยท L = 0 Qenc = 0 Q โ‡’ E = 2ฯ€0 L s sฬ‚. Potential difference between the cylinders is Z b Q V (b) โˆ’ V (a) = โˆ’ Eยทdl = โˆ’ 2ฯ€ 0L a Z b 1 Q ds = โˆ’ ln s 2ฯ€ 0L a As set up here, a is at the higher potential, so V = V (a) โˆ’ V (b) = 2ฯ€Q0 L ln c b a . b . a cylinder is Q, for a length L. The field is given by Gaussโ€™s law: !Say the charge on the inner Eยทda = E ยท 2ฯ€s ยท L = !10 Qenc = !10 Q โ‡’ E = 2ฯ€!Q0 L 1s sฬ‚. Potential difference between the cylinders is ” b Q V (b) โˆ’ V (a) = โˆ’ Eยทdl = โˆ’ 2ฯ€”0 L a ” b Q 1 ds = โˆ’ ln 2ฯ€”0 L a s As set up here, a is at the higher potential, so V = V (a) โˆ’ V (b) = 2ฯ€!Q0 L ln 2ฯ€”0 0L 40 % &. C = VQ = 2ฯ€! b , so capacitance per unit length is ln( a ) ln ab # $ b . a %b& a . CHAPTER 2. ELECTROSTATICS Problem 2.400 L 2ฯ€0 . C = VQ = 2ฯ€ b , so capacitance per unit length is ln( a ) ln ab “0 2 E A”. (a) W = (force)ร—(distance) = (pressure)ร—(area)ร—(distance) = 2 Problem 2.44 ( ‘ 2 (b) W = (energy per unit volume)ร—(decrease in volume) = “00 E22 (A”). Same as (a), confirming that the (a) W = (force)ร—(distance) = (pressure)ร—(area)ร—(distance) = E A. 2 energy lost is equal to the work done. 2 Problem 2.41 (b) W = (energy per unit volume)ร—(decrease in volume) = 0 E2 (A). Same as (a), confirming that the energyFrom lost Prob. is equal to the the field workatdone. 2.4, height z above the center of a square loop (side a) is Problem 2.45 1 4ฮปaz ) E= zฬ‚. % 2& 4ฯ€” a2 (side a) is a 0 2 From Prob. 2.4, the field at height z above the center loop z of + a4square z2 + 2 ! ” da 2 ! ” da 2 1 4ฮปaz da over a from 0 to aฬ„: zฬ‚. Here ฮป โ†’ ฯƒ 2 (see figure), and we integrate q E= 2 2 4ฯ€0 z 2 + a ” ! z2 + a 4 2 ” aฬ„ 1 a2 a da Here ฮป โ†’ (see figure), and we&integrate over a from ) Eฯƒ =da . Let u = 0 to 2ฯƒz , soaฬ„:a da = 2 du. 2 % 2 2 4ฯ€”0 4 0 z 2 + a4 z 2 + a2 Z ” +โˆš ,-aฬ„2 /4 * 2 aฬ„ 2 1 a da du a2 aฬ„ /4 ฯƒz 2u + z2 q E = = 12ฯƒz . Let u = , so a da = 2 du. โˆ’1 โˆš a2 4ฯƒz0 = tan 4ฯ€ a2 0 2 2 z2 + 2 4ฯ€” ฯ€”0 z4 z 2u + 0 0 z +(u4+ z ) 2 z 0 ) ” !#aฬ„2 /4 + aฬ„2 , . Z aฬ„2 /4 / โˆš 2 12ฯƒ du ฯƒz 2 2u + z 2 2 +z โˆš โˆ’ tanโˆ’1 == 4ฯƒztanโˆ’1 = (1) ; tanโˆ’1 4ฯ€ ฯ€0 z z (u +zz 2 ) 2u + z 2 ฯ€”0 0 0 0 q ( ! * ) aฬ„2 0 2 2ฯƒ 2 + z 2ฯƒ a2 ฯ€ โˆ’1(1) ; = tanโˆ’1 โˆ’ tanโˆ’1 zฬ‚. 1+ 2 โˆ’ ฯ€0 zE = ฯ€”0 tan 2z 4 a ” a+da ! 1 % 2 & 2ฯƒ ! r tanโˆ’1 (โˆž) โˆ’# ฯ€ = 2ฯƒ ฯ€ โˆ’ ฯ€ = ฯƒ . ! a โ†’ โˆž (infinite plane):”E = ฯ€! 4 ฯ€!0 2 4 2!0 0 2 2ฯƒ a ฯ€ ฯƒ a2 โˆ’1 โˆ’1 p E= tan 1 + โˆ’12 โˆšโˆ’ zฬ‚ = tan zฬ‚. 2 + (a2 series: and as azTaylor z ‘ a (point charge): 1 4+ x โˆ’ ฯ€4 , ฯ€ ฯ€0 Let f (x) = tan2z /2) 0 expand4z โˆ’1= f (0) + ” 2ฯƒ +ฯ€1 x2ฯ€f “” (0) + ยท ฯ€ xf (0) 2ฯƒ f (x) a โ†’ โˆž (infinite plane): E = ฯ€ tan (โˆž) โˆ’ = ฯ€0 22โˆ’ 4 = 2ฯƒ0 ยท. ยทX 4 0 โˆš โˆ’1 z a (point charge): Let f (x) + x โˆ’ ฯ€4 Inc., , andUpper expand asRiver, a Taylor series: c = tan #2005 Pearson 1Education, Saddle NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any without permission in writing from the publisher. 1 means, 0 2 00 f (x) = f (0) + xf (0) + x f (0) + ยท ยท ยท 2 1 1โˆš1 1โˆš 1 0 Here f (0) = tanโˆ’1 (1) โˆ’ ฯ€4 = ฯ€4 โˆ’ ฯ€4 = 0; f 0 (x) = 1+(1+x) 2 1+x = 2(2+x) 1+x , so f (0) = 4 , so f (x) = 2 a 2ฯƒ Thus (since 2z 2 = x 1), E โ‰ˆ ฯ€ 0 c 1 a2 4 2z 2 1 x + ( )x2 + ( )x3 + ยท ยท ยท 4 2 q 1 ฯƒa 1 = 4ฯ€ 2 = 4ฯ€ z 2 . X 0 z 0 5 1โˆš 1โˆš1 1 Here f (0) tanโˆ’1 (1) โˆ’ ฯ€4 = ฯ€4 โˆ’ ฯ€4 = 0; f ” (x) = 1+(1+x) CHAPTER 2. = ELECTROSTATICS 411+x , so f ” (0) = 14 , so 2 1+x = 2(2+x) 1 x + ( )x2 + ( )x3 + ยท ยท ยท 4 ! “โˆ‚ 1 โˆ‚ 1 โˆ‚ k sin ฮธ cos ฯ† 2 sin ฮธ cos ฮธ sin ฯ† 2 3k 2ฯƒ q 1 1 1 ฯƒa2k a2 a2 1 ฯ = (since โˆ‡ยทE = r + sin ฮธ + = Thus = x ” 1), E โ‰ˆ = . ! 0 2z 2 0 2z 2ฮธ โˆ‚ฮธ 4ฯ€#0 z 2 4ฯ€#0r z 2 r2 โˆ‚r r ฯ€#0 r4sin r sin ฮธ โˆ‚ฯ† r 3 2 Problem12.42 1 2k sin ฯ†(2 sin ฮธ cos ฮธ โˆ’ sin ฮธ) 1 (โˆ’k sin ฮธ sin ฯ†) = 0 2 3k + $ + r sin ฮธ %& r r r sin ฮธ# 1 โˆ‚ $ A %r 1 โˆ‚ B sin ฮธ cos ฯ† ฯ =”0 โˆ‡ยทE = “0 r2 + ฮธ โˆ‚ฯ†k0 k 22โˆ‚r 0 2 r r r sin = 2 3+ 2 sin ฯ†(2 cos ฮธ โˆ’ sin ฮธ) โˆ’ sin(ฯ† = 2 3 + rsin ฯ†(4 cos2 ฮธ โˆ’ 2 + 2 cos2 ฮธ โˆ’ 1) ‘ r “0r 1 1 B sin ฮธ = “0 2 A + (โˆ’ sin ฯ†) = 2 (A โˆ’ B sin ฯ†). 3k 3k 0 0 sin 2ฮธ ฮธ โˆ’r1) = r ฯ† cos 2ฮธ). = 2 1 +r sin ฯ†(2r cos (1 + sin r r2 Problem 2.46 f (x) = Problem 2.43 1 Q From Prob. 2.12, the field inside a uniformly charged sphere is: E = 4ฯ€# Problem 2.47 3 r. So the force per unit volume 0 R ) * ) Q *) Q * Q 2 1 Q 3 From the field inside E =z 4ฯ€ force per unit volume 3 r. So r =a #uniformly r,charged and thesphere force is: in the direction on the dฯ„ is: is f =Prob. ฯE =2.12, 4 0 R 4ฯ€R3 0 ฯ€R3 Q 4ฯ€# 0 R3 3 Q 2 Q 3 is f = ฯE = 4 ฯ€R3 4ฯ€0 R3 r = 0 4ฯ€R3 r, and the force in the z direction on dฯ„ is: %2 $ 3 3 Q dFz = fz dฯ„ = r cos ฮธ(r2 sin ฮธ dr dฮธ dฯ†). 2 3 3 “0Q 4ฯ€R dFz = fz dฯ„ = r cos ฮธ(r2 sin ฮธ dr dฮธ dฯ†). 3 0 4ฯ€R The total force on the โ€œnorthernโ€ hemisphere is: %2 + R is: + ฯ€/2 $ + 2ฯ€ + the โ€œnorthernโ€ The total force on hemisphere Q 3 3 r dr cos ฮธ sin ฮธ dฮธ dฯ† Fz = fz dฯ„ = “0 4ฯ€R 2 Z3 R 0 Z ฯ€/2 0 Z Z 2ฯ€ 0 3 Q$ -ฯ€/2 . %2 $3 4 % , cos2 ฮธ sin Fz = fz dฯ„ = 3 3 Q 0 r dr R 0 sin ฮธ — ฮธ dฮธ 0 dฯ† 3Q2 0 = 4ฯ€R . (2ฯ€) = 3 “0 4ฯ€R 2 4 2 !-0 64ฯ€”0 R2 ฯ€/2 3 Q R4 sin2 ฮธ 3Q2 = (2ฯ€) = . 0 4ฯ€R3 4 2 0 64ฯ€0 R2 Problem 2.44 + + 1 ฯƒ 1 ฯƒ ฯƒR 1 ฯƒ Problem 2.48 2 Vcenter = Z da = Z R da = 4ฯ€” R (2ฯ€R ) = 2″ 4ฯ€” ฮท 4ฯ€” 1 ฯƒ0 1 ฯƒ 0 1 ฯƒ 0 ฯƒR 0 Vcenter = da = da = (2ฯ€R2 ) = r 4ฯ€0 4ฯ€0 R 20 (4ฯ€/0 R Z + 2 da = sin2 ฮธsin dฮธ,ฮธ dฮธ, da2ฯ€R = 2ฯ€R 1 1ฯƒ ฯƒ Vpole V=pole = da ,da with , with 2 2 2 2 2 2 2 2 2 2 4ฯ€0 4ฯ€”r ฮท r ฮท= =R R+ +R Rโˆ’ โˆ’2R2R coscos ฮธ= 2R2R (1(1 โˆ’โˆ’ coscos ฮธ).ฮธ). ฮธ= 0 Z + 2 ฯ€/2 -ฯ€/2 1 ฯƒ(2ฯ€R ) 2ฯ€/2 sin ฮธ sin dฮธ ฮธ dฮธ ฯƒR ฯƒRโˆš โˆš ) ฯ€/2 1 ฯƒ(2ฯ€R โˆš โˆš โˆš โˆš = = = โˆš= โˆš(2 1(2 โˆ’ cos 1 โˆ’ฮธ)cos ฮธ)4ฯ€0 4ฯ€” 0 0 1 โˆ’ฮธ cos ฮธ2 220 2″0 R0 2R 20 0 1 โˆ’ cos โˆš โˆš ฯƒR ฯƒR ฯƒR ฯƒR ฯƒR ฯƒR โˆš= โˆš = โˆš= โˆš (1 โˆ’ (1 0) โˆ’ = 0) . Vcenter = =( 2 โˆ’ . โˆด Vpole โˆด Vโˆ’pole โˆ’ Vcenter ( 1). 2 โˆ’ 1). 20 2″0 20 2″0 20 2″0 r R R ฮธ Problem Problem 2.492.45 determine the electric and outside the sphere, Gaussโ€™s FirstFirst letโ€™s letโ€™s determine the electric field field insideinside and outside the sphere, usingusing Gaussโ€™s law: law: / 0 + Z + 4 I Z Z r + r ( 4 ฯ€kr 2 2 3 ฯ€kr (r < (r R), R).> R). 0 c $2005 Pearson Education, Inc., Upper 4 Saddle River, NJ. All rights reserved. This material is So Eprotected = 4k0 r2under rฬ‚ (r all R). exist. No portion of this material may be copyright asr 2they currently 0 reproduced, in any form or by any means, without permission in writing from the publisher. c 42 CHAPTER 2. ELECTROSTATICS Method I : 2 2 Z Z 0 R kr2 0 โˆž kR4 E 2 dฯ„ (Eq. 2.45) = 4ฯ€r2 dr + 4ฯ€r2 dr 2 0 40 2 R 40 r2 ) 2 (Z R โˆž Z โˆž 0 k 1 ฯ€k 2 R7 1 ฯ€k 2 R7 6 8 8 7 = 4ฯ€ r dr + R dr = +R โˆ’ = +R 2 2 40 80 7 r R 80 7 0 R r W = = 0 2 Z ฯ€k 2 R7 . 70 Method II : W = 1 2 Z ฯV dฯ„ (Eq. 2.43). ( ) R Z r 2 r kR4 kr k 1 r3 4 For r โ„ฆ11 n = 12 : โ„ฆ11 + 11 = 48.5757 + 11 = 59.5757 < โ„ฆ12 Thus a lower energy is achieved for 11 charges if they are all at the rim, but for 12 it is better to put one at the center. c

Document Preview (27 of 295 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in