Solution Manual for College Mathematics for Business, Economics, Life Sciences, and Social Sciences, 14th Edition

Preview Extract
2 FUNCTIONS EXERCISE 2-1 2. 4. 6. 8. 10. The table specifies a function, since for each domain value there corresponds one and only one range value. 12. The table does not specify a function, since more than one range value corresponds to a given domain value. (Range values 1, 2 correspond to domain value 9.) 14. This is a function. 16. The graph specifies a function; each vertical line in the plane intersects the graph in at most one point. 18. The graph does not specify a function. There are vertical lines which intersect the graph in more than one point. For example, the y-axis intersects the graph in two points. 20. The graph does not specify a function. 22. y ๏€ฝ 4x ๏€ซ 26. x ๏€ซ xy ๏€ซ 1 ๏€ฝ 0 is neither linear nor constant. 1 x is neither linear nor constant. 24. 28. 2 x ๏€ญ 4 y ๏€ญ 6 ๏€ฝ 0 is linear. y ๏€ญ x 3 ๏€ซ 2x 1 ๏€ซ ๏€ฝ 1 simplifies to y ๏€ฝ 2 4 2 constant. Copyright ยฉ 2019 Pearson Education, Inc. 2-1 2-2 CHAPTER 2: FUNCTIONS 30. 32. 34. 36. 38. 3x 2 . Since the denominator is bigger than 1, we note that the values of f are between 0 and 3. x2 ๏€ซ 2 Furthermore, the function f has the property that f(โ€“x) = f(x). So, adding points x = 3, x = 4, x = 5, we have: f(x) = x F(x) โ€“5 โ€“4 โ€“3 โ€“2 โ€“1 0 1 2 3 4 5 2.78 2.67 2.45 2 1 0 1 2 2.45 2.67 2.78 The sketch is: 40. y = f(4) = 0 42. y = f(โ€“2) = 3 44. f ( x ) ๏€ฝ 4 at x ๏€ฝ 5. 46. f ( x ) ๏€ฝ 0 at x ๏€ฝ ๏€ญ5, 0, 4. 48. Domain: all real numbers. 50. Domain: all real numbers except x = 2. 52. Domain: x ๏‚ณ ๏€ญ5 or [ ๏€ญ5, ๏‚ฅ ). 54. Given 6 x ๏€ญ 7 y ๏€ฝ 21 . Solving for y we have: ๏€ญ7 y ๏€ฝ 21 ๏€ญ 6 x and y ๏€ฝ 6 7 x ๏€ญ 3. This equation specifies a function. The domain is R, the set of real numbers. Copyright ยฉ 2019 Pearson Education, Inc. EXERCISE 2-1 56. Given x ( x ๏€ซ y ) ๏€ฝ 4 . Solving for y we have: xy ๏€ซ x ๏€ฝ 4 and y ๏€ฝ 58. Given x ๏€ซ y ๏€ฝ 9. Solving for y we have: y ๏€ฝ 9 ๏€ญ x 2 4๏€ญx x This equation specifies a function. The domain is all real numbers except 0 2 2 2 2 2 . and y ๏€ฝ ๏‚ฑ 9 ๏€ญ x 2 . This equation does not define y as a function of x. For example, when x = 0, y = ๏‚ฑ 3. 60. Given x ๏€ญ y ๏€ฝ 0. . Solving for y we have: y ๏€ฝ 3 3 1/6 x and y ๏€ฝ x . This equation specifies a function. The domain is all nonnegative real numbers, i.e., x ๏‚ณ 0 . 62. f ( ๏€ญ3 x ) ๏€ฝ ( ๏€ญ3 x ) ๏€ญ 4 ๏€ฝ 9 x ๏€ญ 4 64. f ( x ๏€ญ 1) ๏€ฝ ( x ๏€ญ 1) ๏€ญ 4 ๏€ฝ x ๏€ญ 2 x ๏€ซ 1 ๏€ญ 4 ๏€ฝ x ๏€ญ 2 x ๏€ญ 3 66. f (x ) ๏€ฝ (x ) ๏€ญ 4 ๏€ฝ x ๏€ญ 4 68. f ( 4 x ) ๏€ฝ x1/ 4 70. f ( ๏€ญ3) ๏€ซ f ( h ) ๏€ฝ ( ๏€ญ3)2 ๏€ญ 4 ๏€ซ h 2 ๏€ญ 4 ๏€ฝ 5 ๏€ซ h 2 ๏€ญ 4 ๏€ฝ h 2 ๏€ซ 1 72. f ( ๏€ญ3 ๏€ซ h ) ๏€ฝ ( ๏€ญ3 ๏€ซ h ) 2 ๏€ญ 4 ๏€ฝ 9 ๏€ญ 6 h ๏€ซ h 2 ๏€ญ 4 ๏€ฝ 5 ๏€ญ 6 h ๏€ซ h 2 74. f ( ๏€ญ3 ๏€ซ h ) ๏€ญ f ( ๏€ญ3) ๏€ฝ ๏ƒฉ( ๏€ญ3 ๏€ซ h )2 ๏€ญ 4 ๏ƒน ๏€ญ ๏ƒฉ( ๏€ญ3)2 ๏€ญ 4 ๏ƒน ๏€ฝ (9 ๏€ญ 6h ๏€ซ h 2 ๏€ญ 4) ๏€ญ (9 ๏€ญ 4) ๏€ฝ ๏€ญ6h ๏€ซ h 2 ๏ƒซ ๏ƒป ๏ƒซ ๏ƒป 76. (A) f ( x ๏€ซ h) ๏€ฝ ๏€ญ3( x ๏€ซ h) ๏€ซ 9 ๏€ฝ ๏€ญ3 x ๏€ญ 3h ๏€ซ 9 (B) f ( x ๏€ซ h) ๏€ญ f ( x) ๏€ฝ ๏€จ ๏€ญ3x ๏€ญ 3h ๏€ซ 9๏€ฉ ๏€ญ ๏€จ ๏€ญ3 x ๏€ซ 9๏€ฉ ๏€ฝ ๏€ญ3h (C) f ( x ๏€ซ h) ๏€ญ f ( x) ๏€ญ3h ๏€ฝ ๏€ฝ ๏€ญ3 h h (A) f ( x ๏€ซ h) ๏€ฝ 3( x ๏€ซ h) 2 ๏€ซ 5( x ๏€ซ h) ๏€ญ 8 78. 2 2 2 3 3 2 2 2 6 ๏€จ ๏€ฉ ๏€ญ4 ๏€ฝ x 2 1/ 2 ๏€ญ4๏€ฝ x ๏€ญ4 ๏€ฝ 3( x 2 ๏€ซ 2 xh ๏€ซ h 2 ) ๏€ซ 5 x ๏€ซ 5h ๏€ญ 8 ๏€ฝ 3 x 2 ๏€ซ 6 xh ๏€ซ 3h 2 ๏€ซ 5 x ๏€ซ 5h ๏€ญ 8 (B) ๏€จ ๏€ฉ ๏€จ f ( x ๏€ซ h) ๏€ญ f ( x) ๏€ฝ 3 x 2 ๏€ซ 6 xh ๏€ซ 3h 2 ๏€ซ 5 x ๏€ซ 5h ๏€ญ 8 ๏€ญ 3 x 2 ๏€ซ 5 x ๏€ญ 8 ๏€ฉ ๏€ฝ 6 xh ๏€ซ 3h 2 ๏€ซ 5h 80. (C) f ( x ๏€ซ h) ๏€ญ f ( x) 6 xh ๏€ซ 3h 2 ๏€ซ 5h ๏€ฝ ๏€ฝ 6 x ๏€ซ 3h ๏€ซ 5 h h (A) f(x + h) = x2 + 2xh + h2 + 40x + 40h (B) f(x + h) โ€“ f(x) = 2xh + h2 + 40h (C) f ( x ๏€ซ h) ๏€ญ f ( x ) = 2x + h + 40 h Copyright ยฉ 2019 Pearson Education, Inc. 2-3 2-4 82. CHAPTER 2: FUNCTIONS Given A = l w = 81. 81 162 81 ๏€ฝ 2l ๏€ซ . . Now P ๏€ฝ 2l ๏€ซ 2 w ๏€ฝ 2l ๏€ซ 2 Thus, w = l l l The domain is l > 0. 84. Given P = 2 ๏ฌ + 2w = 160 or ๏ฌ + w = 80 and ๏ฌ = 80 โ€“ w. Now A = ๏ฌ w = (80 โ€“ w)w and A = 80w โ€“ w2 . The domain is 0 โ‰ค w โ‰ค 80. [Note: w โ‰ค 80 since w > 80 implies ๏ฌ ๏€ผ 0.] 86. (A) 88. (A) (B) p(11) = 1,340 dollars per computer p(18) = 920 dollars per computer R(x) = xp(x) = x(2,000 โ€“ 60x) thousands of dollars Domain: 1 โ‰ค x โ‰ค 25 (C) (B) Table 11 Revenue x(thousands) R(x)(thousands) 1 5 10 15 20 25 90. (A) $1,940 8,500 14,000 16,500 16,000 12,500 P(x) = R(x) โ€“ C(x) = x(2,000 โ€“ 60x) โ€“ (4,000 + 500x) thousand dollars = 1,500x โ€“ 60×2 โ€“ 4,000 Domain: 1 โ‰ค x โ‰ค 25 (C) (B) Table 13 Profit x (thousands) 1 5 10 15 20 25 P(x) (thousands) โ€“$2,560 2,000 5,000 5,000 2,000 โ€“4,000 Copyright ยฉ 2019 Pearson Education, Inc. EXERCISE 2-2 92. (A) Given 5v โ€“ 2s = 1.4. Solving for v, we have: v = 0.4s + 0.28. If s = 0.51, then v = 0.4(0.51) + 0.28 = 0.484 or 48.4%. (B) Solving the equation for s, we have: s = 2.5v โ€“ 0.7. If v = 0.51, then s = 2.5(0.51) โ€“ 0.7 = 0.575 or 57.5%. EXERCISE 2-2 Domain: [0, ๏‚ฅ) ; range: [1, ๏‚ฅ). 2. f ( x) ๏€ฝ 1 ๏€ซ x 4. f ( x) ๏€ฝ x 2 ๏€ซ 10 Domain: all real numbers; range: [10, ๏‚ฅ ). 6. f ( x ) ๏€ฝ 5 x ๏€ซ 3 Domain: all real numbers; range: all real numbers. 8. f ( x) ๏€ฝ 15 ๏€ญ 20 x 10. f ( x) ๏€ฝ ๏€ญ8 ๏€ซ 3 x Domain: all real numbers; range: all real numbers. 12. 14. 16. 18. 20. 22. Domain: all real numbers; range: ( ๏€ญ๏‚ฅ,15]. Copyright ยฉ 2019 Pearson Education, Inc. 2-5 2-6 CHAPTER 2: FUNCTIONS 24. 26. 28. The graph of h(x) = โ€“|x โ€“ 5| is the graph of y = |x| reflected in the x axis and shifted 5 units to the right. 30. The graph of m(x) = (x + 3)2 + 4 is the graph of y = x2 shifted 3 units to the left and 4 units up. 32. The graph of g(x) = โ€“6 + 3 x is the graph of y = 3 x 34. The graph of m(x) = โ€“0.4×2 is the graph of y = x2 reflected in the x axis and vertically shifted 6 units down. contracted by a factor of 0.4. 36. The graph of the basic function y = |x| is shifted 3 units to the right and 2 units up. y = |x โ€“ 3| + 2 38. The graph of the basic function y = |x| is reflected in the x axis, shifted 2 units to the left and 3 units up. Equation: y = 3 โ€“ |x + 2| 40. The graph of the basic function 3 x is reflected in the x axis and shifted up 2 units. Equation: y = 2 โ€“ 3 x 42. The graph of the basic function y = x3 is reflected in the x axis, shifted to the right 3 units and up 1 unit. Equation: y = 1 โ€“ (x โ€“ 3)3 Copyright ยฉ 2019 Pearson Education, Inc. EXERCISE 2-2 44. g(x) = 3 x ๏€ซ 3 + 2 46. g(x) = โ€“|x โ€“ 1| 48. g(x) = 4 โ€“ (x + 2)2 50. ๏ƒฌ x ๏€ซ 1 if x ๏€ผ ๏€ญ1 g ( x) ๏€ฝ ๏ƒญ ๏ƒฎ2 ๏€ซ 2 x if x ๏‚ณ ๏€ญ1 52. ๏ƒฌ 10 ๏€ซ 2 x if h( x ) ๏€ฝ ๏ƒญ ๏ƒฎ40 ๏€ซ 0.5 x if 54. ๏ƒฌ 4 x ๏€ซ 20 if ๏ƒฏ h( x ) ๏€ฝ ๏ƒญ 2 x ๏€ซ 60 if ๏ƒฏ๏€ญ x ๏€ซ 360 if ๏ƒฎ 0 ๏‚ฃ x ๏‚ฃ 20 x ๏€พ 20 2-7 0 ๏‚ฃ x ๏‚ฃ 20 20 ๏€ผ x ๏‚ฃ 100 x ๏€พ 100 56. The graph of the basic function y = x is reflected in the x axis and vertically expanded by a factor of 2. Equation: y = โ€“2x 58. The graph of the basic function y = |x| is vertically expanded by a factor of 4. Equation: y = 4|x| 60. The graph of the basic function y = x3 is vertically contracted by a factor of 0.25. Equation: y = 0.25×3. 62. Vertical shift, reflection in y axis. Reversing the order does not change the result. Consider a point (a, b) in the plane. A vertical shift of k units followed by a reflection in y axis moves (a, b) to (a, b + k) and then to (โ€“a, b + k). In the reverse order, a reflection in y axis followed by a vertical shift of k units moves (a, b) to (โ€“a, b) and then to (โ€“a, b + k). The results are the same. Copyright ยฉ 2019 Pearson Education, Inc. 2-8 CHAPTER 2: FUNCTIONS 64. Vertical shift, vertical expansion. Reversing the order can change the result. For example, let (a, b) be a point in the plane. A vertical shift of k units followed by a vertical expansion of h (h > 1) moves (a, b) to (a, b + k) and then to (a, bh + kh). In the reverse order, a vertical expansion of h followed by a vertical shift of k units moves (a, b) to (a, bh) and then to (a, bh + k); (a, bh + kh) โ‰  (a, bh + k). 66. Horizontal shift, vertical contraction. Reversing the order does not change the result. Consider a point (a, b) in the plane. A horizontal shift of k units followed by a vertical contraction of h (0 < h 700, the charge is 54 + .053(x โ€“ 700) = 16.9 + 0.053x. (B) Thus, ๏ƒฌ 8.5 ๏€ซ .065 x if 0 ๏‚ฃ x ๏‚ฃ 700 W ( x) ๏€ฝ ๏ƒญ ๏ƒฎ16.9 ๏€ซ 0.053 x if x ๏€พ 700 74. (A) Let x = taxable income. If 0 โ‰ค x โ‰ค 12,500, the tax due is $.02x. At x = 12,500, the tax due is $250. For 12,500 50,000, the tax due is 1,250 + .06(x โ€“ 50,000) = .06x โ€“ 1,250. Thus, 0.02 x if 0 ๏‚ฃ x ๏‚ฃ 12,500 ๏ƒฌ ๏ƒฏ T ( x) ๏€ฝ ๏ƒญ 0.04 x ๏€ญ 250 if 12,500 ๏€ผ x ๏‚ฃ 50, 000 ๏ƒฏ0.06 x ๏€ญ 1, 250 if x ๏€พ 50, 000 ๏ƒฎ Copyright ยฉ 2019 Pearson Education, Inc. EXERCISE 2-3 (B) 76. (A) The graph of the basic function y = x3 is vertically expanded by a factor of 463. 78. (C) T(32,000) = $1,030 T(64,000) = $2,590 (A) The graph of the basic function y = 3 x is reflected in the x axis and shifted up 10 units. (B) (B) EXERCISE 2-3 2. x 2 ๏€ซ 16 x (standard form) 2 x ๏€ซ 16 x ๏€ซ 64 ๏€ญ 64 (completing the square) 2 ( x ๏€ซ 8) ๏€ญ 64 4. x 2 ๏€ญ 12 x ๏€ญ 8 (standard form) 2 ( x ๏€ญ 12 x) ๏€ญ 8 ( x 2 ๏€ญ 12 x ๏€ซ 36) ๏€ซ 8 ๏€ญ 36 (vertex form) (completing the square) ( x ๏€ญ 6) 2 ๏€ญ 44 (vertex form) 6. 3 x 2 ๏€ซ 18 x ๏€ซ 21 (standard form) 3( x 2 ๏€ซ 6 x ) ๏€ซ 21 3( x 2 ๏€ซ 6 x ๏€ซ 9 ๏€ญ 9) ๏€ซ 21 (completing the square) 3( x ๏€ซ 3) 2 ๏€ซ 21 ๏€ญ 27 3( x ๏€ซ 3) 2 ๏€ญ 6 (vertex form) 8. ๏€ญ5 x 2 ๏€ซ 15 x ๏€ญ 11 2-9 (standard form) ๏€ญ5( x 2 ๏€ญ 3x ) ๏€ญ 11 ๏€ญ5( x 2 ๏€ญ 3x ๏€ซ 94 ๏€ญ 94 ) ๏€ญ 11 (completing the square) ๏€ญ5( x ๏€ญ 23 ) 2 ๏€ญ 11 ๏€ซ 454 ๏€ญ5( x ๏€ญ 23 ) 2 ๏€ซ 14 (vertex form) Copyright ยฉ 2019 Pearson Education, Inc. 2-10 CHAPTER 2: FUNCTIONS 10. The graph of g(x) is the graph of y = x2 shifted right 1 unit and down 6 units; g ( x ) ๏€ฝ ( x ๏€ญ 1) 2 ๏€ญ 6. 12. The graph of n(x) is the graph of y = x2 reflected in the x axis, then shifted right 4 units and up 7 units; n ( x ) ๏€ฝ ๏€ญ( x ๏€ญ 4) 2 ๏€ซ 7. 14. (A) g (B) m (C) n (D) f 16. (A) x intercepts: โ€“5, โ€“1; y intercept: โ€“5 (B) Vertex: (โ€“3, 4) (C) Maximum: 4 (D) Range: y โ‰ค 4 or (โ€“โˆž, 4] 18. (A) x intercepts: 1, 5; y intercept: 5 (B) Vertex: (3, โ€“4) (C) Minimum: โ€“4 (D) Range: y โ‰ฅ โ€“4 or [โ€“4, โˆž) 20. g(x) = โ€“(x + 2)2 + 3 (A) x intercepts: โ€“(x + 2)2 + 3 = 0 (x + 2)2 = 3 x+2=ยฑ 3 x = โ€“2 โ€“ 3 , โ€“2 + 3 y intercept: โ€“1 (B) 22. Vertex: (โ€“2, 3) (C) Maximum: 3 (D) Range: y โ‰ค 3 or (โ€“โˆž, 3] n(x) = (x โ€“ 4)2 โ€“ 3 (A) x intercepts: (x โ€“ 4)2 โ€“ 3 = 0 (x โ€“ 4)2 = 3 xโ€“4=ยฑ 3 x=4โ€“ 3,4+ 3 y intercept: 13 (B) Vertex: (4, โ€“3) (C) Minimum: โ€“3 (D) Range: y โ‰ฅ โ€“3 or [โ€“3, โˆž) 24. y = โ€“(x โ€“ 4)2 + 2 26. y = [x โ€“ (โ€“3)]2 + 1 or y = (x + 3)2 + 1 28. g(x) = x2 โ€“ 6x + 5 = x2 โ€“ 6x + 9 โ€“ 4 = (x โ€“ 3)2 โ€“ 4 (A) x intercepts: (x โ€“ 3)2 โ€“ 4 = 0 (x โ€“ 3)2 = 4 x โ€“ 3 = ยฑ2 x = 1, 5 y intercept: 5 (B) Vertex: (3, โ€“4) (C) Minimum: โ€“4 (D) Range: y โ‰ฅ โ€“4 or [โ€“4, โˆž) Copyright ยฉ 2019 Pearson Education, Inc. EXERCISE 2-3 30. 3๏ƒน 1๏ƒน ๏ƒฉ ๏ƒฉ s(x) = โ€“4×2 โ€“ 8x โ€“ 3 = โ€“4 ๏ƒช x 2 ๏€ซ 2 x ๏€ซ ๏ƒบ = โ€“4 ๏ƒช x 2 ๏€ซ 2 x ๏€ซ 1 ๏€ญ ๏ƒบ 4๏ƒป 4๏ƒป ๏ƒซ ๏ƒซ 1 ๏ƒฉ ๏ƒน = โ€“4 ๏ƒช ( x ๏€ซ 1) 2 ๏€ญ ๏ƒบ = โ€“4(x + 1)2 + 1 4๏ƒป ๏ƒซ (A) โ€“4(x + 1)2 + 1 = 0 4(x + 1)2 = 1 x intercepts: 1 4 1 x+1=ยฑ 2 3 1 x=โ€“ ,โ€“ 2 2 (x + 1)2 = y intercept: โ€“3 (B) 32. Vertex: (โ€“1, 1) (C) Maximum: 1 (D) Range: y โ‰ค 1 or (โ€“โˆž, 1] v(x) = 0.5×2 + 4x + 10 = 0.5[x2 + 8x + 20] = 0.5[x2 + 8x + 16 + 4] = 0.5[(x + 4)2 + 4] = 0.5(x + 4)2 + 2 (A) x intercepts: none y intercept: 10 (B) Vertex: (โ€“4, 2) (C) Minimum: 2 (D) Range: y โ‰ฅ 2 or [2, โˆž) 34. g(x) = โ€“0.6×2 + 3x + 4 (A) g(x) = โ€“2: โ€“0.6×2 + 3x + 4 = โ€“2 0.6×2 โ€“ 3x โ€“ 6 = 0 (B) g(x) = 5: โ€“0.6×2 + 3x + 4 = 5 โ€“0.6×2 + 3x โ€“ 1 = 0 0.6×2 โ€“ 3x + 1 = 0 x = โ€“1.53, 6.53 x = 0.36, 4.64 (C) g(x) = 8: โ€“0.6×2 + 3x + 4 = 8 โ€“0.6×2 + 3x โ€“ 4 = 0 0.6×2 โ€“ 3x + 4 = 0 No solution Copyright ยฉ 2019 Pearson Education, Inc. 2-11 2-12 CHAPTER 2: FUNCTIONS 36. Using a graphing utility with y = 100x โ€“ 7×2 โ€“ 10 and the calculus option with maximum command, we obtain 347.1429 as the maximum value. 38. m(x) = 0.20×2 โ€“ 1.6x โ€“ 1 = 0.20(x2 โ€“ 8x โ€“ 5) = 0.20[(x โ€“ 4)2 โ€“ 21] = 0.20(x โ€“ 4)2 โ€“ 4.2 (A) x intercepts: 0.20(x โ€“ 4)2 โ€“ 4.2 = 0 (x โ€“ 4)2 = 21 x โ€“ 4 = ยฑ 21 x = 4 โ€“ 21 = โ€“0.6, 4 + 21 = 8.6; y intercept: โ€“1 (B) Vertex: (4, โ€“4.2) 40. (C) Minimum: โ€“4.2 (D) Range: y โ‰ฅ โ€“4.2 or [ ๏€ญ4.2, ๏‚ฅ ) n(x) = โ€“0.15×2 โ€“ 0.90x + 3.3 = โ€“0.15(x2 + 6x โ€“ 22) = โ€“0.15[(x + 3)2 โ€“ 31] = โ€“0.15(x + 3)2 + 4.65 (A) x intercepts: โ€“0.15(x + 3)2 + 4.65 = 0 (x + 3)2 = 31 x + 3 = ยฑ 31 x = โ€“3 โ€“ 31 = โ€“8.6,โ€“3 + 31 = 2.6; y intercept: 3.30 (B) Vertex: (โ€“3, 4.65) 42. (C) Maximum: 4.65 (D) Range: x โ‰ค 4.65 or ( ๏€ญ๏‚ฅ, 4.65] ( x ๏€ซ 6)( x ๏€ญ 3) ๏€ผ 0 Therefore, either ( x ๏€ซ 6) ๏€ผ 0 and (x ๏€ญ 3) ๏€พ 0 or ( x ๏€ซ 6) ๏€พ 0 and ( x ๏€ญ 3) ๏€ผ 0. The first case is impossible. The second case implies ๏€ญ6 ๏€ผ x ๏€ผ 3. Solution set: (๏€ญ6,3). 44. x 2 ๏€ซ 7 x ๏€ซ 12 ๏€ฝ ( x ๏€ซ 3)( x ๏€ซ 4) ๏‚ณ 0 Therefore, either ( x ๏€ซ 3) ๏‚ณ 0 and (x ๏€ซ 4) ๏‚ณ 0 or ( x ๏€ซ 3) ๏‚ฃ 0 and ( x ๏€ซ 4) ๏‚ฃ 0. The first case implies x ๏‚ณ ๏€ญ3 and the second case implies x ๏‚ฃ ๏€ญ4. Solution set: (๏€ญ๏‚ฅ, ๏€ญ 4] ๏ƒˆ [๏€ญ3, ๏‚ฅ). 46. 48. 50. โ€“0.88 โ‰ค x โ‰ค 3.52 x = โ€“1.27, 2.77 52. f is a quadratic function and max f(x) = f(โ€“3) = โ€“5 Axis: x = โ€“3 Vertex: (โ€“3, โ€“5) Range: y โ‰ค โ€“5 or (โ€“โˆž, โ€“5] x intercepts: None Copyright ยฉ 2019 Pearson Education, Inc. x 2.72 EXERCISE 2-3 54. (A) (B) f(x) = g(x): โ€“0.7x(x โ€“ 7) = 0.5x + 3.5 โ€“0.7×2 + 4.4x โ€“ 3.5 = 0 x= ๏€ญ4.4 ๏‚ฑ (4.4) 2 ๏€ญ 4(0.7)(3.5) ๏€ญ1.4 = 0.93, 5.35 (C) f(x) > g(x) for 0.93 < x < 5.35 (D) f(x) < g(x) for 0 โ‰ค x < 0.93 or 5.35 g(x) for 1.08 < x < 6.35 (D) f(x) < g(x) for 0 โ‰ค x < 1.08 or 6.35 < x โ‰ค 9 58. The graph of a quadratic with no real zeros will not intersect the xโ€“axis. 60. Such an equation will have b 2 ๏€ญ 4ac ๏€ฝ 0. 62. Such an equation will have k ๏€ผ 0. a Copyright ยฉ 2019 Pearson Education, Inc. 2-13 2-14 64. CHAPTER 2: FUNCTIONS ax 2 ๏€ซ bx ๏€ซ c ๏€ฝ a ( x ๏€ญ h) 2 ๏€ซ k ๏€ฝ a ( x 2 ๏€ญ 2hx ๏€ซ h 2 ) ๏€ซ k ๏€ฝ ax 2 ๏€ญ 2ahx ๏€ซ ah 2 ๏€ซ k Equating constant terms gives k ๏€ฝ c ๏€ญ ah 2 . Since h is the vertex, we have h ๏€ฝ ๏€ญ b . Substituting then gives 2a 2 ๏ƒฆ b2 ๏ƒถ b ๏€ฝc๏€ญ 2 ๏ƒท 4a ๏ƒจ 4a ๏ƒธ 2 k ๏€ฝ c ๏€ญ ah ๏€ฝ c ๏€ญ a ๏ƒง ๏€ฝ 66. 4ac ๏€ญ b 2 4a f(x) = โ€“0.0117×2 + 0.32x + 17.9 (B) (A) x Mkt Share f ( x) 5 10 15 18.8 20.0 20.7 19.2 19.9 20.1 20 25 30 20.2 17.4 16.4 19.6 18.6 17 35 15.3 14.8 (C) For 2025, x = 45 and f(45) = โ€“0.0117(45)2 + 0.32(45) + 17.9 = 8.6% For 2028, x = 48 and f(48) = โ€“0.0117(48)2 + 0.32(48) + 17.9 = 6.3% (D) Market share rose from 18.8% in 1985 to a maximum of 20.7% in 1995 and then fell to 15.3% in 2010. 68. Verify 70. (A) (B) R(x) = 2,000x โ€“ 60×2 100 ๏ƒถ ๏ƒฆ x๏ƒท = ๏€ญ60 ๏ƒง x 2 ๏€ญ 3 ๏ƒธ ๏ƒจ 100 2500 2500 ๏ƒน ๏ƒฉ = ๏€ญ60 ๏ƒช x 2 ๏€ญ x๏€ซ ๏€ญ 3 9 9 ๏ƒบ๏ƒป ๏ƒซ ๏ƒฉ๏ƒฆ 50 ๏ƒถ 2500 ๏ƒน = ๏€ญ60 ๏ƒช๏ƒง x ๏€ญ ๏ƒท ๏€ญ ๏ƒบ 3 ๏ƒธ 9 ๏ƒบ๏ƒป ๏ƒช๏ƒซ๏ƒจ 2 2 50 ๏ƒถ 50,000 ๏ƒฆ = ๏€ญ60 ๏ƒง x ๏€ญ ๏ƒท + 3 ๏ƒธ 3 ๏ƒจ 16.667 thousand computers (16,667 computers); 16,666.667 thousand dollars ($16,666,667) (C) 2000 ๏€ญ 60(50 / 3) ๏€ฝ $1,000 Copyright ยฉ 2019 Pearson Education, Inc. EXERCISE 2-3 72. 2-15 (A) ๏ƒฆ 50 ๏ƒถ ๏ƒฆ 50 ๏ƒถ p ๏ƒง ๏ƒท = 2,000 โ€“ 60 ๏ƒง ๏ƒท = $1,000 ๏ƒจ 3 ๏ƒธ ๏ƒจ 3 ๏ƒธ (B) R(x) = C(x) x(2,000 โ€“ 60x) = 4,000 + 500x 2,000x โ€“ 60×2 = 4,000 + 500x 60×2 โ€“ 1,500x + 4,000 = 0 6×2 โ€“ 150x + 400 = 0 x = 3.035, 21.965 Break-even at 3.035 thousand (3,035) and 21.965 thousand (21,965) (C) 74. Loss: 1 โ‰ค x < 3.035 or 21.965 < x โ‰ค 25; Profit: 3.035 < x 0 for x < 5 Domain: x < 5 or (โ€“โˆž, 5) (2-1) f(x) = 4×2 + 4x โ€“ 3 = 4(x2 + x) ๏€ญ 3 1๏ƒถ ๏ƒฆ = 4 ๏ƒง x2 ๏€ซ x ๏€ซ ๏ƒท ๏€ญ 3 ๏€ญ 1 4๏ƒธ ๏ƒจ 2 1๏ƒถ ๏ƒฆ = 4 ๏ƒง x ๏€ซ ๏ƒท ๏€ญ 4 (vertex form) 2๏ƒธ ๏ƒจ Intercepts: y intercept: f(0) = 4(0)2 + 4(0) ๏€ญ 3 = ๏€ญ3 x intercepts: f(x) = 0 2 1๏ƒถ ๏ƒฆ 4๏ƒงx๏€ซ ๏ƒท ๏€ญ 4 = 0 2๏ƒธ ๏ƒจ 2 1๏ƒถ ๏ƒฆ ๏ƒงx๏€ซ 2๏ƒท =1 ๏ƒจ ๏ƒธ 1 = ยฑ1 x+ 2 1 3 1 x=๏€ญ ยฑ1=๏€ญ , 2 2 2 ๏ƒฆ 1 ๏ƒถ Vertex: ๏ƒง ๏€ญ , ๏€ญ4 ๏ƒท ; minimum: ๏€ญ4; range: y โ‰ฅ ๏€ญ4 or [๏€ญ4, โˆž) 2 ๏ƒจ ๏ƒธ Copyright ยฉ 2019 Pearson Education, Inc. (2-3) 2-37 2-38 CHAPTER 2: FUNCTIONS 44. f(x) = ex โ€“ 1, g(x) = ln(x + 2) 2 f Points of intersection: (โ€“1.54, โ€“0.79), (0.69, 0.99) g -3 (2-5, 2-6) 3 -2 45. f(x) = 50 x2 ๏€ซ 1 : x ๏€ญ3 ๏€ญ2 ๏€ญ1 f ( x) 0 1 2 3 5 10 25 50 25 10 5 (2-1) 46. f(x) = ๏€ญ66 2 ๏€ซ x2 x ๏€ญ3 f ( x ) ๏€ญ6 : ๏€ญ2 ๏€ญ11 ๏€ญ1 ๏€ญ22 0 ๏€ญ66 1 ๏€ญ22 2 ๏€ญ11 3 ๏€ญ6 (2-1) For Problems 47โ€“50, f(x) = 5x + 1. 47. f(f(0)) = f(5(0) + 1) = f(1) = 5(1) + 1 = 6 (2-1) 48. f(f(โ€“1)) = f(5(โ€“1) + 1) = f(โ€“4) = 5(โ€“4) + 1 = โ€“19 (2-1) 49. f(2x โ€“ 1) = 5(2x โ€“ 1) + 1 = 10x โ€“ 4 (2-1) 50. f(4 โ€“ x) = 5(4 โ€“ x) + 1 = 20 โ€“ 5x + 1 = 21 โ€“ 5x (2-1) 51. f(x) = 3 โ€“ 2x (A) f(2) = 3 โ€“ 2(2) = 3 โ€“ 4 = โ€“1 (B) f(2 + h) = 3 โ€“ 2(2 + h) = 3 โ€“ 4 โ€“ 2h = โ€“1 โ€“ 2h (C) f(2 + h) โ€“ f(2) = โ€“1 โ€“ 2h โ€“ (โ€“1) = โ€“2h f (2 ๏€ซ h) ๏€ญ f (2) 2h =โ€“ = โ€“2 (D) h h 52. f(x) = x2 โ€“ 3x + 1 (A) f(a) = a2 โ€“ 3a + 1 Copyright ยฉ 2019 Pearson Education, Inc. (2-1) CHAPTER 2 REVIEW 2-39 (B) f(a + h) = (a + h)2 โ€“ 3(a + h) + 1 = a2 + 2ah + h2 โ€“ 3a โ€“ 3h + 1 (C) f(a + h) โ€“ f(a) = a2 + 2ah + h2 โ€“ 3a โ€“ 3h + 1 โ€“ (a2 โ€“ 3a + 1) = 2ah + h2 โ€“ 3h (D) f ( a ๏€ซ h) ๏€ญ f ( a ) 2ah ๏€ซ h 2 ๏€ญ 3h h(2a ๏€ซ h ๏€ญ 3) = = = 2a + h โ€“ 3 h h h (2-1) 53. The graph of m is the graph of y = |x| reflected in the x axis and shifted 4 units to the right. 54. The graph of g is the graph of y = x3 vertically contracted by a factor of 0.3 and shifted up 3 units. (2-2) 55. 56. (2-2) The graph of y = x2 is vertically expanded by a factor of 2, reflected in the x axis and shifted to the left 3 units. Equation: y = โ€“2(x + 3)2 (2-2) Equation: f(x) = 2 x ๏€ซ 3 โ€“ 1 (2-2) 57. f ( x) ๏€ฝ n( x ) 5x ๏€ซ 4 . Since degree n(x) = 1 1 = degree d(x), there is no horizontal asymptote. d ( x ) 100 x ๏€ซ 1 (2-4) 60. 61. n( x ) x 2 ๏€ซ 100 x 2 ๏€ซ 100 ๏€ฝ 2 ๏€ฝ . Since n( x ) ๏€ฝ x 2 ๏€ซ 100 has no real zeros and d ( x ) x ๏€ญ 100 ( x ๏€ญ 10)( x ๏€ซ 10) d (10) ๏€ฝ d ( ๏€ญ10) ๏€ฝ 0, x = 10 and x = ๏€ญ10 are the vertical asymptotes of the graph of f. f ( x) ๏€ฝ f ( x) ๏€ฝ (2-4) n( x ) x 2 ๏€ซ 3x x ( x ๏€ซ 3) x ๏€ซ 3 ๏€ฝ ๏€ฝ ๏€ฝ , x ๏‚น 0. x = ๏€ญ2 is a vertical asymptote of the graph of f. d ( x ) x 2 ๏€ซ 2 x x ( x ๏€ซ 2) x ๏€ซ 2 (2-4) 62. True; p(x) = p ( x) is a rational function for every polynomial p. 1 Copyright ยฉ 2019 Pearson Education, Inc. (2-4) 2-40 CHAPTER 2: FUNCTIONS 1 = xโ€“1 is not a polynomial function. x 63. False; f(x) = 64. False; f(x) = 65. True: let f(x) = bx, (b > 0, b โ‰  1), then the positive x-axis is a horizontal asymptote if 0 < b 1. (2-5) 66. True: let f(x) = logbx (b > 0, b โ‰  1). If 0 < b 1, then the negative y-axis is a vertical asymptote. 67. True; f(x) = (2-6) x has vertical asymptote x = 1 and horizontal asymptote y = 1. x ๏€ญ1 68. 69. (2-2) (2-2) 70. 71. (2-4) y = โ€“(x โ€“ 4)2 + 3 (2-2, 2-3) f(x) = โ€“0.4×2 + 3.2x + 1.2 = โ€“0.4(x2 โ€“ 8x + 16) + 7.6 = โ€“0.4(x โ€“ 4)2 + 7.6 (A) y intercept: 1.2 x intercepts: โ€“0.4(x โ€“ 4)2 + 7.6 = 0 (x โ€“ 4)2 = 19 x = 4 + 19 โ‰ˆ 8.4, 4 โ€“ 19 โ‰ˆ โ€“0.4 (B) Vertex: (4.0, 7.6) (C) Maximum: 7.6 (D) Range: y โ‰ค 7.6 or (โ€“โˆž, 7.6] (2-3) (A) y intercept: 1.2 x intercepts: โ€“0.4, 8.4 72. (B) Vertex: (4.0, 7.6) (C) Maximum: 7.6 (D) Range: y โ‰ค 7.6 or (โ€“โˆž, 7.6] 73. (2-3) log 10ฯ€ = ฯ€ log 10 = ฯ€ 10log 2 = y is equivalent to log y = log 2 which implies y = 2 Similarly, ln e ฯ€ = ฯ€ ln e = ฯ€ (Section 2-5, 4.b & g) and eln 2 = y implies ln y = ln 2 and y= 2 . (2-6) Copyright ยฉ 2019 Pearson Education, Inc. CHAPTER 2 REVIEW 74. 2-41 log x ๏€ญ log 3 = log 4 ๏€ญ log (x + 4) 4 x log ๏€ฝ log 3 x๏€ซ4 4 x ๏€ฝ 3 x๏€ซ4 x ( x ๏€ซ 4) ๏€ฝ 12 x 2 ๏€ซ 4 x ๏€ญ 12 ๏€ฝ 0 ( x ๏€ซ 6)( x ๏€ญ 2) ๏€ฝ 0 x ๏€ฝ ๏€ญ6, 2 Since log(๏€ญ6) is not defined, ๏€ญ6 is not a solution. Therefore, the solution is x = 2. 75. ln(2x โ€“ 2) โ€“ ln(x โ€“ 1) = ln x ๏ƒฆ 2x ๏€ญ 2 ๏ƒถ = ln x ln ๏ƒง ๏ƒจ x ๏€ญ 1 ๏ƒท๏ƒธ 76. ๏ƒฉ 2( x ๏€ญ 1) ๏ƒน ln ๏ƒช ๏ƒบ = ln x ๏ƒซ x ๏€ญ1 ๏ƒป ln 2 = ln x x=2 77. ln(x + 3) โ€“ ln x = 2 ln 2 ๏ƒฆ x ๏€ซ3๏ƒถ ln ๏ƒง = ln(22) ๏ƒจ x ๏ƒท๏ƒธ x๏€ซ3 =4 x x + 3 = 4x 3x = 3 x=1 (2-6) log 3×2 = 2 + log 9x ln y โ€“ ln c = โ€“5t ๏ƒฆx๏ƒถ log ๏ƒง ๏ƒท = 2 ๏ƒจ3๏ƒธ y = eโ€“5t c y = โ€“5t c ln y = ceโ€“5t (2-6) Let x be any positive real number and suppose log1x = y. Then 1y = x. But, 1y = 1, so x = 1, i.e., x = 1 for all positive real numbers x. This is clearly impossible. 80. (2-6) ln y = โ€“5t + ln c 78. log 3×2 โ€“ log 9x = 2 ๏ƒฆ 3×2 ๏ƒถ log ๏ƒง ๏ƒท =2 ๏ƒจ 9x ๏ƒธ x = 102 = 100 3 x = 300 (2-6) 79. (2-6) (2-6) The graph of y = 3 x is vertically expanded by a factor of 2, reflected in the x axis, shifted 1 unit to the left and 1 unit down. Equation: y = โ€“2 3 x ๏€ซ 1 โ€“ 1 (2-2) Copyright ยฉ 2019 Pearson Education, Inc. 2-42 81. CHAPTER 2: FUNCTIONS G(x) = 0.3×2 + 1.2x โ€“ 6.9 = 0.3(x2 + 4x + 4) โ€“ 8.1 = 0.3(x + 2)2 โ€“ 8.1 (A) y intercept: โ€“6.9 x intercepts: 0.3(x + 2)2 โ€“ 8.1 = 0 (x + 2)2 = 27 x = โ€“2 + (B) Vertex: (โ€“2, โ€“8.1) 27 โ‰ˆ 3.2, โ€“2 โ€“ 27 โ‰ˆ โ€“7.2 (C) Minimum: โ€“8.1 (D) Range: y โ‰ฅ โ€“8.1 or [โ€“8.1, โˆž) (2-3) (A) y intercept: โ€“6.9 x intercept: โ€“7.2, 3.2 82. (B) Vertex: (โ€“2, โ€“8.1) (C) Minimum: โ€“8.1 (D) Range: y โ‰ฅ โ€“8.1 or [โ€“8.1, โˆž) 83. (A) (2-3) S(x) = 3 if 0 โ‰ค x โ‰ค 20; S(x) = 3 + 0.057(x โ€“ 20) = 0.057x + 1.86 if 20 < x โ‰ค 200; S(200) = 13.26 S(x) = 13.26 + 0.0346(x โ€“ 200) = 0.0346x + 6.34 if 200 1000 if ๏ƒฌ3 ๏ƒฏ0.057 x ๏€ซ 1.86 if ๏ƒฏ Therefore, S(x) = ๏ƒญ ๏ƒฏ0.0346 x ๏€ซ 6.34 if ๏ƒฏ๏ƒฎ0.0217 x ๏€ซ 19.24 if 0 ๏‚ฃ x ๏‚ฃ 20 20 ๏€ผ x ๏‚ฃ 200 200 ๏€ผ x ๏‚ฃ 1000 x ๏€พ 1000 (B) (2-2) mt 84. r๏ƒถ ๏ƒฆ A ๏€ฝ P ๏ƒง 1 ๏€ซ ๏ƒท ; P = 5,000, r = 0.0125, m = 4, t = 5. ๏ƒจ m๏ƒธ 4(5) 20 ๏ƒฆ 0.0125 ๏ƒถ ๏ƒฆ 0.0125 ๏ƒถ A ๏€ฝ 5000 ๏ƒง 1 ๏€ซ ๏ƒท ๏€ฝ 5000 ๏ƒง 1 ๏€ซ ๏ƒท ๏‚ป 5321.95 4 ๏ƒธ 4 ๏ƒธ ๏ƒจ ๏ƒจ After 5 years, the CD will be worth $5,321.95 Copyright ยฉ 2019 Pearson Education, Inc. (2-5) CHAPTER 2 REVIEW 2-43 mt 85. r๏ƒถ ๏ƒฆ A ๏€ฝ P ๏ƒง 1 ๏€ซ ๏ƒท ; P = 5,000, r = 0.0105, m = 365, t = 5 m ๏ƒจ ๏ƒธ 365(5) 1825 ๏ƒฆ 0.0105 ๏ƒถ ๏ƒฆ 0.0105 ๏ƒถ A ๏€ฝ 5000 ๏ƒง 1 ๏€ซ ๏€ฝ 5000 ๏ƒง 1 ๏€ซ ๏ƒท 365 365 ๏ƒท๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ After 5 years, the CD will be worth $5,269.51. ๏‚ป 5269.51 (2-5) mt 86. r๏ƒถ ๏ƒฆ A = P ๏ƒง 1 ๏€ซ ๏ƒท , r = 0.0659, m = 12 ๏ƒจ m๏ƒธ 12 t ๏ƒฆ 0.0659 ๏ƒถ = 3P or (1.005492)12t = 3 Solve P ๏ƒง 1 ๏€ซ 12 ๏ƒท๏ƒธ ๏ƒจ for t: 12t ln(1.005492) = ln 3 ln 3 โ‰ˆ 16.7 year. t= 12 ln(1.005492) 87. (2-5) A ๏€ฝ Pe rt , r ๏€ฝ 0.0739 . Solve 2 P ๏€ฝ Pe0.0739t for t. 2 P ๏€ฝ Pe0.0739t e0.0739t ๏€ฝ 2 0.0739t ๏€ฝ ln 2 t๏€ฝ 88. ln 2 ๏‚ป 9.38 years. 0.0739 (2-5) p(x) = 50 โ€“ 1.25x Price-demand function C(x) = 160 + 10x Cost function R(x) = xp(x) = x(50 โ€“ 1.25x) Revenue function (A) (B) R = C x(50 โ€“ 1.25x) = 160 + 10x โ€“1.25×2 + 50x = 160 + 10x โ€“1.25×2 + 40x = 160 โ€“1.25(x2 โ€“ 32x + 256) = 160 โ€“ 320 โ€“1.25(x โ€“ 16)2 = โ€“160 (x โ€“ 16)2 = 128 x = 16 + 128 โ‰ˆ 27.314, 16 โ€“ 128 โ‰ˆ 4.686 R = C at x = 4.686 thousand units (4,686 units) and x = 27.314 thousand units (27,314 units) R < C for 1 โ‰ค x < 4.686 or 27.314 C for 4.686 < x < 27.314 Copyright ยฉ 2019 Pearson Education, Inc. 2-44 CHAPTER 2: FUNCTIONS (C) Max Rev: 50x โ€“ 1.25×2 = R โ€“1.25(x2 โ€“ 40x + 400) + 500 = R โ€“1.25(x โ€“ 20)2 + 500 = R Vertex at (20, 500) Max. Rev. = 500 thousand ($500,000) occurs when output is 20 thousand (20,000 units) Wholesale price at this output: p(x) = 50 โ€“ 1.25x p(20) = 50 โ€“ 1.25(20) = $25 (2-3) 89. (A) P(x) = R(x) โ€“ C(x) = x(50 โ€“ 1.25x) โ€“ (160 + 10x) = โ€“1.25×2 + 40x โ€“ 160 (B) P = 0 for x = 4.686 thousand units (4,686 units) and x = 27.314 thousand units (27,314 units) P < 0 for 1 โ‰ค x < 4.686 or 27.314 0 for 4.686 < x < 27.314 Maximum profit is 160 thousand dollars ($160,000), and this occurs at x = 16 thousand units(16,000 units). The wholesale price at this output is p(16) = 50 โ€“ 1.25(16) = $30, which is $5 greater than the $25 found in 88(C). (2-3) (C) 90. (A) The area enclosed by the storage areas is given by A = (2y)x Now, 3x + 4y = 840 3 so y = 210 โ€“ x 4 3 ๏ƒถ ๏ƒฆ Thus A(x) = 2 ๏ƒง 210 ๏€ญ x ๏ƒท x 4 ๏ƒธ ๏ƒจ 3 = 420x โ€“ x2 2 (B) Clearly x and y must be nonnegative; the fact that y โ‰ฅ 0 implies 3 210 โ€“ x โ‰ฅ 0 4 3 and 210 โ‰ฅ x 4 840 โ‰ฅ 3x 280 โ‰ฅ x Thus, domain A: 0 โ‰ค x โ‰ค 280 (C) Copyright ยฉ 2019 Pearson Education, Inc. CHAPTER 2 REVIEW (D) Graph A(x) = 420x โ€“ 3 2 x and y = 25,000 together. 2 There are two values of x that will produce storage areas with a combined area of 25,000 square feet, one near x = 90 and the other near x = 190. 2-45 30,000 0 3 0 (E) (F) x = 86, x = 194 3 2 3 x = โ€“ (x2 โ€“ 280x) 2 2 Completing the square, we have 3 A(x) = โ€“ (x2 โ€“ 280x + 19,600 โ€“ 19,600) 2 3 = โ€“ [(x โ€“ 140)2 โ€“ 19,600] 2 3 = โ€“ (x โ€“ 140)2 + 29,400 2 A(x) = 420x โ€“ The dimensions that will produce the maximum combined area are: x = 140 ft, y = 105 ft. The maximum area is 29,400 sq. ft. 91. (A) Quadratic regression model, Table 1: (2-3) To estimate the demand at price level of $180, we solve the equation ax2 + bx + c = 180 for x. The result is x โ‰ˆ 2,833 sets. (B) Linear regression model, Table 2: (C) The condition is not stable; the price is likely to decrease since the supply at the price level of $180 exceeds the demand at this level. (D) Equilibrium price: $131.59 Equilibrium quantity: 3,587 cookware set. To estimate the supply at a price level of $180, we solve the equation ax + b = 180 for x. The result is x โ‰ˆ 4,836 sets. Copyright ยฉ 2019 Pearson Education, Inc. (2-3) 2-46 CHAPTER 2: FUNCTIONS (A) 92. Cubic Regression y ๏€ฝ 0.30395 x3 ๏€ญ 12.993 x 2 ๏€ซ 38.292 x ๏€ซ 5, 604.8 y ๏€ฝ 0.30395(38)3 ๏€ญ 12.993(38) 2 ๏€ซ 38.292(38) ๏€ซ 5,604.8 ๏‚ป 4,976 (B) The predicted crime index in 2025 is 4,976. 93. (A) N(0) = 1 ๏ƒฆ1๏ƒถ N๏ƒง ๏ƒท = 2 ๏ƒจ2๏ƒธ (B) log 22t = log 109 = 9 2t log 2 = 9 9 โ‰ˆ 14.95 t= 2 log 2 N(1) = 4 = 22 ๏ƒฆ 3๏ƒถ N ๏ƒง ๏ƒท = 8 = 23 ๏ƒจ2๏ƒธ N(2) = 16 = 24 ๏ Thus, we conclude that N(t) = 22t or N = 4t 94. We need to solve: 22t = 109 Thus, the mouse will die in 15 days. (2-6) 1 Given I = I0eโ€“kd. When d = 73.6, I = I0. Thus, we have: 2 1 โ€“k(73.6) I =I e 2 0 0 1 eโ€“k(73.6) = 2 1 2 ln(0.5) โ‰ˆ 0.00942 k= ๏€ญ73.6 โ€“k(73.6) = ln Thus, k โ‰ˆ 0.00942. To find the depth at which 1% of the surface light remains, we set I = 0.01I0 and solve 0.01I0 = I0eโ€“0.00942d for d: 0.01 = eโ€“0.00942d โ€“0.00942d = ln 0.01 ln 0.01 โ‰ˆ 488.87 d= ๏€ญ0.00942 Thus, 1% of the surface light remains at approximately 489 feet. Copyright ยฉ 2019 Pearson Education, Inc. (2-6) CHAPTER 2 REVIEW 95. (A) Logarithmic regression model: Year 2023 corresponds to x = 83; y(83) โ‰ˆ 6,134,000 cows. (B) 96. ln (0) is not defined. (2-6) Using the continuous compounding model, we have: 2P0 = P0e0.03t 2 = e0.03t 0.03t = ln 2 ln 2 t= โ‰ˆ 23.1 0.03 Thus, the model predicts that the population will double in approximately 23.1 years. 97. (2-5) (A) The exponential regression model is y = 47.194(1.0768)x. To estimate for the year 2025, let x = 45 ๏ƒž y = 47.19368975(1.076818175)45 ๏‚ป 1,319.140047. The estimated annual expenditure for Medicare by the U.S. government, rounded to the nearest billion, is approximately $1,319 billion. (This is $1.319 trillion.) (B) To find the year, solve 47.194(1.0768)x = 2,000. Note: Use 2,000 because expenditures are in billions of dollars, and 2 trillion is 2,000 billion. 47.194(1.0768)x = 2,000 2,000 1.0768x = 47.194 ๏ƒฆ 2,000 ๏ƒถ ln(1.0768x) = ln ๏ƒง ๏ƒท ๏ƒจ 47.194 ๏ƒธ ๏ƒฆ 2,000 ๏ƒถ xln1.0768 = ln ๏ƒง ๏ƒท ๏ƒจ 47.194 ๏ƒธ ๏ƒฆ 2,000 ๏ƒถ ln ๏ƒง ๏ƒท 47.194 ๏ƒธ ๏‚ป 50.6 years x= ๏ƒจ ln1.0768 1,980 + 50.63 = 2,030.63 Annual expenditures exceed two trillion dollars in the year 2031. (2-5) Copyright ยฉ 2019 Pearson Education, Inc. 2-47

Document Preview (47 of 2116 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in