Solution Manual for Finite Mathematics with Applications In the Management, Natural, and Social Sciences, 12th Edition
Preview Extract
INSTRUCTORโS
SOLUTIONS MANUAL
SAL SCIANDRA
Niagara County Community College
M ATHEMATICS WITH A PPLICATIONS
AND F INITE M ATHEMATICS
WITH A PPLICATIONS
IN THE M ANAGEMENT , N ATURAL ,
AND S OCIAL S CIENCES
TWELFTH EDITION
Margaret L. Lial
American River College
Thomas Hungerford
Saint Louis University
John Holcomb
Cleveland State University
Bernadette Mullins
Birmingham-Southern College
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of these programs.
Reproduced by Pearson from electronic files supplied by the author.
Copyright ยฉ 2019, 2015, 2011 Pearson Education, Inc.
Publishing as Pearson, 330 Hudson Street, NY NY 10013
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America.
ISBN-13: 978-0-13-477640-8
ISBN-10: 0-13-477640-2
Contents
Chapter 1
Algebra and Equations
1
Chapter 2
Graphs, Lines, and Inequalities
47
Chapter 3
Functions and Graphs
94
Chapter 4
Exponential and Logarithmic Functions
160
Chapter 5
Mathematics of Finance
198
Chapter 6
Systems of Linear Equations and Matrices
234
Chapter 7
Linear Programming
316
Chapter 8
Sets and Probability
422
Chapter 9
Counting, Probability Distributions, and Further Topics in Probability
453
Chapter 10
Introduction to Statistics
490
Chapter 11
Differential Calculus
521
Chapter 12
Applications of the Derivative
603
Chapter 13
Integral Calculus
677
Chapter 14
Multivariate Calculus
751
Chapter 1: Algebra and Equations
Section 1.1 The Real Numbers
1. True. This statement is true, since every integer
can be written as the ratio of the integer and 1.
5
For example, 5 ๏ฝ .
1
For Exercises 13โ16, let p = โ2, q = 3 and r = โ5.
13. โ3 ( p + 5q ) = โ3 [โ2 + 5(3) ] = โ3 [โ2 + 15]
= โ3 (13) = โ39
14. 2 ( q โ r ) = 2 (3 + 5 ) = 2 (8 ) = 16
2. False. For example, 5 is a real number, and
10
5๏ฝ
which is not an irrational number.
2
15.
3. Answers vary with the calculator, but
2, 508, 429, 787
is the best.
798, 458, 000
q๏ซr
3 + (โ5) โ2
=
=
= โ2
q ๏ซ p 3 + (โ2) 1
16.
3q
3(3)
9
9
=
=
=
3 p โ 2r 3( โ2) โ 2( โ5) โ6 + 10 4
4. 0 ๏ซ (๏ญ7) ๏ฝ ( ๏ญ7) ๏ซ 0
This illustrates the commutative property of
addition.
5. 6(t ๏ซ 4) ๏ฝ 6t ๏ซ 6 ๏ 4
This illustrates the distributive property.
6. 3 + (โ3) = (โ3) + 3
This illustrates the commutative property of
addition.
7. (โ5) + 0 = โ5
This illustrates the identity property of addition.
8. (๏ญ4)๏ง( ๏ญ41 ) ๏ฝ 1
This illustrates the multiplicative inverse
property.
9. 8 + (12 + 6) = (8 + 12) + 6
This illustrates the associative property of
addition.
10. 1๏ง(๏ญ20) ๏ฝ ๏ญ20
This illustrates the identity property of
multiplication.
11. Answers vary. One possible answer: The sum of
a number and its additive inverse is the additive
identity. The product of a number and its
multiplicative inverse is the multiplicative
identity.
17. Let r = 3.8.
APR ๏ฝ 12r ๏ฝ 12(3.8) ๏ฝ 45.6%
18. Let r = 0.8.
APR ๏ฝ 12r ๏ฝ 12(0.8) ๏ฝ 9.6%
19. Let APR = 11.
APR ๏ฝ 12r
11 ๏ฝ 12r
11
๏ฝr
12
r ๏ป .9167%
20. Let APR = 13.2.
APR ๏ฝ 12r
13.2 ๏ฝ 12r
13.2
๏ฝr
12
r ๏ฝ 1.1%
21. 3 ๏ญ 4 ๏ 5 ๏ซ 5 ๏ฝ 3 ๏ญ 20 ๏ซ 5 ๏ฝ ๏ญ17 ๏ซ 5 ๏ฝ ๏ญ12
22. 8 ๏ญ (๏ญ4) 2 ๏ญ (๏ญ12)
Take powers first.
8 โ 16 โ (โ12)
Then add and subtract in order from left to right.
8 โ 16 + 12 = โ8 + 12 = 4
23. (4 ๏ญ 5) ๏ 6 ๏ซ 6 ๏ฝ ๏ญ1 ๏ 6 ๏ซ 6 ๏ฝ ๏ญ6 ๏ซ 6 ๏ฝ 0
12. Answers vary. One possible answer: When using
the commutative property, the order of the
addends or multipliers are changed, while the
grouping of the addends or multipliers is
changed when using the associative property.
Copyright ยฉ 2019 Pearson Education, Inc.
1
2
CHAPTER 1 ALGEBRA AND EQUATIONS
24.
2(3 ๏ญ 7) ๏ซ 4(8)
4(๏ญ3) ๏ซ (๏ญ3)( ๏ญ2)
Work above and below fraction bar. Do
multiplications and work inside parentheses.
2(๏ญ4) ๏ซ 32 ๏ญ8 ๏ซ 32 24
๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ4
๏ญ12 ๏ซ 6
๏ญ12 ๏ซ 6 ๏ญ6
25. 8 ๏ญ 4 2 ๏ญ (๏ญ12)
Take powers first.
8 โ 16 โ (โ12)
Then add and subtract in order from left to right.
8 โ 16 + 12 = โ8 + 12 = 4
๏จ
๏ฉ
26. ๏ญ(3 ๏ญ 5) ๏ญ ๏ฉ 2 ๏ญ 3 2 ๏ญ 13 ๏น
๏ซ
๏ป
Take powers first.
โ(3 โ 5) โ [2 โ (9 โ 13)]
Work inside brackets and parentheses.
โ (โ2) โ [2 โ (โ4)] = 2 โ [2 + 4]
= 2 โ 6 = โ4
27.
2(๏ญ3) ๏ซ ( ๏ญ32) ๏ญ 2
๏ญ 16
๏จ
๏ฉ
64 ๏ญ 1
Work above and below fraction bar. Take roots.
2(๏ญ3) ๏ซ ( ๏ญ32) ๏ญ ( ๏ญ24)
30.
34. y is less than or equal to โ5.
y ๏ฃ ๏ญ5
35. z is at most 7.5.
z ๏ฃ 7.5
36. w is negative.
w๏ผ0
37. ๏ญ6 ๏ผ ๏ญ2
38. 3 4 ๏ฝ .75
39. 3.14 ๏ผ ๏ฐ
40. 1 3 ๏พ .33
42. b + c = a
43. c < a โ20
6 2 ๏ญ 3 25
6 2 ๏ซ 13
Take powers and roots.
36 ๏ญ 3(5) 36 ๏ญ 15 21
๏ฝ
๏ฝ
๏ฝ3
7
36 ๏ซ 13
49
2040 189
,
,
523 37
187
, 2.9884,
63
27,
46. [โ1, 10]
This represents all real numbers between โ1 and
10, including โ1 and 10. Draw brackets at
โ1 and 10 and a heavy line between them.
4587
, 6.735,
691
85 , ๏ฐ , 10,
31. 12 is less than 18.5.
12 < 18.5
385
117
47
47.
๏จ๏ญ2, 3๏
All real numbers x such that โ2 โ2
Start at โ2 and draw a heavy line to the right.
Use a parenthesis at โ2 since it is not part of the
graph.
50. (โโ, โ2]
This represents all real numbers less than or
equal to โ2. Draw a bracket at โ2 and a heavy
line to the left.
51. ๏ญ9 ๏ญ ๏ญ12 ๏ฝ 9 ๏ญ (12) ๏ฝ ๏ญ3
๏ฝ ๏ญ ๏จ 4๏ฉ ๏ญ 15 ๏ฝ ๏ญ19
54. ๏ญ 6 ๏ญ ๏ญ12 ๏ญ 4 ๏ฝ ๏ญ (6) ๏ญ ๏ญ16 ๏ฝ ๏ญ6 ๏ญ (16) ๏ฝ ๏ญ22
6
6
6๏ฝ6
60. 3 ๏ ๏ญ5
3( ๏ญ5)
3 ๏ โ5
๏ญ15
3๏5
15
15 ๏ฝ 15
61. 3 ๏ญ 5
3๏ญ5
๏ญ2
3๏ญ5
2
๏ญ2
2 ๏พ ๏ญ2
62. ๏ญ5 ๏ซ 1
๏ญ5 ๏ซ 1
๏ญ4
5 ๏ซ1
4
6
64. When b โฅ c, b โ c is positive.
So b ๏ญ c ๏ฝ b ๏ญ c .
Answers will vary for exercises 65โ67. Sample answers
are given.
example, let a = 1 and b = โ1. Then,
a ๏ซ b ๏ฝ 1 ๏ซ ( ๏ญ1) ๏ฝ 0 ๏ฝ 0 , but
4
๏ญ4
4
a ๏ซ b ๏ฝ 1 ๏ซ (๏ญ1) ๏ฝ 1 ๏ซ 1 ๏ฝ 2 .
66. Yes, if a and b are any two real numbers, it is
always true that a ๏ญ b ๏ฝ b ๏ญ a . In general,
๏ญ4๏ผ4
3 ๏ญ 10
7
๏ญ7
7
7
7๏ฝ7
10
๏ญ6
65. No, it is not always true that a ๏ซ b ๏ฝ a ๏ซ b . For
56. ๏ญ ๏ญ4
58. 6 ๏ญ (๏ญ4)
6
63. When a < 7, a โ 7 is negative.
So a ๏ญ 7 ๏ฝ ๏ญ(a ๏ญ 7) ๏ฝ 7 ๏ญ a .
53. ๏ญ ๏ญ4 ๏ญ ๏ญ1 ๏ญ 14 ๏ฝ ๏ญ(4) ๏ญ ๏ญ15
57. 10 ๏ญ 3
2๏ญ8
4๏ผ6
52. 8 ๏ญ ๏ญ4 ๏ฝ 8 ๏ญ (4) ๏ฝ 4
55. 5
๏ญ5
5 __ 5
5๏ฝ5
59. ๏ญ2 ๏ซ 8
3
a โ b = โ(b โ a). When we take the absolute
value of each side, we get
a ๏ญ b ๏ฝ ๏ญ(b ๏ญ a ) ๏ฝ b ๏ญ a .
67. 2 ๏ญ b ๏ฝ 2 ๏ซ b only when b = 0. Then each side
๏ญ4 ๏ญ 6
๏ญ10
10 10
10 ๏ฝ 10
of the equation is equal to 2. If b is any other
value, subtracting it from 2 and adding it to 2
will produce two different values.
68. For females: | x ๏ญ 63.5 |๏ฃ 8.4 ; for males:
| x ๏ญ 68.9 |๏ฃ 9.3
Copyright ยฉ 2019 Pearson Education, Inc.
4
CHAPTER 1 ALGEBRA AND EQUATIONS
69. 1; 30062007
6. To multiply 4 3 and 4 5 , add the exponents since
the bases are the same. The product of 4 3 and
70. 8; 2008, 2009, 2010, 2011, 2012, 2013, 2014,
2015
3 4 cannot be found in the same way since the
bases are different. To evaluate the product, first
do the powers, and then multiply the results.
71. 9; 2006, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015
72. 4; 2008, 2010, 2013, 2015
7. 4 2 ๏ 4 3 ๏ฝ 4 2 ๏ซ 3 ๏ฝ 4 5
73. 4; 2006, 2007, 2009, 2011
8.
74. 8; 2006, 2007, 2009, 2010, 2011, 2012, 2013,
2014, 2015
9. (๏ญ6) 2 ๏ (๏ญ6) 5 ๏ฝ (๏ญ6) 2 ๏ซ 5 ๏ฝ (๏ญ6) 7
75. | 10.6 โ 14.9 |=| โ4.3 |= 4.3
10. (2 z ) 5 ๏ (2 z ) 6 ๏ฝ (2 z ) 5 ๏ซ 6 ๏ฝ (2 z )11
76. | 63.1 โ ( โ8.0) |=| 71.1 |= 71.1
๏จ๏ญ4๏ฉ4 ๏ ๏จ๏ญ4๏ฉ6 ๏ฝ ๏จ๏ญ4๏ฉ 4 ๏ซ 6 ๏ฝ ๏จ๏ญ4๏ฉ10
7
4
4๏7
28
11. ๏ฉ๏จ5u ๏ฉ ๏น ๏ฝ ๏จ5u ๏ฉ ๏ฝ ๏จ5u ๏ฉ
๏ซ
๏ป
77. | โ1.0 โ 63.1|=| โ64.1 |= 64.1
12.
78. | 10.6 โ ( โ5.7) |=| 16.3 |= 16.3
4
๏จ6 y ๏ฉ3 ๏ ๏ฉ๏ซ๏จ6 y ๏ฉ5 ๏น๏ป ๏ฝ ๏จ6 y ๏ฉ3 ๏ ๏จ6 y ๏ฉ20
๏ฝ (6 y ) 23
79. | โ5.7 โ ( โ8.0) |=| 2.3 |= 2.3
80. | โ1.0 โ ( โ5.7) |=| 4.7 |= 4.7
13. degree 4; coefficients: 6.2, โ5, 4, โ3, 3.7;
constant term 3.7.
81. 3; 30062010, 2015, 2016
14. degree 7; coefficients: 6, 4, 0, 0, โ1, 0, 1, 0;
constant term 0.
82. 7; 2010, 2011, 2012, 2013, 2014, 2015, 2016
83. 6; 2010, 2011, 2012, 2013, 2014, 2015
84. 3; 2014, 2015, 2016
15. Since the highest power of x is 3, the degree
is 3.
16. Since the highest power of x is 5, the degree
is 5.
Section 1.2 Polynomials
17.
6
1. 11.2 ๏ป 1, 973,822.685
2. (๏ญ6.54)11 ๏ป ๏ญ936,171,103.1
๏จ3x 3 ๏ซ 2 x 2 ๏ญ 5x๏ฉ ๏ซ ๏จ๏ญ4 x 3 ๏ญ x 2 ๏ญ 8x๏ฉ
๏ฝ ๏จ3 x 3 ๏ญ 4 x 3 ๏ฉ ๏ซ ๏จ2 x 2 ๏ญ x 2 ๏ฉ ๏ซ (๏ญ5 x ๏ญ 8 x)
๏ฝ ๏ญ x 3 ๏ซ x 2 ๏ญ 13x
6
๏ฆ 18 ๏ถ
3. ๏ง ๏ญ ๏ท ๏ป 289.0991339
๏จ 7๏ธ
18.
๏จ๏ญ2 p 3 ๏ญ 5 p ๏ซ 7๏ฉ ๏ซ ๏จ๏ญ4 p 2 ๏ซ 8 p ๏ซ 2๏ฉ
๏ฝ ๏ญ2 p 3 ๏ญ 4 p 2 ๏ซ (๏ญ5 p ๏ซ 8 p ) ๏ซ (7 ๏ซ 2)
๏ฝ ๏ญ2 p 3 ๏ญ 4 p 2 ๏ซ 3 p ๏ซ 9
7
๏ฆ5๏ถ
4. ๏ง ๏ท ๏ป .0163339967
๏จ9๏ธ
5. ๏ญ32 is negative, whereas (๏ญ3) 2 is positive. Both
๏ญ33 and (๏ญ3) 3 are negative.
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.2 POLYNOMIALS
19.
๏จ ๏ญ4 y 2 ๏ญ 3 y ๏ซ 8 ๏ฉ ๏ญ ๏จ 2 y 2 ๏ญ 6 y ๏ซ 2 ๏ฉ
๏ฝ ๏จ ๏ญ4 y 2 ๏ญ 3 y ๏ซ 8๏ฉ ๏ซ ๏จ ๏ญ2 y 2 ๏ซ 6 y ๏ญ 2๏ฉ
๏จ
๏ฝ 8k 4 ๏ญ 6k 3 ๏ซ 2k 2 ๏ซ 12k 3 ๏ญ 9k 2 ๏ซ 3k
๏ฝ ๏ญ4 y 2 ๏ญ 2 y 2 ๏ซ (๏ญ3 y ๏ซ 6 y ) ๏ซ (8 ๏ญ 2)
๏ฝ 8k 4 ๏ซ 6k 3 ๏ญ 7 k 2 ๏ซ 3k
๏ฉ
27. (6k โ 1)(2k + 3)
๏ฝ (6k )(2k ๏ซ 3) ๏ซ ( ๏ญ1)(2k ๏ซ 3)
๏จ7b 2 ๏ซ 2b ๏ญ 5๏ฉ ๏ญ ๏จ3b 2 ๏ซ 2b ๏ญ 6๏ฉ
๏ฝ ๏จ7b 2 ๏ซ 2b ๏ญ 5๏ฉ ๏ซ ๏จ ๏ญ3b 2 ๏ญ 2b ๏ซ 6๏ฉ
๏ฝ ๏จ7b 2 ๏ญ 3b 2 ๏ฉ ๏ซ ๏จ2b ๏ญ 2b ๏ฉ ๏ซ ๏จ ๏ญ5 ๏ซ 6๏ฉ
๏ฝ 12k 2 ๏ซ 18k ๏ญ 2k ๏ญ 3
๏ฝ 12k 2 ๏ซ 16k ๏ญ 3
28. (8r + 3)(r โ 1)
Use FOIL.
๏ฝ 4b 2 ๏ซ 1
๏จ
๏ฝ 8r 2 ๏ญ 8r ๏ซ 3r ๏ญ 3
๏ฉ ๏จ
๏ฉ
3
2
๏ฝ ๏จ 2 x ๏ซ 2 x ๏ซ 4 x ๏ญ 3๏ฉ ๏ซ ๏จ ๏ญ2 x ๏ญ 8 x ๏ญ 1๏ฉ
2x 3 ๏ซ 2x 2 ๏ซ 4x ๏ญ 3 ๏ญ 2x 3 ๏ซ 8x 2 ๏ซ 1
3
2
๏ฝ 8r 2 ๏ญ 5r ๏ญ 3
29. (3y + 5)(2y +1)
Use FOIL.
๏ฝ 2x 3 ๏ซ 2x 2 ๏ซ 4 x ๏ญ 3 ๏ญ 2 x3 ๏ญ 8x 2 ๏ญ 1
๏ฝ 6 y 2 ๏ซ 3 y ๏ซ 10 y ๏ซ 5
๏ฝ 2 x 3 ๏ญ 2 x 3 ๏ซ 2 x 2 ๏ญ 8 x 2 ๏ซ (4 x) ๏ซ ( ๏ญ3 ๏ญ 1)
๏ฝ 6 y 2 ๏ซ 13 y ๏ซ 5
๏จ
๏ฉ ๏จ
๏ฉ
๏ฝ ๏ญ6 x 2 ๏ซ 4 x ๏ญ 4
22.
๏ฉ ๏จ
๏ฝ 2k 4k 3 ๏ญ 3k 2 ๏ซ k ๏ซ 3 4k 3 ๏ญ 3k 2 ๏ซ k
๏ฝ ๏ญ6 y 2 ๏ซ 3 y ๏ซ 6
21.
๏ฉ
๏ฝ ๏ญ4 y 2 ๏ญ 3 y ๏ซ 8 ๏ญ 2 y 2 ๏ซ 6 y ๏ญ 2
๏จ
20.
๏จ
26. (2k ๏ซ 3) 4k 3 ๏ญ 3k 2 ๏ซ k
30. (5r โ 3s)(5r โ 4s)
๏จ3 y 3 ๏ซ 9 y 2 ๏ญ 11y ๏ซ 8๏ฉ ๏ญ ๏จ๏ญ4 y 2 ๏ซ 10 y ๏ญ 6๏ฉ
๏ฝ ๏จ3 y 3 ๏ซ 9 y 2 ๏ญ 11 y ๏ซ 8๏ฉ ๏ซ ๏จ4 y 2 ๏ญ 10 y ๏ซ 6 ๏ฉ
๏ฝ 3 y 3 ๏ซ ๏จ9 y 2 ๏ซ 4 y 2 ๏ฉ ๏ซ ( ๏ญ11 y ๏ญ 10 y ) ๏ซ (8 ๏ซ 6)
3
2
๏ฝ 3 y ๏ซ 13 y ๏ญ 21 y ๏ซ 14
๏จ
๏ฉ
๏ฝ (๏ญ9m) 2m 2 ๏ซ ๏จ ๏ญ9m ๏ฉ (6m) ๏ซ ( ๏ญ9m)( ๏ญ1)
๏จ
24. 2a 4a ๏ญ 6a ๏ซ 8
๏ฉ
๏ฝ 4.34m 2 ๏ซ 8.06m ๏ญ 2.38m ๏ญ 4.42
๏ฝ 4.34m 2 ๏ซ 5.68m ๏ญ 4.42
๏ฝ 8a 3 ๏ญ 12a 2 ๏ซ 16a
๏ฉ
25. (3z ๏ซ 5) 4 z 2 ๏ญ 2 z ๏ซ 1
๏จ
๏ฉ
๏จ
๏ฉ
๏ฝ (3z ) 4 z 2 ๏ญ 2 z ๏ซ 1 ๏ซ (5) 4 z 2 ๏ญ 2 z ๏ซ 1
3
2
2
๏ฝ 12 z ๏ญ 6 z ๏ซ 3 z ๏ซ 20 z ๏ญ 10 z ๏ซ 5
๏ฝ 12 z 3 ๏ซ 14 z 2 ๏ญ 7 z ๏ซ 5
๏ฝ 12 z 3 ๏ซ 20 z 2 ๏ญ 6 z 2 ๏ญ 10 z ๏ซ 3 z ๏ซ 5
๏ฝ 12 z 3 ๏ซ 14 z 2 ๏ญ 7 z ๏ซ 5
32. (.012x โ .17)(.3x + .54)
= (.012x)(.3x) + (.012x)(.54)
+ (โ.17)(.3x) + (โ.17)(.54)
33. (6.2m โ 3.4)(.7m + 1.3)
2
๏จ
๏ฝ 18k 2 ๏ญ 9kq ๏ซ 2kq ๏ญ q 2
๏ฝ .0036 x 2 ๏ญ .04452 x ๏ญ .0918
๏จ ๏ฉ ๏ซ 2a(๏ญ6a) ๏ซ 2a(8)
๏ฝ 2a 4a
31. (9k + q)(2k โ q)
๏ฝ .0036 x 2 ๏ซ .00648 x ๏ญ .051x ๏ญ .0918
๏ฝ ๏ญ18m 3 ๏ญ 54m 2 ๏ซ 9m
2
๏ฝ 25r 2 ๏ญ 35rs ๏ซ 12 s 2
๏ฝ 18k 2 ๏ญ 7 kq ๏ญ q 2
23. ๏ญ9m 2m 2 ๏ซ 6m ๏ญ 1
๏จ ๏ฉ
๏ฝ 25r 2 ๏ญ 20rs ๏ญ 15rs ๏ซ 12 s 2
34. 2p โ3[4p โ (8p + 1)]
= 2p โ 3(4p โ 8p โ 1)
= 2p โ 3(โ 4p โ 1)
= 2p + 12p + 3
= 14p + 3
35. 5k โ [k + (โ3 + 5k)]
= 5k โ [6k โ 3]
= 5k โ 6k + 3
= โk + 3
Copyright ยฉ 2019 Pearson Education, Inc.
๏ฉ
5
6
CHAPTER 1 ALGEBRA AND EQUATIONS
42. a.
36. (3x ๏ญ 1)( x ๏ซ 2) ๏ญ (2 x ๏ซ 5) 2
๏จ
๏ฉ ๏จ
๏ฝ 3 x 2 ๏ซ 5 x ๏ญ 2 ๏ญ 4 x 2 ๏ซ 20 x ๏ซ 25
2
๏ฉ
2
๏ฝ 3 x ๏ซ 5 x ๏ญ 2 ๏ญ 4 x ๏ญ 20 x ๏ญ 25
๏จ
2
๏ฝ 3x ๏ญ 4 x
2
b.
According to the bar graph, the net earnings
in 2015 were $2757 million.
Let x = 15.
4.79 x 3 โ 122.5 x 2 + 1104 x โ 2863
๏ฉ ๏ซ (5x ๏ญ 20 x) ๏ซ (โ2 ๏ญ 25)
3
2
= 4.79 (15 ) โ 122.5 (15 ) + 1104 (15 ) โ 2863
๏ฝ ๏ญ x 2 ๏ญ 15 x ๏ญ 27
= 2300.75
37. R = 5 (1000x) = 5000x
C = 200,000 + 1800x
P = (5000x) โ (200,000 + 1800x)
= 3200x โ 200,000
38. R = 8.50(1000x) = 8500x
C = 225,000 + 4200x
P = (8500x) โ (225,000 + 4200x)
= 4300x โ 225,000
According to the polynomial, the net
earnings in 2015 were approximately $2301
million.
43. a.
b.
According to the bar graph, the net earnings
in 2012 were $1384 million.
Let x = 12.
4.79 x 3 โ 122.5 x 2 + 1104 x โ 2863
3
2
= 4.79 (12 ) โ 122.5 (12 ) + 1104 (12 ) โ 2863
39. R =9.75(1000x) = 9750x
C ๏ฝ 260, 000 ๏ซ ( ๏ญ3 x 2 ๏ซ 3480 x ๏ญ 325)
= 1022.12
2
๏ฝ ๏ญ3x ๏ซ 3480 x ๏ซ 259, 675
According to the polynomial, the net
earnings in 2012 were approximately $1022
million.
P ๏ฝ (9750 x) ๏ญ ( ๏ญ3 x 2 ๏ซ 3480 x ๏ซ 259, 675)
๏ฝ 3 x 2 ๏ซ 6270 x ๏ญ 259, 675
44. a.
40. R = 23.50(1000x) = 23,500x
C ๏ฝ 145, 000 ๏ซ ( ๏ญ4.2 x 2 ๏ซ 3220 x ๏ญ 425)
๏ฝ ๏ญ4.2 x 2 ๏ซ 3220 x ๏ซ 144,575
P ๏ฝ (23,500 x) ๏ญ ( ๏ญ4.2 x 2 ๏ซ 3220 x ๏ซ 144,575)
๏ฝ 4.2 x 2 ๏ซ 20, 280 x ๏ญ 144,575.
41. a.
b.
According to the bar graph, the net earnings
in 2007 were $673 million.
Let x = 7.
4.79 x 3 โ 122.5 x 2 + 1104 x โ 2863
3
2
= 4.79 ( 7 ) โ 122.5 (7 ) + 1104 (7 ) โ 2863
= 505.47
According to the polynomial, the net earnings
in 2007 were approximately $505 million.
b.
According to the bar graph, the net earnings
in 2013 were $8 million.
Let x = 13.
4.79 x 3 โ 122.5 x 2 + 1104 x โ 2863
3
2
= 4.79 (13 ) โ 122.5 (13 ) + 1104 (13 ) โ 2863
= 1310.13
According to the polynomial, the net
earnings in 2013 were approximately $1,310
million.
45. Let x = 17.
4.79 x 3 โ 122.5 x 2 + 1104 x โ 2863
3
2
= 4.79 (17 ) โ 122.5 (17 ) + 1104 (17 ) โ 2863
= 4035.77
According to the polynomial, the net earnings in
2017 will be approximately $4036 million.
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.2 POLYNOMIALS
46. Let x = 18.
3
2
4.79 x โ 122.5 x + 1104 x โ 2863
3
2
= 4.79 (18 ) โ 122.5 (18 ) + 1104 (18 ) โ 2863
= 5254.28
According to the polynomial, the net earnings in
2018 will be approximately $5254 million.
47. Let x = 19.
4.79 x 3 โ 122.5 x 2 + 1104 x โ 2863
3
2
= 4.79 (19 ) โ 122.5 (19 ) + 1104 (19 ) โ 2863
= 6745.11
According to the polynomial, the net earnings in
2019 will be approximately $6745 million.
48. The figures for 2013 โ 2015 seem high, but
plausible. To see how accurate these conclusions
are, search Starbucks.com for later annual
reports.
For exercises 49โ52, we use the polynomial
9.5 x3 ๏ญ 401.6 x 2 ๏ซ 6122 x ๏ญ 25,598.
49. Let x = 10.
9.5(10)3 ๏ญ 401.6(10) 2 ๏ซ 6122(10) ๏ญ 25,598
๏ฝ 4962
Thus, the costs were approximately $4962
million in 2010. The statement is false.
50. Let x = 15.
9.5(15)3 ๏ญ 401.6(15) 2 ๏ซ 6122(15) ๏ญ 25,598
๏ฝ 7934.5
Thus, the costs were approximately $7934.5
million in 2015. The statement is true.
51. Let x = 12.
9.5(12)3 ๏ญ 401.6(12) 2 ๏ซ 6122(12) ๏ญ 25,598
๏ฝ 6451.6
Let x = 15.
9.5(15)3 ๏ญ 401.6(15) 2 ๏ซ 6122(15) ๏ญ 25,598
๏ฝ 7934.5
Thus, the costs were $6451.6 million in 2012
and $7934.5 million in 2015. The statement is
false.
52. Let x = 11.
9.5(11)3 ๏ญ 401.6(11) 2 ๏ซ 6122(11) ๏ญ 25,598
๏ฝ 5794.9
Let x = 16.
9.5(16)3 ๏ญ 401.6(16) 2 ๏ซ 6122(16) ๏ญ 25,598
๏ฝ 8456.4
Thus, the costs were $5794.9 million in 2011
and $8456.4 million in 2016. The statement is
true.
For exercises 53โ58, we use the polynomial
โ72.85 x3 + 2082 x 2 โ 16,532 x + 59,357.
53. Let x = 7.
โ72.85 x3 + 2082 x 2 โ 16,532 x + 59,357
= โ72.85(7)3 + 2082(7) 2 โ 16,532(7) + 59,357
= 20, 663.45
Thus, the profit for PepsiCo Inc in 2007 was
approximately $20,663 million.
54. Let x = 10.
โ72.85 x3 + 2082 x 2 โ 16,532 x + 59,357
= โ72.85(10)3 + 2082(10) 2 โ 16,532(10)
+ 59,357
= 29,387
Thus, the profit for PepsiCo Inc in 2010 was
$29,387 million.
55. Let x = 12.
โ72.85 x3 + 2082 x 2 โ 16,532 x + 59,357
= โ72.85(12)3 + 2082(12) 2 โ 16,532(12)
+ 59,357
= 34,896.2
Thus, the profit for PepsiCo Inc in 2012 was
approximately $34,896 million.
56. Let x = 15.
โ72.85 x3 + 2082 x 2 โ 16,532 x + 59,357
= โ72.85(15)3 + 2082(15) 2 โ 16,532(15)
+ 59,357
= 33,958.25
Thus, the profit for PepsiCo Inc in 2015 was
approximately $33,958 million.
Copyright ยฉ 2019 Pearson Education, Inc.
7
8
CHAPTER 1 ALGEBRA AND EQUATIONS
57. Let x = 13.
โ72.85 x3 + 2082 x 2 โ 16,532 x + 59,357
= โ72.85(13)3 + 2082(13) 2 โ 16,532(13)
+ 59,357
= 36, 247.55
60.
P ๏ฝ 7.2 x 2 ๏ซ 5005 x ๏ญ 230, 000 ๏พ 0
Set the profit function equal to 0 and solve
for x.
8 x 2 ๏ซ 4450 x ๏ญ 215, 000 ๏ฝ 0
By the quadratic formula, x โ 45 or
x โ โ601.
Since x represents a positive number,
x = 45.
Thus, the profit for PepsiCo Inc in 2013 was
approximately $36,248 million.
Let x = 9.
โ72.85 x3 + 2082 x 2 โ 16,532 x + 59,357
= โ72.85(9)3 + 2082(9) 2 โ 16,532(9)
+ 59,357
= 26,103.35
Thus, the profit for PepsiCo Inc in 2009 was
approximately $26,104 million. Therefore, the
profit was higher in 2013.
58. By comparing the answers to problems 55 and
56, the profit was higher in 2012.
In order for the company to make a profit,
Therefore, between 40,000 and 45,000
calculators must be sold for the company to
make a profit.
61.
Let x = 100 (in thousands)
7.2(100) 2 ๏ซ 5005(100) ๏ญ 230, 000 ๏ฝ 342,500
59. P ๏ฝ 7.2 x 2 ๏ซ 5005 x ๏ญ 230, 000 . Here is part of
the screen capture.
d. The profit for selling 100,000 calculators is
$342,500.
62.
Let x = 150 (in thousands)
7.2(150) 2 ๏ซ 5005(150) ๏ญ 230, 000 ๏ฝ 682, 750
d.
The profit for selling 150,000
calculators is $682,750.
For 25,000, the loss will be $100,375;
Section 1.3 Factoring
1. 12 x 2 ๏ญ 24 x ๏ฝ 12 x ๏ x ๏ญ 12 x ๏ 2 ๏ฝ 12 x( x ๏ญ 2)
2. 5 y ๏ญ 65 xy ๏ฝ 5 y (1) ๏ญ 5 y (13 x) ๏ฝ 5 y (1 ๏ญ 13 x)
For 60,000, there profit will be $96,220.
๏จ ๏ฉ
๏ฝ r ๏จ r ๏ญ 5r ๏ซ 1๏ฉ
3. r 3 ๏ญ 5r 2 ๏ซ r ๏ฝ r r 2 ๏ญ r ๏จ5r ๏ฉ ๏ซ r ๏จ1๏ฉ
2
๏จ ๏ฉ
๏ฝ t ๏จt 2 ๏ซ 3t ๏ซ 8๏ฉ
4. t 3 ๏ซ 3t 2 ๏ซ 8t ๏ฝ t t 2 ๏ซ t (3t ) ๏ซ t (8)
There is a loss at the beginning because of
large fixed costs. When more items are
made, these costs become a smaller portion
of the total costs.
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.3 FACTORING
10. 3( x ๏ซ 6) 2 ๏ซ 6( x ๏ซ 6) 4
๏ฝ 3( x ๏ซ 6) 2 (1) ๏ซ 3( x ๏ซ 6) 2 ๏ฉ๏ซ 2( x ๏ซ 6) 2 ๏น๏ป
5. 6 z 3 ๏ญ 12 z 2 ๏ซ 18 z
๏จ ๏ฉ
๏ฝ 6 z ๏จ z 2 ๏ญ 2 z ๏ซ 3๏ฉ
๏ฝ 6 z z 2 ๏ญ 6 z (2 z ) ๏ซ 6 z (3)
๏ฝ 3( x ๏ซ 6) 2 ๏ฉ๏ซ1 ๏ซ 2( x ๏ซ 6) 2 ๏น๏ป
๏จ
๏จ
๏ฉ
2
๏ฝ 3 ๏จ x ๏ซ 6๏ฉ ๏จ2 x ๏ซ 24 x ๏ซ 73๏ฉ
๏ฝ 3 ๏จ x ๏ซ 6๏ฉ 1 ๏ซ 2 x 2 ๏ซ 24 x ๏ซ 72
2
6. 5 x 3 ๏ซ 55 x 2 ๏ซ 10 x
๏จ ๏ฉ
๏ฝ 5 x ๏จ x 2 ๏ซ 11x ๏ซ 2๏ฉ
2
๏ฝ 5 x x 2 ๏ซ 5 x(11x) ๏ซ 5 x(2)
7. 3(2 y ๏ญ 1) 2 ๏ซ 7(2 y ๏ญ 1) 3
๏ฝ (2 y ๏ญ 1) 2 (3) ๏ซ (2 y ๏ญ 1) 2 ๏ 7(2 y ๏ญ 1)
๏ฝ (2 y ๏ญ 1) 2 [3 ๏ซ 7(2 y ๏ญ 1)]
11. x 2 ๏ซ 5 x ๏ซ 4 ๏ฝ ( x ๏ซ 1)( x ๏ซ 4)
12. u 2 ๏ซ 7u ๏ซ 6 ๏ฝ (u ๏ซ 1)(u ๏ซ 6)
๏ฝ (2 y ๏ญ 1) 2 (3 ๏ซ 14 y ๏ญ 7)
13. x 2 ๏ซ 7 x ๏ซ 12 ๏ฝ ( x ๏ซ 3)( x ๏ซ 4)
๏ฝ (2 y ๏ญ 1) 2 (14 y ๏ญ 4)
๏ฝ 2 ๏จ 2 y ๏ญ 1๏ฉ ๏จ7 y ๏ญ 2๏ฉ
2
14. y 2 ๏ซ 8 y ๏ซ 12 ๏ฝ ( y ๏ซ 2)( y ๏ซ 6)
8. (3x ๏ซ 7) 5 ๏ญ 4(3 x ๏ซ 7) 3
๏ฝ (3x ๏ซ 7) 3 (3 x ๏ซ 7) 2 ๏ญ (3 x ๏ซ 7) 3 (4)
๏ฝ (3 x ๏ซ 7) 3 ๏ฉ๏ซ(3 x ๏ซ 7) 2 ๏ญ 4๏น๏ป
๏จ
๏ฉ
๏ฝ (3x ๏ซ 7) 3 ๏จ9 x 2 ๏ซ 42 x ๏ซ 45๏ฉ
๏ฝ (3x ๏ซ 7) 3 9 x 2 ๏ซ 42 x ๏ซ 49 ๏ญ 4
9. 3( x ๏ซ 5) 4 ๏ซ ( x ๏ซ 5) 6
4
๏ฉ
2
๏ฝ 3 ๏จ x ๏ซ 6๏ฉ ๏ฉ1 ๏ซ 2 x 2 ๏ซ 12 x ๏ซ 36 ๏น
๏ซ
๏ป
4
๏ฝ ( x ๏ซ 5) ๏ 3 ๏ซ ( x ๏ซ 5) ( x ๏ซ 5)
2
15. x 2 ๏ซ x ๏ญ 6 ๏ฝ ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 2๏ฉ
16. x 2 ๏ซ 4 x ๏ญ 5 ๏ฝ ๏จ x ๏ซ 5๏ฉ๏จ x ๏ญ 1๏ฉ
17. x 2 ๏ซ 2 x ๏ญ 3 ๏ฝ ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 1๏ฉ
18. y 2 ๏ซ y ๏ญ 12 ๏ฝ ๏จ y ๏ซ 4๏ฉ๏จ y ๏ญ 3๏ฉ
19. x 2 ๏ญ 3 x ๏ญ 4 ๏ฝ ๏จ x ๏ซ 1๏ฉ๏จ x ๏ญ 4๏ฉ
๏ฝ ( x ๏ซ 5) 4 ๏ฉ3 ๏ซ ๏จ x ๏ซ 5๏ฉ ๏น
๏ซ
๏ป
20. u 2 ๏ญ 2u ๏ญ 8 ๏ฝ ๏จu ๏ซ 2๏ฉ๏จu ๏ญ 4๏ฉ
๏ฝ ( x ๏ซ 5) 4 3 ๏ซ x 2 ๏ซ 10 x ๏ซ 25
21. z 2 ๏ญ 9 z ๏ซ 14 ๏ฝ ๏จ z ๏ญ 2๏ฉ๏จ z ๏ญ 7 ๏ฉ
2
๏จ
๏ฉ
๏ฝ ( x ๏ซ 5) 4 ๏จ x 2 ๏ซ 10 x ๏ซ 28๏ฉ
22. w2 ๏ญ 6w ๏ญ 16 ๏ฝ ๏จ w ๏ซ 2๏ฉ๏จ w ๏ญ 8๏ฉ
23. z 2 ๏ซ 10 z ๏ซ 24 ๏ฝ ( z ๏ซ 4)( z ๏ซ 6)
24. r 2 ๏ซ 16r ๏ซ 60 ๏ฝ ( r ๏ซ 6)( r ๏ซ 10)
Copyright ยฉ 2019 Pearson Education, Inc.
9
10
CHAPTER 1 ALGEBRA AND EQUATIONS
๏จ
25. 2 x 2 ๏ญ 9 x ๏ซ 4 ๏ฝ (2 x ๏ญ 1)( x ๏ญ 4)
46. 8k 2 ๏ญ 16k ๏ญ 10 ๏ฝ 2 4k 2 ๏ญ 8k ๏ญ 5
๏ฉ
๏ฝ 2(2k ๏ซ 1)(2k ๏ญ 5)
26. 3w 2 ๏ญ 8w ๏ซ 4 ๏ฝ (3w ๏ญ 2)( w ๏ญ 2)
47. 4u 2 ๏ซ 12u ๏ซ 9 ๏ฝ ๏จ2u ๏ซ 3๏ฉ
2
2
27. 15 p ๏ญ 23 p ๏ซ 4 ๏ฝ (3 p ๏ญ 4)(5 p ๏ญ 1)
48. 9 p 2 ๏ญ 16 ๏ฝ ๏จ3 p ๏ฉ ๏ญ 42 ๏ฝ ๏จ3 p ๏ญ 4๏ฉ๏จ3 p ๏ซ 4 ๏ฉ
2
28. 8 x 2 ๏ญ 14 x ๏ซ 3 ๏ฝ (4 x ๏ญ 1)(2 x ๏ญ 3)
49. 25 p 2 ๏ญ 10 p ๏ซ 4
This polynomial cannot be factored
29. 4 z 2 ๏ญ 16 z ๏ซ 15 ๏ฝ (2 z ๏ญ 5)(2 z ๏ญ 3)
30. 12 y 2 ๏ญ 29 y ๏ซ 15 ๏ฝ (3 y ๏ญ 5)(4 y ๏ญ 3)
50. 10 x 2 ๏ญ 17 x ๏ซ 3 ๏ฝ ๏จ5 x ๏ญ 1๏ฉ๏จ2 x ๏ญ 3๏ฉ
31. 6 x 2 ๏ญ 5 x ๏ญ 4 ๏ฝ (2 x ๏ซ 1)(3 x ๏ญ 4)
51. 4r 2 ๏ญ 9v 2 ๏ฝ ๏จ2r ๏ซ 3v ๏ฉ๏จ2r ๏ญ 3v ๏ฉ
32. 12 z 2 ๏ซ z ๏ญ 1 ๏ฝ (4 z ๏ญ 1)(3 z ๏ซ 1)
52. x 2 ๏ซ 3 xy ๏ญ 28 y 2 ๏ฝ ๏จ x ๏ซ 7 y ๏ฉ๏จ x ๏ญ 4 y ๏ฉ
33. 10 y 2 ๏ซ 21 y ๏ญ 10 ๏ฝ (5 y ๏ญ 2)(2 y ๏ซ 5)
53. x 2 ๏ซ 4 xy ๏ซ 4 y 2 ๏ฝ ๏จ x ๏ซ 2 y ๏ฉ
34. 15u 2 ๏ซ 4u ๏ญ 4 ๏ฝ (5u ๏ญ 2)(3u ๏ซ 2)
2
๏จ
54. 16u 2 ๏ซ 12u ๏ญ 18 ๏ฝ 2 8u 2 ๏ซ 6u ๏ญ 9
๏ฉ
๏ฝ 2 ๏จ 4u ๏ญ 3๏ฉ๏จ2u ๏ซ 3๏ฉ
35. 6 x 2 ๏ซ 5 x ๏ญ 4 ๏ฝ (2 x ๏ญ 1)(3 x ๏ซ 4)
36. 12 y 2 ๏ซ 7 y ๏ญ 10 ๏ฝ (3 y ๏ญ 2)(4 y ๏ซ 5)
55. 3a 2 ๏ญ 13a ๏ญ 30 ๏ฝ (3a ๏ซ 5)( a ๏ญ 6) .
37. 3a 2 ๏ซ 2a ๏ญ 5 ๏ฝ ๏จ3a ๏ซ 5๏ฉ๏จa ๏ญ 1๏ฉ
56. 3k 2 ๏ซ 2k ๏ญ 8 ๏ฝ (3k ๏ญ 4)(k ๏ซ 2)
๏จ
38. 6a 2 ๏ญ 48a ๏ญ 120 ๏ฝ 6 a 2 ๏ญ 8a ๏ญ 20
๏ฉ
57. 21m 2 ๏ซ 13mn ๏ซ 2n 2 ๏ฝ (7 m ๏ซ 2n)(3m ๏ซ n)
๏ฝ 6(a ๏ญ 10)(a ๏ซ 2)
58. 81 y 2 ๏ญ 100 ๏ฝ (9 y ๏ซ 10)(9 y ๏ญ 10)
39. x 2 ๏ญ 81 ๏ฝ x 2 ๏ญ (9) 2 ๏ฝ ( x ๏ซ 9)( x ๏ญ 9)
59. y 2 ๏ญ 4 yz ๏ญ 21z 2 ๏ฝ ( y ๏ญ 7 z )( y ๏ซ 3 z )
40. x 2 ๏ซ 17 xy ๏ซ 72 y 2 ๏ฝ ( x ๏ซ 8 y )( x ๏ซ 9 y ) .
60. 49a 2 ๏ซ 9
This polynomial cannot be factored.
41. 9 p 2 ๏ญ 12 p ๏ซ 4 ๏ฝ (3 p ) 2 ๏ญ 2(3 p)(2) ๏ซ 2 2
61. 121x 2 ๏ญ 64 ๏ฝ (11x ๏ซ 8)(11x ๏ญ 8)
๏ฝ (3 p ๏ญ 2) 2
62. 4 z 2 ๏ซ 56 zy ๏ซ 196 y 2
42. 3r 2 ๏ญ r ๏ญ 2 ๏ฝ (3r ๏ซ 2)( r ๏ญ 1) .
๏จ
๏ฝ 4 z 2 ๏ซ 14 zy ๏ซ 49 y 2
43. r 2 ๏ซ 3rt ๏ญ 10t 2 ๏ฝ (r ๏ญ 2t )(r ๏ซ 5t ) .
๏ฝ 4 ๏ฉ๏ซ z 2 ๏ซ 2( z )(7 y ) ๏ซ (7 y ) 2 ๏น๏ป ๏ฝ 4( z ๏ซ 7 y ) 2
44. 2a 2 ๏ซ ab ๏ญ 6b 2 ๏ฝ (2a ๏ญ 3b)(a ๏ซ 2b).
2
2
2
45. m ๏ญ 8mn ๏ซ 16n ๏ฝ (m) ๏ญ 2(m)(4n) ๏ซ (4n)
๏ฝ ( m ๏ญ 4n) 2
๏ฉ
๏จ
63. a 3 ๏ญ 64 ๏ฝ a 3 ๏ญ (4) 3 ๏ฝ (a ๏ญ 4) a 2 ๏ซ 4a ๏ซ 16
2
๏จ
64. b 3 ๏ซ 216 ๏ฝ b 3 ๏ซ 6 3 ๏ฝ (b ๏ซ 6) b 2 ๏ญ 6b ๏ซ 36
Copyright ยฉ 2019 Pearson Education, Inc.
๏ฉ
๏ฉ
SECTION 1.3 FACTORING
๏จ
๏ฉ๏จ
๏ฉ
๏ฝ ๏จ 2 x ๏ซ 3๏ฉ๏จ2 x ๏ญ 3๏ฉ ๏จ x 2 ๏ซ 9๏ฉ
76. 4 x 4 ๏ซ 27 x 2 ๏ญ 81 ๏ฝ 4 x 2 ๏ญ 9 x 2 ๏ซ 9
65. 8r 3 ๏ญ 27 s 3
3
๏ฝ (2r ) ๏ญ (3s)
3
2
2
๏ฝ (2r ๏ญ 3s) ๏ฉ๏จ2r ๏ฉ ๏ซ ๏จ2r ๏ฉ๏จ3s ๏ฉ ๏ซ ๏จ3s ๏ฉ ๏น
๏ซ
๏ป
๏จ
3
66. 1000 p ๏ซ 27 q
๏จ
๏ฉ
๏ฝ (2r ๏ญ 3s) 4r 2 ๏ซ 6rs ๏ซ 9 s 2
๏จ
๏ฉ
๏จ ๏ฉ ๏ญ ๏จy2 ๏ฉ
๏ฝ ๏จ x 2 ๏ญ y 2 ๏ฉ๏จ x 4 ๏ซ x 2 y 2 ๏ซ y 4 ๏ฉ
๏ฝ ๏จ x ๏ซ y ๏ฉ๏จ x ๏ญ y ๏ฉ ๏จ x 2 ๏ซ xy ๏ซ y 2 ๏ฉ ๏
๏จ x 2 ๏ญ xy ๏ซ y 2 ๏ฉ
3
๏ฆ
๏ถ
79. x 8 ๏ซ 8 x 2 ๏ฝ x 2 ๏จ x 6 ๏ซ 8๏ฉ ๏ฝ x 2 ๏ง ๏จ x 2 ๏ฉ ๏ซ 2 3 ๏ท
๏จ
๏ธ
2
2
4
2
๏ฝ x ๏จ x ๏ซ 2๏ฉ๏จ x ๏ญ 2 x ๏ซ 4๏ฉ
78. x 6 ๏ญ y 6 ๏ฝ x 2
๏ฉ
67. 64m 3 ๏ซ 125
๏ฝ (4m) 3 ๏ซ (5) 3
2
2
๏ฝ (4m ๏ซ 5) ๏ฉ๏จ4m ๏ฉ ๏ญ ๏จ4m ๏ฉ๏จ5๏ฉ ๏ซ ๏จ5๏ฉ ๏น
๏ซ
๏ป
๏จ
๏จ
๏ฉ
๏ฝ ๏จ 2a ๏ซ 3b ๏ฉ๏จ2a ๏ญ 3b ๏ฉ 4a 2 ๏ซ 9b 2
๏ฝ (10 p ๏ซ 3q ) 100 p 2 ๏ญ 30 pq ๏ซ 9q 2
๏ฝ (4m ๏ซ 5) 16m 2 ๏ญ 20m ๏ซ 25
๏ฉ๏จ
77. 16a 4 ๏ญ 81b 4 ๏ฝ 4a 2 ๏ญ 9b 2 4a 2 ๏ซ 9b 2
3
๏ฝ (10 p ) 3 ๏ซ (3q ) 3
๏ฉ
68. 216 y 3 ๏ญ 343
3
3
๏จ
๏ฉ ๏จ
๏ฉ
2
2๏น
๏ฉ
๏ฝ x 3 ๏ช๏จ x 3 ๏ฉ ๏ญ ๏จ 2 3 ๏ฉ ๏บ
๏ซ
๏ป
3 3
3
3
๏ฝ x ๏จ x ๏ญ 2 ๏ฉ๏จ x ๏ซ 2 3 ๏ฉ
๏ฝ x 3 ๏จ x ๏ญ 2๏ฉ ๏จ x 2 ๏ซ 2 x ๏ซ 4๏ฉ ๏
๏จ x ๏ซ 2๏ฉ ๏จ x 2 ๏ญ 2 x ๏ซ 4๏ฉ
80. x 9 ๏ญ 64 x 3 ๏ฝ x 3 x 6 ๏ญ 64 ๏ฝ x 3 x 6 ๏ญ 2 6
๏ฝ (6 y ) 3 ๏ญ (7) 3
๏จ
๏ฝ (6 y ๏ญ 7) 36 y 2 ๏ซ 42 y ๏ซ 49
๏ฉ
69. 1000 y 3 ๏ญ z 3
๏ฝ (10 y ) 3 ๏ญ ( z ) 3
๏ฝ (10 y ๏ญ z ) ๏ฉ๏ซ(10 y ) 2 ๏ซ (10 y )( z ) ๏ซ ( z ) 2 ๏น๏ป
๏จ
๏ฝ (10 y ๏ญ z ) 100 y 2 ๏ซ 10 yz ๏ซ z 2
๏ฉ
๏จ
๏จ
๏ฝ (5 p ๏ซ 2q ) 25 p 2 ๏ญ 10 pq ๏ซ 4q 2
๏จ
๏ฉ๏จ
๏ฉ
71. x 4 ๏ซ 5 x 2 ๏ซ 6 ๏ฝ x 2 ๏ซ 2 x 2 ๏ซ 3
๏จ
2
2
๏ฉ๏จ
2
72. y ๏ซ 7 y ๏ซ 10 ๏ฝ y ๏ซ 2 y ๏ซ 5
๏จ
๏ฉ
๏จ
๏ฉ
๏ฝ 3 ๏จ 2 x 2 ๏ซ 1๏ฉ๏จ x 2 ๏ญ 1๏ฉ
๏ฝ 3 ๏จ 2 x 2 ๏ซ 1๏ฉ ( x ๏ซ 1)( x ๏ญ 1)
6 x 4 ๏ญ 3x 2 ๏ญ 3 ๏ฝ 3 2 x 4 ๏ญ x 2 ๏ญ 1
๏ฉ
๏ฉ
๏ฉ๏จ
๏ฉ
74. z 4 ๏ญ 3 z 2 ๏ญ 4 ๏ฝ z 2 ๏ญ 4 z 2 ๏ซ 1
๏จ
๏ฉ
๏ฝ ๏จ z ๏ซ 2๏ฉ๏จ z ๏ญ 2๏ฉ z 2 ๏ซ 1
๏จ
๏ฉ๏จ
๏ฉ
82. The sum of two squares can be factored when the
terms have a common factor. An example is
(3x) 2 ๏ซ 32 ๏ฝ 9 x 2 ๏ซ 9 ๏ฝ 9( x 2 ๏ซ 1)
75. x 4 ๏ญ x 2 ๏ญ 12 ๏ฝ x 2 ๏ญ 4 x 2 ๏ซ 3
๏จ
๏ฉ
correct complete factorization because 3x 2 ๏ญ 3
contains a common factor of 3. This common
factor should be factored out as the first step.
This will reveal a difference of two squares,
which requires further factorization. The correct
factorization is
73. b 4 ๏ญ b 2 ๏ฝ b 2 b 2 ๏ญ 1 ๏ฝ b 2 ๏จb ๏ซ 1๏ฉ๏จb ๏ญ 1๏ฉ
๏จ
๏ฉ๏จ
81. 6 x 4 ๏ญ 3x 2 ๏ญ 3 ๏ฝ 2 x 2 ๏ซ 1 3 x 2 ๏ญ 3 is not the
70. 125 p 3 ๏ซ 8q 3 ๏ฝ (5 p ) 3 ๏ซ (2q ) 3
4
11
๏ฉ
๏ฝ ๏จ x ๏ซ 2๏ฉ๏จ x ๏ญ 2๏ฉ x 2 ๏ซ 3
Copyright ยฉ 2019 Pearson Education, Inc.
12
CHAPTER 1 ALGEBRA AND EQUATIONS
83. ( x ๏ซ 2) 3 ๏ฝ ( x ๏ซ 2)( x ๏ซ 2) 2
9.
2
๏ฝ ( x ๏ซ 2)( x ๏ซ 4 x ๏ซ 4)
3
2
3
2
3 y 2 ๏ญ 12 y
9 y3
2
๏ฝ x ๏ซ 4x ๏ซ 2x ๏ซ 8x ๏ซ 4 x ๏ซ 8
๏ฝ
๏ฝ x ๏ซ 6 x ๏ซ 12 x ๏ซ 8,
which is not equal to x 3 ๏ซ 8 . The correct
factorization is x 3 ๏ซ 8 ๏ฝ ( x ๏ซ 2)( x 2 ๏ญ 2 x ๏ซ 4).
๏ฝ
10.
15k 2 ๏ซ 45k
9k
2
2
( x ๏ญ 3)( x ๏ซ 2) ๏ฝ x ๏ซ 2 x ๏ญ 3 x ๏ญ 6 ๏ฝ x ๏ญ x ๏ญ 6
11.
12.
Section 1.4 Rational Expressions
2
m ๏ซm๏ญ6
r 2 ๏ซ r ๏ญ 12
y๏ญ4
3y2
15k ( k ๏ซ 3)
3k ๏ 3k
3k ๏ 5(k ๏ซ 3)
๏ฝ
3k ๏ 3k
5(k ๏ซ 3)
๏ฝ
3k
m 2 ๏ญ 4m ๏ซ 4
r2 ๏ญ r ๏ญ 6
๏จ ๏ฉ
3y 3y 2
๏ฝ
2
84. Factoring and multiplication are inverse
operations. If we factor a polynomial and then
multiply the factors, we get the original
polynomial back. For example, we can factor
x 2 ๏ญ x ๏ญ 6 to get ( x ๏ญ 3)( x ๏ซ 2) . Then if we
multiply the factors, we get
3 y ( y ๏ญ 4)
๏ฝ
๏ฝ
(m ๏ญ 2)(m ๏ญ 2) m ๏ญ 2
๏ฝ
(m ๏ซ 3)(m ๏ญ 2) m ๏ซ 3
(r ๏ญ 3)(r ๏ซ 2) r ๏ซ 2
๏ฝ
(r ๏ซ 4)(r ๏ญ 3) r ๏ซ 4
13.
x 2 ๏ซ 2 x ๏ญ 3 ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 1๏ฉ x ๏ซ 3
๏ฝ
๏ฝ
๏จ x ๏ซ 1๏ฉ๏จ x ๏ญ 1๏ฉ x ๏ซ 1
x2 ๏ญ 1
14.
๏จ z ๏ซ 2๏ฉ ๏ฝ z ๏ซ 2
z2 ๏ซ 4z ๏ซ 4
๏ฝ
2
z
๏ซ
๏จ 2๏ฉ๏จ z ๏ญ 2๏ฉ z ๏ญ 2
z ๏ญ4
5
7p
15.
3a 2 8
3a 2 ๏ 8
3
๏ 3๏ฝ
๏ฝ
3
64 2a
16a
64 ๏ 2a
3y2
4
16.
2u 2 10u 3 2u 2 ๏ 10u 3
5
๏
๏ฝ
๏ฝ
4
4
9u
18
8u
8u ๏ 9u
5.
5m ๏ซ 15 5( m ๏ซ 3) 5
๏ฝ
๏ฝ
4m ๏ซ 12 4( m ๏ซ 3) 4
17.
7 x 14 x3 7 x 66 y 7 x ๏ 66 y 3 y
๏ธ
๏ฝ
๏
๏ฝ
๏ฝ
11 66 y 11 14 x3 11 ๏ 14 x3 x 2
6.
10 z ๏ซ 5
5(2 x ๏ซ 1)
1
๏ฝ
๏ฝ
20 z ๏ซ 10 5(2 x ๏ซ 1) ๏ 2 2
18.
6 x 2 y 21xy 6 x 2 y
y
y
๏ธ
๏ฝ
๏
๏ฝ
2x
y
2 x 21xy 7
7.
4( w ๏ญ 3)
4
๏ฝ
( w ๏ญ 3)( w ๏ซ 6) w ๏ซ 6
19.
2a ๏ซ b
15
(2a ๏ซ b) ๏ 15
15
5
๏
๏ฝ
๏ฝ
๏ฝ
3c
4(2a ๏ซ b) (2a ๏ซ b) ๏ 12c 12c 4c
8.
๏ญ6( x ๏ซ 2)
๏ญ6
6
๏ฝ
or ๏ญ
x๏ซ4
( x ๏ซ 4)( x ๏ซ 2) x ๏ซ 4
20.
4( x ๏ซ 2) 3w 2
4 w 2 ( x ๏ซ 2) ๏ 3 3w
๏
๏ฝ
๏ฝ
w
8( x ๏ซ 2) 4 w( x ๏ซ 2) ๏ 2
2
8x 2 x ๏ 8x x
๏ฝ
๏ฝ
1.
56 x 7 ๏ 8 x 7
2.
3.
4.
27 m
27 m
81m
27 m ๏ 3m
๏ฝ
3
25 p 2
5 ๏ 5 p2
35 p
7 p ๏5p
๏ฝ
3
๏ฝ
2
๏ฝ
2
18 y 4
6 y 2 ๏ 3y 2
24 y
6y2 ๏ 4
๏ฝ
2
๏ฝ
2
1
3m 2
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.4 RATIONAL EXPRESIONS
21.
22.
23.
24.
25.
15 p ๏ญ 3 10 p ๏ญ 2 15 p ๏ญ 3
3
๏ธ
๏ฝ
๏
6
3
6
10 p ๏ญ 2
3(5 p ๏ญ 1) ๏ 3
๏ฝ
3 ๏ 2 ๏ 2 ๏ (5 p ๏ญ 1)
3(5 p ๏ญ 1) ๏ 3
3
๏ฝ
๏ฝ
3(5 p ๏ญ 1) ๏ 2 ๏ 2 4
27.
2k ๏ซ 8 3k ๏ซ 12 2k ๏ซ 8
3
๏ธ
๏ฝ
๏
6
3
6
3k ๏ซ 12
2(k ๏ซ 4)
3
๏ฝ
๏
6
3(k ๏ซ 4)
6(k ๏ซ 4)
6 1
๏ฝ
๏ฝ
๏ฝ
18(k ๏ซ 4) 18 3
28.
9 y ๏ญ 18 3 y ๏ซ 6
9( y ๏ญ 2) 3( y ๏ซ 2)
๏
๏ฝ
๏
6 y ๏ซ 12 15 y ๏ญ 30 6( y ๏ซ 2) 15( y ๏ญ 2)
27( y ๏ญ 2)( y ๏ซ 2) 27 3
๏ฝ
๏ฝ
๏ฝ
90( y ๏ซ 2)( y ๏ญ 2) 90 10
12r ๏ซ 24 6r ๏ซ 12 12(r ๏ซ 2) 6( r ๏ซ 2)
๏ธ
๏ฝ
๏ธ
36r ๏ญ 36 8r ๏ญ 8 36( r ๏ญ 1) 8( r ๏ญ 1)
3(r ๏ซ 2)
r๏ซ2
๏ฝ
๏ธ
3(r ๏ญ 1) 4( r ๏ญ 1)
r ๏ซ 2 4(r ๏ญ 1) 4
๏ฝ
๏
๏ฝ
3(r ๏ญ 1) 3( r ๏ซ 2) 9
4a ๏ซ 12
4a ๏ซ 12 a 2 ๏ญ a ๏ญ 20
a2 ๏ญ 9
๏ธ 2
๏ฝ
๏
2a ๏ญ 10 a ๏ญ a ๏ญ 20 2a ๏ญ 10
a2 ๏ญ 9
4(a ๏ซ 3) (a ๏ญ 5)(a ๏ซ 4)
๏ฝ
๏
2(a ๏ญ 5) (a ๏ซ 3)(a ๏ญ 3)
4(a ๏ซ 3)(a ๏ญ 5)(a ๏ซ 4)
๏ฝ
2(a ๏ญ 5)(a ๏ซ 3)(a ๏ญ 3)
2(a ๏ซ 4)
๏ฝ
a๏ญ3
12r ๏ญ 16
๏
26.
2
9r ๏ซ 6r ๏ญ 24 4r ๏ญ 12
6(r ๏ญ 3)
4(3r ๏ญ 4)
2(3r ๏ญ 4)
๏ฝ
๏
๏ฝ
2
๏ญ
r
4(
3)
3 3r ๏ซ 2r ๏ญ 8
3r 2 ๏ซ 2r ๏ญ 8
๏จ
๏ฉ
2(3r ๏ญ 4)
2
๏ฝ
๏ฝ
(3r ๏ญ 4)(r ๏ซ 2) r ๏ซ 2
๏จ
k 2 ๏ญ k ๏ญ 6 k 2 ๏ซ 3k ๏ญ 4
๏
k 2 ๏ซ k ๏ญ 12 k 2 ๏ซ 2k ๏ญ 3
(k ๏ญ 3)(k ๏ซ 2) (k ๏ซ 4)(k ๏ญ 1)
๏ฝ
๏
(k ๏ซ 4)(k ๏ญ 3) (k ๏ซ 3)(k ๏ญ 1)
(k ๏ญ 3)(k ๏ซ 2)(k ๏ซ 4)(k ๏ญ 1) k ๏ซ 2
๏ฝ
๏ฝ
(k ๏ซ 4)(k ๏ญ 3)(k ๏ซ 3)(k ๏ญ 1) k ๏ซ 3
n2 ๏ญ n ๏ญ 6
๏ธ
n2 ๏ญ 9
n 2 ๏ญ 2n ๏ญ 8 n 2 ๏ซ 7 n ๏ซ 12
(n ๏ญ 3)(n ๏ซ 2) (n ๏ญ 3)(n ๏ซ 3)
๏ฝ
๏ธ
(n ๏ญ 4)(n ๏ซ 2) (n ๏ซ 3)(n ๏ซ 4)
n๏ญ3 n๏ญ3 n๏ญ3 n๏ซ4 n๏ซ4
๏ฝ
๏ธ
๏ฝ
๏
๏ฝ
n๏ญ4 n๏ซ4 n๏ญ4 n๏ญ3 n๏ญ4
Answers will vary for exercises 29 and 30. Sample
answers are given.
29. To find the least common denominator for two
fractions, factor each denominator into prime
factors, multiply all unique prime factors raising
each factor to the highest frequency it occurred.
30. To add three rational expressions, first factor
each denominator completely. Then, find the
lowest common denominator and rewrite each
expression with that denominator. Next, add the
numerators and place over the common
denominator. Finally, simplify the resulting
expression and write it in lowest terms.
31. The common denominator is 35z.
2
1
2๏5
1๏ 7
10
7
3
๏ญ
๏ฝ
๏ญ
๏ฝ
๏ญ
๏ฝ
7 z 5 z 7 z ๏ 5 5 z ๏ 7 35 z 35 z 35 z
32. The common denominator is 12z.
4
5
4๏4
5๏3
16
15
1
๏ญ
๏ฝ
๏ญ
๏ฝ
๏ญ
๏ฝ
3z 4 z 3 z ๏ 4 4 z ๏ 3 12 z 12 z 12 z
33.
6r ๏ญ 18
13
๏ฉ
34.
r ๏ซ 2 r ๏ญ 2 (r ๏ซ 2) ๏ญ (r ๏ญ 2)
๏ญ
๏ฝ
3
3
3
r ๏ซ2๏ญr ๏ซ2 4
๏ฝ
๏ฝ
3
3
3 y ๏ญ 1 3 y ๏ซ 1 (3 y ๏ญ 1) ๏ญ (3 y ๏ซ 1) ๏ญ2
1
๏ญ
๏ฝ
๏ฝ
๏ฝ๏ญ
8
8
8
8
4
35. The common denominator is 5x.
4 1 4 ๏ 5 1 ๏ x 20 x 20 ๏ซ x
๏ซ ๏ฝ
๏ซ
๏ฝ
๏ซ
๏ฝ
5x
x 5 x ๏ 5 5 ๏ x 5x 5x
Copyright ยฉ 2019 Pearson Education, Inc.
14
CHAPTER 1 ALGEBRA AND EQUATIONS
36. The common denominator is 4r.
6 3 6 ๏ 4 3 ๏ r 24 3r
๏ญ ๏ฝ
๏ญ
๏ฝ
๏ญ
r 4 r ๏ 4 4 ๏ r 4 r 4r
24 ๏ญ 3r 3(8 ๏ญ r )
๏ฝ
๏ฝ
4r
4r
37. The common denominator is m(m โ 1).
1
2
m ๏1
( m ๏ญ 1) ๏ 2
๏ซ ๏ฝ
๏ซ
m ๏ญ 1 m m ๏ (m ๏ญ 1) (m ๏ญ 1) ๏ m
m
2(m ๏ญ 1)
๏ฝ
๏ซ
m(m ๏ญ 1) m(m ๏ญ 1)
m ๏ซ 2(m ๏ญ 1) m ๏ซ 2m ๏ญ 2
๏ฝ
๏ฝ
m(m ๏ญ 1)
m(m ๏ญ 1)
3m ๏ญ 2
๏ฝ
m(m ๏ญ 1)
38. The common denominator is (y + 2)y.
8
3
8y
3( y ๏ซ 2) 8 y ๏ญ 3( y ๏ซ 2)
๏ญ ๏ฝ
๏ญ
๏ฝ
y ๏ซ 2 y ( y ๏ซ 2) y y ( y ๏ซ 2)
( y ๏ซ 2) y
8y ๏ญ 3y ๏ญ 6
5y ๏ญ 6
5y ๏ญ 6
or
๏ฝ
๏ฝ
( y ๏ซ 2) y
( y ๏ซ 2) y
y ( y ๏ซ 2)
39. The common denominator is 5(b + 2).
7
2
7๏5
2
๏ซ
๏ฝ
๏ซ
b ๏ซ 2 5 ๏จb ๏ซ 2๏ฉ ๏จb ๏ซ 2๏ฉ ๏ 5 5 ๏จb ๏ซ 2๏ฉ
35 ๏ซ 2
37
๏ฝ
๏ฝ
5 ๏จb ๏ซ 2๏ฉ 5 ๏จb ๏ซ 2๏ฉ
40. The common denominator is 3(k + 1).
4
3
4
3๏3
๏ซ
๏ฝ
๏ซ
3 ๏จ k ๏ซ 1๏ฉ k ๏ซ 1 3 ๏จk ๏ซ 1๏ฉ 3 ๏จk ๏ซ 1๏ฉ
4๏ซ9
13
๏ฝ
๏ฝ
3 ๏จ k ๏ซ 1๏ฉ 3 ๏จ k ๏ซ 1๏ฉ
41. The common denominator is 20(k โ 2).
2
5
8
25
๏ซ
๏ฝ
๏ซ
5(k ๏ญ 2) 4(k ๏ญ 2) 20( k ๏ญ 2) 20( k ๏ญ 2)
8 ๏ซ 25
33
๏ฝ
๏ฝ
20(k ๏ญ 2) 20( k ๏ญ 2)
43. First factor the denominators in order to find the
common denominator.
x 2 ๏ญ 4 x ๏ซ 3 ๏ฝ ๏จ x ๏ญ 3๏ฉ๏จ x ๏ญ 1๏ฉ
x 2 ๏ญ x ๏ญ 6 ๏ฝ ๏จ x ๏ญ 3๏ฉ๏จ x ๏ซ 2๏ฉ
The common denominator is (x โ 3)(xโ1)(x + 2).
2
5
๏ซ 2
2
x ๏ญ 4x ๏ซ 3 x ๏ญ x ๏ญ 6
2
5
๏ฝ
๏ซ
( x ๏ญ 3)( x ๏ญ 1) ( x ๏ญ 3)( x ๏ซ 2)
2( x ๏ซ 2)
5( x ๏ญ 1)
๏ฝ
๏ซ
( x ๏ญ 3)( x ๏ญ 1)( x ๏ซ 2) ( x ๏ญ 3)( x ๏ซ 2)( x ๏ญ 1)
2( x ๏ซ 2) ๏ซ 5( x ๏ญ 1)
2 x ๏ซ 4 ๏ซ 5x ๏ญ 5
๏ฝ
๏ฝ
( x ๏ญ 3)( x ๏ซ 2)( x ๏ญ 1) ( x ๏ญ 3)( x ๏ญ 1)( x ๏ซ 2)
7x ๏ญ 1
๏ฝ
( x ๏ญ 3)( x ๏ญ 1)( x ๏ซ 2)
44. First factor the denominators in order to find the
common denominator.
m 2 ๏ญ 3m ๏ญ 10 ๏ฝ ๏จ m ๏ญ 5๏ฉ๏จ m ๏ซ 2๏ฉ
m 2 ๏ญ m ๏ญ 20 ๏ฝ ๏จ m ๏ญ 5๏ฉ๏จ m ๏ซ 4 ๏ฉ
The common denominator is
(m ๏ญ 5)(m ๏ซ 2)(m ๏ซ 4) .
3
7
๏ซ
m 2 ๏ญ 3m ๏ญ 10 m 2 ๏ญ m ๏ญ 20
3
7
๏ฝ
๏ซ
(m ๏ญ 5)(m ๏ซ 2) (m ๏ญ 5)(m ๏ซ 4)
3(m ๏ซ 4)
7(m ๏ซ 2)
๏ฝ
๏ซ
(m ๏ญ 5)(m ๏ซ 2)(m ๏ซ 4) (m ๏ญ 5)( m ๏ซ 4)(m ๏ซ 2)
3m ๏ซ 12 ๏ซ 7 m ๏ซ 14
10m ๏ซ 26
๏ฝ
๏ฝ
(m ๏ญ 5)(m ๏ซ 2)(m ๏ซ 4) (m ๏ญ 5)( m ๏ซ 2)( m ๏ซ 4)
45. First factor the denominators in order to find the
common denominator.
y 2 ๏ซ 7 y ๏ซ 12 ๏ฝ ๏จ y ๏ซ 3๏ฉ๏จ y ๏ซ 4๏ฉ
y 2 ๏ซ 5 y ๏ซ 6 ๏ฝ ๏จ y ๏ซ 3๏ฉ๏จ y ๏ซ 2๏ฉ
42. The common denominator is 6(p + 4).
11
5
22
5
๏ญ
๏ฝ
๏ญ
3( p ๏ซ 4) 6( p ๏ซ 4) 6( p ๏ซ 4) 6( p ๏ซ 4)
22 ๏ญ 5
17
๏ฝ
๏ฝ
6( p ๏ซ 4) 6( p ๏ซ 4)
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.4 RATIONAL EXPRESIONS
The common denominator is
(y + 4)(y + 3)(y + 2).
2y
y
๏ญ
y 2 ๏ซ 7 y ๏ซ 12 y 2 ๏ซ 5 y ๏ซ 6
2y
y
๏ฝ
๏ญ
( y ๏ซ 4)( y ๏ซ 3) ( y ๏ซ 3)( y ๏ซ 2)
2 y ( y ๏ซ 2)
y ( y ๏ซ 4)
๏ฝ
๏ญ
( y ๏ซ 4)( y ๏ซ 3)( y ๏ซ 2) ( y ๏ซ 4)( y ๏ซ 3)( y ๏ซ 2)
๏ฝ
2 y ( y ๏ซ 2) ๏ญ y ( y ๏ซ 4) 2 y 2 ๏ซ 4 y ๏ญ y 2 ๏ญ 4 y
๏ฝ
( y ๏ซ 4)( y ๏ซ 3)( y ๏ซ 2) ( y ๏ซ 4)( y ๏ซ 3)( y ๏ซ 2)
๏ฝ
y2
( y ๏ซ 4)( y ๏ซ 3)( y ๏ซ 2)
r 2 ๏ซ 2r ๏ญ 8 ๏ฝ ๏จ r ๏ซ 4๏ฉ๏จ r ๏ญ 2๏ฉ
The common denominator is (r ๏ญ 8)(r ๏ญ 2)(r ๏ซ 4) .
3r
๏ญr
๏ญ 2
2
r ๏ญ 10r ๏ซ 16 r ๏ซ 2r ๏ญ 8
3r
๏ญr
๏ฝ
๏ญ
(r ๏ญ 8)(r ๏ญ 2) (r ๏ซ 4)(r ๏ญ 2)
3r (r ๏ญ 8)
๏ญ r (r ๏ซ 4)
๏ฝ
๏ญ
(r ๏ญ 8)(r ๏ญ 2)(r ๏ซ 4) (r ๏ซ 4)( r ๏ญ 2)( r ๏ญ 8)
๏ฝ
๏จ
(r ๏ญ 8)(r ๏ญ 2)(r ๏ซ 4)
1
๏ญ 1x
x๏ซh
h
The common denominator in the numerator is
x(x + h)
1
๏ญ 1x
x๏ซh
h
50.
46. First factor the denominators in order to find the
common denominator.
r 2 ๏ญ 10r ๏ซ 16 ๏ฝ ๏จ r ๏ญ 8๏ฉ๏จ r ๏ญ 2๏ฉ
๏ญ r 2 ๏ญ 4r ๏ญ 3r 2 ๏ญ 24r
49.
h
The common denominator of the numerator is
( x ๏ซ h) 2 x 2 .
1
๏ญ 12
( x ๏ซ h) 2
x
h
1๏ญ x
48.
๏จ ๏ฉ ๏ฝ x ๏1 ๏ซ x ๏จ 1x ๏ฉ ๏ฝ x ๏ซ 1
x ๏จ1 ๏ญ 1x ๏ฉ x ๏ 1 ๏ญ x ๏จ 1x ๏ฉ x ๏ญ 1
x 1 ๏ซ 1x
2 ๏ญ 2y
๏ฝ
๏ฝ
๏ฝ
๏ฝ
x ๏ญ ( x ๏ซ h)
๏
2 2
( x ๏ซ h) x
๏จ
1
h
x 2 ๏ญ x 2 ๏ซ 2 xh ๏ซ h 2
2 2
( x ๏ซ h) x
๏ญ2 xh ๏ญ h
2
( x ๏ซ h) 2 x 2 h
๏ญ2 x ๏ญ h
๏ฝ
๏ฉ๏1
h
h(๏ญ2 x ๏ญ h)
( x ๏ซ h) 2 x 2 h
( x ๏ซ h) 2 x 2
a. The probability that a dart will land in the
๏ฐ x2
shaded region is
.
4 x2
b.
๏ฐ x2
2
๏ฝ
๏ฐ
4
4x
52. The radius of the dartboard is x + 2x + 3x = 6x,
so the area of the dartboard is ๏ฐ ๏จ6 x ๏ฉ ๏ฝ 36๏ฐ x 2 .
2
2 ๏ซ 2y
Multiply both numerator and denominator by the
common denominator, y.
The area of the shaded region is ๏ฐ x 2 .
a.
๏จ ๏ฉ ๏ฝ 2 y ๏ญ 2 ๏ฝ 2( y ๏ญ 1) ๏ฝ y ๏ญ 1
y ๏จ 2 ๏ซ ๏ฉ 2 y ๏ซ 2 2( y ๏ซ 1) y ๏ซ 1
2 ๏ญ 2y
y 2 ๏ญ 2y
2๏ซ y
2
y
๏ฝ
2
( x ๏ซ h) 2
x2
2 2 ๏ญ
( x ๏ซ h) x
( x ๏ซ h) 2 x 2
๏ฝ
h
1
2
2
51. The length of each side of the dartboard is 2x, so
the area of the dartboard is 4 x 2 . The area of the
shaded region is ๏ฐ x 2 .
Multiply both numerator and denominator of this
complex fraction by the common denominator, x.
๏ฝ
1
๏ญh
x( x ๏ซ h)
1
๏ญ 12
( x ๏ซ h) 2
x
(r ๏ญ 8)( r ๏ญ 2)( r ๏ซ 4)
1 ๏ซ 1x
1 ๏ญ 1x
1 ๏ซ 1x
x๏ญ x๏ญh
x( x ๏ซ h)
๏ฝ
๏ฝ
h
h
h
๏ญh
๏ญh
1
๏ฝ
๏ธh๏ฝ
๏
x ( x ๏ซ h)
x( x ๏ซ h) h
๏ญ1
1
๏ฝ
or ๏ญ
x ( x ๏ซ h)
x( x ๏ซ h)
2
47.
x ๏ญ ( x ๏ซ h)
x( x ๏ซ h)
๏ฝ
๏ฉ ๏ฝ ๏ญr 2 ๏ญ 4r ๏ญ 3r 2 ๏ซ 24r
๏ญ4r ๏ซ 20r
๏ฝ
(r ๏ญ 8)(r ๏ญ 2)(r ๏ซ 4)
15
b.
The probability that a dart will land in the
๏ฐ x2
.
shaded region is
36๏ฐ x 2
๏ฐ x2
1
๏ฝ
2
36
36๏ฐ x
Copyright ยฉ 2019 Pearson Education, Inc.
16
CHAPTER 1 ALGEBRA AND EQUATIONS
53. The length of each side of the dartboard is 5x, so
the area of the dartboard is 25 x 2 . The area of
the shaded region is x 2 .
59.
.072 ๏จ45๏ฉ ๏ซ .744 ๏จ45๏ฉ ๏ซ 1.2
๏ฝ 3.84
45 ๏ซ 2
Let x = 20. Then
2
The probability that a dart will land in the
x2
shaded region is
.
25 x 2
a.
b.
x2
1
๏ฝ
2
25
25 x
2
.505 ( 20 ) โ 4.587 ( 20 ) + 27.6
โ 6.6
20 + 1
The cost of an ad will not reach $7 million in
2020.
60. Let x = 45. Then
.072 ๏จ45๏ฉ ๏ซ .744 ๏จ45๏ฉ ๏ซ 1.2
๏ฝ 3.84
45 ๏ซ 2
Let x = 22. Then
2
54. The length of each side of the dartboard is 3x, so
the area of the dartboard is 9 x 2 . The area of the
shaded region is 12 x 2 .
2
.505 ( 22 ) โ 4.587 ( 22 ) + 27.6
โ 7.4
22 + 1
The cost of an ad will not reach $8 million in
2022.
The probability that a dart will land in the
1 2
x
x2
.
shaded region is 2 2 ๏ฝ
9x
18 x 2
a.
b.
Let x = 45. Then
61.
x2
1
๏ฝ
2
18
18 x
Let x = 11. Then
2
55. Average cost = total cost C divided by the
number of calculators produced.
๏ญ7.2 x 2 ๏ซ 6995 x ๏ซ 230, 000
1000 x
56. Let x = 20 (in thousands).
๏ญ7.2(20) 2 ๏ซ 6995(20) ๏ซ 230, 000
๏ฝ $18.35
1000(20)
Let x = 50 (in thousands).
๏ญ7.2(50) 2 ๏ซ 6995(50) ๏ซ 230, 000
๏ฝ $11.24
1000(50)
Let x = 125 (in thousands).
๏ญ7.2(125) 2 ๏ซ 6995(125) ๏ซ 230, 000
๏ฝ $7.94
1000(125)
.049 (11) + 2.40 (11) + .83
โ 2.55
11 + 2
The hourly insurance cost in 2011 was $2.55.
62. Let x = 17. Then
2
.049 (17 ) + 2.40 (17 ) + .83
โ 2.94
17 + 2
The hourly insurance cost in 2017 is $2.94.
63. Let x = 20. Then
2
.049 ( 20 ) + 2.40 ( 20 ) + .83
โ 3.11
20 + 2
The hourly insurance cost in 2020 will be $3.11.
The annual cost will be 3.11(2100) = $6531.
64. Let x = 23. Then
2
.049 ( 23 ) + 2.40 ( 23 ) + .83
Let x = 13. Then
57.
2
.505 (13 ) โ 4.587 (13 ) + 27.6
โ 3.8
13 + 1
The ad cost approximately $3.8 million in
2013
58.
โ 3.28
23 + 2
The hourly insurance cost in 2023 will be $3.28.
The annual cost will be 3.28(2100) = $6888.
No; the annual cost will not reach $10,000 by
2023.
Let x = 16. Then
2
.505 (16 ) โ 4.587 (16 ) + 27.6
โ 4.9
16 + 1
The ad cost approximately $4.9 million in
2016.
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.5 EXPONENTS AND RADICALS
Section 1.5 Exponents and Radicals
1.
75
73
๏ฝ 7 5 ๏ญ 3 ๏ฝ 7 2 ๏ฝ 49
2.
๏จ๏ญ6๏ฉ14
8
๏ฝ ๏จ ๏ญ6๏ฉ ๏ฝ 1, 679, 616
6
๏จ๏ญ6๏ฉ
3.
๏จ4c ๏ฉ ๏ฝ 4 c ๏ฝ 16c
4.
๏จ๏ญ2 x ๏ฉ 4 ๏ฝ ๏จ๏ญ2๏ฉ4 x 4 ๏ฝ 16 x 4
2
2 2
๏ฆa ๏ถ
17. ๏ง 3 ๏ท
๏จb ๏ธ
3 2
6
๏จ5v ๏ฉ ๏ฝ 125v 6 ๏ฝ 125v 2
2 3
16v 4
1
๏ฝ
1
7
10. 10 ๏ญ3 ๏ฝ
1
10
3
16
1
7
๏ฝ
1
1000
1
1
11. ๏ญ6 ๏ญ5 ๏ฝ ๏ญ 5 ๏ฝ ๏ญ
7776
6
12.
13.
๏จ ๏ญ x ๏ฉ ๏ญ4 ๏ฝ
๏จ๏ญ y ๏ฉ ๏ญ3 ๏ฝ
1
๏จ๏ญ x ๏ฉ
4
1
๏จ ๏ญ y ๏ฉ3
๏ฝ
1
x
๏ฝ๏ญ
12
๏ฝ๏ญ
4
๏จ
22. 12 5 2 ๏ฝ 121 2
1
y3
๏ฆ6๏ถ
๏ฝ ๏ง ๏ท ๏ฝ 6 2 ๏ฝ 36
๏จ1๏ธ
๏ฆ4๏ถ
15. ๏ง ๏ท
๏จ3๏ธ
๏ญ2
9
๏ฆ3๏ถ
๏ฝ๏ง ๏ท ๏ฝ
๏จ4๏ธ
16
๏ฉ ๏ป 498.83
5
๏จ
23. ๏ญ64 2 3 ๏ฝ ๏ญ 641 3
๏ฉ ๏ฝ ๏ญ(4) 2 ๏ฝ ๏ญ16
๏จ
2
๏ฉ
๏จ ๏ฉ
3๏น
๏ฉ
24. ๏ญ64 3 2 ๏ฝ ๏ญ ๏ช 641 2 ๏บ ๏ฝ ๏ญ 83 ๏ฝ ๏ญ512
๏ซ
๏ป
4
๏ฆ 8 ๏ถ
25. ๏ง ๏ท
๏จ 27 ๏ธ
๏ญ4 3
4
๏ฆ 271 3 ๏ถ
3 4 81
๏ฆ3๏ถ
๏ฝ ๏ง 13 ๏ท ๏ฝ ๏ง ๏ท ๏ฝ 4 ๏ฝ
๏จ2๏ธ
16
2
๏จ 8 ๏ธ
๏ฆ 27 ๏ถ
26. ๏ง ๏ท
๏จ 64 ๏ธ
๏ญ1 3
๏ฆ 64 ๏ถ
๏ฝ๏ง ๏ท
๏จ 27 ๏ธ
4
๏ญ2
2
6
27.
๏ฆ1๏ถ
14. ๏ง ๏ท
๏จ6๏ธ
2
1
21. (5.71)1 4 ๏ฝ (5.71) .25 ๏ป 1.55 Use a calculator.
๏จ3u ๏ฉ ๏จ2u ๏ฉ ๏ฝ ๏จ27u ๏ฉ๏จ4u ๏ฉ ๏ฝ 108u
9. 7 ๏ญ1 ๏ฝ
1
20. 81 3 ๏ฝ 2 because 2 3 ๏ฝ 8 .
3
๏จ2v ๏ฉ4
๏ฆ b3 ๏ถ
b3
๏ฝ๏ง ๏ท ๏ฝ
a
๏จa ๏ธ
19. 491 2 ๏ฝ 7 because 7 2 ๏ฝ 49 .
๏ฆ 5๏ถ
53
125
6. ๏ง ๏ท ๏ฝ 3 3 ๏ฝ 3 3
๏จ xy ๏ธ
x y
x y
8.
๏ญ1
2
1
, but
16
2
1
1
(๏ญ2) ๏ญ4 ๏ฝ
๏ฝ
4
16
(๏ญ2)
5
7.
๏ฆ y2 ๏ถ
y4
๏ฝ๏ง ๏ท ๏ฝ 2
x
๏จ x ๏ธ
18. ๏ญ2 ๏ญ4 ๏ฝ ๏ญ
2
2 5 32
๏ฆ2๏ถ
5. ๏ง ๏ท ๏ฝ 5 ๏ฝ 5
๏จx๏ธ
x
x
2 3
๏ญ2
๏ฆ x ๏ถ
16. ๏ง 2 ๏ท
๏จy ๏ธ
28.
๏ฝ
4
3
๏ฝ 7 ๏ญ4 ๏ 7 3 ๏ฝ 7 ๏ญ1 ๏ฝ
1
7
5 ๏ญ3
42
4
53
๏ฝ
๏ญ2
7 ๏ญ4
7
๏ญ3
13
29. 4 ๏ญ3 ๏ 4 6 ๏ฝ 4 3
30. 9 ๏ญ9 ๏ 910 ๏ฝ 91 ๏ฝ 9
31.
410 ๏ 4 ๏ญ6
4
๏ญ4
๏ฝ 410 ๏ 4 ๏ญ6 ๏ 4 4 ๏ฝ 48
Copyright ยฉ 2019 Pearson Education, Inc.
17
18
32.
33.
34.
35.
CHAPTER 1 ALGEBRA AND EQUATIONS
5 ๏ญ4 ๏ 5 6
5 ๏ญ1
z6 ๏ z2
z5
k6 ๏k9
k
12
๏จ ๏ฉ ๏ฝ 21 2 p1 2 ๏ 21 3 ๏ ๏จ p 3 ๏ฉ
๏ฝ 25 6 p 3 2
z8
๏ฝ
z
๏ฝ z 8๏ญ5 ๏ฝ z 3
5
k 15
๏ฝ
k
12
42.
๏ฝ k 15 ๏ญ12 ๏ฝ k 3
34
๏จ
๏ฉ
3
2
3 ๏ญ2
3 ๏ญ2
4
4
x
๏p๏ฝ
๏ฝ5
x
๏ญ2 ๏ญ10
x
๏ฝ
๏ฉ
๏ฉ
44. 3x 3 2 2 x ๏ญ 3 2 ๏ซ x 3 2 ๏ฝ 3x 3 2 ๏ 2 x ๏ญ 3 2 ๏ซ 3x 3 2 ๏ x 3 2
๏ฝ 6 x 0 ๏ซ 3x 6 2 ๏ฝ 6 ๏ซ 3x 3
๏จx2 ๏ฉ ๏จ y 2 ๏ฉ
45.
13
4
23
๏ฝ
3x 2 3 y 2
1
๏จ x ๏ฉ2 3 ๏จ y ๏ฉ4 3
3x 2 3 y 2
1
1
๏ฝ 2๏ญ 4 3 ๏ฝ 2 3
3y
3y
25 x10
5
๏จq ๏ญ5r 3 ๏ฉ ๏ฝ q 5r ๏ญ3 ๏ฝ q 5 ๏ r13 ๏ฝ qr 3
38.
๏จ2 y 2 z ๏ญ2 ๏ฉ ๏ฝ 2 ๏ญ3 ๏จ y 2 ๏ฉ ๏จ z ๏ญ2 ๏ฉ
๏ญ1
๏ญ3
๏ญ3
๏ฝ2
๏ญ3 ๏ญ6 6
y z ๏ฝ
c1 2 ๏ฉ ๏จ d 3 ๏ฉ
c 3 2 ๏ฉ๏จd 3 2 ๏ฉ
๏จ
๏จ
46.
๏ฝ
14
3
๏จc 3 ๏ฉ ๏จd 1 4 ๏ฉ ๏จc 3 4 ๏ฉ๏จd 3 4 ๏ฉ
3
๏ญ3
z6
23 y 6
๏ฝ
3
๏ญ1 3
๏ฝ c (3 2) ๏ญ (3 4) d (3 2) ๏ญ (3 4)
๏ฝ c 3 4d 3 4
8y6
๏ญ2
2 ๏ญ2
๏จ7a ๏ฉ2 ๏จ5b ๏ฉ3 2 7 2 a 2 53 2 b 3 2 a 2 ๏ญ
47.
๏ฝ
๏ฝ
๏จ5a ๏ฉ3 2 ๏จ7b๏ฉ 4 53 2 a 3 2 7 4 b 4 7 2 b 4 ๏ญ
3
2
๏ฝ
๏ฆ 1 ๏ถ๏ฆ 1 ๏ถ๏ฆ 1 ๏ถ
๏ฝ 23 ๏ง 3 ๏ท ๏ง 2 ๏ท ๏ง 4 ๏ท
๏จ ๏ธ
๏ฝ
๏จp ๏ธ 5
8
12
z6
๏จ2 p ๏ฉ ๏ ๏จ5 p ๏ฉ ๏ฝ 2 ๏จ p ๏ฉ (5) ๏จ p ๏ฉ
๏ฆ 1 ๏ถ
๏ฝ 2 3 ๏จ p ๏ญ3 ๏ฉ ๏ง 2 ๏ท ๏จ p ๏ญ4 ๏ฉ
๏จ5 ๏ธ
2 ๏ญ2
๏จp ๏ธ
48.
25 p 7
๏จ4 x ๏ฉ1 2
x3 2 y 2
4
๏ฝ 4 2 ๏ x ๏ญ6 ๏ 34 ๏ x ๏ญ12 ๏ฝ 1296 x ๏ญ18 ๏ฝ
xy
๏ฝ
3
2
a1 2
49b 5 2
๏จ4 x ๏ฉ1 2 ๏จ xy ๏ฉ1 2
x3 2 y 2
๏ฝ
41 2 x1 2 x1 2 y1 2
x3 2 y 2
๏ฝ 2 xy1 2 x ๏ญ3 2 y ๏ญ2 ๏ฝ 2 x ๏ญ1 2 y ๏ญ 3 2
2
๏ฝ 12 32
x y
๏จ4 ๏ญ1 x 3 ๏ฉ ๏ ๏จ3x ๏ญ3 ๏ฉ
๏ญ2
๏ญ2
4
4
๏ฝ ๏จ 4 ๏ญ1 ๏ฉ ๏ ๏จ x 3 ๏ฉ ๏ ๏จ3๏ฉ ๏ ๏จ x ๏ญ3 ๏ฉ
๏ญ2
34
๏ซ3
๏จ
๏จ
p
9
37.
๏ญ1 3
32
๏ฝ 2 p ๏ซ 5 p5 3
31 p ๏ญ7
1
๏จ ๏ฉ ๏ 53 4 ๏ ๏จ k 1 3 ๏ฉ
๏ฝ 53 2 k 2
43. p 2 3 2 p1 3 ๏ซ 5 p ๏ฝ p 2 3 2 p1 3 ๏ซ p 2 3 (5 p )
5x ๏ฉ
5 ๏ญ2 ๏จ x ๏ฉ
๏จ
5 ๏ญ2 x ๏ญ6
36.
๏ฝ
๏ฝ
40.
32
3
3
3 p ๏ญ7
๏จ5k 2 ๏ฉ ๏ ๏จ5k 1 3 ๏ฉ
๏ฝ 5 2 4 k 3k 1 4 ๏ฝ 59 4 k 13 4
๏จ ๏ฉ ๏ฝ 3๏ญ1 p ๏ญ6 ๏ฝ 3๏ญ1๏ญ1 p ๏ญ6๏ญ (๏ญ7)
๏ฝ 3๏ญ2 p1 ๏ฝ
39.
13
๏ฝ 21 2 p1 2 ๏ 21 3 ๏ p1
3๏ญ1 p ๏ญ2
x
13
41. (2 p)1 2 ๏ 2 p 3
๏ฝ 5 ๏ญ4 ๏ 5 6 ๏ 51 ๏ฝ 53
1296
49.
๏จ
๏ฉ
x1 2 x 2 3 ๏ญ x 4 3 ๏ฝ x1 2 x 2 3 ๏ญ x1 2 x 4 3
๏ฝ x 7 6 ๏ญ x11 6
x18
๏จ
๏ฉ
50. x1 2 3 x 3 2 ๏ซ 2 x ๏ญ1 2 ๏ฝ 3 x1 2 x 3 2 ๏ซ 2 x1 2 x ๏ญ1 2
๏ฝ 3x 2 ๏ซ 2
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.5 EXPONENTS AND RADICALS
51. This is a difference of two squares.
๏จ x ๏ซ y ๏ฉ๏จ x ๏ญ y ๏ฉ ๏ฝ ๏จ x ๏ฉ ๏ญ ๏จ y ๏ฉ
12
12
12
12 2
12
12 2
๏ฝ x๏ญ y
52. Use FOIL.
๏จ x1 3 ๏ซ y1 2 ๏ฉ๏จ2 x1 3 ๏ญ y 3 2 ๏ฉ
๏ฝx
13
13
๏ 2x
๏ญx
13 3 2
y
๏ซ 2x
๏ญy
8 96 ๏ฝ 8 8 ๏ 12 ๏ฝ 8 8 12 ๏ฝ 8 4 ๏ 3
70.
๏ฝ 8 4 3 ๏ฝ 8 ๏ 2 3 ๏ฝ 16 3
71.
50 ๏ญ 72 ๏ฝ 5 2 ๏ญ 6 2 ๏ฝ ๏ญ 2
72
75 ๏ซ 192 ๏ฝ 5 3 ๏ซ 8 3 ๏ฝ 13 3
73.
5 20 ๏ญ 45 ๏ซ 2 80
13 12
y
12 32
y
๏ฝ 5๏2 5 ๏ญ 3 5 ๏ซ 2๏4 5
๏ฝ 2 x 2 3 ๏ซ 2 x1 3 y1 2 ๏ญ x1 3 y 3 2 ๏ญ y 2
13
53. (๏ญ3 x)
๏ฝ 10 5 ๏ญ 3 5 ๏ซ 8 5 ๏ฝ 15 5
3
๏ฝ ๏ญ3 x , (f)
74.
๏จ 3 ๏ซ 2๏ฉ๏จ 3 ๏ญ 2๏ฉ ๏ฝ ๏จ 3 ๏ฉ ๏ญ 2 2 ๏ฝ 3 ๏ญ 4 ๏ฝ ๏ญ1
75.
๏จ 5 ๏ซ 2 ๏ฉ๏จ 5 ๏ญ 2 ๏ฉ ๏ฝ ๏จ 5 ๏ฉ ๏ญ ๏จ 2 ๏ฉ
54. ๏ญ3×1 3 ๏ฝ ๏ญ3 3 x , (b)
1
1
55. (๏ญ3 x) ๏ญ1 3 ๏ฝ
๏ฝ3
, (h)
13
๏ญ3x
(๏ญ3x)
56. ๏ญ3x
๏ญ1 3
๏ญ3
๏ญ3
๏ฝ 1 3 ๏ฝ 3 , (d)
x
x
57. (3x )1 3 ๏ฝ 3 3x , (g)
58. 3x ๏ญ1 3 ๏ฝ
59. (3x )
๏ญ1 3
3
x
13
63.
4
625 ๏ฝ 625
64.
7
๏ญ128 ๏ฝ ( ๏ญ128)1 7 ๏ฝ ๏ญ2
3 1๏ซ 2
3
3
1๏ซ 2
๏ฝ
๏
๏ฝ
1 ๏ญ 2 1 ๏ญ 2 1 ๏ซ 2 (1) 2 ๏ญ 2 2
78.
3
3
79.
80.
81 ๏ 9 ๏ฝ 729 ๏ฝ 9
67.
81 ๏ญ 4 ๏ฝ 77
68.
49 ๏ญ 16 ๏ฝ 33
69.
5 15 ๏ฝ 75 ๏ฝ 25 ๏ 3 ๏ฝ 25 3 ๏ฝ 5 3
๏ฉ
๏จ
๏จ
2 1๏ญ 5
๏ญ4
๏ฉ
๏ฉ ๏ฝ 1 ๏ญ 5 ๏ ๏ญ1 ๏ฝ 5 ๏ญ 1
๏ญ2
๏ญ1
2
9 ๏ญ 3 9 ๏ญ 3 3 ๏ซ 3 27 ๏ซ 9 3 ๏ญ 3 3 ๏ญ 3
๏ฝ
๏
๏ฝ
2
3๏ญ 3 3๏ญ 3 3๏ซ 3
32 ๏ญ 3
๏จ ๏ฉ
๏ฝ
3
๏ฉ ๏ฝ 3 ๏จ1 ๏ซ 2 ๏ฉ
๏ฉ
๏จ ๏ฉ
2
2
1๏ญ 5 2 1๏ญ 5
๏ฝ
๏
๏ฝ
1๏ญ 5
1๏ซ 5 1๏ซ 5 1๏ญ 5
๏ฝ
๏ฝ5
๏จ
3 1๏ซ 2
๏จ
64 ๏ฝ 641 6 ๏ฝ 2
14
๏จ
1๏ญ 2
๏ญ1
๏ฝ ๏ญ3 1 ๏ซ 2 ๏ฝ ๏ญ3 ๏ญ 3 2
63 ๏ 7 ๏ฝ 3 7 ๏ 7 ๏ฝ 3 ๏ 7 ๏ฝ 21
65.
66.
77.
125 ๏ฝ 1251 3 ๏ฝ 5
6
4 ๏ 3 4 ๏ฝ 4 . A correct statement would be
3
4 ๏ 3 4 ๏ฝ 3 16 .
๏ฝ
60. 3×1 3 ๏ฝ 3 3 x , (e)
2
3
1
๏ฝ
๏ฝ
, (c)
(3 x)1 3 3 3x
62.
2
76.
1
3
2
๏ฝ 5๏ญ2 ๏ฝ 3
3
๏ฝ 3 , (a)
x
61.
19
24 ๏ซ 6 3 24 ๏ซ 6 3
๏ฝ
๏ฝ 4๏ซ 3
9๏ญ3
6
๏จ
๏ฉ๏จ
๏ฉ
3 ๏ญ1 3 ๏ซ 2
3 ๏ญ1
3 ๏ญ1 3 ๏ซ 2
๏ฝ
๏
๏ฝ
3๏ญ 4
3๏ญ2
3๏ญ2 3๏ซ2
3 ๏ซ 2 3 ๏ญ 3 ๏ญ 2 1๏ซ 3
๏ฝ
๏ฝ
๏ฝ ๏ญ1 ๏ญ 3
๏ญ1
๏ญ1
Copyright ยฉ 2019 Pearson Education, Inc.
20
81.
82.
CHAPTER 1 ALGEBRA AND EQUATIONS
3๏ญ 2 3๏ญ 2 3๏ซ 2
๏ฝ
๏
3๏ซ 2 3๏ซ 2 3๏ซ 2
9๏ญ2
7
๏ฝ
๏ฝ
9 ๏ซ 6 2 ๏ซ 2 11 ๏ซ 6 2
1๏ซ 7 1๏ซ 7 1๏ญ 7
๏ฝ
๏
2 ๏ญ 3 2 ๏ญ 3 1๏ญ 7
1๏ญ 7
๏ฝ
2๏ญ2 7 ๏ญ 3๏ซ 3 7
๏ญ6
๏ฝ
2 ๏ญ 2 7 ๏ญ 3 ๏ซ 21
.188
86 Let x = 18. Then 6.67 (18 )
โ 11.5
The domestic revenue for 2018 will be about
$11.5 billion.
.188
87. Let x = 20. Then 6.67 ( 20 )
โ 11.7
The domestic revenue for 2020 will be about
$11.7 billion.
.188
88. Let x = 23. Then 6.67 ( 23 )
โ 12.0
The domestic revenue for 2023 will be about
$12.0 billion.
kM
f
Note that because x represents the number of
units to order, the value of x should be rounded
to the nearest integer.
For exercises 89โ92, we use the model
revenue = 1.08 x.527 , x โฅ 1, x = 1 corresponds to the first
quarter of the year 2013.
k = $1, f = $500, M = 100,000
1 ๏ 100, 000
x๏ฝ
๏ฝ 200 ๏ป 14.1
500
The number of units to order is 14.
The advertising revenue in the first quarter of
2016 was approximately $4.2 billion.
83. x ๏ฝ
a.
b.
c.
k = $3, f = $7, M = 16,700
3 ๏ 16, 700
x๏ฝ
๏ป 84.6
7
The number of units to order is 85.
k = $1, f = $5, M = 16,800
1 ๏ 16,800
x๏ฝ
๏ฝ 3360 ๏ป 58.0
5
The number of units to order is 58.
84. h ๏ฝ 12.3T 1 3
If T = 216, find h.
13
h ๏ฝ 12.3(216) ๏ฝ 73.8
A height of 73.8 in. corresponds to a threshold
weight of 216 lb.
For exercises 85โ88, we use the model
revenue = 6.67 x.188 , x โฅ 5, x = 5 corresponds to 2005.
.188
85. Let x = 15. Then 6.67 (15 )
โ 11.1
The domestic revenue for 2015 were about $11.1
billion.
.527
89. Let x = 13. Then 1.08 (13)
.527
90. Let x = 18. Then 1.08 (18 )
โ 4.2
โ 5.0
The advertising revenue in the second quarter of
2017 was approximately $5.0 billion.
.527
91. Let x = 24. Then 1.08 ( 24 )
โ 5.8
The advertising revenue in the fourth quarter of
2018 will be approximately $5.8 billion.
.527
92. Let x = 27. Then 1.08 ( 27 )
โ 6.1
The advertising revenue in the third quarter of
2019 will be approximately $6.1 billion.
For exercises 93โ96, we use the model
Part-time Students = 2.72 x.238 ; x โฅ 10, x = 10
corresponds to 1990.
93. Let x = 29. Then 2.72(29).238 โ 6.1
According to the model, there were
approximately 6.1 million part-time students
attending college or university in 2009.
94. Let x = 34. Then 2.72(34).238 โ 6.3
According to the model, there were
approximately 6.3 million part-time students
attending college or university in 2014.
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.6 FIRST-DEGREE EQUATIONS
5.
2a ๏ญ 1 ๏ฝ 4(a ๏ซ 1) ๏ซ 7 a ๏ซ 5
2a ๏ญ 1 ๏ฝ 4a ๏ซ 4 ๏ซ 7 a ๏ซ 5
2a ๏ญ 1 ๏ฝ 11a ๏ซ 9
2a ๏ญ 2a ๏ญ 1 ๏ฝ 11a ๏ญ 2a ๏ซ 9
๏ญ1 ๏ฝ 9a ๏ซ 9
๏ญ1 ๏ญ 9 ๏ฝ 9a ๏ซ 9 ๏ญ 9
๏ญ10 ๏ฝ 9a
๏ญ10 9a
10
๏ฝ
๏๏ญ ๏ฝa
9
9
9
6.
3 ๏จ k ๏ญ 2๏ฉ ๏ญ 6 ๏ฝ 4k ๏ญ ๏จ3k ๏ญ 1๏ฉ
3k ๏ญ 6 ๏ญ 6 ๏ฝ 4k ๏ญ 3k ๏ซ 1
3k ๏ญ 12 ๏ฝ k ๏ซ 1
3k ๏ญ 12 ๏ซ ( ๏ญ k ) ๏ฝ k ๏ซ 1 ๏ซ (๏ญ k )
2k ๏ญ 12 ๏ฝ 1
2k ๏ญ 12 ๏ซ 12 ๏ฝ 1 ๏ซ 12
2k ๏ฝ 13
2k 13
13
๏ฝ
๏k๏ฝ
2
2
2
95. Let x = 38. Then 2.72(38).238 โ 6.5
According to the model, there will be
approximately 6.5 million part-time students
attending college or university in 2018
96. Let x = 43. Then 2.72(43).238 โ 6.7
According to the model, there will be
approximately 6.7 million part-time students
attending college or university in 2023
Section 1.6 First-Degree Equations
1.
3 x ๏ซ 8 ๏ฝ 20
3x ๏ซ 8 ๏ญ 8 ๏ฝ 20 ๏ญ 8
3 x ๏ฝ 12
1
1
(3x ) ๏ฝ (12)
3
3
x๏ฝ4
2. 4 โ 5y = 19
Add โ4 to both sides.
4 ๏ญ 5 y ๏ซ (๏ญ4) ๏ฝ 19 ๏ซ (๏ญ4)
๏ญ5 y ๏ฝ 15
7. 2[ x ๏ญ (3 ๏ซ 2 x) ๏ซ 9] ๏ฝ 3 x ๏ญ 8
2( x ๏ญ 3 ๏ญ 2 x ๏ซ 9) ๏ฝ 3 x ๏ญ 8
2(๏ญ x ๏ซ 6) ๏ฝ 3 x ๏ญ 8
๏ญ2 x ๏ซ 12 ๏ฝ 3 x ๏ญ 8
12 ๏ฝ 5 x ๏ญ 8
20 ๏ฝ 5 x ๏ 4 ๏ฝ x
1
Multiply both sides by ๏ญ .
5
1
1
๏ญ (๏ญ5 y ) ๏ฝ ๏ญ (15)
5
5
y ๏ฝ ๏ญ3
3.
8. ๏ญ2 ๏ซ๏ฉ 4 ๏จ k ๏ซ 2๏ฉ ๏ญ 3 ๏จ k ๏ซ 1๏ฉ๏ป๏น ๏ฝ 14 ๏ซ 2k
.6k ๏ญ .3 ๏ฝ .5k ๏ซ .4
.6k ๏ญ .5k ๏ญ .3 ๏ฝ .5k ๏ญ .5k ๏ซ .4
.1k ๏ญ .3 ๏ฝ .4
.1k ๏ญ .3 ๏ซ .3 ๏ฝ .4 ๏ซ .3
.1k ๏ฝ .7
.1k .7
๏ฝ ๏k ๏ฝ7
.1 .1
4.
2.5 ๏ซ 5.04m ๏ฝ 8.5 ๏ญ .06m
2.5 ๏ซ 5.04m ๏ซ .06m ๏ฝ 8.5 ๏ญ .06 m ๏ซ .06 m
2.5 ๏ซ 5.1m ๏ฝ 8.5
2.5 ๏ซ 5.1m ๏ซ ( ๏ญ2.5) ๏ฝ 8.5 ๏ซ ( ๏ญ2.5)
5.1m ๏ฝ 6.0
5.1m 6.0
๏ฝ
5.1
5.1
6.0
m๏ฝ
๏ m ๏ป 1.18
5.1
๏ญ2(4k ๏ซ 8 ๏ญ 3k ๏ญ 3) ๏ฝ 14 ๏ซ 2k
๏ญ2(k ๏ซ 5) ๏ฝ 14 ๏ซ 2k
๏ญ2k ๏ญ 10 ๏ฝ 14 ๏ซ 2k
๏ญ2k ๏ญ 10 ๏ซ 2k ๏ฝ 14 ๏ซ 2k ๏ซ 2k
๏ญ10 ๏ฝ 14 ๏ซ 4k
๏ญ10 ๏ญ 14 ๏ฝ 14 ๏ซ 4k ๏ญ 14
๏ญ24 ๏ฝ 4k
๏ญ24 4k
๏ฝ
๏ ๏ญ6 ๏ฝ k
4
4
Copyright ยฉ 2019 Pearson Education, Inc.
21
22
CHAPTER 1 ALGEBRA AND EQUATIONS
9.
3x 4
3
๏ญ ( x ๏ซ 1) ๏ฝ 2 ๏ญ (3x ๏ญ 4)
5 5
10
Multiply both sides by the common
denominator, 10.
๏ฆ 3x ๏ถ
๏ฆ4๏ถ
10 ๏ง ๏ท ๏ญ 10 ๏ง ๏ท ( x ๏ซ 1)
๏จ5๏ธ
๏จ5๏ธ
12.
๏ฆ3๏ถ
๏ฝ (10)(2) ๏ญ (10) ๏ง ๏ท (3 x ๏ญ 4)
๏จ 10 ๏ธ
2(3x) ๏ญ 8( x ๏ซ 1) ๏ฝ 20 ๏ญ 3(3 x ๏ญ 4)
6 x ๏ญ 8 x ๏ญ 8 ๏ฝ 20 ๏ญ 9 x ๏ซ 12
๏ญ2 x ๏ญ 8 ๏ฝ 32 ๏ญ 9 x
๏ญ2 x ๏ซ 9 x ๏ฝ 32 ๏ซ 8
7 x ๏ฝ 40
1
1
40
(7 x) ๏ฝ (40) ๏ x ๏ฝ
7
7
7
10.
11.
4
1
๏ฆ3
๏ถ
( x ๏ญ 2) ๏ญ ๏ฝ 2 ๏ง x ๏ญ 1๏ท
๏จ
๏ธ
3
2
4
4
8 1 3
x๏ญ ๏ญ ๏ฝ x๏ญ2
3
3 2 2
4
19 3
๏ฝ x๏ญ2
x๏ญ
3
6 2
4
19 4
3
4
x๏ญ ๏ญ x ๏ฝ x๏ญ2๏ญ x
3
6 3
2
3
19 1
๏ญ ๏ฝ x๏ญ2
6 6
19
1
๏ญ ๏ซ2๏ฝ x๏ญ2๏ซ2
6
6
7 1
๏ญ ๏ฝ x
6 6
๏ฆ 7๏ถ
๏ฆ1๏ถ
6 ๏ง ๏ญ ๏ท ๏ฝ 6 ๏ง ๏ท x ๏ ๏ญ7 ๏ฝ x
๏จ 6๏ธ
๏จ6๏ธ
5y
2y
๏ญ8 ๏ฝ 5๏ญ
6
3
5
2y ๏ถ
y
๏ฆ
๏ถ
๏ฆ
6 ๏ง ๏ญ 8๏ท ๏ฝ 6 ๏ง5 ๏ญ
๏ท
๏จ 6
๏ธ
๏จ
3 ๏ธ
๏ฆ 5y ๏ถ
๏ฆ 2y ๏ถ
6 ๏ง ๏ท ๏ญ 6(8) ๏ฝ 6(5) ๏ญ 6 ๏ง ๏ท
๏จ 6 ๏ธ
๏จ 3 ๏ธ
5 y ๏ญ 48 ๏ฝ 30 ๏ญ 4 y
9 y ๏ญ 48 ๏ฝ 30
9 y ๏ฝ 78
78 26
๏ฝ
y๏ฝ
9
3
13.
x
3x
๏ญ3๏ฝ
๏ซ1
2
5
Multiply both sides by the common
denominator, 10, to eliminate the fractions.
๏ฆx
๏ถ
๏ฆ 3x ๏ถ
10 ๏ง ๏ญ 3 ๏ท ๏ฝ 10 ๏ง ๏ซ 1๏ท
๏จ2
๏ธ
๏จ5
๏ธ
5 x ๏ญ 30 ๏ฝ 6 x ๏ซ 10
5 x ๏ญ 30 ๏ญ 5 x ๏ฝ 6 x ๏ซ 10 ๏ญ 5 x
๏ญ30 ๏ฝ x ๏ซ 10
๏ญ30 ๏ญ 10 ๏ฝ x ๏ซ 10 ๏ญ 10
๏ญ40 ๏ฝ x
m 1 6m ๏ซ 5
๏ญ ๏ฝ
2 m
12
๏ฆm 1 ๏ถ
๏ฆ 6m ๏ซ 5 ๏ถ
12m ๏ง ๏ญ ๏ท ๏ฝ 12m ๏ง
๏จ 2 m๏ธ
๏จ 12 ๏ท๏ธ
๏ฆm๏ถ
๏ฆ1๏ถ
(12m) ๏ง ๏ท ๏ญ (12m) ๏ง ๏ท ๏ฝ m(6m) ๏ซ m(5)
๏จ2๏ธ
๏จm๏ธ
6m 2 ๏ญ 12 ๏ฝ 6m 2 ๏ซ 5m
๏ญ12 ๏ฝ 5m
1
1
12
(๏ญ12) ๏ฝ (5m) ๏ ๏ญ ๏ฝ m
5
5
5
3k 9k ๏ญ 5 11k ๏ซ 8
๏ซ
๏ฝ
2
6
k
Multiply both sides by the common
denominator, 6k to eliminate the fractions.
๏ฆ 3k 9k ๏ญ 5 ๏ถ
๏ฆ 11k ๏ซ 8 ๏ถ
๏ฝ 6k ๏ง
6k ๏ง ๏ญ ๏ซ
๏ท
๏จ 2
๏จ k ๏ท๏ธ
6 ๏ธ
14. ๏ญ
๏ฆ 3k ๏ถ
๏ฆ 9k ๏ญ 5 ๏ถ
๏ฆ 11k ๏ถ
๏ฆ8๏ถ
6k ๏ง ๏ญ ๏ท ๏ซ 6k ๏ง
๏ฝ 6k ๏ง
๏ซ 6k ๏ง ๏ท
๏ท
๏ท
๏จ 2๏ธ
๏จ 6 ๏ธ
๏จ k ๏ธ
๏จk ๏ธ
๏ญ9k 2 ๏ซ k (9k ๏ญ 5) ๏ฝ 6(11k ) ๏ซ 6(8)
๏ญ9k 2 ๏ซ 9k 2 ๏ญ 5k ๏ฝ 66k ๏ซ 48
๏ญ5k ๏ฝ 66k ๏ซ 48
๏ญ5k ๏ญ 66k ๏ฝ 66k ๏ซ 48 ๏ญ 66k
๏ญ71k ๏ฝ 48
48
48
๏ญ71k
๏ฝ
๏k๏ฝ๏ญ
71
๏ญ71 ๏ญ71
Copyright ยฉ 2019 Pearson Education, Inc.
SECTION 1.6 FIRST-DEGREE EQUATIONS
15.
4
8
3
๏ญ
๏ซ
๏ฝ0
x ๏ญ 3 2x ๏ซ 5 x ๏ญ 3
4
3
8
๏ซ
๏ญ
๏ฝ0
x ๏ญ 3 x ๏ญ 3 2x ๏ซ 5
7
8
๏ญ
๏ฝ0
x ๏ญ 3 2x ๏ซ 5
Multiply each side by the common denominator,
(x โ 3)(2x + 5).
๏ฆ 7 ๏ถ
๏ฆ 8 ๏ถ
( x ๏ญ 3)(2 x ๏ซ 5) ๏ง
๏ญ ( x ๏ญ 3)(2 x ๏ซ 5) ๏ง
๏จ x ๏ญ 3 ๏ท๏ธ
๏จ 2 x ๏ซ 5 ๏ท๏ธ
๏ฝ ( x ๏ญ 3)(2 x ๏ซ 5)(0)
17.
3
1
๏ฝ
๏ญ2
2m ๏ซ 4 m ๏ซ 2
3
1
๏ฝ
๏ญ2
2(m ๏ซ 2) m ๏ซ 2
๏ฆ
๏ถ
3
2(m ๏ซ 2) ๏ง
๏จ 2(m ๏ซ 2) ๏ท๏ธ
๏ฆ 1 ๏ถ
๏ฝ 2(m ๏ซ 2) ๏ง
๏ญ 2(m ๏ซ 2)(2)
๏จ m ๏ซ 2 ๏ท๏ธ
๏ฆ 1 ๏ถ
๏ฝ 2(m ๏ซ 2) ๏ง
๏ญ 2(m ๏ซ 2)(2)
๏จ m ๏ซ 2 ๏ท๏ธ
3 ๏ฝ 2 ๏ญ 4(m ๏ซ 2)
3 ๏ฝ 2 ๏ญ 4m ๏ญ 8
7(2 x ๏ซ 5) ๏ญ 8( x ๏ญ 3) ๏ฝ 0
14 x ๏ซ 35 ๏ญ 8 x ๏ซ 24 ๏ฝ 0
6 x ๏ซ 59 ๏ฝ 0
6 x ๏ฝ ๏ญ59 ๏ x ๏ฝ ๏ญ
16.
23
3 ๏ฝ ๏ญ6 ๏ญ 4m ๏ 9 ๏ฝ ๏ญ4m ๏ m ๏ฝ ๏ญ
59
6
5
3
4
๏ญ
๏ฝ
2p ๏ซ 3 p ๏ญ 2 2p ๏ซ3
5
3
5
4
5
๏ญ
๏ญ
๏ฝ
๏ญ
2p ๏ซ 3 p ๏ญ 2 2p ๏ซ3 2p ๏ซ3 2p ๏ซ3
3
1
๏ญ
๏ฝ๏ญ
p๏ญ2
2p ๏ซ3
Multiply both sides by the common
denominator, (2p + 3)(p โ 2).
๏ฆ 5
3 ๏ถ
๏ญ
(2 p ๏ซ 3)( p ๏ญ 2) ๏ง
๏จ 2 p ๏ซ 3 p ๏ญ 2 ๏ธ๏ท
๏ฆ
3 ๏ถ
๏ง๏จ ๏ญ p ๏ญ 2 ๏ท๏ธ ๏จ p ๏ญ 2๏ฉ๏จ 2 p ๏ซ 3๏ฉ
18.
8
5
๏ญ
๏ฝ4
3k ๏ญ 9 k ๏ญ 3
Multiply both sides by the common
denominator, 3k โ 9.
5 ๏น
๏ฉ 8
(3k ๏ญ 9) ๏ช
๏ญ
๏ฝ (3k ๏ญ 9)4
๏ซ 3k ๏ญ 9 k ๏ญ 3 ๏บ๏ป
5 ๏ถ
๏ฆ 8 ๏ถ
๏ฆ
๏ซ 3(k ๏ญ 3) ๏ง ๏ญ
๏ฝ 12k ๏ญ 36
(3k ๏ญ 9) ๏ง
๏จ 3k ๏ญ 9 ๏ท๏ธ
๏จ k ๏ญ 3 ๏ท๏ธ
8 ๏ญ 15 ๏ฝ 12k ๏ญ 36
๏ญ7 ๏ฝ 12k ๏ญ 36
29
๏ฝk
29 ๏ฝ 12k ๏
12
19.
9.06 x ๏ซ 3.59(8 x ๏ญ 5) ๏ฝ 12.07 x ๏ซ .5612
9.06 x ๏ซ 28.72 x ๏ญ 17.95 ๏ฝ 12.07 x ๏ซ .5612
9.06 x ๏ซ 28.72 x ๏ญ 12.07 x ๏ฝ 17.95 ๏ซ .5612
25.71x ๏ฝ 18.5112
18.5112
x๏ฝ
๏ฝ .72
25.71
20.
๏ญ5.74(3.1 ๏ญ 2.7 p) ๏ฝ 1.09 p ๏ซ 5.2588
๏ญ17.794 ๏ซ 15.498 p ๏ฝ 1.09 p ๏ซ 5.2588
15.498 p ๏ญ 1.09 p ๏ฝ 5.2588 ๏ซ 17.794
14.408 p ๏ฝ 23.0528
23.0528
p๏ฝ
๏ฝ 1.6
14.408
๏ฆ
1 ๏ถ
๏ฝ ๏ง๏ญ
๏จ p ๏ญ 2๏ฉ๏จ2 p ๏ซ 3๏ฉ
๏จ 2 p ๏ซ 3 ๏ท๏ธ
๏ญ3 ๏จ 2 p ๏ซ 3๏ฉ ๏ฝ ๏ญ1 ๏จ p ๏ญ 2๏ฉ
๏ญ6 p ๏ญ 9 ๏ฝ ๏ญ p ๏ซ 2
11
5
๏จ p ๏ญ 2๏ฉ 5 ๏ซ ๏จ2 p ๏ซ 3๏ฉ๏จ๏ญ3๏ฉ ๏ฝ ๏จ p ๏ญ 2๏ฉ 4
5 p ๏ญ 10 ๏ญ 6 p ๏ญ 9 ๏ฝ 4 p ๏ญ 8
๏ญ p ๏ญ 19 ๏ฝ 4 p ๏ญ 8
11
๏ญ11 ๏ฝ 5 p ๏ ๏ญ ๏ฝ p
5
9
4
๏ญ5 p ๏ฝ 11 ๏ p ๏ฝ ๏ญ
Copyright ยฉ 2019 Pearson Education, Inc.
24
21.
CHAPTER 1 ALGEBRA AND EQUATIONS
2.63r ๏ญ 8.99 3.90r ๏ญ 1.77
๏ญ
๏ฝr
1.25
2.45
Multiply by the common denominator
(1.25)(2.45) to eliminate the fractions.
๏จ2.45๏ฉ๏จ2.63r ๏ญ 8.99๏ฉ ๏ญ ๏จ1.25๏ฉ๏จ3.90r ๏ญ 1.77 ๏ฉ
๏ฝ ๏จ 2.45๏ฉ๏จ1.25๏ฉ r
6.4435r ๏ญ 22.0255 ๏ญ 4.875r ๏ซ 2.2125 ๏ฝ 3.0625 r
1.5685r ๏ญ 19.813 ๏ฝ 3.0625r
๏ญ19.813 ๏ฝ 1.494r
19.813 1.494r
๏ญ
๏ฝ
1.494
1.494
r ๏ป ๏ญ13.26
22.
8.19m ๏ซ 2.55 8.17 m ๏ญ 9.94
๏ญ
๏ฝ 4m
4.34
1.04
๏จ1.04๏ฉ๏จ8.19m ๏ซ 2.55๏ฉ ๏ญ ๏จ4.34 ๏ฉ๏จ8.17 m ๏ญ 9.94 ๏ฉ
๏ฝ 4m ๏จ1.04๏ฉ๏จ4.34 ๏ฉ
8.5176m ๏ซ 2.652 ๏ญ 35.4578m ๏ซ 43.1396
๏ฝ 18.0544m
๏ญ26.9402m ๏ซ 45.7916 ๏ฝ 18.0544 m
45.7916 ๏ฝ 44.9946m
45.7916
๏ m ๏ป 1.02
m๏ฝ
44.9946
23. 4(a ๏ซ x) ๏ฝ b ๏ญ a ๏ซ 2 x
4a ๏ซ 4 x ๏ฝ b ๏ญ a ๏ซ 2 x
4a ๏ฝ b ๏ญ a ๏ญ 2 x
5a ๏ญ b ๏ฝ ๏ญ2 x
5a ๏ญ b ๏ญ2 x
๏ฝ
๏ญ2
๏ญ2
5a ๏ญ b
b ๏ญ 5a
๏ญ
๏ฝ x or x ๏ฝ
2
2
25. 5(b โ x) = 2b + ax
First, use the distributive property.
5b โ 5x = 2b + ax
5b ๏ฝ 2b ๏ซ ax ๏ซ 5 x
3b ๏ฝ ax ๏ซ 5 x
3b ๏ฝ (a ๏ซ 5) x
3b
(a ๏ซ 5) x
3b
๏ฝ
๏
๏ฝx
a๏ซ5
a๏ซ5
a๏ซ5
Now use the distributive property on the right.
3b ๏ฝ (a ๏ซ 5) x
3b
(a ๏ซ 5) x
๏ฝ
a๏ซ5
a๏ซ5
3b
๏ฝx
a๏ซ5
26. bx โ 2b = 2a โ ax
Isolate terms with x on the left.
bx ๏ซ ax ๏ฝ 2a ๏ซ 2b
ax ๏ซ bx ๏ฝ 2a ๏ซ 2b
(a ๏ซ b) x ๏ฝ 2(a ๏ซ b)
2(a ๏ซ b)
x๏ฝ
๏x๏ฝ2
a๏ซb
27.
PV ๏ฝ k for V
1
1
( PV ) ๏ฝ (k )
P
P
k
V๏ฝ
P
28.
i ๏ฝ prt for p
i
๏ฝp
rt
29.
24. (3a ๏ญ b) ๏ญ bx ๏ฝ a ( x ๏ญ 2)
3a ๏ญ b ๏ญ bx ๏ฝ ax ๏ญ 2a
Isolate terms with x on the right.
3a ๏ญ b ๏ฝ ax ๏ญ 2a ๏ซ bx
5a ๏ญ b ๏ฝ ax ๏ซ bx
5a ๏ญ b
5a ๏ญ b ๏ฝ (a ๏ซ b) x ๏
๏ฝx
a๏ซb
V ๏ฝ V0 ๏ซ gt for g
V ๏ญ V0 ๏ฝ gt
V ๏ญ V0 gt
๏ฝ
t
t
V ๏ญ V0
๏ฝg
t
S ๏ฝ S 0 ๏ซ gt 2 ๏ซ k
30.
S ๏ญ S 0 ๏ญ k ๏ฝ gt 2
S ๏ญ S0 ๏ญ k
t
2
๏ฝ
gt 2
Copyright ยฉ 2019 Pearson Education, Inc.
t
2
๏
S ๏ญ S0 ๏ญ k
t2
๏ฝg
SECTION 1.6 FIRST-DEGREE EQUATIONS
31.
1
( B ๏ซ b)h for B
2
1
1
A ๏ฝ Bh ๏ซ bh
2
2
2 A ๏ฝ Bh ๏ซ bh Multiply by 2.
2 A ๏ญ bh ๏ฝ Bh
2 A ๏ญ bh Bh
1
Multiply by .
๏ฝ
h
h
h
2 A ๏ญ bh 2 A
๏ฝ
๏ญb ๏ฝ B
h
h
A๏ฝ
5
32.
C ๏ฝ ( F ๏ญ 32) for F
9
9
9
C ๏ฝ F ๏ญ 32 ๏ C ๏ซ 32 ๏ฝ F
5
5
37.
38.
33. 2h ๏ญ 1 ๏ฝ 5
2h ๏ญ 1 ๏ฝ 5 or 2h ๏ญ 1 ๏ฝ ๏ญ5
2h ๏ฝ 6 or
2h ๏ฝ ๏ญ4
h ๏ฝ 3 or
h ๏ฝ ๏ญ2
5
๏ฝ 10
r ๏ญ3
5
๏ฝ 10
r ๏ญ3
5 ๏ฝ 10 ๏จ r ๏ญ 3๏ฉ
5 ๏ฝ 10r ๏ญ 30
35 ๏ฝ 10r
35 7
๏ฝ ๏ฝr
10 2
3
๏ฝ4
2h ๏ญ 1
3
๏ฝ4
2h ๏ญ 1
3 ๏ฝ 4 ๏จ2h ๏ญ 1๏ฉ
3 ๏ฝ 8h ๏ญ 4
7 ๏ฝ 8h
7
๏ฝh
8
39.
34. 4m ๏ญ 3 ๏ฝ 12
4m ๏ญ 3 ๏ฝ 12 or 4m ๏ญ 3 ๏ฝ ๏ญ12
4m ๏ฝ 15 or
4m ๏ฝ ๏ญ9
15
9
m๏ฝ
or
m๏ฝ๏ญ
4
4
40.
35. 6 ๏ซ 2 p ๏ฝ 10
6 ๏ซ 2 p ๏ฝ 10 or 6 ๏ซ 2 p ๏ฝ ๏ญ10
2 p ๏ฝ 4 or
2 p ๏ฝ ๏ญ16
p ๏ฝ 2 or
p ๏ฝ ๏ญ8
36. ๏ญ5 x ๏ซ 7 ๏ฝ 15
๏ญ5 x ๏ซ 7 ๏ฝ 15 or ๏ญ5 x ๏ซ 7 ๏ฝ ๏ญ15
๏ญ5 x ๏ฝ 8
or
๏ญ5 x ๏ฝ ๏ญ22
8
22
x๏ฝ๏ญ
or
x๏ฝ
5
5
41.
42.
or
or
or
or
or
or
or
or
or
or
5
๏ฝ ๏ญ10
r ๏ญ3
5 ๏ฝ ๏ญ10 ๏จr ๏ญ 3๏ฉ
5 ๏ฝ ๏ญ10r ๏ซ 30
๏ญ25 ๏ฝ ๏ญ10r
๏ญ25 5
๏ฝ ๏ฝr
๏ญ10 2
3
๏ฝ ๏ญ4
2h ๏ญ 1
3 ๏ฝ ๏ญ4 ๏จ2h ๏ญ 1๏ฉ
3 ๏ฝ ๏ญ8h ๏ซ 4
๏ญ1 ๏ฝ ๏ญ8h
1
๏ฝh
8
5
๏จ F ๏ญ 32๏ฉ
9
๏ฆ9๏ถ ๏ฆ9๏ถ๏ฆ5๏ถ
๏ญ5 ๏ง ๏ท ๏ฝ ๏ง ๏ท ๏ง ๏ท ๏จ F ๏ญ 32๏ฉ
๏จ5๏ธ ๏จ5๏ธ๏จ9๏ธ
๏ญ9 ๏ฝ F ๏ญ 32 ๏ 23 ๏ฝ F
The temperature โ5ยฐC = 23ยฐF.
๏ญ5 ๏ฝ
5
๏จ F ๏ญ 32๏ฉ
9
๏ฆ9๏ถ ๏ฆ9๏ถ๏ฆ5๏ถ
๏ญ15 ๏ง ๏ท ๏ฝ ๏ง ๏ท ๏ง ๏ท ๏จ F ๏ญ 32๏ฉ
๏จ5๏ธ ๏จ5๏ธ๏จ9๏ธ
๏ญ27 ๏ฝ F ๏ญ 32 ๏ 5 ๏ฝ F
The temperature โ15ยฐC = 5ยฐF.
๏ญ15 ๏ฝ
5
๏จ F ๏ญ 32๏ฉ
9
๏ฆ9๏ถ ๏ฆ9๏ถ๏ฆ5๏ถ
22 ๏ง ๏ท ๏ฝ ๏ง ๏ท ๏ง ๏ท ๏จ F ๏ญ 32๏ฉ
๏จ5๏ธ ๏จ5๏ธ๏จ9๏ธ
39.6 ๏ฝ F ๏ญ 32 ๏ 71.6 ๏ฝ F
The temperature 22ยฐC = 71.6ยฐF.
22 ๏ฝ
5
๏จ F ๏ญ 32๏ฉ
9
๏ฆ9๏ถ ๏ฆ9๏ถ๏ฆ5๏ถ
36 ๏ง ๏ท ๏ฝ ๏ง ๏ท ๏ง ๏ท ๏จ F ๏ญ 32๏ฉ
๏จ5๏ธ ๏จ5๏ธ๏จ9๏ธ
64.8 ๏ฝ F ๏ญ 32 ๏ 96.8 ๏ฝ F
The temperature 36ยฐC = 96.8ยฐF.
36 ๏ฝ
Copyright ยฉ 2019 Pearson Education, Inc.
25
26
CHAPTER 1 ALGEBRA AND EQUATIONS
43. Let x = 10.
y = 1.15 x + 1.62
y = 1.15(10) + 1.62
y = 13.12
Therefore, the gross federal debt in 2010 was
$13.12 trillion.
44. Let x = 15.
y = 1.15 x + 1.62
y = 1.15(15) + 1.62
y = 18.87
Therefore, the gross federal debt in 2015 was
$18.87 trillion.
45. y = 1.15 x + 1.62
Substitute 22.32 for y.
22.32 = 1.15 x + 1.62
20.7 = 1.15 x โ 18 = x
Therefore, the federal deficit will be $22.32
trillion in 2018.
46. y = 1.15 x + 1.62
Substitute 24.62 for y.
24.62 = 1.15 x + 1.62
23 = 1.15 x โ 20 = x
Therefore, the federal deficit will be $24.628.83
trillion in 2020.
47. y = 1.15 x + 1.62
Substitute 25.77 for y.
25.77 = 1.15 x + 1.62
24.15 = 1.15 x โ 21 = x
Therefore, the federal deficit will be $825.77
trillion in 2021.
48. y = 1.15 x + 1.62
Substitute 30.37 for y.
30.37 = 1.15 x + 1.62
28.75 = 1.15 x โ 25 = x
Therefore, the federal deficit will be $30.378
trillion in 2025.
49. E = .108x + 1.517
Substitute $2.7052422 in for E.
2.705 = .108 x + 1.517
1.188 = .108 x โ 11 = x
The health care expenditures were at $2.7052250
trillion in 2011.
50. E = .108x + 1.517
Substitute $3.029 in for E.
3.029 = .108 x + 1.517
1.512 = .108 x โ 14 = x
The health care expenditures were at $3.029
trillion in 2014.
51. E = .108x + 1.517
Substitute $3.461 in for E.
3.461 = .108 x + 1.517
1.944 = .108 x โ 18 = x
The health care expenditures will be $3.4612422
trillion in 2018.
52. E = .108x + 1.517
Substitute $3.893 in for E.
3.893 = .108 x + 1.517
2.376 = .108 x โ 22 = x
The health care expenditures will be $3.893
trillion in 2022.
53. 114.8 ( x โ 2010 ) = 5 y โ 3390.5
Substitute 746.98 for y and solve for x.
114.8 ( x โ 2010 ) = 5 (746.98 ) โ 3390.5
114.8 x โ 230, 748 = 344.4
114.8 x = 231, 092.4
x = 2013
The amount of income was $746.98 billion in
2013.
54. 114.8 ( x โ 2010 ) = 5 y โ 3390.5
Substitute 815.86 for y and solve for x.
114.8 ( x โ 2010 ) = 5 (815.86 ) โ 3390.5
114.8 x โ 230, 748 = 688.8
114.8 x = 231, 436.8
x = 2016
The amount of income was $815.86 billion in
2016.
55. 114.8 ( x โ 2010 ) = 5 y โ 3390.5
Substitute 907.7 for y and solve for x.
114.8 ( x โ 2010 ) = 5 (907.7 ) โ 3390.5
114.8 x โ 230, 748 = 1148
114.8 x = 231,896
x = 2020
The amount of income will be $907.7 billion in
2020.
Copyright ยฉ 2019 Pearson Education, Inc.
Document Preview (30 of 805 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Finite Mathematics with Applications In the Management, Natural, and Social Sciences, 12th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Olivia Smith
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)