Solution Manual For Introduction To Electrodynamics, 4th Edition
Preview Extract
26
CHAPTER 2. ELECTROSTATICS
Chapter 2
Electrostatics
Problem 2.1
(a) Zero.
1 qQ
, where r is the distance from center to each numeral. F points toward the missing q.
4ฯ0 r2
Explanation: by superposition, this is equivalent to (a), with an extra โq at 6 oโclockโsince the force of all
twelve is zero, the net force is that of โq only.
(b) F =
(c) Zero.
1 qQ
, pointing toward the missing q. Same reason as (b). Note, however, that if you explained (b) as
4ฯ0 r2
a cancellation in pairs of opposite charges (1 oโclock against 7 oโclock; 2 against 8, etc.), with one unpaired q
doing the job, then youโll need a different explanation for (d).
(d)
Problem 2.2
This time the โverticalโ components cancel, leaving
1
E = 4ฯ
2 rq 2 sin ฮธ xฬ, or
0
E=
1
qd
xฬ.
4ฯ0 z 2 + d 2 3/2
2
– E
AUA
r ฮธ AA
z A
A
s
As- x
q
โq
1 qd
From far away, (z d), the field goes like E โ 4ฯ
3 zฬ, which, as we shall see, is the field of a dipole. (If we
0 z
set d โ 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge
from far away, the net charge is zero, so E โ 0.)
c
1
Problem 2.3
CHAPTER
2. ELECTROSTATICS
27
1
Problem 2.3
Problem 2.3
z
z ”
!”
!
ฮธ
ฮท
z dq = ฮปdx
#L
!x “# $!x
ฮธ
r
z
dq = ฮปdx
% L ฮป dx
1%
2
Ez =1 4ฯ”
=2 z 2 +2 x2 ; cos ฮธ z= ฮทz )
L
2 cos ฮธ; 2(ฮท
R
ฮป
ฮทcos
0 dx
0
ฮป dx
2
2 ฮธ = ฮท) z
EzE = =4ฯ”01 0 L
ฮธ;
(ฮท
=
z
2
ฮท
r =+z 2x+; xcos
; cos ฮธ = r )
z
4ฯ0 0 r 2 cos ฮธ; (
%
L
1 %
1
=1 4ฯ”0 ฮปzLR L0 (z12 +x2 )3/2 dx
1ฮปz
1
= =4ฯ”
dxdx
2 3/2 ‘(
ฮปz0 &(z2 +x
0
2 ) 2 )3/2 (L
4ฯ
x ‘(L
10 & h0 1(zโ+x
1 ฮปโ L
.
=1 4ฯ”0 ฮปz1 โz2 x z2 +x(2i L
( =1 4ฯ”
L zL
2 +L2
1ฮป 0โ
ฮปzโ
. .
= =4ฯ”01ฮปzฮปz z%2 12 zโ2 +xx2 ( =0 =4ฯ”
2 +L2
0 z z%
z
L
2
2
2
2
4ฯ0 1%
z ฮป dx
4ฯ
0
1
x
dx
z +x
+L
%0ฮปR zx dx
0 โ
E = โ1 4ฯ”0LR L
2 sin ฮธ =
3/2
ฮป0 dx
1 4ฯ”
ฮทsin
(x2x+z
#L
1
1ฮป 0
dx2 )
ExEx=x =โ โ
ฮธ=
โ 4ฯ”
2ฮป dx
2 +z
2 )3/2
&
‘(
&
‘
!
sin
ฮธ
=
โ
ฮป
4ฯ”
ฮท
0
0
0
(x
2
L
2
2 )3/2
4ฯ10 & 0 r
4ฯ0 1 & (x +z
! “# $
(
‘(
1
1
1’ i
L
x
iL
h zโโ
= โ1 4ฯ”0 ฮปh โโ โ
=
โ
.
ฮป
(
(
1
1
1
1
2
2
2
2
x
4ฯ”
x1 +z =
z1 +L.
1ฮป โ โ
1ฮป 0
1 โโ
= =โ โ
โโ
โ
0=
2 +z 2 (
2 +L2
ฮป
โ
ฮป
โ
.
4ฯ”
4ฯ”
z
0
0
x
z
2
2
2
2
4ฯ0
z
z +L
)*
+
* 4ฯ0
+ x, +z 0 0
ฮป
z + *
L + ,
1 )*
โ1 + โz z
xฬ + โL L
zฬ .
E =1 1 ฮป ฮป
โโ z 2 + L2xฬ +
โโ z 2 + L2zฬ zฬ. .
++
EE
= = 4ฯ%
0 z โ1
โ1
xฬ
+
2
2
2
2
4ฯ%
z z+
L L2
z +
L L2
0 z z
2+
2+
4ฯ
0
1 ฮปL
For z # L you
expect it to
look
like a pointz charge
q = ฮปL: E โ1 4ฯ”
ฮปL z 2 zฬ. It checks, for with z # L the xฬ
1 20ฮปL
For
z#
L Lyou
expect
it ittotolook
like
a
point
charge
q
=
ฮปL:
E
โ
zฬ. zฬ.It Itchecks,
L Lthe
4ฯ”
For
z
you
expect
look
like
a
point
charge
q
=
ฮปL:
E
โ
checks,forforwith
withz #
z
thexฬ xฬ
1 ฮปL
0 z
2
4ฯ
term โ 0, and the zฬ term โ1 4ฯ”
0 z
ฮป L z zฬ.
1 0ฮปzzฬ.
L
term
โ
0,
and
the
zฬ
term
โ
term โ 0, and the zฬ term โ4ฯ”4ฯ
zฬ.
0 z z
0 z z
Problem 2.4
Problem
2.4
-q 2 . /. a /2
Problem
2.4 2.1, with L โ a and z โ
z +a 222 (distance from center of edge to P ), field of one edge is:
From Ex.
2
zโ
from
center
of of
edge
toto
P ),
field
of of
one
is:is:
z 2z+
From
Ex.
2.1,
with
LL
โโa2 aand
2 +2 a (distance
From
Ex.
2.2,
with
and
z
โ
(distance
from
center
edge
P ),
field
oneedge
edge
2
2
1
ฮปa
ฮปa.
E =1 1 ฮปa
-0q 2 .a2.
E1E=1= 4ฯ%
a2q 2
a2
+
z
+
z
+
2
2
2
1 4ฯ%0
a 4 2
a 24 a 24
4ฯ0 z 2z+
2 +4 a2 z z+
2 +4 a+
4a
4
4 + 4
z
There are 4 sides, and we want vertical components only, so multiply by 4 cos ฮธ =q4 q
z 2 a2 :
There
are
4
sides,
and
we
want
vertical
components
only,
so
multiply
by
4
cos
ฮธ
=
4
z 2+ :4
z
q
There are 4 sides, and we want vertical components only, so multiply by 4 cos ฮธ = 4 z2 + a a2 :
4
z2 +
4
4ฮปaz
1
4ฮปaz
E =1 1 .
zฬ.
/
4ฮปaz
2
2
EE
= = 4ฯ%
. 0 z 2 a+2 /aq 2 2 azฬ.
zฬ.
4ฯ%
0 z2 +
4 2 z a+
2
4ฯ
0 z 2 +4 a2 z z+
2 +2 a2
4
Problem 2.5
Problem 2.5
Problem 2.5
!
!
ฮธ
z
ฮธ
z
r
r
r
2
0%
1
1 ฮธ o zฬ.
10%nR ฮปdl
cos
โHorizontalโ components cancel, leaving: E =1 4ฯ”
2
1 0 ฮปdlฮปdl
ฮธ ฮธzฬ. zฬ.
โHorizontalโ
components
cancel,
leaving:
= =4ฯ”4ฯ
โHorizontalโ
components
cancel,
leaving:E E
2
% ฮทcos
2 cos
0 0
% ฮท Rrdl = 2ฯr. So
Here,2 ฮท2 2 =2 r2 2 +2 z2 2 , cos ฮธ z= zฮทz (both constants), while
Here,
z z, cos
ฮธ ฮธ==ฮท (both
constants),
while
So So
Here, ฮทr ==r r++
, cos
constants),
whiledl =dl2ฯr.
= 2ฯr.
r (both
1 ฮป(2ฯr)z
ฮป(2ฯr)z
E =1 1 ฮป(2ฯr)z
zฬ.
3/2
EE
= = 4ฯ
zฬ. zฬ.
4ฯ%00(r(r22++zz3/2
22 3/2
2 + z 2 ) ))
4ฯ%0 (r
Problem 2.6
Break it into rings of radius r, and thickness dr, and use Prob. 2.5 to express the field of each ring. Total
charge of a ring is ฯ ยท 2ฯr ยท dr = ฮป ยท 2ฯr, so ฮป = ฯdr is the โline chargeโ of each ring.
1 (ฯdr)2ฯrz
1
Ering =
; Edisk =
2ฯฯz
3/2
2
2
4ฯ0 (r + z )
4ฯ0
1
1
1
Z R
r
0
3/2
(r2 + z 2 )
c
“2005
Pearson Education, Inc., Upper Saddle
River,
rights reserved.
Edisk
= NJ. All2ฯฯz
โ โ This material
zฬ. is
2 + z 2 may be
protected under all copyright laws as they currently exist.
4ฯ0No portionz of thisRmaterial
reproduced, in any form or by any means, without permission in writing from the publisher.
c
c
“2005
Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.
dr.
1
CHAPTER 2. ELECTROSTATICS
28
1
For R z the second term โ 0, so Eplane = 4ฯ
2ฯฯzฬ =
0
ฯ
zฬ.
20
โ1/2
2
2
1
1 R2
R2
For z R, โR21+z2 = z1 1 + R
โ
1
โ
, so [ ] โ z1 โ z1 + 12 R
2
2
z
z
2 z
z 3 = 2z 3 ,
2
1 2ฯR ฯ
1 Q
2
and E = 4ฯ
2z 2 = 4ฯ0 z 2 , where Q = ฯR ฯ.
0
Contents
X
z
#
Problem 2.7
E is clearly in the z direction. From the diagram,
dq = ฯda = ฯR2 sin ฮธ dฮธ dฯ,
r 2 = R2 + z 2 โ 2Rz cos ฮธ,
cos ฯ = zโRrcos ฮธ .
z
ฯ
r
So
ฮธ
R
” y
ฯ
Z
R
1
ฯR2 sin ฮธ dฮธ dฯ(z โ R cos ฮธ)
Ez =
.
dฯ = 2ฯ.
4ฯ0
(R2 + z 2 โ 2Rz cos ฮธ)3/2
!
Z ฯ
x
1
(z โ R cos ฮธ) sin ฮธ
ฮธ = 0 โ u = +1
=
(2ฯR2 ฯ)
dฮธ.
Let
u
=
cos
ฮธ;
du
=
โ
sin
ฮธ
dฮธ;
.
2
2
3/2
ฮธ = ฯ โ u = โ1
4ฯ0
0 (R + z โ 2Rz cos ฮธ)
Z
1 1 !2 ฯR21sin ฮธ dฮธ dฯ(z
z โ Ru
”
โ R cos ฮธ)du. Integral
=
can be done by partial fractionsโor look it up.
2 + z 2 โ 2Rzu)3/2 .
dฯ = 2ฯ.
Ez4ฯ
= 0 (2ฯR ฯ) โ1
(R
2
2
3/2
4ฯ%0
(R
+
z
โ
2Rz
cos
ฮธ)
1
!
#
$
1 1 2
1 ฯ zu(zโโRR cos ฮธ) sin ฮธ 1 2ฯR2 ฯ (z โ R) (โz โ R)
ฮธ = 0 โ u = +1
2
โ
= = (2ฯR
ฯ)
=
โ
.
dฮธ. z 2 Let |zu โ
= R|
cos ฮธ; du
=R|
โ sin ฮธ dฮธ;
.
2 โ22Rzu
3/2 0
4ฯ04ฯ%0 (2ฯR ฯ)
z 2 0R2(R
|z +
+2z+
ฮธ = ฯ โ u = โ1
z โ 2Rzโ1
cos ฮธ)4ฯ
! 1
1
z โ Ru
=
(2ฯR2 ฯ)
Integral can
1 be
q done by partial fractionsโor look it up.
q
1 2 4ฯR2 ฯ
1 du.
2
4ฯ%0the sphere),โ1E(R
For z > R (outside
= 3/2
z0 โz2Rzu)
2
z =+
4ฯ
4ฯ0 z 2 , so E = 4ฯ z 2 zฬ.
0
&1
%
#
$
1 2ฯR2 ฯ (z โ R) (โz โ R)
1
1
zu โ R
2
For z R (outside
thecenter,
sphere),
Ez all
= exterior
2 , so E
wereFor
concentrated
at the
while
contribute
nothing.
Therefore:
4ฯ”0
z 2 shells
2
0 z
4ฯ% z
0
For z < R (inside), Ez = 0, so E = 0.
E(r) =
1 Qint
rฬ,
4ฯ0 r2
Problem 2.8
to Prob.
2.7,interior
all shells
to Outside
the pointthe
(i.e.
at smaller
r) charge
contribute
as though
where QAccording
charge
to interior
the point.
sphere,
all the
is interior,
so their charge
int is the total
were concentrated at the center, while all exterior shells contribute nothing. Therefore:
1 Q
E=
1 rฬ.Qint
rฬ,
E(r)4ฯ
=0 r 2
4ฯ%0 r2
Inside
the Q
sphere,
only that fraction of the total which is interior to the point counts:
where
int is the total charge interior to the point. Outside the sphere, all the charge is interior, so
4
ฯr3
r3
1 r3 1
1 Q
Q 2 rฬ =
r.
Qint = 43 3 Q = 3 Q, so EE== 1 Q rฬ.
3
3
R
4ฯ
R
r
4ฯ
ฯR
2
0
0 R
4ฯ%0 r
3
Inside 2.9
the sphere, only that fraction of the total which is interior to the point counts:
Problem
โ
(a) ฯ = 0 โยทE = 0 r12 โr
r2 ยท kr3 = 0 r12 k(5r4 ) = 50 kr2 .
c
"2005
Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by anycmeans, without permission in writing from the publisher.
4
ฯr43 3 r3 3
1 r3 31
1 Q
r so E =
1 Qr rฬ 1=
1 r.Q
Qint = 43 33ฯr
Q = 3 Q,
3
2
3
Qint =
Q
=
Q,
so
E
=
Q
rฬ
=
r.
R
4ฯ"
R
r
4ฯ"
0
0R
3
3
2
3
3 ฯR4 ฯR
R r3
4ฯ"10 Rr3 r 1
4ฯ"10 R3Q
4
3 ฯr3
Qint = 43 3 Q = 3 Q, so E =
Q rฬ =
r.
Problem 2.9
R
4ฯ"0 R3 r2
4ฯ"0 R3
!
Problem 2.9 1 โ 2 ! 3 " 3"ฯR1
2
(a) ฯ = "0 โยทE = "0 r2 โr1 rโ ยท kr
= " k(5r4 ) = 5" kr .
(a) ฯ = "0 โยทE = "0 r2 โr r2 ยท kr3 0=r2"0 r12 k(5r4 ) = 0 5"0 kr2 .
Problem 2.9
!#2
"
1 โ
1 3
4 2 ) = 4ฯ"
(b) By
law: =Q"enc
)(4ฯR
(a)Gaussโs
ฯ = "0 โยทE
ยท #kr3 =="0"(kR
) = 5" kr2 . kR5 .
0 r 2=โr"0 r Eยทda
0 r 2 k(5r
(b) By Gaussโs law: Qenc = "0$ Eยทda =
"0 (kR3 )(4ฯR2 )0 = 04ฯ"0 kR5 .$
$
R
CHAPTER
2. ELECTROSTATICS
2
$ = R (5"
$ R0 kr2 )(4ฯr
By
direct integration:
Qenc = ฯ#dฯ
dr) = 20ฯ"0 k 5 0 r$4Rdr 429
= 4ฯ" kR5 .!
0
3kr2 )(4ฯr
2 2 dr) = 20ฯ"
integration:
ฯ
dฯ
=
(5"
k 0 r dr = 04ฯ"0 kR5 .!
0
0
(b)ByBydirect
Gaussโs
law: QencQenc
= "=
Eยทda
=
"
(kR
)(4ฯR
)
=
4ฯ"
kR
.
0
0
0
$
$
$R 4
Problem 2.10
2
2
5
Problem
2.10integration: QencH = ฯ dฯ = R (5"
By
direct
kr
)(4ฯr
dr)
=
20ฯ"
k
r dr
= 4ฯ"
.!the surface
5
0
0
0 kRup
3
2
0
0
Think
this cube
as one
of
the charge.
of0the
24
which
make
(b)Think
ByofGaussโs
= 80ofsurrounding
= 0 (kR
)(4ฯR
)Each
= Each
4ฯ
kR
. squares
enc one
of thislaw:
cubeQas
8Eยทda
surrounding
the
charge.
of
the
24
squares
which
make
up the surface
Rother
RR 4
R
Problem
2.10
of this
larger
cube
gets the same
fluxRas
every
one,
2 so: 2
5
By larger
direct
integration:
ฯ dฯ
(5
kr
)(4ฯr
dr)
=
20ฯ
k
r
dr
=
4ฯ
kR
.X
of this
cube
gets theQsame
as=every
other
one,
so:
enc = flux
0
0
0
0
0 squares which make up the surface
Think of this cube as one of 8 surrounding
the charge. Each of the 24
Problem
2.10cube gets the same flux as
of this larger
every
other
one,
so:
%
%
% the 1charge.% Each of the 24 squares which make up the surface
Think of this cube as one of 8 surrounding
1 Eยทda.
Eยทda =
=one, so:% Eยทda.
of this larger cube gets the same flux as every
other
24
%Eยทda
24
one
whole
1 Z
Z
face one
largewhole
face Eยทda = 1 large Eยทda.
cube
Eยทda = 24cube Eยทda.
one
%face
24 whole
large
%
one
q whole
q
.cube
The latter is "10 q, 1by Gaussโs law. Therefore faceEยทda =
large
= 0cube .
The latter is "0 q, by Gaussโs law. Therefore %Eยทda24"
24"
one
q0
face one
Z
.
The latter is "10 q, by Gaussโs law. Therefore
face Eยทda = q
1
The latter is 10 q, by Gaussโs law. Therefore oneEยทda = 24"0.
240
face
one
Problem 2.11
face
Problem 2.11
1
#
# = E(4ฯr2 ) =2 1 Qenc
Gaussian surface: Inside: Eยทda
Problem 2.11
1 = 0 โ E = 0.
"
0
Gaussian surface: Inside: Eยทda = E(4ฯr ) = "0 Qenc = 0 โ E = 0.
Problem"2.11
"
(As in Prob. 2.7.)
2
#
(As in Prob. 2.7.)
!
2
2= 0.
1
2 1 Qenc = 0ฯR
โ ฯR
Gaussiansurface:
surface:Outside:
Inside: E(4ฯr
Eยทda2=
E(4ฯr
E
)=
rฬ.
r ! ! Gaussian
1 ) = ")0 โ
2 E=
2 "0 (ฯ4ฯR
!
2
Gaussian surface: Outside: E(4ฯr ) = "0 (ฯ4ฯR ) โ E"=
rฬ.
r
r "
0
"0ฯR
r2 2
(As in Prob. 2.7.)
!
1
2
2
!
Gaussian surface: Outside: E(4ฯr ) = "0 (ฯ4ฯR ) โ E =
rฬ.
r
"0 r 2
Contents
Contents
Gaussian surface
Problem 2.12
Problem 2.12
Problem 2.12
Problem 2.12
}}
}
#
1 4 1 34
#H = E ยท 4ฯr2 = 221 Qenc
Eยทda
ฯr ฯ. 3 So
Eยทda =
=E
E ยทยท 4ฯr
4ฯr "0=
= 110Q
Q=
enc"0=3 1 4 ฯr3 ฯ. So
Eยทda
"0 enc = "00 33ฯr ฯ. So
#
Gaussian surface
21 1
Eยทda = E ยทE4ฯr
= ฯrrฬ.
1Qenc = "10 43 ฯr3 ฯ. So
r "
"1
=E =
0
#
r# "
ฯrrฬ.
E
=
3"0 30ฯrrฬ.
Gaussian surface
3"01
r "
Q
= 1 ฯrrฬ.
#
Q in Prob. 2.8).
Problem
3E=
ฯR42ฯR
ฯ, 2E
rฬ Q(as
Since
QtotQ=tot43 =
31
3"
Since
ฯ, E4ฯ"
E
rฬ in
(asProb.
in Prob.
R 2.13
0 R14ฯ
0
ฯ,
==
rฬ3 (as
2.8).2.8).
Since
Qtot = 433ฯR
0 3R
4ฯ"0 R
$R
%
$
Gaussian surface
Q
4
E 2ยท 2ฯs ยท l = 1!100 Q
= !1in
ฮปl.
So 2.8).
Prob.
Since QEยทda
tot = =
3 rฬ (as
R
3 ฯR ฯ, E = 4ฯ"
Renc
0
Problem
2.13
Problem
2.13
Problem
2.13
"
$
Problem
2.13
!
s
# %H
Gaussian
surface
Gaussian
surface
ฮป= E ยท 2ฯs ยท l1= 1 1 Qenc1= 1 1 ฮปl. So
#Eยทda
Eยทda
Gaussian surface
Problem 2.13
Eยทda
=E
ยทE2ฯs
ยทl=
=
So So
sฬยท 2ฯs
E
=
(same
2.1).
==
ยท l =asQEx.
= ฮปl.10ฮปl.
10Qenc
enc
! "# $
Eยทda
2ฯ#0 sE ยท 2ฯs ยท l"0= !0"0 Qenc"0= !0"0 ฮปl. So
&
"
%
sl !
s%
#
&
Gaussian
surface
s
ฮป E ยท 2ฯs ยท l = 1 Q = 1 ฮปl. So
Eยทda
enc
E
=ฮป ฮปฮป
ห
s (same
as Eq.
2.9). "0
"2.1).
0
E=
as Ex.
sฬ=s(same
E
=
2ฯ
E
=
(sameas
asEx.
Ex.2.1).
2.1).
0 sฬsฬ (same
&
& ! '( "# ) %
2ฯ"2ฯ#
$
0s 0s
s
& '( )
2ฯ"0ฮปs
l l
l
E=
sฬ (same as Ex. 2.1).
Problem 2.14
Problem
2.14
2ฯ"0 s
Problem
Problem2.14
2.14& '( )
l
H
R
R This2 material is
Problem 2.14
c
!2005
Pearson Education,
Inc., Upper2 Saddle
1 River, NJ.
1 All rights reserved.
=E
ยท 4ฯr
= currently
QencRiver,
=
ฯ portion
dฯ
= 1of
(krฬ)(rฬ This
sin ฮธmaterial
drฬ dฮธ dฯ)
c
!2005
Pearson
Education,
Inc.,
All rights
reserved.
is
protected
under
all Eยทda
copyright
laws
as Upper
they
exist.
No
Saddle
0 NJ.
0
0 this material may be
Rasr they
protected
all copyright
currently
Nowriting
portion
of this
may be
4
Problem 2.14
reproduced,
in under
any form
or by1anylaws
means,
without
permission
in
from
the material
publisher.
4ฯk rexist.
ฯk
3
4
= or
kInc.,
4ฯ
rฬ drฬSaddle
= 0River,
rinrights
. writing
in anyEducation,
form
any Upper
means,
without
permission
from the
publisher.
Gaussian reproduced,
surface
c
!2005
Pearson
NJ.0All
reserved.
This
material is
0 by
4 =
0
protected under all copyright laws as they currently exist. No portion of this material may be
r# $
reproduced, in any form
means, without permission in writing from the publisher.
1 or by any
2
โด
E
=
ฯkr
rฬ.
Gaussian surface
4ฯ0
r $
#
Problem 2.15
c (i) Qenc = 0, so
E = 0.
Problem
% 2.15
&
&
(ii) Eยทda = E(4ฯr2 ) = !10 Qenc = !10 ฯ dฯ = !10 rฬk2 rฬ2 sin ฮธ drฬ dฮธ dฯ
(i) Qenc = 0, so E = 0.
'
(
&r
k rโa
4ฯk
4ฯk
&rฬ.k 2
=% !0 a drฬ = !02 (r โ1a) โด E =1 &
2 1
|E|
(ii) Eยทda
= E(4ฯr ) = !0 Qenc = !0 #0ฯ dฯ r=
dฯ
!0
rฬ 2 rฬ sin ฮธ drฬ dฮธ !
'
(
&
k rโa
&
4ฯk 2r
4ฯk4ฯkb(r โ a)4ฯk
rฬ.
โด E = so 2
(iii)=E(4ฯr
==
!0
a) drฬ
|E|
!0 !0a drฬ = !0 (b โ a),
#
r
0
!
'
(
k bโa
& rฬ.
E= 2
b
2
drฬ = 4ฯk
(iii) E(4ฯr
#0 ) =r4ฯk
!0
!0 (b โ a), so
a
'
(
%
Gaussian surface
r $
#
111
Contents
30
CHAPTER 2. ELECTROSTATICS
Problem 2.15
Qenc = 0, so E = 0.
Problem(i)2.15
&
&
(i) Qenc =%0, so E = 0. 2
) = !10 QencR= !10 ฯ dฯR= !10 rฬk2 rฬ2 sin ฮธ drฬ dฮธ dฯ
H (ii) Eยทda = E(4ฯr
1
1
2
2
'1 k (
Problem
2.13
(ii) Eยทda
= E(4ฯr
0 Qenc = 0 ฯ dฯ =
& r ) =4ฯk
k 0r โrฬ2arฬ sin ฮธ drฬ dฮธ dฯ
4ฯk
Problem
rฬ.
drฬ = !0 (r โ a) โด kE =r โ a 2
=
R r !0 a2.16
|E|
#0
rrฬ.
4ฯk
!
= 4ฯk
drฬ
=
(r
โ
a)
โด
E
=
0
0
a
2
0
r
&
4ฯk
4ฯk b
drฬ
=
(b
โ
a),
so
(iii) E(4ฯr2 ) =
R
!0
a
b !0
' a drฬ (
(iii) E(4ฯr2 ) = 4ฯk
= 4ฯk
0
0 (b โ a), so
k bโa
!
E=b โ a 2
rฬ.
Problem
Problem
2.13
!
Eยทda = E ยท 2ฯs ยท l = !10 Qenc = !10 ฯฯs2 l;
Problem2.13
2.13k(i)
Gaussian surface
#0
r
E=
rฬ.
2
%
Problem
2.16
Problem
Problem 2.16
2.16
0
r
ฯs
l
r
b
sฬ. a
E=
2#0
Problem
2.16 2.16
Problem
H
!
Eยทda
= E ยท 2ฯs ยท l = 1 Q = 10 ฯฯs2 l;
Gaussian
c
!2005
Pearson Education, Inc., Upper
NJ. All!
reserved. This material is0 enc
!rights
!surface
" Saddle River,
222
under all copyright!
laws
they currently
exist. No portion
of
may
(i)
Q
l;
Eยทda
E
2ฯs
s asGaussian
(i)
Q
=
ฯฯs
l;l;
!
Eยทda
=
EEยท!ยทฯs
2ฯs
=
(i)
Qenc
= !!110!010ฯฯs
ฯฯs
!
Eยทda=
=this
ยทmaterial
2ฯsยทยทยทlll=
= !!110!010be
(i) protected(ii)
1
1
enc
2
enc=
surface
Gaussian
surface
Gaussian
surface
Eยทda
=E
ยท 2ฯs
ยทl =
E=
ห
s.publisher.
reproduced, in any form or by any means, without permission in writing
from the
!0 Qenc = !0 ฯฯa l;
ฯs
ฯs
ฯs
2
0
lll
2
sฬ.
E
sฬ.
E
=
sฬ.
E=
=
2#
2#
2#000 E = ฯa sฬ.
2#0 s
l
Contents
Contents
(ii)
(ii)
(ii)
(ii)
"
"
"
sss
(iii)
lll
!
H
!
! "Gaussian
Gaussian
surface
Gaussiansurface
surface
Eยทda = E ยท 2ฯs ยท1l = 10 Qenc = 10 ฯฯa2 l;
! Gaussian!!!surface
s
222
Eยทda
ยท!ยทยท2ฯs
l;
Eยทda
=
EEฯa
2ฯs
=
Q
=
ฯฯa
l;l;
Eยทda=
=E
2ฯs
= !!110!010Q
Qenc
= !!110!010ฯฯa
ฯฯa
2 ยทยทยทlll=
enc
enc=
1
Q
Eยทda
=
E
ยท
2ฯs
ยท
l
=
E = 222 ห
s.
!0 enc = 0;
ฯa
ฯa
ฯa
20 s
sฬ.
E
sฬ.sฬ.E = 0.
E
=
E=
=
2#
2#
2#000sss
l
!
!
! Gaussian
Gaussian
surface
Gaussiansurface
surface
"
"
"
sss
!!!H
1
=
Eยทda
ยทยทยทllยทl=
Eยทda=
ยท2ฯs
2ฯs
l==!!110!01Q
Q
=
0;
Eยทda
=
EEEยทยทยท2ฯs
2ฯs
=
QQ
==0;
0;0;
Eยทda
==E
enc
enc
enc
enc
00
E
=
0.
E
=
0.
EE
==
0.0.
(iii)
(iii)
(iii)
(iii)
Contents
|E| "
lll
Problem 2.17
#
|E|
|E|
|E|a"
On the x z plane E = 0 by symmetry. Set up
Gaussian โpillboxโ with
and the
a one face
b in this plane
s
"
"
other at y.
c2.17 Pearson
Upper
River, NJ.
Allup
rights
reserved. This
material with
is
Problem!2005
On theEducation,
x z planeInc.,
E=
0 bySaddle
symmetry.
Set
a Gaussian
โpillboxโ
one face in this plane
protected under all copyright laws as they currently exist. No portion of this material may be
and the other
at
y.
reproduced, in any form or by any means, without permission in writing from the publisher.
Gaussian pillbox
#
#
1
1
#
Eยทda = aa
E
a ยท A = 0bbbQenc = 0ssAyฯ;
s
ฯ
E=
y yฬisisis(for |y| d).
“0
E$
ฯd
“0
โd
d
!
y
Problem 2.17
On the x z plane E = 0 by symmetry. Set up a Gaussian โpillboxโ with one face in this plane and the
other at y.
!
Gaussian pillbox
#
CHAPTER 2. ELECTROSTATICS
Eยทda = E ยท A = !10 Qenc = !10 Ayฯ;
ฯ
E = y yฬ (for |y| d).
Qenc = 0 Adฯ โ E = “d0 yฬ (for y > d).
0
E$
ฯd
“0
โd
d
!
y
Problem 2.18
Problem 2.18
From Prob. 2.12, the field inside the positive sphere is E+ = 3ฯ0ฯr+ , where r+ is the vector from the positive
From Prob. 2.12, the field inside the positive sphere is E+ = 0 r+ , where rฯ+ is the vector from the positive
center to the point in question. Likewise, the field of the negative3!sphere
is โ 30ฯrโ . So the total field is
center to the point in question. Likewise, the field of the negative sphere is โ
3!0 rโ . So the total field is
ฯ
EE== ฯ(r(r
rโr) )
+ โโ
“rโrโ r
+
โ
33″
*&โโ
0
0
%
r+r+
d
ฯฯ
d
r
But
(see
diagram)
r
โ
r
=
d.
So
E
=
d.
+
โ
But (see diagram) r+ โ rโ = d. So E =30 d.
++
3″0
Problem
Problem2.19
2.19
Z”
rฬฮทฬ ฯ dฯ = 11 Z” #โร $ ฮทฬrฬ %& ฯ dฯ (since ฯ depends on “r0 , not r)
11
โรE
=
โร
โร r 22 ฯ dฯ =
โร r2 2 ฯ dฯ (since ฯ depends on r , not r)
โรE =
4ฯ
4ฯ
0 0
4ฯ”
ฮท
4ฯ”00
ฮท
$ %
rฬ
ฮทฬ
==0 0 (since
1.63).
(sinceโร
โร 22 = 0, from Prob. 1.62).
rฮท
Problem
Problem2.20
2.20
‘
‘
‘ xฬ yฬ yฬ zฬ zฬ ‘
xฬ
‘โ โ โ โ โ โ ‘
‘
‘ =k k[xฬ(0
(1)
==k kโx
(1)โรE
โรE
[xฬ(0โโ2y)
2y)++yฬ(0
yฬ(0โโ3z)
3z)++zฬ(0
zฬ(0โโx)]
x)]6=#=0,0,
1 1
‘ โx โyโy โzโz =
‘
‘ xy2yz
xy
2yz3zx
3zx’
sosoEE
ananimpossible
impossibleelectrostatic
electrostaticfield.
field.
1 1is is
‘
‘
‘ xฬ
xฬ
yฬ yฬ
zฬ zฬ ”
‘โ โ
โโ
โโ ‘
‘
[xฬ(2zโโ2z)
2z)++yฬ(0
yฬ(0โโ0)0)++zฬ(2y
zฬ(2yโโ2y)]
2y)]==0,0,
(2)โรE
โรE
(2)
==k kโx
[xฬ(2z
2 2
‘ =k k
‘ โx โyโy โzโz =
2
2
‘
2y 2xy + 2z 2yz ‘
y 2xy + z 2yz
possibleelectrostatic
electrostaticfield.
field.
sosoEE
a apossible
2 2is is
z
6
Letโs go by the indicated path:
c
#2005
Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
any form or by any means, without permission in writing from the publisher.
2
r(x0 , y0 , z0 )
Eยทdl = (y 2 dx + (2xy + zreproduced,
)dy + 2yzindz)k
6
Step I: y = z = 0; dy = dz = 0. Eยทdl = ky 2 dx = 0.
III
Step II: x = x0 , y : 0 โ y0 , z = 0. dx = dz = 0.
Eยทdl
= k(2xy + Rz 2 )dy = 2kx0 y dy.
R
y
Eยทdl
= 2kx0 0 0 y dy = kx0 y02 .
II
Step III : x = x0 , y = y0 , z : 0 โ z0 ; dx = dy = 0.
Eยทdl = 2kyz dz = 2ky0 z dz.
c
x
I
=
=
II
–
-y
32
R
III
CHAPTER 2. ELECTROSTATICS
Rz
Eยทdl = 2y0 k 0 0 z dz = ky0 z02 .
(x0 ,y
R0 ,z0 )
Eยทdl = โk(x0 y02 + y0 z02 ), or V (x, y, z) = โk(xy 2 + yz 2 ).
V (x0 , y0 , z0 ) = โ
0
โ
โ
โ
Check : โโV =k[ โx
(xy 2 +yz 2 ) xฬ+ โy
(xy 2 +yz 2 ) yฬ+ โz
(xy 2 +yz 2 ) zฬ]=k[y 2 xฬ+(2xy+z 2 ) yฬ+2yz zฬ]=E. X
Problem 2.21
Rr
V (r) = โ โ Eยทdl.
๏ฃฑ
1 q
๏ฃฒOutside the sphere (r > R) : E = 4ฯ0 r2 rฬ.
q
1
E = 4ฯ
3 rrฬ.
0 R
๏ฃณ
Inside the sphere (r R: V (r) = โ โ 4ฯ
drฬ = 4ฯ
q
2
0 rฬ
0
1
rฬ
r
โ
=
q 1
,
4ฯ0 r
h
2 2 i
RR 1 q
Rr 1 q
q
1
1
r โR
and for r R, โV = 4ฯ
0 โr
q
q
1
1
rฬ = โ 4ฯ
2 rฬ, so E = โโV = 4ฯ r 2 rฬ. X
0 r
0
2
q
q
q
q
1 โ
1
2r
r
1
When r < R, โV = 4ฯ
3 โ Rr 2 rฬ = 4ฯ
โR
rฬ = โ 4ฯ
2
3 rฬ; so E = โโV = 4ฯ R3 rrฬ.X
0 2R โr
0 2R
0 R
0
1
r
V(r)
1.6
1.4
1.2
1
(In the figure, r is in units of R, and V (r) is in units of q/4ฯ0 R.)
0.8
0.6
0.4
0.2
0.5
1
1.5
2
2.5
3
r
Problem 2.22
1 2ฮป
E = 4ฯ
sฬ (Prob. 2.13). In this case we cannot set the reference point at โ, since the charge itself
0 s
extends to โ. Letโs set it at s = a. Then
s
R s 1 2ฮป
1
V (s) = โ a 4ฯ
dsฬ
=
โ
2ฮป
ln
.
0 sฬ
4ฯ0
a
(In this form it is clear why a = โ would be no goodโlikewise the other โnaturalโ point, a = 0.)
1
โ
1
โV = โ 4ฯ
2ฮป โs
ln as sฬ = โ 4ฯ
2ฮป 1s ห
s = โE. X
0
0
Problem 2.23
R0
Rb
Ra
R0
V (0) = โ โ Eยทdl = โ โ k0 (bโa)
dr โ b k0 (rโa)
dr โ a (0)dr = k0 (bโa)
โ k0 ln
r2
r2
b
k
b
= k0 1 โ ab โ ln ab โ 1 + ab =
ln
.
0
a
Problem 2.24
Using Eq. 2.22 and the fields from Prob. 2.16:
Rb
Ra
Rb
Ra
2 Rb
1
V (b) โ V (0) = โ 0 Eยทdl = โ 0 Eยทdl โ a Eยทdl = โ 2ฯ0 0 s ds โ ฯa
20 a s ds
c
a
b
+a
1
1
a โ b
Contents
CHAPTER 2. ELECTROSTATICS
=โ
ฯ
20
s2
2
a
0
2
b
+ ฯa
20 ln s|a = โ
33
ฯa2
40
1 + 2 ln
b
.
a
Problem
Problem2.25
2.25
11
2q
2q
q
..
!
4ฯ
4ฯ"00 z 22+ "dd#22
z + 22
โ
R
L
L
1
ฮป
โz 2 + x2 ) %L
$ L โ ฮป2ฮปdx
(b) V = 4ฯ
10 โL
dx2 = 4ฯฮป0 ln(x +
2 + x2 )โL
%
z +x
โ
(b) V = 4ฯ"
z
=
ln(x
+
4ฯ"0
โL z 2 +x2
โL
0
"
#
!
โ
โ
'
&
โ
2
2
ฮป
L + z 2+ L 2
ฮป
z2 +
( L+
) L2
โ
ฮป
L
+
z
+
L
โ
=
ln
= ฮป ln L+ z2 +L2
.
= 4ฯ0 ln โL + โz 2 + L2
.
= 2ฯ
2ฯ"00 ln
z z
4ฯ"0
โL + z 2 + L2
(a)
(a) VV ==
z
%R
โ
$
ฯ * 2
1 Z R ฯ 2ฯr dr
1
2p
2 )% = R
(c) V = 4ฯ"
r
+
z
=
2ฯฯ
(
1 0 0 Rโฯr22ฯr
dr
1
ฯ R p+ z22 โ z2 .
2
4ฯ"0
โ +z
(c) V =
=
2ฯฯ ( r2 +0z 2 ) 2"
=0
R +z โz .
4ฯ0 0
4ฯ0
20
0
r2 + z 2
โV
In each case, by symmetry โV
โด E = โ โV
โy = โx = 0.
โz zฬ.
โV
In each case, by symmetry โV
=
=
0.
โด
E = โ โV
โy
โx
โz zฬ.
(
)
r
x
" #
2qz
1
1
2z
โ3/2 zฬ =
(a) E = โ 4ฯ"
2q โ 21 โ
"
#3/2 zฬ (agrees with Prob. 2.2a).
0
d 2
2
4ฯ"0 z12 + " d #22qz
1
1 z +( 2 ) 2z
2
(a) E = โ
2q โ
zฬ =
zฬ (agrees with Ex. 2.1).
3/2
4ฯ0 +
2 2
4ฯ0 z 2 + d 2 3/2 ,
d 2
z
+
2
1 โ 21
ฮป
โ1
2z โ (โL+โ1z2 +L2 ) 12 โz21+L2 2z zฬ
(b) E = โ 4ฯ"
2
2 2
0
z 2 +L2
(L+ z +L )
ฮป
1+
1 โ
1
1
1
,
โ 1
1
2Lฮป
2
2
2
2
โ โLโ z +L
โ (agrees
(b) E = โ
2z โ zฬ = โ โ
2z with
zฬ Ex. 2.1).
ฮป โ z โ โL+ z +L
=4ฯ
โ 4ฯ"
2
2
2 + 2L2
(โL +4ฯ"z02z+ zL22 +
) 2L2 zzฬ2 +
L2
0 0 (L
z 2+
+L2 z + L )(z22 +Lz2 )โL
(
)
โ
โ
ฮป+
z
โL
+ z 2 +-L2 โ L โ z 2 +
2Lฮป
1
. L2
,
โ
= โฯ 1 โ 1
zฬ =
zฬ (agrees with Ex. 2.2).
ฯ2
z2
2
2
2
2
(z +1Lโ)โ
โL
4ฯ0 zProb.
z +2.6).
L2
0 โ z 2 +2L
zฬ (agrees with
(c) E = โ 2"4ฯ
2 R +z 2z โ 1 zฬ = 2"
0
R2 + z 2
0
ฯ
1
1
ฯ
z
the
in โ
(a)1 is zฬโq,
0 , which, naively,
suggests
E = โโV
โ charge 2z
(c) EIf =
โright-hand
= then V
1 โ= โ
zฬ (agrees
with Prob.
2.6). = 0, in contradiction
2 + z2
2
20 2 toRProb.
20 is that R
z 2 know V on the z axis, and from this we cannot
with the answer
2.2b. The point
we +
only
โV
hope to compute Ex = โ โV
โx or Ey = โ โy . That was OK in part (a), because we knew from symmetry that
If
the
right-hand
charge
in
(a)
is
โq,
then
V = 0 ,sowhich,
naively,
E =is โโV
= 0, in
Ex = Ey = 0. But now E points in the x direction,
knowing
V onsuggests
the z axis
insufficient
tocontradiction
determine E. 2
with the answer to Prob. 2.2. The point is that we only know V on the z axis, and from this we cannot hope
โV
to compute Ex = โ โV
โx or Ey = โ โy . That was OK in part (a), because we knew from symmetry that
Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insufficient to determine E.
Problem 2.26
"
c
#2005
Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.
b
h
Z โ2h
2ฯฯ 1 โ
ฯh
โ ( 2h) =
dr =
r
4ฯ
2
2
0
0
0
โ
(where r = r / 2)
1
V (a) =
4ฯ0
c
ฯ2ฯr
h
rฬ
r
a
!
34
1
V (b) =
4ฯ0
Z โ2h
0
2ฯฯ 1
โ
4ฯ0 2
Z โ
ฯ2ฯr
rฬ
CHAPTER 2. ELECTROSTATICS
dr
(where rฬ =
q
h2 + r 2 โ
โ
2h r )
r
2h
p
dr
โ
0
h2 + r 2 โ 2h r
โ
q
2h
q
โ
โ
โ
ฯ
h
= โ
h2 + r 2 โ 2h r + โ ln(2 h2 + r 2 โ 2h r + 2 r โ 2h)
2 20
2
=
0
โ
โ
โ
ฯ
h
h
= โ
h + โ ln(2h + 2 2h โ 2h) โ h โ โ ln(2h โ 2h)
2 20
2
2
โ !
h
i
โ
โ
ฯ
h
ฯh
2+ 2
ฯh
โ ln(2h + 2h) โ ln(2h โ 2h) =
โ
= โ
ln
=
ln
40
40
2 20 2
2โ 2
โ
โ i
ฯh
ฯh h
=
ln(1 + 2). โด V (a) โ V (b) =
1 โ ln(1 + 2) .
20
20
(2 +
โ
2)2
!
2
3
Problem
2.27
Problem
2.27
Cut the Cut
cylinder
into slabs,
shownasinshown
the figure,
the cylinder
intoasslabs,
in theand
figure, and
use result
of result
Prob. of
2.25c,
z โwith
x and
ฯ xโand
ฯ dx:
use
Prob.with
2.25c,
zโ
ฯ โ ฯ dx:
zโ L
2
โz+L/2
% &โ
'
ฯ R2 + x2 โ2x dx2
R + x โ x dx
2"0
zโL/2
zโL/2
V = 2ฯ0 V =
#
โ
โ
โ
( โ
2 z+L/2 2 )*z+L/2
= 2ฯ0 12 =
x ฯR21 +xx2 R
+2R+2 ln(x
R2 ++x2 )Rโ2 x
x2 ++
R2 ln(x
+ x2zโL/2
)โx *
2"0 2
zโL/2
8
9 3
r
2
3
9
8
r
2
q
q
L + R2 + z+ L 2
<
=
z+
q
q
(
L +2 )R2 + z+ L 2
=
< 2
2
ฯ
z+
2
L
L 2
L 2
L 2
2
(
4 2
5โ2zL2 ) . 5
r
2
ฯ
z+
R
+
z+
โ
zโ
R
+
zโ
+R
ln
2
L
L
L
L
(
)
(
)
(
)
(
)
2
2
4
r2
40 : = 2
2 R +(z+ 2 ) โ(zโ ) 2 R +(zโ ) +R ln
โ2zL .
4"0 :(z+ 2 )
2
2
2 zโ L + R2 + zโ L
2
;
( L +2 )R2 +(zโ L;
2
zโ
)
2
(Note:
L
"#
$!
x
!" "
! "# $
z+L/2
R
=
!
$
dx
2
2
2
L2
L2
2'
2 2
2
โ(Note:
z + L2โ &z++zLโ'2L2+ &z=โโz
L 2โ zL โ2 4 + z โ
L zL +2 4 = โ2zL.)
=
โz
โ
zL
โ
+
z
โ zL + L4 = โ2zL.)
2
2
4
s
(s
2
2
2
,
,
L 2&
+
'
'2
z
+
.
.z2 โ L2 &
โV
zฬฯ
L
L2
L 2 2
2
2
z + โ2 R + z โ2
z โ L2
E = โโV = โzฬ
= โโV
Rzฬฯ+ z +2
+ qL
โ qL
2
2
/
/
โz= โzฬ 40 = โ
2 z+ 2 +
2 zโ 2 โ
R +
E = โโV
L
L
'2 โ R +
'2
โz
4$0
2R + z +22 &
2R + z โ2 2 &
R + z + L2
R + z โ L2
L
L
z+ 2
zโ 2
"
)
1 +0 q
1+ q
zโ L #
z+ L
2
L 2
1
2
2+
1 (+zโqL2 )2 2 L 2
1
+
R2 +
z+q
R
(
)
2
2
L 2
2
2
R +(z+ 2โ)
R +(zโ 2 )โ 2L
q
+R
2 q
2
2
โ
+R
2+ /
2+ /
' โ 2L
z + L2 + RL
z +2L2 & z Lโ'2L2 + RL
z โ2L2 &
L 2
z + 2 + R + z{z+ 2
z โ 2 + R + }z โ 2
|
$! 1
"
#
1
q
q
โ
1
1
2
/
โ / L 2&
'22 +
'2
R2 + z +2L2 &
R
z โ22
R + z + L2
R + z โ L2
๏ฃฑ s
๏ฃผ
s
2
2
๏ฃฒ
๏ฃฝ
๏ฃฑ
๏ฃผ
, L
, L
zฬฯ
.2
๏ฃฝ
E=โ
2 zฬฯ
R2 ๏ฃฒ
+ z + – โ 2L .R22 + z โ – โ 2L
4E0 ๏ฃณ
2 z+
2 z โ L ๏ฃพ โ 2L
=โ
โ 2 R2 +
2 R2 +
๏ฃพ
4$0 ๏ฃณ
2
2
๏ฃฎ
๏ฃน
, c .2 ,
.2
ฯ ๏ฃฐ
L
L
๏ฃป zฬ.
=
L โ R2 + z +
+ R2 + z โ
2$0
2
2
Problem 2.28
z
$
Orient axes so P is on z axis.
P
V =
1
%ฯ
dฯ.
=
2
Hereโฯ is constant, dฯ = r sin ฮธ dr dฮธ dฯ,
z
ฮธ r
!
1
Hello
CHAPTER 2. ELECTROSTATICS
35
๏ฃฎ
๏ฃน
s
2 s
2
ฯ ๏ฃฐ
L
L
๏ฃป zฬ.
=
L โ R2 + z +
+ R2 + z โ
20
2
2
z
#
Problem 2.28
Orient axes so P is
on z axis.
R ฯ
Here ฯโis constant, dฯ = r2 sin ฮธ dr dฮธ dฯ,
1
V = 4ฯ0 r dฯ.
r = z 2 + r2 โ 2rz cos ฮธ.
ฯ
V = 4ฯ
0
Rฯ
0
โ
โดV
R
2
โr sin ฮธ dr dฮธ dฯ ;
z 2 +r 2 โ2rz cos ฮธ
r
P
z
ฮธ r
"y
ฯ
R 2ฯ
0
dฯ = 2ฯ.
x!
โ
โ
ฯ
1
r2 + z 2 โ 2rz cos ฮธ 0 = rz
r2 + z 2 + 2rz โ r2 + z 2 โ 2rz
1
2/z
,
if
r
z.
sin ฮธ
1
dฮธ = rz
z 2 +r 2 โ2rz cos ฮธ
ฯ
= 4ฯ
ยท 2ฯ ยท 2
0
โ
(
)
n 3
o
Rz 1 2
RR 1 2
ฯ
ฯ
1z
R2 โz 2
z2
2
r
dr
+
r
dr
=
+
=
R
โ
.
z
r
0
z 3
2
20
3
z
0
q
3q
q
1
z2
z2
2
But ฯ = 4 ฯR
,
so
V
(z)
=
R
โ
=
3
โ
3
20 4ฯR3
3
8ฯ0 R
R2 ; V (r) =
Contents
3
q
8ฯ0 R
3โ
r2
R2
. X
Problem 2.29
R
R
1
1
โ2 V = 4ฯ
โ2 rฯ dฯ = 4ฯ
ฯ(r0 ) โ2 r1 dฯ (since ฯ is a function of r0 , not r)
0
0
R
1
= 4ฯ
ฯ(r0 )[โ4ฯฮด 3 (r โ r0 )] dฯ = โ 10 ฯ(r). X
0
Problem 2.30.
Problem 2.30.
(a)
(a)Ex.
Ex.2.5:
2.4: EEabove
= 2ฯ2″ฯ00nฬ;
nฬ;EEbelow
=โโ2ฯ2″ฯ00nฬnฬ(nฬ
(nฬalways
alwayspointing
pointingup);
up);EEabove
โEEbelow
=ฯ0″ฯ0nฬ.
nฬ.X!
above=
below=
aboveโ
below=
Ex.
Ex.2.6:
2.5: At
Ateach
eachsurface,
surface,EE==00one
oneside
sideand
andEE==ฯ0″ฯ0 other
otherside,
side,so
soโE
โE==ฯ0″ฯ0. .X!
22
ฯR
Prob.
rฬ = ฯฯrฬ ; Einin==00; ;so
Prob.2.11:
2.11: EEout
= ฯR
soโE
โE== ฯ0″ฯ0rฬ.rฬ.X!
out=
“0rr2 2 rฬ = 0″0 rฬ ; E
0
!
s
(b)
(b)
!
R
H!
Outside: Eยทda
Eยทda==E(2ฯs)l
E(2ฯs)l== 1″10QQenc
= ฯ”10(2ฯR)l
(2ฯR)lโ
โEE== ฯ”ฯ0RRssฬsฬ== ฯ”ฯ0sฬsฬ(at
(atsurface).
surface).
enc=
Outside:
0
0
0 s
0
c
ฯ
!2005
Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is
Inside:
soEE==
โE
enc
Inside:
QQenc
==0,0,
so
0.0. โดโด
โE
==ฯ0″of0sฬ.sฬ.
X!material may be
protected
all copyright
laws
as
they
currently
exist.
No
portion
this
%
” #$ under
reproduced, in any form or by any means, without permission in writing from the publisher.
l
2
(c) Vout = RR0 r2ฯฯ = Rฯ
(at surface); Vin = Rฯ
; so Vout = Vin . X
Rฯ
0
0
(c) Vout = “0 r = Rฯ
“0 (at surface); Vin = “0 ; so Vout = Vin . !
โVout
โVin
โVin
R2 ฯ
ฯ
out
= 0 ; so โV
= โ ฯ0ฯ. X
โrout = โ 0Rr22ฯ = โ 0ฯ (at surface); โr
โrout โ โr
โVin
โV
โVin
โV
=
โ
=
โ
(at
surface);
=
0
;
so
โ
โr
“0 r 2
“0
โr
โr
โr = โ “0 . !
c
Problem 2.31
*
‘
(
)
โq
q
1
โq + โq
โ1
.
=
โ2
+
=
+
rij
4ฯ”0
a
a
4ฯ”0 a
2a
2
,
+
2
q
1
.
โด W4 = qV =
โ2 + โ
4ฯ”0 a
2
1
(a) V = 4ฯ”
0
& qi
1
)
โq2
*
1
)
q2
q2
*
(1)
(4)
โ
+
+
โ
36
CHAPTER 2. ELECTROSTATICS
Problem 2.31
P qi
n
q2
โด W4 = qV =
4ฯ0 a
1
(a) V = 4ฯ
0
1
rij = 4ฯ0
โq
โq
โq
a + 2a + a
1
โ2 + โ
2
o
= 4ฯq0 a โ2 + โ12 .
(1) r
.
2
2
โq
q2
1
1
โq
(b) W1 = 0, W2 = 4ฯ
;
W
=
โ
3
a
4ฯ0
a ; W4 = (see (a)).
0
2a
n
o
2
1 2q 2
1
1 q
โ1 โ 1 โ 2 + โ1
โ
Wtot = 4ฯ
โ1
+
=
โ2
+
.
0 a
2
2
4ฯ0 a
2
(2)
r(4)
โ
+
r+
โr
(3)
Problem 2.32
Conservation of energy (kinetic plus potential):
1
1
1 qA qB
2
2
mA vA
+ mB vB
+
= E.
2
2
4ฯ0 r
At release vA = vB = 0, r = a, so
E=
1 qA qB
.
4ฯ0 a
When they are very far apart (r โ โ) the potential energy is zero, so
1
1
1 qA qB
2
2
mA vA
+ mB vB
=
.
2
2
4ฯ0 a
Meanwhile, conservation of momentum says mA vA = mB vB , or vB = (mA /mB )vA . So
1
1
2
mA vA
+ mB
2
2
s
vA =
mA
mB
2
1
qA qB
2ฯ0 (mA + mB )a
2
vA
=
1
2
mA
;
mB
mA
mB
2
(mA + mB )vA
=
s
vB =
1 qA qB
.
4ฯ0 a
1
qA qB
2ฯ0 (mA + mB )a
mB
.
mA
Problem 2.33
From Eq. 2.42, the energy of one charge is
W =
โ
โ
X
1
1
1 (โ1)n q 2
q 2 X (โ1)n
qV = (2)
=
.
2
2
4ฯ0 na
4ฯ0 a 1
n
n=1
(The factor of 2 out front counts the charges to the left as well as to the right of q.) The sum is โ ln 2 (you
can get it from the Taylor expansion of ln(1 + x):
1
1
1
ln(1 + x) = x โ x2 + x3 โ x4 + ยท ยท ยท
2
3
4
with x = 1. Evidently ฮฑ = ln 2 .
c
2
CHAPTER 2. ELECTROSTATICS
37
Problem 2.32
!
Problem 2.34
(a) W = 21 ฯV dฯ . From Prob. 2.21 (or P
R
2
2
q
1
(a) W = 12 ฯV dฯ . From Prob. 2.21 (or Prob. 2.28): V = 2ฯ0 R2 โ r3 = 4ฯ
3 โ Rr 2
&
$ R%
0 2R
1 1 q
r2
W = ฯ
3 โ 2 4ฯr2 dr
3
Z R
2 R4ฯ$
R
5 R
3 0 2R 0
1 1 q
r2
qฯ
r
1
r
qฯ
W = ฯ
3 โ 2 4ฯr2 dr =
3 โ 2
=
R3 โ
% 2
2 4ฯ0 2R 0
R
40 R
3
R 5 0
40 R
qฯ5 2 qR2 q
1
3q
=
=
R =
4
2
3
5$
5$
4ฯ$
5
R
2
ฯR
0
0 3
0
qฯ 2
qR
q
1
3q
=
R =
=
.
50
50 43 ฯR3
4ฯ0 5 R
!
(b) W = “20 E 2 dฯ . Outside (r > R) E =
R
q
1 q
1
*$
(b) W = 20 E 2 dฯ . Outside (r > R) E = 4ฯ
2 rฬ ; Inside (r R.
(c) W = 20
V Eยทda + V E 2 dฯ , where V is large enough to enclose all the charge, but otherwise
S
1 q
*$ %
arbitrary. Letโs use a sphere of radius a > R. Here V = 4ฯ0 r .
&%
&
1 q
1 q
$0
r2 sin
W
(Z
)
2
2= 2
Z R
Z a
4ฯ$
r
4ฯ$
r
0
0
0
1 q
1 q
1 q
2r=a
W =
r2 sin ฮธ dฮธ dฯ +
E 2 dฯ +
(4ฯr/
dr)
2
2
4ฯ0 r
4ฯ0 r2
4ฯ
r
0
0
R
$0
q2 1
q2
4ฯ
r=a
=
4ฯ
+
+
2
2 5R
a
2
(4ฯ$
)
a
(4ฯ$
)
(
2
2
0
0
0
q
1
q
4ฯ
1
1
2
/
0
=
4ฯ
+
+
4ฯq
โ
2
1 q
1
1
1
1
2 (4ฯ0 )2 a
(4ฯ0 )2 5R (4ฯ0 )2
r R
=
=
+
โ +
4ฯ$
2
a
5R
a
R
4ฯ
0
1 q2 1
1
1
1
1 3 q2
=
+
โ +
=
.X
4ฯ0 2 a 5R a R
4ฯ0 5 R
As a โ โ, the contribution from the surf
”
#
2
1 q
1 q2 while
As a โ โ, the contribution from the surface integral 4ฯ0 2a goes to 4ฯ”
zero,
the picks
volume
( 6a โ 1)
up integral
the slack.
0 2a 5R
2
1 q
6a
Problem 2.33
4ฯ0 2a ( 5R โ 1) picks up the slack.
Problem 2.35
dW = dqฬ V = dqฬ
qฬ =
4 3
r3
ฯr ฯ = q 3
3
R
1
4ฯ0
qฬ
,
r
(qฬ = charge on sphere of radius r).
(q = total charge on sphere).
4ฯr2
3q
dqฬ = 4ฯr dr ฯ = 4 3 q dr = 3 r2 dr.
R
ฯR
3 3
1
qr
1 3q 2
1 3q 2 4
dW =
r
dr
=
r dr
3
3
4ฯ0 R
r R
4ฯ0 R6
2
Z
1 3q 2 R 4
1 3q 2 R5
1
3q
W =
r dr =
=
.X
6
6
4ฯ0 R 0
4ฯ0 R 5
4ฯ0 5 R
2
c
!
r
”
dqฬ
qฬ
c
“2005
Pearson Ed
protected under al
reproduced, in any
38
CHAPTER 2. ELECTROSTATICS
Problem 2.36
R
1 q
(a) W = 20 E 2 dฯ.
E = 4ฯ
2 (a < r a), E2 = 4ฯ r 2 rฬ (r > b).
0 b
0 r
0
02 a 2
2
R
R
โq
q2
1
1
2 โ 1
2
E1 ยท E2 = 4ฯ0
E1 ยท E2 dฯ = โ 4ฯ0 q b r4 4ฯr dr = โ 4ฯ
.
r 4 , (r > b), and hence
0b
R
2
q
1
1
1
Wtot = W1 + W2 + 0 E1 ยท E2 dฯ = 8ฯ
q 2 a1 + 1b โ 2b = 8ฯ
a โ b .X
0
0
Problem 2.37
z
r
q2
a q
1 q1
rฬ;
4ฯ0 r2
y
q1
x
E1 =
b
r
E2 =
1 q2
rฬ ;
4ฯ0 r 2
r =
p
Wi = 0
q1 q2
(4ฯ0 )2
Z
1
r2
2
r 2 cos ฮฒ r sin ฮธ dr dฮธ dฯ,
where (from the figure)
r2 + a2 โ 2ra cos ฮธ,
Therefore
Wi =
q1 q2
2ฯ
(4ฯ)2 0
Z
cos ฮฒ =
(r โ a cos ฮธ)
(r โ a cos ฮธ)
r
.
r 3 sin ฮธ dr dฮธ.
Itโs simplest to do the r integral first, changing variables to r :
2 r d r = (2r โ 2a cos ฮธ) dr โ (r โ a cos ฮธ) dr = r d r .
As r : 0 โ โ, r : a โ โ, so
Z Z โ
q1 q2 ฯ
1
r
Wi =
d
sin ฮธ dฮธ.
r2
8ฯ
0
0
a
q1 q2
8ฯ0 a
Z ฯ
The r integral is 1/a, so
Wi =
sin ฮธ dฮธ =
0
q1 q2
.
4ฯ0 a
Of course, this is precisely the interaction energy of two point charges.
Problem 2.38
(a) ฯR =
q
โq
q
; ฯa =
; ฯb =
.
2
2
4ฯR
4ฯa
4ฯb2
c
Problem 2.34
!
1 q
(a) W = !20 E 2 dฯ.
E = 4ฯ!
2 (a < r a), E2 = 4ฯ!
2 rฬ (r > b).
0 b
0 r
0 r
”
”
#02 a 2
#
CHAPTER 2. ELECTROSTATICS
39
2
!
!
โ
q2
โq
1
1
E1 ยท E2 = 4ฯ!
E1 ยท E2 dฯ = โ 4ฯ!
.
q 2 b r14 4ฯr2 dr = โ 4ฯ!
r 4 , (r > b), and hence
0
0
0b
$
$
%
%
!
2
q
1
1
2
1
1
WRtot
= W1 + W
โ 1b .!
= R8ฯ!
R 2b + #10 qE1 ยท E2 Rdฯa = 8ฯ!0 qR2 R a +1 b โ
1 q
q
q
0
0 0 a
q b
(b) V (0) = โ โ Eยทdl = โ โ 4ฯ
dr
โ
(0)dr
โ
dr
โ
(0)dr
=
+
โ
.
2
2
b
a 4ฯ0 r
R
0 r
4ฯ0 b R a
Problem 2.35
q
โq
q
R0
(a) ฯR =
; ฯa =
; ฯ R=a
. RR 1 q
(c) ฯb โ 0 (the charge
โdrains
(0)2 = โb โ (0)dr
4ฯR2 offโ); V4ฯa
4ฯb2 โ a 4ฯ
2 dr โ R (0)dr =
0 r
1 q
q
โ
.
4ฯ0 R a
!a
!0
! R$ 1 q %
!0
!b $ 1 q %
q
q#
1 “q
Problem 2.39
+
โ
dr
โ
dr
โ
(0)dr
โ
(0)dr
=
(b) V (0) = โ โ Eยทdl = โ โ 4ฯ!
2
2
b
R
a 4ฯ!0 r
0 r
4ฯ#0 b R a
qa
qb
qa + qb
(a) ฯa = โ
; ฯb = โ
; ฯR =
.
!0
!a
! R$ 1 q %
1 “q
q
4ฯa2
4ฯb2
4ฯR2
(c) ฯb โ 0 (the charge โdrains offโ); V (0) = โ โ (0)dr โ a 4ฯ!
โ
2 dr โ R (0)dr =
0 r
4ฯ#0 R a
1 qa + qb
(b) Eout = Problem2 2.36
rฬ, where r = vector from center of large sphere.
4ฯ0 r
qa
qb
qa + qb
ฯa = โ
; qฯb = โ
; ฯR =
.
2
2
2
1 q(a)
1
a
b
4ฯa
4ฯb r (r ) is 4ฯR
(c) Ea =
rฬ
,
E
=
rฬ
,
where
the
vector
from center of cavity a (b).
a
b
b
a
b
4ฯ0 ra2
4ฯ0 rb2
1 qa + qb
rฬ, where r = vector from center of large sphere.
(b) Eout =
4ฯ#
r2
0
(d) Zero.
1 qb(but not Ea or Eb ); force on qa and qb still zero.
(e) ฯR changes (but not ฯa 1or ฯqba); Eoutside changes
rฬa , Eb =
rฬb , where ra (rb ) is the vector from center of cavity a (b).
(c) Ea =
2
4ฯ#0 ra
4ฯ#0 rb2
Problem 2.40
(a) No. For example, if it is very close to the wall, it will induce charge of the opposite sign on the wall,
(d) Zero.
and it will be attracted.
(b) No. Typically
itRwill
be attractive,
seeฯbfootnote
12changes
for a extraordinary
(e) ฯ
changes
(but not but
ฯa or
); Eoutside
(but not Ea counterexample.
or Eb ); force on qa and qb still zero.
Problem 2.41 Problem 2.37
Between
plates, the
E =plates
0; outside
the 0plates
= So
ฯ/#0 = Q/#0 A. So
Between the plates,
E = the
0; outside
E = ฯ/
= Q/E0 A.
2
2
0 2
0 PQ=2 #0 E 2 =
Q2#0 Q = Q .
P = E =
=
.2 2
2#0 A2
2
2 20 A2 2 20 A22 #0 A
Problem 2.42 Problem 2.38
z!
1 Q
1 Q
Inside, E = 0; outside,
E=
= 0;4ฯ
Inside, E
outside,
2 rฬ; soE =
4ฯ! r 2 rฬ; so
0 r
“E
0
ฮธ
1 Q
Q )z ; ฯ = Q 2 .
1 EQ
= 12z4ฯ!
f = ฯ(Eave
ave
Eave = 12 4ฯ
=0ฯ(E
R2 rฬ;
4ฯR
2 rฬ; f
2.
ave )zz; ฯ = 4ฯR
0 R
!
!$ Q % 1 $ 1 Q %
R
RF Q
= f1z da1= Q 4ฯR
cos ฮธ R2 sin ฮธ dฮธ dฯ
2
Fz = fz da = z4ฯR
cos2 ฮธ 2R24ฯ!
sin0 ฮธRdฮธ
dฯ
2 2 4ฯ R2
0
$
$ Q %2 $ 1
%(
$ %
%
!
Q2
2 (ฯ/2
1 2 Q 2
1 ฯ/2
2ฮธ dฮธ
R 1 Q 2 2ฯ ฯ/2 sin
Q
2
sin
ฮธ
=
ฮธ
cos
=
=
.
Q 2 = ฯ/2
Q
Q
2
1
1
1
1
ฯ!0 4R = 2
2ฯ!0 4R.
0=
= 20 4ฯR 2ฯ 0 2!0sin4ฯR
ฮธ cos ฮธ dฮธ0= ฯ0 4R
32ฯR2 #0
2 sin ฮธ 0
2ฯ0 4R
32ฯR2 0
Problem 2.43 #2005
c
Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected
under
all copyright
as they
No portion
this material
may be law:
Say
the
charge
on
the
inner
cylinderlaws
is Q,
for acurrently
length exist.
L. The
field isofgiven
by Gaussโs
R
reproduced, in1any form or1 by any means, without
Q 1 permission in writing from the publisher.
Eยทda = E ยท 2ฯs ยท L = 0 Qenc = 0 Q โ E = 2ฯ0 L s sฬ. Potential difference between the cylinders is
Z b
Q
V (b) โ V (a) = โ
Eยทdl = โ
2ฯ
0L
a
Z b
1
Q
ds = โ
ln
s
2ฯ
0L
a
As set up here, a is at the higher potential, so V = V (a) โ V (b) = 2ฯQ0 L ln
c
b
a
.
b
.
a
cylinder is Q, for a length L. The field is given by Gaussโs law:
!Say the charge on the inner
Eยทda = E ยท 2ฯs ยท L = !10 Qenc = !10 Q โ E = 2ฯ!Q0 L 1s sฬ. Potential difference between the cylinders is
” b
Q
V (b) โ V (a) = โ
Eยทdl = โ
2ฯ”0 L
a
” b
Q
1
ds = โ
ln
2ฯ”0 L
a s
As set up here, a is at the higher potential, so V = V (a) โ V (b) = 2ฯ!Q0 L ln
2ฯ”0
0L
40
% &.
C = VQ = 2ฯ!
b , so capacitance per unit length is
ln( a
)
ln ab
# $
b
.
a
%b&
a .
CHAPTER 2. ELECTROSTATICS
Problem
2.400 L
2ฯ0
.
C = VQ = 2ฯ
b , so capacitance per unit length is
ln( a
)
ln ab
“0 2
E A”.
(a) W = (force)ร(distance) = (pressure)ร(area)ร(distance)
=
2
Problem 2.44
(
‘
2
(b) W = (energy per unit volume)ร(decrease in volume) = “00 E22 (A”). Same as (a), confirming that the
(a) W = (force)ร(distance) = (pressure)ร(area)ร(distance) =
E A.
2
energy lost is equal to the work done.
2
Problem 2.41
(b) W = (energy per unit volume)ร(decrease in volume) = 0 E2 (A). Same as (a), confirming that the
energyFrom
lost Prob.
is equal
to the
the field
workatdone.
2.4,
height z above the center of a square loop (side a) is
Problem 2.45
1
4ฮปaz
)
E=
zฬ.
%
2&
4ฯ”
a2 (side a) is
a
0
2
From Prob. 2.4, the field at height z above the center
loop
z of
+ a4square
z2 +
2
! ” da
2
! ” da
2
1
4ฮปaz
da
over a from
0 to aฬ: zฬ.
Here ฮป โ ฯ 2 (see figure), and we integrate
q
E=
2
2
4ฯ0 z 2 + a
”
!
z2 + a
4
2
” aฬ
1
a2
a da
Here ฮป โ
(see
figure),
and we&integrate
over
a from
)
Eฯ
=da
. Let
u = 0 to
2ฯz
, soaฬ:a da = 2 du.
2
%
2
2
4ฯ”0
4
0
z 2 + a4
z 2 + a2
Z ”
+โ
,-aฬ2 /4
* 2
aฬ 2
1
a da du
a2
aฬ /4
ฯz
2u
+ z2
q
E = = 12ฯz
.
Let
u
=
,
so
a
da
=
2
du.
โ1
โ a2
4ฯz0
=
tan
4ฯ
a2
0
2
2 z2 +
2
4ฯ”
ฯ”0 z4
z
2u +
0
0 z +(u4+ z )
2 z
0
)
”
!#aฬ2 /4
+ aฬ2
,
. Z aฬ2 /4
/
โ
2
12ฯ
du
ฯz 2
2u + z 2
2 +z
โ โ tanโ1
==
4ฯztanโ1
= (1) ; tanโ1
4ฯ
ฯ0 z
z
(u +zz 2 ) 2u + z 2
ฯ”0 0
0
0
q
(
! *
)
aฬ2
0
2
2ฯ
2 + z 2ฯ
a2
ฯ
โ1(1) ;
=
tanโ1
โ tanโ1
zฬ.
1+ 2 โ
ฯ0
zE = ฯ”0 tan
2z
4
a
”
a+da
!
1
%
2
&
2ฯ
!
r tanโ1 (โ) โ# ฯ = 2ฯ ฯ โ ฯ = ฯ . !
a โ โ (infinite plane):”E = ฯ!
4
ฯ!0 2
4
2!0
0
2
2ฯ
a
ฯ
ฯ
a2
โ1
โ1
p
E=
tan
1 + โ12 โโ
zฬ =
tan
zฬ.
2 + (a2 series:
and
as azTaylor
z ‘ a (point charge):
1 4+ x โ ฯ4 , ฯ
ฯ0 Let f (x) = tan2z
/2)
0 expand4z
โ1= f (0) +
” 2ฯ +ฯ1 x2ฯf “” (0) +
ยท
ฯ xf (0)
2ฯ f (x)
a โ โ (infinite plane): E = ฯ
tan
(โ)
โ
= ฯ0 22โ 4 = 2ฯ0 ยท. ยทX
4
0
โ
โ1
z a (point charge): Let f (x)
+ x โ ฯ4 Inc.,
, andUpper
expand
asRiver,
a Taylor
series:
c = tan
#2005
Pearson 1Education,
Saddle
NJ. All
rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any
without permission in writing from the publisher.
1 means,
0
2 00
f (x) = f (0) + xf (0) + x f (0) + ยท ยท ยท
2
1
1โ1
1โ
1
0
Here f (0) = tanโ1 (1) โ ฯ4 = ฯ4 โ ฯ4 = 0; f 0 (x) = 1+(1+x)
2 1+x = 2(2+x) 1+x , so f (0) = 4 , so
f (x) =
2
a
2ฯ
Thus (since 2z
2 = x 1), E โ ฯ
0
c
1 a2
4 2z 2
1
x + ( )x2 + ( )x3 + ยท ยท ยท
4
2
q
1 ฯa
1
= 4ฯ
2 = 4ฯ z 2 . X
0 z
0
5
1โ
1โ1
1
Here f (0)
tanโ1 (1) โ ฯ4 = ฯ4 โ ฯ4 = 0; f ” (x) = 1+(1+x)
CHAPTER
2. =
ELECTROSTATICS
411+x , so f ” (0) = 14 , so
2 1+x = 2(2+x)
1
x + ( )x2 + ( )x3 + ยท ยท ยท
4
!
“โ
1 โ
1
โ k sin ฮธ cos ฯ
2 sin ฮธ cos ฮธ sin ฯ
2 3k 2ฯ
q
1 1
1 ฯa2k
a2
a2
1
ฯ = (since
โยทE
=
r
+
sin
ฮธ
+
=
Thus
=
x
”
1),
E
โ
=
.
!
0
2z 2 0
2z 2ฮธ โฮธ 4ฯ#0 z 2
4ฯ#0r z 2
r2 โr
r ฯ#0 r4sin
r sin ฮธ โฯ
r
3
2
Problem12.42
1 2k sin ฯ(2 sin ฮธ cos ฮธ โ sin ฮธ)
1 (โk sin ฮธ sin ฯ)
= 0 2 3k +
$ + r sin ฮธ %& r
r
r sin ฮธ# 1 โ $ A %r
1
โ B sin ฮธ cos ฯ
ฯ =”0 โยทE = “0
r2
+
ฮธ โฯk0
k
22โr
0
2
r
r
r
sin
= 2 3+
2 sin ฯ(2 cos ฮธ โ sin ฮธ) โ sin(ฯ = 2 3 + rsin ฯ(4 cos2 ฮธ โ 2 + 2 cos2 ฮธ โ 1)
‘
r
“0r
1
1 B sin ฮธ
= “0 2 A +
(โ sin
ฯ) = 2 (A โ B sin ฯ).
3k
3k
0
0
sin 2ฮธ ฮธ โr1) =
r ฯ cos 2ฮธ).
= 2 1 +r sin ฯ(2r cos
(1 + sin
r
r2
Problem 2.46
f (x) =
Problem 2.43
1 Q
From
Prob. 2.12, the field inside a uniformly charged sphere is: E = 4ฯ#
Problem
2.47
3 r. So the force per unit volume
0 R
)
*
) Q *) Q *
Q
2
1
Q
3
From
the field inside
E =z 4ฯ
force per unit volume
3 r. So
r =a #uniformly
r,charged
and thesphere
force is:
in the
direction
on the
dฯ is:
is f =Prob.
ฯE =2.12,
4
0 R
4ฯR3
0
ฯR3 Q 4ฯ#
0 R3 3 Q
2
Q 3
is f = ฯE = 4 ฯR3 4ฯ0 R3 r = 0 4ฯR3 r, and the force in the z direction on dฯ is:
%2
$
3
3
Q
dFz = fz dฯ =
r cos ฮธ(r2 sin ฮธ dr dฮธ dฯ).
2 3
3 “0Q 4ฯR
dFz = fz dฯ =
r cos ฮธ(r2 sin ฮธ dr dฮธ dฯ).
3
0 4ฯR
The total force on the โnorthernโ hemisphere
is:
%2 + R is: + ฯ/2
$
+ 2ฯ
+ the โnorthernโ
The total force on
hemisphere
Q
3
3
r
dr
cos
ฮธ
sin
ฮธ
dฮธ
dฯ
Fz = fz dฯ =
“0 4ฯR
2 Z3 R 0 Z ฯ/2 0
Z
Z 2ฯ 0
3
Q$
-ฯ/2 .
%2 $3 4 % , cos2 ฮธ sin
Fz = fz dฯ =
3 3 Q 0 r dr
R 0 sin ฮธ — ฮธ dฮธ 0 dฯ 3Q2
0 = 4ฯR
.
(2ฯ) =
3
“0 4ฯR
2
4
2 !-0
64ฯ”0 R2
ฯ/2
3
Q
R4
sin2 ฮธ
3Q2
=
(2ฯ) =
.
0 4ฯR3
4
2 0
64ฯ0 R2
Problem 2.44
+
+
1
ฯ
1 ฯ
ฯR
1 ฯ
Problem 2.48
2
Vcenter = Z
da =
Z R da = 4ฯ” R (2ฯR ) = 2″
4ฯ”
ฮท
4ฯ”
1
ฯ0
1 ฯ 0
1 ฯ 0
ฯR 0
Vcenter =
da =
da =
(2ฯR2 ) =
r
4ฯ0
4ฯ0 R
20
(4ฯ/0 R
Z
+
2
da =
sin2 ฮธsin
dฮธ,ฮธ dฮธ,
da2ฯR
= 2ฯR
1
1ฯ ฯ
Vpole V=pole =
da ,da
with
, with 2 2 2 2 2 2
2 2
2 2
4ฯ0 4ฯ”r
ฮท
r ฮท= =R R+ +R Rโ โ2R2R
coscos
ฮธ=
2R2R
(1(1
โโ
coscos
ฮธ).ฮธ).
ฮธ=
0
Z
+
2
ฯ/2 -ฯ/2
1 ฯ(2ฯR
) 2ฯ/2
sin ฮธ sin
dฮธ ฮธ dฮธ ฯR ฯRโ โ
) ฯ/2
1 ฯ(2ฯR
โ โ
โ โ
= =
= โ= โ(2 1(2
โ cos
1 โฮธ)cos ฮธ)4ฯ0 4ฯ”
0
0
1 โฮธ cos ฮธ2 220 2″0
R0 2R 20
0 1 โ cos
โ
โ
ฯR ฯR
ฯR ฯR
ฯR ฯR
โ= โ
= โ= โ
(1 โ (1
0) โ
= 0)
.
Vcenter
= =( 2 โ
. โด Vpole
โด Vโpole
โ Vcenter
( 1).
2 โ 1).
20 2″0
20 2″0
20 2″0
r
R
R
ฮธ
Problem
Problem
2.492.45
determine
the electric
and outside
the sphere,
Gaussโs
FirstFirst
letโs letโs
determine
the electric
field field
insideinside
and outside
the sphere,
usingusing
Gaussโs
law: law:
/
0
+ Z
+
4
I
Z
Z r + r (
4 ฯkr
2
2
3
ฯkr
(r < (r
R), R).> R).
0
c
$2005
Pearson Education, Inc., Upper
4 Saddle River, NJ. All rights reserved. This material is
So Eprotected
= 4k0 r2under
rฬ (r all
R). exist. No portion of this material may be
copyright
asr 2they
currently
0
reproduced, in any form or by any means, without permission in writing from the publisher.
c
42
CHAPTER 2. ELECTROSTATICS
Method I :
2
2
Z
Z
0 R kr2
0 โ kR4
E 2 dฯ (Eq. 2.45) =
4ฯr2 dr +
4ฯr2 dr
2 0
40
2 R
40 r2
)
2 (Z R
โ
Z โ
0
k
1
ฯk 2 R7
1
ฯk 2 R7
6
8
8
7
= 4ฯ
r dr + R
dr =
+R โ
=
+R
2
2 40
80
7
r R
80
7
0
R r
W =
=
0
2
Z
ฯk 2 R7
.
70
Method II :
W =
1
2
Z
ฯV dฯ
(Eq. 2.43).
(
)
R
Z r 2
r
kR4
kr
k
1
r3
4
For r โฆ11
n = 12 :
โฆ11 + 11 = 48.5757 + 11 = 59.5757 < โฆ12
Thus a lower energy is achieved for 11 charges if they are all at the rim, but for 12 it is better to put one at
the center.
c
Document Preview (27 of 295 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual For Introduction To Electrodynamics, 4th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Benjamin Harris
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)