Solution Manual For Fundamentals of Logic Design, 7th Edition

Preview Extract
Fundamentals of Logic Design 7th Edition Roth Solutions Manual Full Download: http://testbanklive.com/download/fundamentals-of-logic-design-7th-edition-roth-solutions-manual/ Unit 2 Solutions Unit 2 Problem Solutions 2.1 See FLD p. 731 for solution. 2.2 (a) In both cases, if X = 0, the transmission is 0, and if X = 1, the transmission is 1. X X 2.2 (b) In both cases, if X = 0, the transmission is YZ, and if X = 1, the transmission is 1. X X Y Y Z X X Y Z 2.3 Answer is in FLD p. 731 2.4 (a) F = [(Aยท1) + (Aยท1)] + E + BCD = A + E + BCD 2.4 (b) Y = (AB’ + (AB + B)) B + A = (AB’ + B) B + A = (A + B) B + A = AB + B + A = A + B 2.5 (a) (A + B) (C + B) (D’ + B) (ACD’ + E) = (AC + B) (D’ + B) (ACD’ + E) By Dist. Law = (ACD’ + B) (ACD’ + E) By Dist. Law = ACD’ + BE By Dist. Law 2.5 (b) (A’ + B + C’) (A’ + C’ + D) (B’ + D’) = (A’ + C’ + BD) (B’ + D’) {By Distributive Law with X = A’ + C’} = A’B’ + B’C’ + B’BD + A’D’ + C’D’ + BDD’ = A’B’ + A’D’ + C’B’ + C’D’ 2.6 (a) AB + C’D’ = (AB + C’) (AB + D’) = (A + C’) (B + C’) (A + D’) (B + D’) 2.6 (b) WX + WY’X + ZYX = X(W + WY’ + ZY) = X(W + ZY) {By Absorption} = X(W +Z) (W + Y) 2.6 (c) A’BC + EF + DEF’ = A’BC + E(F +DF’) = A’BC + E(F +D) = (A’BC + E) (A’BC + F + D) = (A’ + E) (B + E) (C + E) (A’ + F + D) (B + F + D) (C + F + D) 2.6 (d) XYZ + W’Z + XQ’Z = Z(XY + W’ + XQ’) = Z[W’ + X(Y + Q’)] = Z(W’ + X) (W’ + Y + Q’) By Distributive Law 2.6 (e) ACD’ + C’D’ + A’C = D’ (AC + C’) + A’C = D’ (A + C’) + A’C By Elimination Theorem = (D’ + A’C) (A + C’ + A’C) = (D’ + A’) (D’ + C) (A + C’ + A’) By Distributive Law and Elimination Theorem = (A’ + D’) (C + D’) (A + B + C + D) (A + B + C + E) (A + B + C + F) = A + B + C + DEF Apply second Distributive Law twice 2.6 (f) A + BC + DE = (A + BC + D)( A + BC + E) = (A + B + D)(A + C + D)(A + B + E)(A + C + E) 2.7 (b) WXYZ + VXYZ + UXYZ = XYZ (W + V + U) By first Distributive Law 2.7 (a) D E F 2.8 (a) 2.8 (c) 2.9 (a) A B U V W C X Y Z [(AB)’ + C’D]’ = AB(C’D)’ = AB(C + D’) = ABC + ABD’ ((A + B’) C)’ (A + B) (C + A)’ = (A’B + C’) (A + B)C’A’ = (A’B + C’)A’BC’ = A’BC’ 2.8 (b) [A + B (C’ + D)]’ = A'(B(C’ + D))’ = A'(B’ + (C’ + D)’) = A'(B’ + CD’) = A’B’ + A’CD’ F = [(A + B)’ + (A + (A + B)’)’] (A + (A + B)’)’ = (A + (A + B)’)’ By Elimination Theorem with X=(A+(A+B)’)’ = A'(A + B) = A’B 2.9 (b) G = {[(R + S + T)’ PT(R + S)’]’ T}’ = (R + S + T)’ PT(R + S)’ + T’ = T’ + (R’S’T’) P(R’S’)T = T’ + PR’S’T’T = T’ 17 ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com Unit 2 Solutions 2.10 (a) X Y 2.10 (c) X X Y’ X’ 2.10 (e) X X Y X Z X Y X 2.10 (d) Y’ A Y 2.10 (f) B X X Y C A B A Z X Y Z Y 2.11 (a) (A’ + B’ + C)(A’ + B’ + C)’ = 0 By Complementarity Law 2.11 (c) AB + (C’ + D)(AB)’ = AB + C’ + D By Elimination Theorem 2.10 (b) C’ X B X Y 2.11 (b) AB(C’ + D) + B(C’ + D) = B(C’ + D) By Absorption 2.11 (d) (A’BF + CD’)(A’BF + CEG) = A’BF + CD’EG By Distributive Law Z 2.11 (e) [AB’ + (C + D)’ +E’F](C + D) = AB'(C + D) + E’F(C + D) Distributive Law 2.11 (f) 2.12 (a) (X + Y’Z) + (X + Y’Z)’ = 1 By Complementarity Law 2.12 (b) [W + X'(Y +Z)][W’ + X’ (Y + Z)] = X'(Y + Z) By Uniting Theorem 2.12 (c) (V’W + UX)’ (UX + Y + Z + V’W) = (V’W + UX)’ (Y + Z) By Elimination Theorem 2.12 (d) (UV’ + W’X)(UV’ + W’X + Y’Z) = UV’ + W’X By Absorption Theorem 2.12 (e) (W’ + X)(Y + Z’) + (W’ + X)'(Y + Z’) = (Y + Z’) By Uniting Theorem 2.12 (f) (V’ + U + W)[(W + X) + Y + UZ’] + [(W + X) + UZ’ + Y] = (W + X) + UZ’ + Y By Absorption 2.13 (a) F1 = A’A + B + (B + B) = 0 + B + B = B 2.13 (b) F2 = A’A’ + AB’ = A’ + AB’ = A’ + B’ 2.13 (c) F3 = [(AB + C)’D][(AB + C) + D] = (AB + C)’D (AB + C) + (AB + C)’ D = (AB + C)’ D By Absorption 2.13 (d) Z = [(A + B)C]’ + (A + B)CD = [(A + B)C]’ + D By Elimination with X = [(A + B) C]’ = A’B’ + C’ + D’ 2.14 (a) ACF(B + E + D) 2.14 (b) W + Y + Z + VUX 2.15 (a) f ‘ = {[A + (BCD)’][(AD)’ + B(C’ + A)]}’ = [A + (BCD)’]’ + [(AD)’ + B(C’ + A)]’ = A'(BCD)” + (AD)”[B(C’ + A)]’ = A’BCD + AD[B’ + (C’ + A)’] = A’BCD + AD[B’ + C”A’] = A’BCD + AD[B’ + CA’] 2.15(b) 2.16 (a) f D = [A + (BCD)’][(AD)’ + B(C’ + A)]D = [A (B + C + D)’] + [(A + D)'(B + C’A)] 2.16 (b) f D = [AB’C + (A’ + B + D)(ABD’ + B’)]D = (A + B’ + C)[A’BD + (A + B + D’ )B’) 2.17 (a) f = [(A’ + B)C] + [A(B + C’)] = A’C + B’C + AB + AC’ = A’C + B’C + AB + AC’ + BC = A’C + C + AB + AC’ = C + AB + A = C + A 2.17 (c) f = (A’ + B’ + A)(A + C)(A’ + B’ + C’ + B) (B + C + C’) = (A + C) 2.17 (b) f = A’C + B’C + AB + AC’ = A + C 18 A'(B + C)(D’E + F)’ + (D’E + F) = A'(B + C) + D’E + F By Elimination f ‘ = [AB’C + (A’ + B + D)(ABD’ + B’)]’ = (AB’C)'[(A’ + B + D)(ABD’ + B’]’ = (A’ + B” + C’)[(A’ + B + D)’ + (ABD’)’B”] = (A’ + B + C’)[A”B’D’ + (A’ + B’ + D”)B] = (A’ + B + C’)[AB’D’ + (A’ + B’ + D)B] 2.18 (a) product term, sum-of-products, product-of-sums) ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Unit 2 Solutions 2.18 (b) sum-of-products 2.18 (c) none apply 2.18 (d) sum term, sum-of-products, product-of-sums 2.18 (e) product-of-sums 2.19 2.20 (a) F = D[(A’ + B’ )C + AC’ ] W Z Z + X 2.20 (b) F = D[(A’ + B’ )C + AC’ ] = A’ CD + B’ CD +AC’ D + X Y F W + Y 2.20 (c) F = D[(A’ + B’ )C + AC’ ] = D(A’ + B’ + AC’ )(C + AC’ ) = D(A’ + B’ + C’ )(C + A) A’ D B’ C’ 2.21 C A A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 A’ C D B’ C D A C’ D C 0 1 0 1 0 1 0 1 H 0 1 1 1 0 1 0 1 F 0 1 0 1 0 0 0 1 G 0 x 1 x 0 1 0 x 2.22 (a) A’B’ + A’CD + A’DE’ = A'(B’ + CD + DE’) = A'[B’ + D(C + E’)] = A'(B’ + D)(B’ + C + E’) 2.22 (d) A’B’ + (CD’ + E) = A’B’ + (C + E)(D’ + E) = (A’B’ + C + E)(A’B’ + D’ + E) = (A’ + C + E)(B’ + C + E) (A’ + D’ + E)(B’ + D’ + E) 2.22 (b) H’I’ + JK = (H’I’ + J)(H’I’ + K) = (H’ + J)(I’ + J)(H’ + K)(I’ + K) 2.22 (e) A’B’C + B’CD’ + EF’ = A’B’C + B’CD’ + EF’ = B’C (A’ + D’) + EF’ = (B’C + EF’)(A’ + D’ + EF’) = (B’ + E)(B’ + F’)(C + E)(C + F’ ) (A’ + D’ + E)(A’ + D’ + F’) 2.22 (c) A’BC + AB’C + CD’ = C(A’B + AB’ + D’) = C[(A + B)(A’ + B’) + D’] = C(A + B + D’)(A’ + B’ + D’) 2.22 (f) WX’Y + W’X’ + W’Y’ = X'(WY + W’) + W’Y’ = X'(W’ + Y) + W’Y’ = (X’ + W’)(X’ + Y’)(W’ + Y + W’)(W’ + Y + Y’) = (X’ + W’)(X’ + Y’)(W’ + Y) 2.23 (a) W + U’YV = (W + U’)(W + Y)(W + V) 2.23 (b) TW + UY’ + V = (T+U+Z)(T+Y’+V)(W+U+V)(W+Y’+V) 2.23 (c) A’B’C + B’CD’ + B’E’ = B'(A’C + CD’ + E’) = B'[E’ + C(A’ + D’)] = B'(E’ + C)(E’ + A’ + D’) 2.23 (d) ABC + ADE’ + ABF’ = A(BC + DE’ + BF’) = A[DE’ + B(C + F’)] = A(DE’ + B)(DE’ + C + F’) = A(B + D)(B + E’)(C + F’ + D)(C + F’ + E’) 19 ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Unit 2 Solutions 2.24 (a) [(XY’)’ + (X’ + Y)’Z] = X’ + Y + (X’ + Y)’Z = X’ + Y’+ Z By Elimination Theorem with X = (X’ + Y) 2.24 (c) [(A’ + B’)’ + (A’B’C)’ + C’D]’ = (A’ + B’)A’B’C(C + D’) = A’B’C 2.25 (a) F(P, Q, R, S)’ = [(R’ + PQ)S]’ = R(P’ + Q’) + S’ = RP’ + RQ’ + S’ 2.25 (c) F(A, B, C, D)’ = [A’ + B’ + ACD]’ = [A’ + B’ + CD]’ = AB(C’ + D’) 2.26 (a) F = [(A’ + B)’B]’C + B = [A’ + B + B’]C + B =C+B 2.26 (c) H = [W’X'(Y’ + Z’)]’ = W + X + YZ 2.24 (b) (X + (Y'(Z + W)’)’)’ = X’Y'(Z + W)’ = X’Y’Z’W’ 2.24 (d) (A + B)CD + (A + B)’ = CD + (A + B)’ {By Elimination Theorem with X = (A + B)’} = CD + A’B’ 2.25 (b) F(W, X, Y, Z)’ = [X + YZ(W + X’)]’ = [X + X’YZ + WYZ]’ = [X + YZ + WYZ]’ = [X + YZ]’ = X’Y’ + X’Z’ 2.26 (b) G = [(AB)'(B + C)]’C = (AB + B’C’)C = ABC 2.27 F = (V + X + W) (V + X + Y) (V + Z) = (V + X + WY)(V + Z) = V + Z (X + WY) By Distributive Law with X = V W Y 2.28 (a) X + Z + V F 2.28 (b) Beginning with the answer to (a): F = ABC + A’BC + AB’C + ABC’ = BC + AB’C + ABC’ (By Uniting Theorem) = C (B + AB’) + ABC’ = C (A+ B) + ABC’ (By Elimination Theorem) = AC + BC + ABC’ = AC + B (C + AC’) = AC + B (A + C) = AC + AB + BC F = A (B + C) + BC B C B C A + + B C F Alternate solutions: F = AB + C(A + B) A C + F = AC + B(A + C) F A B 2.29 (a) XYZ X+Y X’+Z 000 001 010 011 100 101 110 111 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 (X+Y) (X’+Z) 0 0 1 1 0 1 0 1 XZ X’Y XZ+X’Y 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 20 2.29 (b) XYZ X+Y Y+Z X’+Z 000 001 010 011 100 101 110 111 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 (X+Y) (Y+Z) (X’+Z) 0 0 1 1 0 1 0 1 ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. (X+Y) (X’+Z) 0 0 1 1 0 1 0 1 Unit 2 Solutions 2-29 (c) XYZ 000 001 010 011 100 101 110 111 XY 0 0 0 0 0 0 1 1 YZ 0 0 0 1 0 0 0 1 X’Z 0 1 0 1 0 0 0 0 XY+YZ+X’Z 0 1 0 1 0 0 1 1 XY+X’Z 0 1 0 1 0 0 1 1 2.29 (d) A B C W’XY+WZ 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 W’+Z 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 W+XY 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 000 001 010 011 100 101 110 111 A+C AB+C’ 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 (A+C) (AB+C’) 0 0 0 0 1 0 1 1 2.29 (e) WXYZ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 2.30 F = (X+Y’)Z + X’YZ’ (from the circuit) = (X+Y’+ X’YZ’)( Z+X’YZ’) (Distributive Law) = (X+Y’+X’)(X+Y’+Y)(X+Y’+Z’)(Z+X’)(Z+Y)(Z+Z’) (Distributive Law) = (1+Y’)(X+1)(X+Y’+Z’)(Z+X’)(Z+Y)(1) (Complementation Laws) = (1)(1)(X+Y’+Z’)(Z+X’)(Z+Y)(1) (Operations with 0 and 1) = (X+Y’+Z’)(Z+X’)(Z+Y) (Operations with 0 and 1) W’XY 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 WZ 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 G = (X +Y’ + Z’ )(X’ + Z)(Y + Z) 21 AB AC’ 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 (W’+Z)(W+XY) 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 (from the circuit) ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. AB +AC’ 0 0 0 0 1 0 1 1 Fundamentals of Logic Design 7th Edition Roth Solutions Manual Full Download: http://testbanklive.com/download/fundamentals-of-logic-design-7th-edition-roth-solutions-manual/ Unit 2 Solutions 22 ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Full download all chapters instantly please go to Solutions Manual, Test Bank site: testbanklive.com

Document Preview (6 of 374 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in