Solution Manual for College Mathematics for Business, Economics, Life Sciences, and Social Sciences, 14th Edition
Preview Extract
2 FUNCTIONS
EXERCISE 2-1
2.
4.
6.
8.
10.
The table specifies a function, since for each domain value there corresponds one and only one range value.
12.
The table does not specify a function, since more than one range value corresponds to a given domain
value.
(Range values 1, 2 correspond to domain value 9.)
14.
This is a function.
16.
The graph specifies a function; each vertical line in the plane intersects the graph in at most one point.
18.
The graph does not specify a function. There are vertical lines which intersect the graph in more than one
point. For example, the y-axis intersects the graph in two points.
20.
The graph does not specify a function.
22.
y ๏ฝ 4x ๏ซ
26.
x ๏ซ xy ๏ซ 1 ๏ฝ 0 is neither linear nor constant.
1
x
is neither linear nor constant.
24.
28.
2 x ๏ญ 4 y ๏ญ 6 ๏ฝ 0 is linear.
y ๏ญ x 3 ๏ซ 2x
1
๏ซ
๏ฝ 1 simplifies to y ๏ฝ
2
4
2
constant.
Copyright ยฉ 2019 Pearson Education, Inc.
2-1
2-2
CHAPTER 2: FUNCTIONS
30.
32.
34.
36.
38.
3x 2
. Since the denominator is bigger than 1, we note that the values of f are between 0 and 3.
x2 ๏ซ 2
Furthermore, the function f has the property that f(โx) = f(x). So, adding points x = 3, x = 4,
x = 5, we have:
f(x) =
x
F(x)
โ5
โ4
โ3 โ2 โ1 0 1 2 3
4
5
2.78 2.67 2.45 2 1 0 1 2 2.45 2.67 2.78
The sketch is:
40.
y = f(4) = 0
42.
y = f(โ2) = 3
44.
f ( x ) ๏ฝ 4 at x ๏ฝ 5.
46.
f ( x ) ๏ฝ 0 at x ๏ฝ ๏ญ5, 0, 4.
48.
Domain: all real numbers.
50.
Domain: all real numbers except x = 2.
52.
Domain: x ๏ณ ๏ญ5 or [ ๏ญ5, ๏ฅ ).
54.
Given 6 x ๏ญ 7 y ๏ฝ 21 . Solving for y we have: ๏ญ7 y ๏ฝ 21 ๏ญ 6 x and y ๏ฝ
6
7
x ๏ญ 3.
This equation specifies a function. The domain is R, the set of real numbers.
Copyright ยฉ 2019 Pearson Education, Inc.
EXERCISE 2-1
56.
Given x ( x ๏ซ y ) ๏ฝ 4 . Solving for y we have: xy ๏ซ x ๏ฝ 4 and y ๏ฝ
58.
Given x ๏ซ y ๏ฝ 9. Solving for y we have: y ๏ฝ 9 ๏ญ x
2
4๏ญx
x
This equation specifies a function. The domain is all real numbers except 0
2
2
2
2
2
.
and y ๏ฝ ๏ฑ 9 ๏ญ x 2 .
This equation does not define y as a function of x. For example, when x = 0, y = ๏ฑ 3.
60.
Given
x ๏ญ y ๏ฝ 0. . Solving for y we have: y ๏ฝ
3
3
1/6
x and y ๏ฝ x .
This equation specifies a function. The domain is all nonnegative real numbers, i.e., x ๏ณ 0 .
62.
f ( ๏ญ3 x ) ๏ฝ ( ๏ญ3 x ) ๏ญ 4 ๏ฝ 9 x ๏ญ 4
64.
f ( x ๏ญ 1) ๏ฝ ( x ๏ญ 1) ๏ญ 4 ๏ฝ x ๏ญ 2 x ๏ซ 1 ๏ญ 4 ๏ฝ x ๏ญ 2 x ๏ญ 3
66.
f (x ) ๏ฝ (x ) ๏ญ 4 ๏ฝ x ๏ญ 4
68.
f ( 4 x ) ๏ฝ x1/ 4
70.
f ( ๏ญ3) ๏ซ f ( h ) ๏ฝ ( ๏ญ3)2 ๏ญ 4 ๏ซ h 2 ๏ญ 4 ๏ฝ 5 ๏ซ h 2 ๏ญ 4 ๏ฝ h 2 ๏ซ 1
72.
f ( ๏ญ3 ๏ซ h ) ๏ฝ ( ๏ญ3 ๏ซ h ) 2 ๏ญ 4 ๏ฝ 9 ๏ญ 6 h ๏ซ h 2 ๏ญ 4 ๏ฝ 5 ๏ญ 6 h ๏ซ h 2
74.
f ( ๏ญ3 ๏ซ h ) ๏ญ f ( ๏ญ3) ๏ฝ ๏ฉ( ๏ญ3 ๏ซ h )2 ๏ญ 4 ๏น ๏ญ ๏ฉ( ๏ญ3)2 ๏ญ 4 ๏น ๏ฝ (9 ๏ญ 6h ๏ซ h 2 ๏ญ 4) ๏ญ (9 ๏ญ 4) ๏ฝ ๏ญ6h ๏ซ h 2
๏ซ
๏ป ๏ซ
๏ป
76.
(A)
f ( x ๏ซ h) ๏ฝ ๏ญ3( x ๏ซ h) ๏ซ 9 ๏ฝ ๏ญ3 x ๏ญ 3h ๏ซ 9
(B)
f ( x ๏ซ h) ๏ญ f ( x) ๏ฝ ๏จ ๏ญ3x ๏ญ 3h ๏ซ 9๏ฉ ๏ญ ๏จ ๏ญ3 x ๏ซ 9๏ฉ ๏ฝ ๏ญ3h
(C)
f ( x ๏ซ h) ๏ญ f ( x) ๏ญ3h
๏ฝ
๏ฝ ๏ญ3
h
h
(A)
f ( x ๏ซ h) ๏ฝ 3( x ๏ซ h) 2 ๏ซ 5( x ๏ซ h) ๏ญ 8
78.
2
2
2
3
3
2
2
2
6
๏จ ๏ฉ ๏ญ4 ๏ฝ x
2
1/ 2
๏ญ4๏ฝ
x ๏ญ4
๏ฝ 3( x 2 ๏ซ 2 xh ๏ซ h 2 ) ๏ซ 5 x ๏ซ 5h ๏ญ 8
๏ฝ 3 x 2 ๏ซ 6 xh ๏ซ 3h 2 ๏ซ 5 x ๏ซ 5h ๏ญ 8
(B)
๏จ
๏ฉ ๏จ
f ( x ๏ซ h) ๏ญ f ( x) ๏ฝ 3 x 2 ๏ซ 6 xh ๏ซ 3h 2 ๏ซ 5 x ๏ซ 5h ๏ญ 8 ๏ญ 3 x 2 ๏ซ 5 x ๏ญ 8
๏ฉ
๏ฝ 6 xh ๏ซ 3h 2 ๏ซ 5h
80.
(C)
f ( x ๏ซ h) ๏ญ f ( x) 6 xh ๏ซ 3h 2 ๏ซ 5h
๏ฝ
๏ฝ 6 x ๏ซ 3h ๏ซ 5
h
h
(A)
f(x + h) = x2 + 2xh + h2 + 40x + 40h
(B) f(x + h) โ f(x) = 2xh + h2 + 40h
(C)
f ( x ๏ซ h) ๏ญ f ( x )
= 2x + h + 40
h
Copyright ยฉ 2019 Pearson Education, Inc.
2-3
2-4
82.
CHAPTER 2: FUNCTIONS
Given A = l w = 81.
81
162
81
๏ฝ 2l ๏ซ
.
. Now P ๏ฝ 2l ๏ซ 2 w ๏ฝ 2l ๏ซ 2
Thus, w =
l
l
l
The domain is l > 0.
84.
Given P = 2 ๏ฌ + 2w = 160 or ๏ฌ + w = 80 and ๏ฌ = 80 โ w.
Now A = ๏ฌ w = (80 โ w)w and A = 80w โ w2 .
The domain is 0 โค w โค 80. [Note: w โค 80 since w > 80 implies ๏ฌ ๏ผ 0.]
86.
(A)
88.
(A)
(B) p(11) = 1,340 dollars per computer
p(18) = 920 dollars per computer
R(x) = xp(x)
= x(2,000 โ 60x) thousands of dollars
Domain: 1 โค x โค 25
(C)
(B) Table 11 Revenue
x(thousands)
R(x)(thousands)
1
5
10
15
20
25
90.
(A)
$1,940
8,500
14,000
16,500
16,000
12,500
P(x) = R(x) โ C(x)
= x(2,000 โ 60x) โ (4,000 + 500x) thousand dollars
= 1,500x โ 60×2 โ 4,000
Domain: 1 โค x โค 25
(C)
(B) Table 13 Profit
x (thousands)
1
5
10
15
20
25
P(x) (thousands)
โ$2,560
2,000
5,000
5,000
2,000
โ4,000
Copyright ยฉ 2019 Pearson Education, Inc.
EXERCISE 2-2
92.
(A)
Given 5v โ 2s = 1.4. Solving for v, we have:
v = 0.4s + 0.28.
If s = 0.51, then v = 0.4(0.51) + 0.28 = 0.484 or 48.4%.
(B)
Solving the equation for s, we have:
s = 2.5v โ 0.7.
If v = 0.51, then s = 2.5(0.51) โ 0.7 = 0.575 or 57.5%.
EXERCISE 2-2
Domain: [0, ๏ฅ) ; range: [1, ๏ฅ).
2.
f ( x) ๏ฝ 1 ๏ซ x
4.
f ( x) ๏ฝ x 2 ๏ซ 10 Domain: all real numbers; range: [10, ๏ฅ ).
6.
f ( x ) ๏ฝ 5 x ๏ซ 3 Domain: all real numbers; range: all real numbers.
8.
f ( x) ๏ฝ 15 ๏ญ 20 x
10.
f ( x) ๏ฝ ๏ญ8 ๏ซ 3 x Domain: all real numbers; range: all real numbers.
12.
14.
16.
18.
20.
22.
Domain: all real numbers; range: ( ๏ญ๏ฅ,15].
Copyright ยฉ 2019 Pearson Education, Inc.
2-5
2-6
CHAPTER 2: FUNCTIONS
24.
26.
28.
The graph of h(x) = โ|x โ 5| is the graph of y = |x|
reflected in the x axis and shifted 5 units to the right.
30.
The graph of m(x) = (x + 3)2 + 4 is the graph of
y = x2 shifted 3 units to the left and 4 units up.
32.
The graph of g(x) = โ6 + 3 x is the graph of y = 3 x
34.
The graph of m(x) = โ0.4×2 is the graph of
y = x2 reflected in the x axis and vertically
shifted 6 units down.
contracted by a factor of 0.4.
36.
The graph of the basic function y = |x| is shifted 3 units to the right and 2 units up. y = |x โ 3| + 2
38.
The graph of the basic function y = |x| is reflected in the x axis, shifted 2 units to the left and 3 units up.
Equation: y = 3 โ |x + 2|
40.
The graph of the basic function 3 x is reflected in the x axis and shifted up 2 units. Equation: y = 2 โ 3 x
42.
The graph of the basic function y = x3 is reflected in the x axis, shifted to the right 3 units and up 1 unit.
Equation: y = 1 โ (x โ 3)3
Copyright ยฉ 2019 Pearson Education, Inc.
EXERCISE 2-2
44.
g(x) = 3 x ๏ซ 3 + 2
46.
g(x) = โ|x โ 1|
48.
g(x) = 4 โ (x + 2)2
50.
๏ฌ x ๏ซ 1 if x ๏ผ ๏ญ1
g ( x) ๏ฝ ๏ญ
๏ฎ2 ๏ซ 2 x if x ๏ณ ๏ญ1
52.
๏ฌ 10 ๏ซ 2 x if
h( x ) ๏ฝ ๏ญ
๏ฎ40 ๏ซ 0.5 x if
54.
๏ฌ 4 x ๏ซ 20 if
๏ฏ
h( x ) ๏ฝ ๏ญ 2 x ๏ซ 60 if
๏ฏ๏ญ x ๏ซ 360 if
๏ฎ
0 ๏ฃ x ๏ฃ 20
x ๏พ 20
2-7
0 ๏ฃ x ๏ฃ 20
20 ๏ผ x ๏ฃ 100
x ๏พ 100
56.
The graph of the basic function y = x is reflected in the x axis and vertically expanded by a factor of 2.
Equation: y = โ2x
58.
The graph of the basic function y = |x| is vertically expanded by a factor of 4. Equation: y = 4|x|
60.
The graph of the basic function y = x3 is vertically contracted by a factor of 0.25. Equation: y = 0.25×3.
62.
Vertical shift, reflection in y axis.
Reversing the order does not change the result. Consider a point
(a, b) in the plane. A vertical shift of k units followed by a reflection in y axis moves (a, b) to (a, b + k) and
then to (โa, b + k). In the reverse order, a reflection in y axis followed by a vertical shift of k units moves
(a, b) to (โa, b) and then to (โa, b + k). The results are the same.
Copyright ยฉ 2019 Pearson Education, Inc.
2-8
CHAPTER 2: FUNCTIONS
64.
Vertical shift, vertical expansion.
Reversing the order can change the result. For example, let (a, b) be a point in the plane. A vertical shift of
k units followed by a vertical expansion of h (h > 1) moves (a, b) to (a, b + k) and then to (a, bh + kh). In
the reverse order, a vertical expansion of h followed by a vertical shift of k units moves (a, b) to (a, bh) and
then to (a, bh + k); (a, bh + kh) โ (a, bh + k).
66.
Horizontal shift, vertical contraction.
Reversing the order does not change the result. Consider a point (a, b) in the plane. A horizontal shift of k
units followed by a vertical contraction of h (0 < h 700, the charge is
54 + .053(x โ 700) = 16.9 + 0.053x.
(B)
Thus,
๏ฌ 8.5 ๏ซ .065 x if 0 ๏ฃ x ๏ฃ 700
W ( x) ๏ฝ ๏ญ
๏ฎ16.9 ๏ซ 0.053 x if x ๏พ 700
74.
(A)
Let x = taxable income.
If 0 โค x โค 12,500, the tax due is $.02x. At x = 12,500, the tax due is $250. For 12,500 50,000, the tax due is
1,250 + .06(x โ 50,000) = .06x โ 1,250.
Thus,
0.02 x
if 0 ๏ฃ x ๏ฃ 12,500
๏ฌ
๏ฏ
T ( x) ๏ฝ ๏ญ 0.04 x ๏ญ 250 if 12,500 ๏ผ x ๏ฃ 50, 000
๏ฏ0.06 x ๏ญ 1, 250 if x ๏พ 50, 000
๏ฎ
Copyright ยฉ 2019 Pearson Education, Inc.
EXERCISE 2-3
(B)
76.
(A)
The graph of the basic function y = x3 is
vertically expanded by a factor of 463.
78.
(C)
T(32,000) = $1,030
T(64,000) = $2,590
(A)
The graph of the basic function y = 3 x
is reflected in the x axis and shifted up
10 units.
(B)
(B)
EXERCISE 2-3
2.
x 2 ๏ซ 16 x
(standard form)
2
x ๏ซ 16 x ๏ซ 64 ๏ญ 64 (completing the square)
2
( x ๏ซ 8) ๏ญ 64
4.
x 2 ๏ญ 12 x ๏ญ 8
(standard form)
2
( x ๏ญ 12 x) ๏ญ 8
( x 2 ๏ญ 12 x ๏ซ 36) ๏ซ 8 ๏ญ 36
(vertex form)
(completing the square)
( x ๏ญ 6) 2 ๏ญ 44 (vertex form)
6.
3 x 2 ๏ซ 18 x ๏ซ 21
(standard form)
3( x 2 ๏ซ 6 x ) ๏ซ 21
3( x 2 ๏ซ 6 x ๏ซ 9 ๏ญ 9) ๏ซ 21 (completing the square)
3( x ๏ซ 3) 2 ๏ซ 21 ๏ญ 27
3( x ๏ซ 3) 2 ๏ญ 6 (vertex form)
8.
๏ญ5 x 2 ๏ซ 15 x ๏ญ 11
2-9
(standard form)
๏ญ5( x 2 ๏ญ 3x ) ๏ญ 11
๏ญ5( x 2 ๏ญ 3x ๏ซ 94 ๏ญ 94 ) ๏ญ 11 (completing the square)
๏ญ5( x ๏ญ 23 ) 2 ๏ญ 11 ๏ซ 454
๏ญ5( x ๏ญ 23 ) 2 ๏ซ 14 (vertex form)
Copyright ยฉ 2019 Pearson Education, Inc.
2-10
CHAPTER 2: FUNCTIONS
10.
The graph of g(x) is the graph of y = x2 shifted right 1 unit and down 6 units; g ( x ) ๏ฝ ( x ๏ญ 1) 2 ๏ญ 6.
12.
The graph of n(x) is the graph of y = x2 reflected in the x axis, then shifted right 4 units and up 7 units;
n ( x ) ๏ฝ ๏ญ( x ๏ญ 4) 2 ๏ซ 7.
14.
(A) g (B) m (C) n (D) f
16.
(A) x intercepts: โ5, โ1; y intercept: โ5 (B) Vertex: (โ3, 4)
(C) Maximum: 4 (D) Range: y โค 4 or (โโ, 4]
18.
(A) x intercepts: 1, 5; y intercept: 5 (B) Vertex: (3, โ4)
(C) Minimum: โ4 (D) Range: y โฅ โ4 or [โ4, โ)
20.
g(x) = โ(x + 2)2 + 3
(A)
x intercepts: โ(x + 2)2 + 3 = 0
(x + 2)2 = 3
x+2=ยฑ 3
x = โ2 โ
3 , โ2 +
3
y intercept: โ1
(B)
22.
Vertex: (โ2, 3) (C) Maximum: 3 (D) Range: y โค 3 or (โโ, 3]
n(x) = (x โ 4)2 โ 3
(A)
x intercepts:
(x โ 4)2 โ 3 = 0
(x โ 4)2 = 3
xโ4=ยฑ 3
x=4โ
3,4+
3
y intercept: 13
(B)
Vertex: (4, โ3) (C) Minimum: โ3 (D) Range: y โฅ โ3 or [โ3, โ)
24.
y = โ(x โ 4)2 + 2
26.
y = [x โ (โ3)]2 + 1 or y = (x + 3)2 + 1
28.
g(x) = x2 โ 6x + 5 = x2 โ 6x + 9 โ 4 = (x โ 3)2 โ 4
(A) x intercepts: (x โ 3)2 โ 4 = 0
(x โ 3)2 = 4
x โ 3 = ยฑ2
x = 1, 5
y intercept: 5
(B)
Vertex: (3, โ4) (C) Minimum: โ4 (D) Range: y โฅ โ4 or [โ4, โ)
Copyright ยฉ 2019 Pearson Education, Inc.
EXERCISE 2-3
30.
3๏น
1๏น
๏ฉ
๏ฉ
s(x) = โ4×2 โ 8x โ 3 = โ4 ๏ช x 2 ๏ซ 2 x ๏ซ ๏บ = โ4 ๏ช x 2 ๏ซ 2 x ๏ซ 1 ๏ญ ๏บ
4๏ป
4๏ป
๏ซ
๏ซ
1
๏ฉ
๏น
= โ4 ๏ช ( x ๏ซ 1) 2 ๏ญ ๏บ = โ4(x + 1)2 + 1
4๏ป
๏ซ
(A)
โ4(x + 1)2 + 1 = 0
4(x + 1)2 = 1
x intercepts:
1
4
1
x+1=ยฑ
2
3
1
x=โ ,โ
2
2
(x + 1)2 =
y intercept: โ3
(B)
32.
Vertex: (โ1, 1) (C) Maximum: 1 (D) Range: y โค 1 or (โโ, 1]
v(x) = 0.5×2 + 4x + 10 = 0.5[x2 + 8x + 20] = 0.5[x2 + 8x + 16 + 4]
= 0.5[(x + 4)2 + 4]
= 0.5(x + 4)2 + 2
(A)
x intercepts: none
y intercept: 10
(B) Vertex: (โ4, 2) (C) Minimum: 2 (D) Range: y โฅ 2 or [2, โ)
34.
g(x) = โ0.6×2 + 3x + 4
(A) g(x) = โ2: โ0.6×2 + 3x + 4 = โ2
0.6×2 โ 3x โ 6 = 0
(B) g(x) = 5: โ0.6×2 + 3x + 4 = 5
โ0.6×2 + 3x โ 1 = 0
0.6×2 โ 3x + 1 = 0
x = โ1.53, 6.53
x = 0.36, 4.64
(C) g(x) = 8: โ0.6×2 + 3x + 4 = 8
โ0.6×2 + 3x โ 4 = 0
0.6×2 โ 3x + 4 = 0
No solution
Copyright ยฉ 2019 Pearson Education, Inc.
2-11
2-12
CHAPTER 2: FUNCTIONS
36.
Using a graphing utility with y = 100x โ 7×2 โ 10 and the calculus option with maximum command, we
obtain 347.1429 as the maximum value.
38.
m(x) = 0.20×2 โ 1.6x โ 1 = 0.20(x2 โ 8x โ 5)
= 0.20[(x โ 4)2 โ 21] = 0.20(x โ 4)2 โ 4.2
(A)
x intercepts:
0.20(x โ 4)2 โ 4.2 = 0
(x โ 4)2 = 21
x โ 4 = ยฑ 21
x = 4 โ 21 = โ0.6, 4 +
21 = 8.6;
y intercept: โ1
(B) Vertex: (4, โ4.2)
40.
(C) Minimum: โ4.2
(D) Range: y โฅ โ4.2 or [ ๏ญ4.2, ๏ฅ )
n(x) = โ0.15×2 โ 0.90x + 3.3 = โ0.15(x2 + 6x โ 22) = โ0.15[(x + 3)2 โ 31] = โ0.15(x + 3)2 + 4.65
(A)
x intercepts:
โ0.15(x + 3)2 + 4.65 = 0
(x + 3)2 = 31
x + 3 = ยฑ 31
x = โ3 โ
31 = โ8.6,โ3 +
31 = 2.6;
y intercept: 3.30
(B) Vertex: (โ3, 4.65)
42.
(C) Maximum: 4.65
(D) Range: x โค 4.65 or ( ๏ญ๏ฅ, 4.65]
( x ๏ซ 6)( x ๏ญ 3) ๏ผ 0
Therefore, either ( x ๏ซ 6) ๏ผ 0 and (x ๏ญ 3) ๏พ 0 or ( x ๏ซ 6) ๏พ 0 and ( x ๏ญ 3) ๏ผ 0. The first case is impossible.
The second case implies ๏ญ6 ๏ผ x ๏ผ 3. Solution set: (๏ญ6,3).
44.
x 2 ๏ซ 7 x ๏ซ 12 ๏ฝ ( x ๏ซ 3)( x ๏ซ 4) ๏ณ 0
Therefore, either ( x ๏ซ 3) ๏ณ 0 and (x ๏ซ 4) ๏ณ 0 or ( x ๏ซ 3) ๏ฃ 0 and ( x ๏ซ 4) ๏ฃ 0. The first case implies x ๏ณ ๏ญ3
and the second case implies x ๏ฃ ๏ญ4. Solution set: (๏ญ๏ฅ, ๏ญ 4] ๏ [๏ญ3, ๏ฅ).
46.
48.
50.
โ0.88 โค x โค 3.52
x = โ1.27, 2.77
52.
f is a quadratic function and max f(x) = f(โ3) = โ5
Axis: x = โ3
Vertex: (โ3, โ5)
Range: y โค โ5 or (โโ, โ5]
x intercepts: None
Copyright ยฉ 2019 Pearson Education, Inc.
x 2.72
EXERCISE 2-3
54.
(A)
(B) f(x) = g(x): โ0.7x(x โ 7) = 0.5x + 3.5
โ0.7×2 + 4.4x โ 3.5 = 0
x=
๏ญ4.4 ๏ฑ (4.4) 2 ๏ญ 4(0.7)(3.5)
๏ญ1.4
= 0.93, 5.35
(C) f(x) > g(x) for 0.93 < x < 5.35
(D) f(x) < g(x) for 0 โค x < 0.93 or 5.35 g(x) for 1.08 < x < 6.35
(D) f(x) < g(x) for 0 โค x < 1.08 or 6.35 < x โค 9
58.
The graph of a quadratic with no real zeros will not intersect the xโaxis.
60.
Such an equation will have b 2 ๏ญ 4ac ๏ฝ 0.
62.
Such an equation will have
k
๏ผ 0.
a
Copyright ยฉ 2019 Pearson Education, Inc.
2-13
2-14
64.
CHAPTER 2: FUNCTIONS
ax 2 ๏ซ bx ๏ซ c ๏ฝ a ( x ๏ญ h) 2 ๏ซ k
๏ฝ a ( x 2 ๏ญ 2hx ๏ซ h 2 ) ๏ซ k
๏ฝ ax 2 ๏ญ 2ahx ๏ซ ah 2 ๏ซ k
Equating constant terms gives k ๏ฝ c ๏ญ ah 2 . Since h is the vertex, we have h ๏ฝ ๏ญ
b
. Substituting then gives
2a
2
๏ฆ b2 ๏ถ
b
๏ฝc๏ญ
2 ๏ท
4a
๏จ 4a ๏ธ
2
k ๏ฝ c ๏ญ ah ๏ฝ c ๏ญ a ๏ง
๏ฝ
66.
4ac ๏ญ b
2
4a
f(x) = โ0.0117×2 + 0.32x + 17.9
(B)
(A)
x
Mkt Share
f ( x)
5
10
15
18.8
20.0
20.7
19.2
19.9
20.1
20
25
30
20.2
17.4
16.4
19.6
18.6
17
35
15.3
14.8
(C) For 2025, x = 45 and f(45) = โ0.0117(45)2 + 0.32(45) + 17.9 = 8.6%
For 2028, x = 48 and f(48) = โ0.0117(48)2 + 0.32(48) + 17.9 = 6.3%
(D) Market share rose from 18.8% in 1985 to a maximum of 20.7% in 1995 and then fell to 15.3% in 2010.
68.
Verify
70.
(A)
(B) R(x) = 2,000x โ 60×2
100 ๏ถ
๏ฆ
x๏ท
= ๏ญ60 ๏ง x 2 ๏ญ
3 ๏ธ
๏จ
100
2500 2500 ๏น
๏ฉ
= ๏ญ60 ๏ช x 2 ๏ญ
x๏ซ
๏ญ
3
9
9 ๏บ๏ป
๏ซ
๏ฉ๏ฆ
50 ๏ถ 2500 ๏น
= ๏ญ60 ๏ช๏ง x ๏ญ ๏ท ๏ญ
๏บ
3 ๏ธ
9 ๏บ๏ป
๏ช๏ซ๏จ
2
2
50 ๏ถ
50,000
๏ฆ
= ๏ญ60 ๏ง x ๏ญ ๏ท +
3 ๏ธ
3
๏จ
16.667 thousand computers
(16,667 computers); 16,666.667 thousand
dollars ($16,666,667)
(C)
2000 ๏ญ 60(50 / 3) ๏ฝ $1,000
Copyright ยฉ 2019 Pearson Education, Inc.
EXERCISE 2-3
72.
2-15
(A)
๏ฆ 50 ๏ถ
๏ฆ 50 ๏ถ
p ๏ง ๏ท = 2,000 โ 60 ๏ง ๏ท = $1,000
๏จ 3 ๏ธ
๏จ 3 ๏ธ
(B)
R(x) = C(x)
x(2,000 โ 60x) = 4,000 + 500x
2,000x โ 60×2 = 4,000 + 500x
60×2 โ 1,500x + 4,000 = 0
6×2 โ 150x + 400 = 0
x = 3.035, 21.965
Break-even at 3.035 thousand (3,035)
and 21.965 thousand (21,965)
(C)
74.
Loss: 1 โค x < 3.035 or 21.965 < x โค 25;
Profit: 3.035 < x 0 for x < 5
Domain: x < 5 or (โโ, 5)
(2-1)
f(x) = 4×2 + 4x โ 3 = 4(x2 + x) ๏ญ 3
1๏ถ
๏ฆ
= 4 ๏ง x2 ๏ซ x ๏ซ ๏ท ๏ญ 3 ๏ญ 1
4๏ธ
๏จ
2
1๏ถ
๏ฆ
= 4 ๏ง x ๏ซ ๏ท ๏ญ 4 (vertex form)
2๏ธ
๏จ
Intercepts:
y intercept: f(0) = 4(0)2 + 4(0) ๏ญ 3 = ๏ญ3
x intercepts: f(x) = 0
2
1๏ถ
๏ฆ
4๏งx๏ซ ๏ท ๏ญ 4 = 0
2๏ธ
๏จ
2
1๏ถ
๏ฆ
๏งx๏ซ 2๏ท =1
๏จ
๏ธ
1
= ยฑ1
x+
2
1
3 1
x=๏ญ ยฑ1=๏ญ ,
2
2 2
๏ฆ 1
๏ถ
Vertex: ๏ง ๏ญ , ๏ญ4 ๏ท ; minimum: ๏ญ4; range: y โฅ ๏ญ4 or [๏ญ4, โ)
2
๏จ
๏ธ
Copyright ยฉ 2019 Pearson Education, Inc.
(2-3)
2-37
2-38
CHAPTER 2: FUNCTIONS
44.
f(x) = ex โ 1, g(x) = ln(x + 2)
2
f
Points of intersection:
(โ1.54, โ0.79), (0.69, 0.99)
g
-3
(2-5, 2-6)
3
-2
45.
f(x) =
50
x2 ๏ซ 1
:
x ๏ญ3 ๏ญ2 ๏ญ1
f ( x)
0
1
2 3
5 10 25 50 25 10 5
(2-1)
46.
f(x) =
๏ญ66
2 ๏ซ x2
x
๏ญ3
f ( x ) ๏ญ6
:
๏ญ2
๏ญ11
๏ญ1
๏ญ22
0
๏ญ66
1
๏ญ22
2
๏ญ11
3
๏ญ6
(2-1)
For Problems 47โ50, f(x) = 5x + 1.
47.
f(f(0)) = f(5(0) + 1) = f(1) = 5(1) + 1 = 6
(2-1)
48.
f(f(โ1)) = f(5(โ1) + 1) = f(โ4) = 5(โ4) + 1 = โ19
(2-1)
49.
f(2x โ 1) = 5(2x โ 1) + 1 = 10x โ 4
(2-1)
50.
f(4 โ x) = 5(4 โ x) + 1 = 20 โ 5x + 1 = 21 โ 5x
(2-1)
51.
f(x) = 3 โ 2x
(A) f(2) = 3 โ 2(2) = 3 โ 4 = โ1
(B) f(2 + h) = 3 โ 2(2 + h) = 3 โ 4 โ 2h = โ1 โ 2h
(C) f(2 + h) โ f(2) = โ1 โ 2h โ (โ1) = โ2h
f (2 ๏ซ h) ๏ญ f (2)
2h
=โ
= โ2
(D)
h
h
52.
f(x) = x2 โ 3x + 1
(A) f(a) = a2 โ 3a + 1
Copyright ยฉ 2019 Pearson Education, Inc.
(2-1)
CHAPTER 2 REVIEW
2-39
(B) f(a + h) = (a + h)2 โ 3(a + h) + 1 = a2 + 2ah + h2 โ 3a โ 3h + 1
(C) f(a + h) โ f(a) = a2 + 2ah + h2 โ 3a โ 3h + 1 โ (a2 โ 3a + 1)
= 2ah + h2 โ 3h
(D)
f ( a ๏ซ h) ๏ญ f ( a )
2ah ๏ซ h 2 ๏ญ 3h
h(2a ๏ซ h ๏ญ 3)
=
=
= 2a + h โ 3
h
h
h
(2-1)
53.
The graph of m is the graph of y = |x| reflected in the x axis and shifted 4 units to the right.
54.
The graph of g is the graph of y = x3 vertically contracted by a factor of 0.3 and shifted up 3 units.
(2-2)
55.
56.
(2-2)
The graph of y = x2 is vertically expanded by a factor of 2, reflected in the x axis and shifted
to the left 3 units.
Equation: y = โ2(x + 3)2
(2-2)
Equation: f(x) = 2 x ๏ซ 3 โ 1
(2-2)
57.
f ( x) ๏ฝ
n( x )
5x ๏ซ 4
. Since degree n(x) = 1 1 = degree d(x), there is no horizontal asymptote.
d ( x ) 100 x ๏ซ 1
(2-4)
60.
61.
n( x ) x 2 ๏ซ 100
x 2 ๏ซ 100
๏ฝ 2
๏ฝ
. Since n( x ) ๏ฝ x 2 ๏ซ 100 has no real zeros and
d ( x ) x ๏ญ 100 ( x ๏ญ 10)( x ๏ซ 10)
d (10) ๏ฝ d ( ๏ญ10) ๏ฝ 0, x = 10 and x = ๏ญ10 are the vertical asymptotes of the graph of f.
f ( x) ๏ฝ
f ( x) ๏ฝ
(2-4)
n( x ) x 2 ๏ซ 3x x ( x ๏ซ 3) x ๏ซ 3
๏ฝ
๏ฝ
๏ฝ
, x ๏น 0. x = ๏ญ2 is a vertical asymptote of the graph of f.
d ( x ) x 2 ๏ซ 2 x x ( x ๏ซ 2) x ๏ซ 2
(2-4)
62.
True; p(x) =
p ( x)
is a rational function for every polynomial p.
1
Copyright ยฉ 2019 Pearson Education, Inc.
(2-4)
2-40
CHAPTER 2: FUNCTIONS
1
= xโ1 is not a polynomial function.
x
63.
False; f(x) =
64.
False; f(x) =
65.
True: let f(x) = bx, (b > 0, b โ 1), then the positive x-axis is a horizontal asymptote if 0 < b 1.
(2-5)
66.
True: let f(x) = logbx (b > 0, b โ 1). If 0 < b 1, then the negative y-axis is a vertical asymptote.
67.
True; f(x) =
(2-6)
x
has vertical asymptote x = 1 and horizontal asymptote y = 1.
x ๏ญ1
68.
69.
(2-2)
(2-2)
70.
71.
(2-4)
y = โ(x โ 4)2 + 3
(2-2, 2-3)
f(x) = โ0.4×2 + 3.2x + 1.2 = โ0.4(x2 โ 8x + 16) + 7.6
= โ0.4(x โ 4)2 + 7.6
(A) y intercept: 1.2
x intercepts: โ0.4(x โ 4)2 + 7.6 = 0
(x โ 4)2 = 19
x = 4 + 19 โ 8.4, 4 โ 19 โ โ0.4
(B) Vertex: (4.0, 7.6)
(C) Maximum: 7.6
(D) Range: y โค 7.6 or (โโ, 7.6]
(2-3)
(A) y intercept: 1.2
x intercepts: โ0.4, 8.4
72.
(B) Vertex: (4.0, 7.6)
(C) Maximum: 7.6
(D) Range: y โค 7.6 or (โโ, 7.6]
73.
(2-3)
log 10ฯ = ฯ log 10 = ฯ
10log 2 = y is equivalent to log y = log 2
which implies y = 2
Similarly, ln e ฯ = ฯ ln e = ฯ (Section 2-5, 4.b & g) and eln 2 = y implies ln y = ln 2 and
y= 2 .
(2-6)
Copyright ยฉ 2019 Pearson Education, Inc.
CHAPTER 2 REVIEW
74.
2-41
log x ๏ญ log 3 = log 4 ๏ญ log (x + 4)
4
x
log ๏ฝ log
3
x๏ซ4
4
x
๏ฝ
3 x๏ซ4
x ( x ๏ซ 4) ๏ฝ 12
x 2 ๏ซ 4 x ๏ญ 12 ๏ฝ 0
( x ๏ซ 6)( x ๏ญ 2) ๏ฝ 0
x ๏ฝ ๏ญ6, 2
Since log(๏ญ6) is not defined, ๏ญ6 is not a solution. Therefore, the solution is x = 2.
75.
ln(2x โ 2) โ ln(x โ 1) = ln x
๏ฆ 2x ๏ญ 2 ๏ถ
= ln x
ln ๏ง
๏จ x ๏ญ 1 ๏ท๏ธ
76.
๏ฉ 2( x ๏ญ 1) ๏น
ln ๏ช
๏บ = ln x
๏ซ x ๏ญ1 ๏ป
ln 2 = ln x
x=2
77.
ln(x + 3) โ ln x = 2 ln 2
๏ฆ x ๏ซ3๏ถ
ln ๏ง
= ln(22)
๏จ x ๏ท๏ธ
x๏ซ3
=4
x
x + 3 = 4x
3x = 3
x=1
(2-6)
log 3×2 = 2 + log 9x
ln y โ ln c = โ5t
๏ฆx๏ถ
log ๏ง ๏ท = 2
๏จ3๏ธ
y
= eโ5t
c
y
= โ5t
c
ln
y = ceโ5t
(2-6)
Let x be any positive real number and suppose log1x = y. Then 1y = x.
But, 1y = 1, so x = 1, i.e., x = 1 for all positive real numbers x.
This is clearly impossible.
80.
(2-6)
ln y = โ5t + ln c
78.
log 3×2 โ log 9x = 2
๏ฆ 3×2 ๏ถ
log ๏ง
๏ท =2
๏จ 9x ๏ธ
x
= 102 = 100
3
x = 300
(2-6)
79.
(2-6)
(2-6)
The graph of y = 3 x is vertically expanded by a factor of 2, reflected in the x axis, shifted 1 unit to the left
and 1 unit down.
Equation: y = โ2 3 x ๏ซ 1 โ 1
(2-2)
Copyright ยฉ 2019 Pearson Education, Inc.
2-42
81.
CHAPTER 2: FUNCTIONS
G(x) = 0.3×2 + 1.2x โ 6.9 = 0.3(x2 + 4x + 4) โ 8.1
= 0.3(x + 2)2 โ 8.1
(A) y intercept: โ6.9
x intercepts: 0.3(x + 2)2 โ 8.1 = 0
(x + 2)2 = 27
x = โ2 +
(B) Vertex: (โ2, โ8.1)
27 โ 3.2, โ2 โ
27 โ โ7.2
(C) Minimum: โ8.1
(D) Range: y โฅ โ8.1 or [โ8.1, โ)
(2-3)
(A) y intercept: โ6.9
x intercept: โ7.2, 3.2
82.
(B) Vertex: (โ2, โ8.1)
(C) Minimum: โ8.1
(D) Range: y โฅ โ8.1 or [โ8.1, โ)
83.
(A)
(2-3)
S(x) = 3 if 0 โค x โค 20;
S(x) = 3 + 0.057(x โ 20)
= 0.057x + 1.86 if 20 < x โค 200;
S(200) = 13.26
S(x) = 13.26 + 0.0346(x โ 200)
= 0.0346x + 6.34 if 200 1000
if
๏ฌ3
๏ฏ0.057 x ๏ซ 1.86
if
๏ฏ
Therefore, S(x) = ๏ญ
๏ฏ0.0346 x ๏ซ 6.34 if
๏ฏ๏ฎ0.0217 x ๏ซ 19.24 if
0 ๏ฃ x ๏ฃ 20
20 ๏ผ x ๏ฃ 200
200 ๏ผ x ๏ฃ 1000
x ๏พ 1000
(B)
(2-2)
mt
84.
r๏ถ
๏ฆ
A ๏ฝ P ๏ง 1 ๏ซ ๏ท ; P = 5,000, r = 0.0125, m = 4, t = 5.
๏จ m๏ธ
4(5)
20
๏ฆ 0.0125 ๏ถ
๏ฆ 0.0125 ๏ถ
A ๏ฝ 5000 ๏ง 1 ๏ซ
๏ท ๏ฝ 5000 ๏ง 1 ๏ซ
๏ท ๏ป 5321.95
4 ๏ธ
4 ๏ธ
๏จ
๏จ
After 5 years, the CD will be worth $5,321.95
Copyright ยฉ 2019 Pearson Education, Inc.
(2-5)
CHAPTER 2 REVIEW
2-43
mt
85.
r๏ถ
๏ฆ
A ๏ฝ P ๏ง 1 ๏ซ ๏ท ; P = 5,000, r = 0.0105, m = 365, t = 5
m
๏จ
๏ธ
365(5)
1825
๏ฆ 0.0105 ๏ถ
๏ฆ 0.0105 ๏ถ
A ๏ฝ 5000 ๏ง 1 ๏ซ
๏ฝ 5000 ๏ง 1 ๏ซ
๏ท
365
365 ๏ท๏ธ
๏จ
๏ธ
๏จ
After 5 years, the CD will be worth $5,269.51.
๏ป 5269.51
(2-5)
mt
86.
r๏ถ
๏ฆ
A = P ๏ง 1 ๏ซ ๏ท , r = 0.0659, m = 12
๏จ m๏ธ
12 t
๏ฆ 0.0659 ๏ถ
= 3P or (1.005492)12t = 3
Solve P ๏ง 1 ๏ซ
12 ๏ท๏ธ
๏จ
for t:
12t ln(1.005492) = ln 3
ln 3
โ 16.7 year.
t=
12 ln(1.005492)
87.
(2-5)
A ๏ฝ Pe rt , r ๏ฝ 0.0739 . Solve 2 P ๏ฝ Pe0.0739t for t.
2 P ๏ฝ Pe0.0739t
e0.0739t ๏ฝ 2
0.0739t ๏ฝ ln 2
t๏ฝ
88.
ln 2
๏ป 9.38 years.
0.0739
(2-5)
p(x) = 50 โ 1.25x Price-demand function
C(x) = 160 + 10x Cost function
R(x) = xp(x)
= x(50 โ 1.25x) Revenue function
(A)
(B) R = C
x(50 โ 1.25x) = 160 + 10x
โ1.25×2 + 50x = 160 + 10x
โ1.25×2 + 40x = 160
โ1.25(x2 โ 32x + 256) = 160 โ 320
โ1.25(x โ 16)2 = โ160
(x โ 16)2 = 128
x = 16 + 128 โ 27.314,
16 โ 128 โ 4.686
R = C at x = 4.686 thousand units (4,686 units) and
x = 27.314 thousand units (27,314 units)
R < C for 1 โค x < 4.686 or 27.314 C for 4.686 < x < 27.314
Copyright ยฉ 2019 Pearson Education, Inc.
2-44
CHAPTER 2: FUNCTIONS
(C)
Max Rev: 50x โ 1.25×2 = R
โ1.25(x2 โ 40x + 400) + 500 = R
โ1.25(x โ 20)2 + 500 = R
Vertex at (20, 500)
Max. Rev. = 500 thousand ($500,000) occurs when output is 20 thousand (20,000 units)
Wholesale price at this output: p(x) = 50 โ 1.25x
p(20) = 50 โ 1.25(20) = $25
(2-3)
89.
(A)
P(x) = R(x) โ C(x) = x(50 โ 1.25x) โ (160 + 10x)
= โ1.25×2 + 40x โ 160
(B)
P = 0 for x = 4.686 thousand units (4,686 units) and x = 27.314 thousand units (27,314 units)
P < 0 for 1 โค x < 4.686 or 27.314 0 for 4.686 < x < 27.314
Maximum profit is 160 thousand dollars ($160,000), and this occurs at x = 16 thousand
units(16,000 units). The wholesale price at this output is p(16) = 50 โ 1.25(16) = $30,
which is $5 greater than the $25 found in 88(C).
(2-3)
(C)
90.
(A)
The area enclosed by the storage areas is given by
A = (2y)x
Now, 3x + 4y = 840
3
so
y = 210 โ x
4
3 ๏ถ
๏ฆ
Thus A(x) = 2 ๏ง 210 ๏ญ x ๏ท x
4 ๏ธ
๏จ
3
= 420x โ x2
2
(B)
Clearly x and y must be nonnegative; the fact
that y โฅ 0 implies
3
210 โ x โฅ 0
4
3
and 210 โฅ x
4
840 โฅ 3x
280 โฅ x
Thus, domain A: 0 โค x โค 280
(C)
Copyright ยฉ 2019 Pearson Education, Inc.
CHAPTER 2 REVIEW
(D)
Graph A(x) = 420x โ
3 2
x and y = 25,000 together.
2
There are two values of x that will produce storage areas with a
combined area of 25,000 square feet, one near x = 90 and the
other near x = 190.
2-45
30,000
0
3
0
(E)
(F)
x = 86, x = 194
3 2
3
x = โ (x2 โ 280x)
2
2
Completing the square, we have
3
A(x) = โ (x2 โ 280x + 19,600 โ 19,600)
2
3
= โ [(x โ 140)2 โ 19,600]
2
3
= โ (x โ 140)2 + 29,400
2
A(x) = 420x โ
The dimensions that will produce the maximum combined area are:
x = 140 ft, y = 105 ft. The maximum area is 29,400 sq. ft.
91.
(A)
Quadratic regression model,
Table 1:
(2-3)
To estimate the demand at price level of $180, we solve
the equation
ax2 + bx + c = 180
for x. The result is x โ 2,833 sets.
(B)
Linear regression model,
Table 2:
(C)
The condition is not stable; the price is likely to decrease since
the supply at the price level of $180 exceeds the demand at this
level.
(D)
Equilibrium price: $131.59
Equilibrium quantity: 3,587 cookware set.
To estimate the supply at a price level of $180, we solve
the equation
ax + b = 180
for x. The result is x โ 4,836 sets.
Copyright ยฉ 2019 Pearson Education, Inc.
(2-3)
2-46
CHAPTER 2: FUNCTIONS
(A)
92.
Cubic Regression
y ๏ฝ 0.30395 x3 ๏ญ 12.993 x 2 ๏ซ 38.292 x ๏ซ 5, 604.8
y ๏ฝ 0.30395(38)3 ๏ญ 12.993(38) 2 ๏ซ 38.292(38) ๏ซ 5,604.8 ๏ป 4,976
(B)
The predicted crime index in 2025 is 4,976.
93.
(A)
N(0) = 1
๏ฆ1๏ถ
N๏ง ๏ท = 2
๏จ2๏ธ
(B)
log 22t = log 109 = 9
2t log 2 = 9
9
โ 14.95
t=
2 log 2
N(1) = 4 = 22
๏ฆ 3๏ถ
N ๏ง ๏ท = 8 = 23
๏จ2๏ธ
N(2) = 16 = 24
๏
Thus, we conclude that
N(t) = 22t or N = 4t
94.
We need to solve:
22t = 109
Thus, the mouse will die in 15 days.
(2-6)
1
Given I = I0eโkd. When d = 73.6, I = I0. Thus, we have:
2
1
โk(73.6)
I =I e
2 0 0
1
eโk(73.6) =
2
1
2
ln(0.5)
โ 0.00942
k=
๏ญ73.6
โk(73.6) = ln
Thus, k โ 0.00942.
To find the depth at which 1% of the surface light remains, we set
I = 0.01I0 and solve
0.01I0 = I0eโ0.00942d for d:
0.01 = eโ0.00942d
โ0.00942d = ln 0.01
ln 0.01
โ 488.87
d=
๏ญ0.00942
Thus, 1% of the surface light remains at approximately 489 feet.
Copyright ยฉ 2019 Pearson Education, Inc.
(2-6)
CHAPTER 2 REVIEW
95.
(A)
Logarithmic regression model:
Year 2023 corresponds to x = 83; y(83) โ 6,134,000 cows.
(B)
96.
ln (0) is not defined.
(2-6)
Using the continuous compounding model, we have:
2P0 = P0e0.03t
2 = e0.03t
0.03t = ln 2
ln 2
t=
โ 23.1
0.03
Thus, the model predicts that the population will double in approximately 23.1 years.
97.
(2-5)
(A)
The exponential regression model is y = 47.194(1.0768)x.
To estimate for the year 2025, let x = 45 ๏ y = 47.19368975(1.076818175)45 ๏ป 1,319.140047.
The estimated annual expenditure for Medicare by the U.S. government, rounded to the nearest
billion, is approximately $1,319 billion. (This is $1.319 trillion.)
(B)
To find the year, solve 47.194(1.0768)x = 2,000. Note: Use 2,000 because expenditures are in
billions of dollars, and 2 trillion is 2,000 billion.
47.194(1.0768)x = 2,000
2,000
1.0768x =
47.194
๏ฆ 2,000 ๏ถ
ln(1.0768x) = ln ๏ง
๏ท
๏จ 47.194 ๏ธ
๏ฆ 2,000 ๏ถ
xln1.0768 = ln ๏ง
๏ท
๏จ 47.194 ๏ธ
๏ฆ 2,000 ๏ถ
ln ๏ง
๏ท
47.194 ๏ธ
๏ป 50.6 years
x= ๏จ
ln1.0768
1,980 + 50.63 = 2,030.63 Annual expenditures exceed two trillion dollars in the year 2031.
(2-5)
Copyright ยฉ 2019 Pearson Education, Inc.
2-47
Document Preview (47 of 2116 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for College Mathematics for Business, Economics, Life Sciences, and Social Sciences, 14th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Lucas Clark
0 (0 Reviews)
Best Selling
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)