Preview Extract
Chapter 2
Graphs
(f) Quadrant IV
Section 2.1
1. 0
2.
5 โ ( โ3) = 8 = 8
3.
32 + 42 = 25 = 5
4. 112 + 602 = 121 + 3600 = 3721 = 612
Since the sum of the squares of two of the sides
of the triangle equals the square of the third side,
the triangle is a right triangle.
5.
1
bh
2
16. (a) Quadrant I
(b) Quadrant III
(c) Quadrant II
(d) Quadrant I
(e) y-axis
(f) x-axis
6. true
7. x-coordinate or abscissa; y-coordinate or
ordinate
8. quadrants
9. midpoint
10. False; the distance between two points is never
negative.
11. False; points that lie in Quadrant IV will have a
positive x-coordinate and a negative y-coordinate.
The point ( โ1, 4 ) lies in Quadrant II.
17. The points will be on a vertical line that is two
units to the right of the y-axis.
๏ฆ x + x y + y2 ๏ถ
12. True; M = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
13. b
14. a
15. (a) Quadrant II
(b) x-axis
(c) Quadrant III
(d) Quadrant I
(e) y-axis
147
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
18. The points will be on a horizontal line that is
three units above the x-axis.
28. d ( P1 , P2 ) =
( 6 โ (โ 4) )2 + ( 2 โ (โ3) )2
= 102 + 52 = 100 + 25
= 125 = 5 5
29. d ( P1 , P2 ) = (0 โ a) 2 + (0 โ b) 2
= ( โ a ) 2 + ( โb ) 2 = a 2 + b 2
30. d ( P1 , P2 ) = (0 โ a ) 2 + (0 โ a) 2
= (โa)2 + (โa)2
= a 2 + a 2 = 2a 2 = a
19. d ( P1 , P2 ) = (2 โ 0) 2 + (1 โ 0) 2
= 22 + 12 = 4 + 1 = 5
31. A = (โ2,5), B = (1,3), C = (โ1, 0)
d ( A, B ) =
20. d ( P1 , P2 ) = (โ2 โ 0) 2 + (1 โ 0) 2
d ( B, C ) =
21. d ( P1 , P2 ) = (โ2 โ 1) 2 + (2 โ 1) 2
= (โ3) 2 + 12 = 9 + 1 = 10
(1 โ (โ2) )2 + (3 โ 5)2
= 32 + (โ2) 2 = 9 + 4 = 13
= (โ2) 2 + 12 = 4 + 1 = 5
22. d ( P1 , P2 ) =
2
( โ1 โ 1)2 + (0 โ 3)2
= (โ2) 2 + (โ3)2 = 4 + 9 = 13
d ( A, C ) =
( 2 โ (โ1) )2 + (2 โ 1)2
( โ1 โ (โ2) )2 + (0 โ 5)2
= 12 + (โ5) 2 = 1 + 25 = 26
= 32 + 12 = 9 + 1 = 10
23. d ( P1 , P2 ) = (5 โ 3) 2 + ( 4 โ ( โ4 ) )
2
2
= 22 + ( 8 ) = 4 + 64 = 68 = 2 17
24. d ( P1 , P2 ) =
( 2 โ ( โ1) ) + ( 4 โ 0 )2
=
( 3)2 + 42 = 9 + 16 =
25. d ( P1 , P2 ) =
( 6 โ (โ3) )2 + (0 โ 2)2
2
2
25 = 5
2
= 9 + (โ 2) = 81 + 4 = 85
26. d ( P1 , P2 ) =
( 4 โ 2 )2 + ( 2 โ (โ3) )2
Verifying that โ ABC is a right triangle by the
Pythagorean Theorem:
[ d ( A, B)]2 + [ d ( B, C )]2 = [ d ( A, C )]2
( 13 ) + ( 13 ) = ( 26 )
2
2
2
13 + 13 = 26
= 22 + 52 = 4 + 25 = 29
26 = 26
27. d ( P1 , P2 ) = (6 โ 4) 2 + ( 4 โ (โ3) )
2
= 22 + 7 2 = 4 + 49 = 53
The area of a triangle is A =
problem,
148
Copyright ยฉ 2016 Pearson Education, Inc.
1
โ
bh . In this
2
Section 2.1: The Distance and Midpoint Formulas
A = 1 โ
[ d ( A, B) ] โ
[ d ( B, C ) ]
2
1
= โ
13 โ
13 = 1 โ
13
2
2
13
= 2 square units
32. A = (โ2, 5), B = (12, 3), C = (10, โ 11)
d ( A, B ) =
problem,
1
A = โ
[ d ( A, B ) ] โ
[ d ( B, C ) ]
2
1
= โ
10 2 โ
10 2
2
1
= โ
100 โ
2 = 100 square units
2
33. A = (โ 5,3), B = (6, 0), C = (5,5)
(12 โ (โ2) )2 + (3 โ 5)2
d ( A, B) =
= 142 + (โ2) 2
( 6 โ (โ 5) )2 + (0 โ 3)2
= 196 + 4 = 200
= 112 + (โ 3) 2 = 121 + 9
= 10 2
= 130
d ( B, C ) =
d ( B, C ) =
(10 โ 12 )2 + (โ11 โ 3)2
( 5 โ 6 )2 + (5 โ 0)2
= (โ2) 2 + (โ14) 2
= (โ1) 2 + 52 = 1 + 25
= 4 + 196 = 200
= 26
d ( A, C ) =
= 10 2
d ( A, C ) =
(10 โ (โ2) )2 + (โ11 โ 5)2
( 5 โ (โ 5) )2 + (5 โ 3)2
= 102 + 22 = 100 + 4
= 122 + (โ16) 2
= 104
= 144 + 256 = 400
= 2 26
= 20
Verifying that โ ABC is a right triangle by the
Pythagorean Theorem:
Verifying that โ ABC is a right triangle by the
Pythagorean Theorem:
[ d ( A, B)] + [ d ( B, C )] = [ d ( A, C )]
2
2
(10 2 ) + (10 2 ) = ( 20 )
2
2
2
2
200 + 200 = 400
400 = 400
1
The area of a triangle is A = bh . In this
2
[ d ( A, C )]2 + [ d ( B, C )]2 = [ d ( A, B)]2
( 104 ) + ( 26 ) = ( 130 )
2
2
2
104 + 26 = 130
130 = 130
1
The area of a triangle is A = bh . In this
2
149
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
problem,
1
A = โ
[ d ( A, C ) ] โ
[ d ( B, C ) ]
2
1
= โ
29 โ
2 29
2
1
= โ
2 โ
29
2
= 29 square units
problem,
1
A = โ
[ d ( A, C ) ] โ
[ d ( B, C ) ]
2
1
= โ
104 โ
26
2
1
= โ
2 26 โ
26
2
1
= โ
2 โ
26
2
= 26 square units
35. A = (4, โ3), B = (0, โ3), C = (4, 2)
34. A = (โ6, 3), B = (3, โ5), C = (โ1, 5)
( 3 โ (โ6) )2 + (โ5 โ 3)2
d ( A, B) =
= 92 + (โ8) 2 = 81 + 64
= 145
2
( โ1 โ 3) + (5 โ (โ5))
d ( B, C ) =
2
= (โ4) 2 + 102 = 16 + 100
= 116 = 2 29
2
( โ1 โ (โ 6) ) + (5 โ 3)
d ( A, C ) =
2
2
= (โ 4)2 + 02 = 16 + 0
= 16
=4
d ( B, C ) =
( 4 โ 0 )2 + ( 2 โ (โ3) )2
= 42 + 52 = 16 + 25
= 41
d ( A, C ) = (4 โ 4) 2 + ( 2 โ (โ3) )
2
= 25
=5
= 29
Verifying that โ ABC is a right triangle by the
Pythagorean Theorem:
[ d ( A, C )]2 + [ d ( B, C )]2 = [ d ( A, B)]2
( 29 ) + ( 2 29 ) = ( 145 )
2
2
= 02 + 52 = 0 + 25
2
= 5 + 2 = 25 + 4
2
d ( A, B ) = (0 โ 4) 2 + ( โ3 โ (โ3) )
2
Verifying that โ ABC is a right triangle by the
Pythagorean Theorem:
[ d ( A, B)]2 + [ d ( A, C )]2 = [ d ( B, C )]2
4 2 + 52 =
29 + 4 โ
29 = 145
2
16 + 25 = 41
41 = 41
29 + 116 = 145
145 = 145
1
The area of a triangle is A = bh . In this
2
( 41)
The area of a triangle is A =
150
Copyright ยฉ 2016 Pearson Education, Inc.
1
bh . In this
2
Section 2.1: The Distance and Midpoint Formulas
problem,
1
A = โ
[ d ( A, B) ] โ
[ d ( A, C ) ]
2
1
= โ
4โ
5
2
= 10 square units
The area of a triangle is A =
37. The coordinates of the midpoint are:
๏ฆx +x y +y ๏ถ
( x, y ) = ๏ง 1 2 , 1 2 ๏ท
2 ๏ธ
๏จ 2
๏ฆ 3+5 โ4+ 4๏ถ
=๏ง
,
2 ๏ท๏ธ
๏จ 2
๏ฆ8 0๏ถ
=๏ง , ๏ท
๏จ2 2๏ธ
= (4, 0)
2
= 02 + 42
= 0 + 16
= 16
=4
d ( B, C ) =
( 2 โ 4 )2 + (1 โ 1)2
38. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
= (โ2) 2 + 02 = 4 + 0
= 4
=2
d ( A, C ) = (2 โ 4) 2 + (1 โ (โ3) )
1
โ
[ d ( A, B) ] โ
[ d ( B, C ) ]
2
1
= โ
4โ
2
2
= 4 square units
A=
36. A = (4, โ3), B = (4, 1), C = (2, 1)
d ( A, B ) = (4 โ 4) 2 + (1 โ (โ3) )
1
bh . In this problem,
2
2
= (โ2) 2 + 42 = 4 + 16
= 20
=2 5
๏ฆ โ2 + 2 0 + 4 ๏ถ
,
=๏ง
2 ๏ท๏ธ
๏จ 2
๏ฆ0 4๏ถ
=๏ง , ๏ท
๏จ2 2๏ธ
= ( 0, 2 )
39. The coordinates of the midpoint are:
๏ฆx +x y +y ๏ถ
( x, y ) = ๏ง 1 2 , 1 2 ๏ท
2 ๏ธ
๏จ 2
๏ฆ โ3 + 6 2 + 0 ๏ถ
=๏ง
,
2 ๏ท๏ธ
๏จ 2
๏ฆ3 2๏ถ
=๏ง , ๏ท
๏จ2 2๏ธ
๏ฆ3 ๏ถ
= ๏ง ,1๏ท
๏จ2 ๏ธ
Verifying that โ ABC is a right triangle by the
Pythagorean Theorem:
[ d ( A, B)]2 + [ d ( B, C )]2 = [ d ( A, C )]2
(
42 + 22 = 2 5
16 + 4 = 20
20 = 20
)
2
40. The coordinates of the midpoint are:
๏ฆx +x y +y ๏ถ
( x, y ) = ๏ง 1 2 , 1 2 ๏ท
2 ๏ธ
๏จ 2
๏ฆ 2 + 4 โ3 + 2 ๏ถ
=๏ง
,
2 ๏ท๏ธ
๏จ 2
๏ฆ 6 โ1 ๏ถ
=๏ง , ๏ท
๏จ2 2 ๏ธ
1๏ถ
๏ฆ
= ๏ง 3, โ ๏ท
2๏ธ
๏จ
151
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
41. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
๏ฆ 4 + 6 โ3 + 1 ๏ถ
,
=๏ง
2 ๏ท๏ธ
๏จ 2
๏ฆ 10 โ 2 ๏ถ
=๏ง ,
๏ท
๏จ 2 2 ๏ธ
= (5, โ1)
52 + b 2 = 132
25 + b 2 = 169
b 2 = 144
b = 12
Thus the coordinates will have an y value of
โ1 โ 12 = โ13 and โ1 + 12 = 11 . So the points
are ( 3,11) and ( 3, โ13) .
42. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
๏ฆ โ 4 + 2 โ3 + 2 ๏ถ
,
=๏ง
2 ๏ท๏ธ
๏จ 2
๏ฆ โ 2 โ1 ๏ถ
, ๏ท
=๏ง
๏จ 2 2 ๏ธ
b. Consider points of the form ( 3, y ) that are a
distance of 13 units from the point ( โ2, โ1) .
d=
( x2 โ x1 )2 + ( y2 โ y1 )2
=
( 3 โ (โ2) )2 + ( โ1 โ y )2
=
( 5)2 + ( โ1 โ y )2
= 25 + 1 + 2 y + y 2
1๏ถ
๏ฆ
= ๏ง โ1, โ ๏ท
2๏ธ
๏จ
y 2 + 2 y + 26
=
43. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
๏ฆa+0 b+0๏ถ
=๏ง
,
2 ๏ท๏ธ
๏จ 2
๏ฆa b๏ถ
=๏ง , ๏ท
๏จ 2 2๏ธ
13 =
y 2 + 2 y + 26
132 =
( y + 2 y + 26 )
2
2
169 = y 2 + 2 y + 26
0 = y 2 + 2 y โ 143
0 = ( y โ 11)( y + 13)
44. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
๏ฆa+0 a+0๏ถ
=๏ง
,
2 ๏ท๏ธ
๏จ 2
๏ฆa a๏ถ
=๏ง , ๏ท
๏จ2 2๏ธ
45. The x coordinate would be 2 + 3 = 5 and the y
coordinate would be 5 โ 2 = 3 . Thus the new
point would be ( 5,3) .
46. The new x coordinate would be โ1 โ 2 = โ3 and
the new y coordinate would be 6 + 4 = 10 . Thus
the new point would be ( โ3,10 )
47. a. If we use a right triangle to solve the
problem, we know the hypotenuse is 13 units in
length. One of the legs of the triangle will be
2+3=5. Thus the other leg will be:
y โ 11 = 0 or y + 13 = 0
y = 11
y = โ13
Thus, the points ( 3,11) and ( 3, โ13) are a
distance of 13 units from the point ( โ2, โ1) .
48. a. If we use a right triangle to solve the
problem, we know the hypotenuse is 17 units in
length. One of the legs of the triangle will be
2+6=8. Thus the other leg will be:
82 + b 2 = 17 2
64 + b 2 = 289
b 2 = 225
b = 15
Thus the coordinates will have an x value of
1 โ 15 = โ14 and 1 + 15 = 16 . So the points are
( โ14, โ6 ) and (16, โ6 ) .
152
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.1: The Distance and Midpoint Formulas
b. Consider points of the form ( x, โ6 ) that are
x = 4 + 3 3 or x = 4 โ 3 3
a distance of 17 units from the point (1, 2 ) .
Thus, the points 4 + 3 3, 0 and 4 โ 3 3, 0 are
d=
( x2 โ x1 )2 + ( y2 โ y1 )2
=
(1 โ x )2 + ( 2 โ ( โ6 ) )
= x โ 2 x + 1 + (8)
2
(
)
(
)
on the x-axis and a distance of 6 units from the
point ( 4, โ3) .
2
50. Points on the y-axis have an x-coordinate of 0.
Thus, we consider points of the form ( 0, y ) that
2
= x 2 โ 2 x + 1 + 64
are a distance of 6 units from the point ( 4, โ3) .
= x 2 โ 2 x + 65
d=
( x2 โ x1 )2 + ( y2 โ y1 )2
17 = x 2 โ 2 x + 65
=
( 4 โ 0 ) 2 + ( โ3 โ y ) 2
( x โ 2x + 65 )
17 2 =
2
2
= 42 + 9 + 6 y + y 2
= 16 + 9 + 6 y + y 2
289 = x 2 โ 2 x + 65
0 = x 2 โ 2 x โ 224
0 = ( x + 14 )( x โ 16 )
x + 14 = 0
or x โ 16 = 0
x = โ14
x = 16
Thus, the points ( โ14, โ6 ) and (16, โ6 ) are a
distance of 13 units from the point (1, 2 ) .
49. Points on the x-axis have a y-coordinate of 0. Thus,
we consider points of the form ( x, 0 ) that are a
distance of 6 units from the point ( 4, โ3) .
d=
( x2 โ x1 )2 + ( y2 โ y1 )2
=
( 4 โ x )2 + ( โ3 โ 0 )2
= 16 โ 8 x + x 2 + ( โ3)
2
= 16 โ 8 x + x 2 + 9
= x 2 โ 8 x + 25
6 = x 2 โ 8 x + 25
62 =
(
x 2 โ 8 x + 25
)
2
2
36 = x โ 8 x + 25
0 = x 2 โ 8 x โ 11
x=
โ(โ8) ยฑ (โ8) 2 โ 4(1)(โ11)
2(1)
8 ยฑ 64 + 44 8 ยฑ 108
=
2
2
8ยฑ6 3
=
= 4ยฑ3 3
2
=
=
y 2 + 6 y + 25
6=
y 2 + 6 y + 25
62 =
( y + 6 y + 25 )
2
2
36 = y 2 + 6 y + 25
0 = y 2 + 6 y โ 11
y=
( โ6) ยฑ (6)2 โ 4(1)( โ11)
2(1)
โ6 ยฑ 36 + 44 โ6 ยฑ 80
=
2
2
โ6 ยฑ 4 5
=
= โ3 ยฑ 2 5
2
y = โ3 + 2 5 or y = โ3 โ 2 5
=
(
)
(
Thus, the points 0, โ3 + 2 5 and 0, โ3 โ 2 5
)
are on the y-axis and a distance of 6 units from the
point ( 4, โ3) .
51. a.
To shift 3 units left and 4 units down, we
subtract 3 from the x-coordinate and subtract
4 from the y-coordinate.
(2 โ 3,5 โ 4) = ( โ1,1)
b. To shift left 2 units and up 8 units, we
subtract 2 from the x-coordinate and add 8 to
the y-coordinate.
( 2 โ 2,5 + 8) = ( 0,13)
153
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
52. Let the coordinates of point B be ( x, y ) . Using
the midpoint formula, we can write
๏ฆ โ1 + x 8 + y ๏ถ
( 2,3) = ๏ง 2 , 2 ๏ท .
๏จ
๏ธ
This leads to two equations we can solve.
โ1 + x
8+ y
=3
=2
2
2
โ1 + x = 4
8+ y = 6
y = โ2
x=5
Point B has coordinates ( 5, โ2 ) .
and
1 = x2
= (โ 4) 2 + (โ 1) 2 = 16 + 1 = 17
= (โ 4) 2 + 22 = 16 + 4
= 20 = 2 5
d ( A, F ) = (2 โ 0) 2 + (5 โ 0) 2
= 22 + 52 = 4 + 25
y + y2
y= 1
2
6 + y2
4=
2
8 = 6 + y2
2 = y2
56. Let P1 = (0, 0), P2 = (0, 4), P = ( x, y )
d ( P1 , P2 ) = (0 โ 0) 2 + (4 โ 0) 2
= 16 = 4
d ( P1 , P ) = ( x โ 0) 2 + ( y โ 0) 2
= x2 + y 2 = 4
โ x 2 + y 2 = 16
d ( P2 , P ) = ( x โ 0) 2 + ( y โ 4) 2
Thus, P2 = (1, 2) .
= x 2 + ( y โ 4) 2 = 4
๏ฆ x + x y + y2 ๏ถ
54. M = ( x, y ) = ๏ง 1 2 , 1
.
2 ๏ท๏ธ
๏จ 2
P2 = ( x2 , y2 ) = (7, โ2) and ( x, y ) = (5, โ4) , so
x +x
x= 1 2
2
x1 + 7
5=
2
10 = x1 + 7
and
3 = x1
( 2 โ 6 )2 + (2 โ 0)2
d ( B, E ) =
= 29
๏ฆ x + x y + y2 ๏ถ
53. M = ( x, y ) = ๏ง 1 2 , 1
.
2 ๏ท๏ธ
๏จ 2
P1 = ( x1 , y1 ) = (โ3, 6) and ( x, y ) = (โ1, 4) , so
x +x
x= 1 2
2
โ3 + x2
โ1 =
2
โ2 = โ3 + x2
( 0 โ 4 )2 + (3 โ 4)2
d (C , D) =
y + y2
y= 1
2
y1 + (โ2)
โ4 =
2
โ8 = y1 + (โ2)
โ x 2 + ( y โ 4) 2 = 16
Therefore,
y2 = ( y โ 4)
2
y 2 = y 2 โ 8 y + 16
8 y = 16
y=2
which gives
x 2 + 22 = 16
x 2 = 12
โ6 = y1
Thus, P1 = (3, โ6) .
๏ฆ0+6 0+0๏ถ
,
55. The midpoint of AB is: D = ๏ง
2 ๏ท๏ธ
๏จ 2
= ( 3, 0 )
๏ฆ0+4 0+4๏ถ
The midpoint of AC is: E = ๏ง
,
2 ๏ท๏ธ
๏จ 2
= ( 2, 2 )
x = ยฑ2 3
Two triangles are possible. The third vertex is
( โ 2 3, 2 ) or ( 2 3, 2) .
57. Let P1 = ( 0, 0 ) , P2 = ( 0, s ) , P3 = ( s, 0 ) , and
P4 = ( s, s ) .
๏ฆ6+4 0+4๏ถ
,
The midpoint of BC is: F = ๏ง
2 ๏ท๏ธ
๏จ 2
= ( 5, 2 )
154
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.1: The Distance and Midpoint Formulas
y
(0, s)
(s , s )
(0, 0)
(s, 0)
x
The points P1 and P4 are endpoints of one
diagonal and the points P2 and P3 are the
endpoints of the other diagonal.
๏ฆ0+s 0+s ๏ถ ๏ฆ s s ๏ถ
M 1,4 = ๏ง
,
๏ท=๏ง , ๏ท
2 ๏ธ ๏จ2 2๏ธ
๏จ 2
๏ฆ0+s s+0๏ถ ๏ฆ s s ๏ถ
M 2,3 = ๏ง
,
๏ท=๏ง , ๏ท
2 ๏ธ ๏จ2 2๏ธ
๏จ 2
The midpoints of the diagonals are the same.
Therefore, the diagonals of a square intersect at
their midpoints.
๏ฆ0+a 0+0๏ถ ๏ฆ a ๏ถ
P4 = M P1P2 = ๏ง
,
๏ท = ๏ง , 0๏ท
2 ๏ธ ๏จ2 ๏ธ
๏จ 2
๏ฆ
๏ถ
a
3 a ๏ท ๏ฆ 3a 3 a ๏ถ
๏ง
P5 = M P2 P3 = ๏ง a + 2 0 + 2 ๏ท = ๏ง๏ง ,
๏ท
,
4 ๏ท๏ธ
๏ง
๏ท ๏จ 4
2
๏ง 2
๏ท
๏จ
๏ธ
๏ฆ
a
3a ๏ถ
๏ง0+ 0+
๏ท
2,
2 ๏ท =๏ฆa, 3a๏ถ
P6 = M P1P3 = ๏ง
๏ง
๏ท
2
๏ง 2
๏ท ๏ง๏จ 4 4 ๏ท๏ธ
๏ง
๏ท
๏จ
๏ธ
2
๏ถ
๏ฆ 3a a ๏ถ ๏ฆ 3 a
d ( P4 , P5 ) = ๏ง โ ๏ท + ๏ง๏ง
โ 0 ๏ท๏ท
๏จ 4 2๏ธ ๏จ 4
๏ธ
2
๏ฆa๏ถ ๏ฆ 3a๏ถ
= ๏ง ๏ท + ๏ง๏ง
๏ท
๏จ 4 ๏ธ ๏จ 4 ๏ท๏ธ
58. Let P1 = ( 0, 0 ) , P2 = ( a, 0 ) , and
๏ฆa 3a๏ถ
P3 = ๏ง๏ง ,
๏ท๏ท . To show that these vertices
๏จ2 2 ๏ธ
form an equilateral triangle, we need to show
that the distance between any pair of points is the
same constant value.
d ( P1 , P2 ) =
( x2 โ x1 )2 + ( y2 โ y1 )2
=
( a โ 0 )2 + ( 0 โ 0 )2 =
d ( P2 , P3 ) =
2
๏ถ
๏ฆa
๏ถ ๏ฆ 3a
= ๏ง โ a ๏ท + ๏ง๏ง
โ 0 ๏ท๏ท
2
2
๏จ
๏ธ ๏จ
๏ธ
=
d ( P1 , P3 ) =
2
2
4a
= a2 = a
4
2
2
a
3a
+
=
4
4
2
๏ถ
๏ฆa
๏ถ ๏ฆ 3a
= ๏ง โ 0 ๏ท + ๏ง๏ง
โ 0 ๏ท๏ท
๏จ2
๏ธ ๏จ 2
๏ธ
=
2
2
a
a 2 3a 2
+
=
16 16
2
2
3a๏ถ
๏ฆ 3a a ๏ถ ๏ฆ 3 a
d ( P5 , P6 ) = ๏ง โ ๏ท + ๏ง๏ง
โ
๏ท
4 ๏ท๏ธ
๏จ 4 4๏ธ ๏จ 4
2
2
๏ฆa๏ถ
= ๏ง ๏ท + 02
๏จ2๏ธ
a
a2
=
4
2
Since the sides are the same length, the triangle
is equilateral.
=
2
a
a 2 3a 2
+
=
16 16
2
2
๏ฆ a๏ถ ๏ฆ 3a๏ถ
= ๏ง โ ๏ท + ๏ง๏ง
๏ท
๏จ 4 ๏ธ ๏จ 4 ๏ท๏ธ
2
( x2 โ x1 ) + ( y2 โ y1 )
2
2
๏ถ
๏ฆa a๏ถ ๏ฆ 3a
d ( P4 , P6 ) = ๏ง โ ๏ท + ๏ง๏ง
โ 0 ๏ท๏ท
๏จ4 2๏ธ ๏จ 4
๏ธ
a2 = a
( x2 โ x1 )2 + ( y2 โ y1 )2
2
=
2
a 2 3a 2
4a 2
+
=
= a2 = a
4
4
4
Since all three distances have the same constant
value, the triangle is an equilateral triangle.
Now find the midpoints:
=
155
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
59. d ( P1 , P2 ) = (โ 4 โ 2) 2 + (1 โ 1) 2
61. d ( P1 , P2 ) =
( 0 โ (โ 2) )2 + ( 7 โ (โ1) )2
= (โ 6) 2 + 02
= 22 + 82 = 4 + 64 = 68
= 36
=6
= 2 17
d ( P2 , P3 ) =
2
( โ 4 โ (โ 4) ) + (โ3 โ 1)
2
= 0 + (โ 4)
= 32 + (โ 5) 2 = 9 + 25
2
= 34
= 16
=4
( 3 โ (โ2) )2 + ( 2 โ (โ1) )2
d ( P1 , P3 ) =
= 52 + 32 = 25 + 9
d ( P1 , P3 ) = (โ 4 โ 2) 2 + (โ3 โ 1) 2
= 34
Since d ( P2 , P3 ) = d ( P1 , P3 ) , the triangle is
isosceles.
= (โ 6) 2 + (โ 4) 2
= 36 + 16
= 52
Since [ d ( P1 , P3 ) ] + [ d ( P2 , P3 ) ] = [ d ( P1 , P2 ) ] ,
2
= 2 13
Since [ d ( P1 , P2 ) ] + [ d ( P2 , P3 ) ] = [ d ( P1 , P3 ) ] ,
2
2
2
the triangle is a right triangle.
60. d ( P1 , P2 ) =
( 3 โ 0 )2 + (2 โ 7)2
d ( P2 , P3 ) =
2
( โ 4 โ 7 )2 + ( 0 โ 2 )2
= 7 2 + (โ 2) 2
= (โ11) 2 + (โ 2) 2
= 49 + 4
= 121 + 4 = 125
=5 5
= 53
d ( P2 , P3 ) =
( 4 โ 6 )2 + (โ5 โ 2)2
d ( P2 , P3 ) =
= 100
= 10
= 4 + 49
= 53
d ( P1 , P3 ) =
2
( 4 โ (โ1) ) + (โ5 โ 4)2
2
= 5 + (โ 9)
( 4 โ 7 )2 + ( 6 โ 2 )2
= (โ3) 2 + 42 = 9 + 16
2
= 25
=5
= 25 + 81
= 106
Since [ d ( P1 , P3 ) ] + [ d ( P2 , P3 ) ] = [ d ( P1 , P2 ) ] ,
2
Since [ d ( P1 , P2 ) ] + [ d ( P2 , P3 ) ] = [ d ( P1 , P3 ) ] ,
2
( 4 โ (โ 4) )2 + (6 โ 0)2
= 82 + 62 = 64 + 36
= (โ 2)2 + (โ 7) 2
d ( P1 , P3 ) =
2
the triangle is also a right triangle.
Therefore, the triangle is an isosceles right
triangle.
62. d ( P1 , P2 ) =
( 6 โ (โ1) )2 + (2 โ 4)2
2
2
2
the triangle is a right triangle.
the triangle is a right triangle.
Since d ( P1 , P2 ) = d ( P2 , P3 ) , the triangle is
isosceles.
Therefore, the triangle is an isosceles right
triangle.
156
Copyright ยฉ 2016 Pearson Education, Inc.
2
2
Section 2.1: The Distance and Midpoint Formulas
63. Using the Pythagorean Theorem:
902 + 902 = d 2
First: (60, 0), Second: (60, 60)
Third: (0, 60)
66. a.
8100 + 8100 = d 2
16200 = d
y
2
(0,60)
(60,60)
d = 16200 = 90 2 โ 127.28 feet
90
90
x
d
(0,0)
b. Using the distance formula:
90
90
(60,0)
d = (180 โ 60) 2 + (20 โ 60) 2
= 1202 + (โ 40) 2 = 16000
64. Using the Pythagorean Theorem:
602 + 602 = d 2
= 40 10 โ 126.49 feet
3600 + 3600 = d 2 โ 7200 = d 2
Using the distance formula:
c.
d = 7200 = 60 2 โ 84.85 feet
d = (220 โ 0) 2 + (220 โ 60)2
= 2202 + 1602 = 74000
60
60
= 20 185 โ 272.03 feet
d
60
60
65. a.
First: (90, 0), Second: (90, 90),
Third: (0, 90)
Y
(0,90)
67. The Focus heading east moves a distance 30t
after t hours. The truck heading south moves a
distance 40t after t hours. Their distance apart
after t hours is:
d = (30t ) 2 + (40t ) 2
= 900t 2 + 1600t 2
(90,90)
= 2500t 2
= 50t miles
30t
X
(0,0)
40t
(90,0)
d
b. Using the distance formula:
d = (310 โ 90) 2 + (15 โ 90) 2
= 2202 + (โ75)2 = 54025
= 5 2161 โ 232.43 feet
c.
68.
15 miles 5280 ft
1 hr
โ
โ
= 22 ft/sec
1 hr
1 mile 3600 sec
d = 1002 + ( 22t )
Using the distance formula:
d = (300 โ 0) 2 + (300 โ 90)2
2
= 10000 + 484t 2 feet
= 3002 + 2102 = 134100
= 30 149 โ 366.20 feet
157
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
pair ( 2013, 23624) . The midpoint is
22t
( year, $) = 2003 +2 2013 , 18660 +2 23624
d
100
=
4016 42284
,
2
2
= ( 2008, 21142)
69. a.
The shortest side is between P1 = (2.6, 1.5)
and P2 = (2.7, 1.7) . The estimate for the
desired intersection point is:
๏ฆ x1 + x2 y1 + y2 ๏ถ ๏ฆ 2.6 + 2.7 1.5 + 1.7 ๏ถ
,
๏ท
๏ง 2 , 2 ๏ท=๏ง
2
2
๏ธ
๏จ
๏ธ ๏จ
5.3
3.2
๏ฆ
๏ถ
,
=๏ง
๏ท
๏จ 2 2 ๏ธ
= ( 2.65, 1.6 )
b. Using the distance formula:
Using the midpoint, we estimate the poverty
level in 2008 to be $21,142. This is lower than
the actual value.
72. Answers will vary.
73. To find the domain, we know the denominator
cannot be zero.
2x โ 5 = 0
2x = 5
5
x=
2
d = (2.65 โ 1.4) 2 + (1.6 โ 1.3) 2
So the domain is all real numbers not equal to
{
= (1.25) 2 + (0.3) 2
or x | x โ
= 1.5625 + 0.09
74.
= 1.6525
โ 1.285 units
70. Let P1 = (2007, 345) and P2 = (2013, 466) . The
midpoint is:
x +x y +y
( x, y ) = 1 2 2 , 1 2 2
=
2007 + 2013 345 + 466
,
2
2
=
4020 811
,
2
2
= ( 2010, 405.5)
The estimate for 2010 is $405.5 billion. The
estimate net sales of Wal-Mart Stores, Inc. in
2010 is $0.5 billion off from the reported value
of $405 billion.
71. For 2003 we have the ordered pair
(2003,18660) and for 2013 we have the ordered
}
5
.
2
3 x 2 โ 7 x โ 20 = 0
(3x + 5)( x โ 4) = 0
(3x + 5) = 0 or ( x โ 4) = 0
5
x = โ or x = 4
3
5
So the solution set is: โ ,4
3
75. (7 + 3i )(1 โ 2i) = 7 โ 14i + 3i โ 6i 2
= 7 โ 11i โ 6( โ1)
= 7 โ 11i + 6
= 13 โ 11i
76. 5( x โ 3) + 2 x โฅ 6(2 x โ 3) โ 7
5 x โ 15 + 2 x โฅ 12 x โ 18 โ 7
7 x โ 15 โฅ 12 x โ 25
โ5 x โฅ โ10
xโค2
158
Copyright ยฉ 2016 Pearson Education, Inc.
5
2
Section 2.2: Graphs of Equations in Two Variables; Intercepts; Symmetry
Section 2.2
15. y 2 = x 2 + 9
32 = 02 + 9
02 = 32 + 9
02 = (โ3) 2 + 9
9=9
0 โ 18
0 โ 18
The point (0, 3) is on the graph of the equation.
1. 2 ( x + 3) โ 1 = โ7
2 ( x + 3) = โ6
x + 3 = โ3
16. y 3 = x + 1
x = โ6
The solution set is {โ6} .
23 = 1 + 1
03 = โ1 + 1
13 = 0 + 1
8โ 2
0=0
1=1
The points (0, 1) and (โ1, 0) are on the graph of
the equation.
2. x 2 โ 9 = 0
x2 = 9
x = ยฑ 9 = ยฑ3
The solution set is {โ3,3} .
17. x 2 + y 2 = 4
3. intercepts
(โ 2) 2 + 22 = 4
4=4
8โ 4
(0, 2) and
4. y = 0
( 2) +( 2) = 4
2
2
( 2, 2 ) are on the graph of the
4=4
equation.
5. y-axis
18. x 2 + 4 y 2 = 4
6. 4
7.
02 + 22 = 4
02 + 4 โ
12 = 4 22 + 4 โ
02 = 4 22 + 4 ( 12 ) = 4
4=4
4=4
5โ 4
The points (0, 1) and (2, 0) are on the graph of
the equation.
2
( โ3, 4 )
8. True
9. False; the y-coordinate of a point at which the
graph crosses or touches the x-axis is always 0.
The x-coordinate of such a point is an
x-intercept.
10. False; a graph can be symmetric with respect to
both coordinate axes (in such cases it will also be
symmetric with respect to the origin).
For example: x 2 + y 2 = 1
19. y = x + 2
x-intercept:
0= x+2
โ2 = x
y-intercept:
y = 0+2
y=2
The intercepts are ( โ2, 0 ) and ( 0, 2 ) .
11. d
12. c
13. y = x 4 โ x
4 = (2) 4 โ 2
0 = 04 โ 0
1 = 14 โ 1
0=0
1โ 0
4 โ 16 โ 2
The point (0, 0) is on the graph of the equation.
3
14. y = x โ 2 x
3
3
3
0 = 0 โ2 0
1=1 โ2 1
โ1 = 1 โ 2 1
0=0
1 โ โ1
โ1 = โ1
The points (0, 0) and (1, โ1) are on the graph of
the equation.
20. y = x โ 6
x-intercept:
0 = xโ6
6=x
159
Copyright ยฉ 2016 Pearson Education, Inc.
y-intercept:
y = 0โ6
y = โ6
Chapter 2: Graphs
The intercepts are ( 6, 0 ) and ( 0, โ6 ) .
23. y = x 2 โ 1
x-intercepts:
0 = x2 โ 1
x2 = 1
y-intercept:
y = 02 โ 1
y = โ1
x = ยฑ1
The intercepts are ( โ1, 0 ) , (1, 0 ) , and ( 0, โ1) .
21. y = 2 x + 8
x-intercept:
y-intercept:
0 = 2x + 8
y = 2 (0) + 8
2 x = โ8
y =8
x = โ4
The intercepts are ( โ4, 0 ) and ( 0,8 ) .
24. y = x 2 โ 9
x-intercepts:
0 = x2 โ 9
x2 = 9
y-intercept:
y = 02 โ 9
y = โ9
x = ยฑ3
The intercepts are ( โ3, 0 ) , ( 3, 0 ) , and ( 0, โ9 ) .
22. y = 3 x โ 9
x-intercept:
y-intercept:
0 = 3x โ 9
y = 3(0) โ 9
3x = 9
y = โ9
x=3
The intercepts are ( 3, 0 ) and ( 0, โ9 ) .
25. y = โ x 2 + 4
x-intercepts:
y-intercepts:
2
0 = โx + 4
y = โ ( 0) + 4
x2 = 4
y=4
2
x = ยฑ2
160
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Graphs of Equations in Two Variables; Intercepts; Symmetry
The intercepts are ( โ2, 0 ) , ( 2, 0 ) , and ( 0, 4 ) .
28. 5 x + 2 y = 10
x-intercepts:
5 x + 2 ( 0 ) = 10
y-intercept:
5 ( 0 ) + 2 y = 10
5 x = 10
2 y = 10
x=2
y=5
The intercepts are ( 2, 0 ) and ( 0,5 ) .
26. y = โ x 2 + 1
x-intercepts:
y-intercept:
2
0 = โx +1
y = โ (0) + 1
x2 = 1
y =1
2
x = ยฑ1
The intercepts are ( โ1, 0 ) , (1, 0 ) , and ( 0,1) .
29. 9 x 2 + 4 y = 36
x-intercepts:
y-intercept:
2
9 x + 4 ( 0 ) = 36
9 ( 0 ) + 4 y = 36
9 x 2 = 36
4 y = 36
y=9
2
2
x =4
x = ยฑ2
The intercepts are ( โ2, 0 ) , ( 2, 0 ) , and ( 0,9 ) .
27. 2 x + 3 y = 6
x-intercepts:
2x + 3(0) = 6
2x = 6
x=3
y-intercept:
2 (0) + 3 y = 6
3y = 6
y=2
The intercepts are ( 3, 0 ) and ( 0, 2 ) .
30. 4 x 2 + y = 4
x-intercepts:
y-intercept:
2
4x + 0 = 4
4 ( 0) + y = 4
4 x2 = 4
y=4
2
2
x =1
x = ยฑ1
161
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
The intercepts are ( โ1, 0 ) , (1, 0 ) , and ( 0, 4 ) .
34.
35.
y
5
31.
(c) = (โ5, 2)
(a) = (5, 2)
โ5
5
(5, โ2)
(b) = (โ5, โ2)
โ5
36.
32.
37.
33.
38.
162
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Graphs of Equations in Two Variables; Intercepts; Symmetry
39.
49. a.
x-intercept: [ โ2,1] , y-intercept 0
b. Not symmetric to x-axis, y-axis, or origin.
50. a.
x-intercept: [ โ1, 2] , y-intercept 0
b. Not symmetric to x-axis, y-axis, or origin.
51. a. Intercepts: none
b. Symmetric with respect to the origin.
40.
52. a. Intercepts: none
b. Symmetric with respect to the x-axis.
53.
41. a.
Intercepts: ( โ1, 0 ) and (1, 0 )
b. Symmetric with respect to the x-axis, y-axis,
and the origin.
42. a.
54.
Intercepts: ( 0,1)
b. Not symmetric to the x-axis, the y-axis, nor
the origin
43. a.
(
)
(
Intercepts: โ ฯ2 , 0 , ( 0,1) , and ฯ2 , 0
)
b. Symmetric with respect to the y-axis.
44. a.
55.
Intercepts: ( โ2, 0 ) , ( 0, โ3) , and ( 2, 0 )
b. Symmetric with respect to the y-axis.
45. a.
Intercepts: ( 0, 0 )
b. Symmetric with respect to the x-axis.
46. a.
Intercepts: ( โ2, 0 ) , ( 0, 2 ) , ( 0, โ2 ) , and ( 2, 0 )
56.
b. Symmetric with respect to the x-axis, y-axis,
and the origin.
47. a.
Intercepts: ( โ2, 0 ) , ( 0, 0 ) , and ( 2, 0 )
b. Symmetric with respect to the origin.
48. a.
Intercepts: ( โ4, 0 ) , ( 0, 0 ) , and ( 4, 0 )
b. Symmetric with respect to the origin.
163
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
Test y-axis symmetry: Let x = โ x
57. y 2 = x + 4
x-intercepts:
02 = x + 4
โ4 = x
y-intercepts:
y2 = 0 + 4
y2 = 4
y = ยฑ2
The intercepts are ( โ4, 0 ) , ( 0, โ2 ) and ( 0, 2 ) .
Test x-axis symmetry: Let y = โ y
( โ y )2 = x + 4
y 2 = x + 4 same
Test y-axis symmetry: Let x = โ x
y 2 = โ x + 4 different
Test origin symmetry: Let x = โ x and y = โ y .
( โ y )2 = โ x + 4
Test origin symmetry: Let x = โ x and y = โ y
โ y = 3 โx = โ3 x
y = 3 x same
Therefore, the graph will have origin symmetry.
60. y = 5 x
x-intercepts:
y-intercepts:
3
y=50 =0
0= x
0=x
The only intercept is ( 0, 0 ) .
Test x-axis symmetry: Let y = โ y
โ y = 5 x different
y 2 = โ x + 4 different
Therefore, the graph will have x-axis symmetry.
58. y 2 = x + 9
x-intercepts:
(0) 2 = โ x + 9
0 = โx + 9
x=9
y = 3 โ x = โ 3 x different
Test y-axis symmetry: Let x = โ x
y = 5 โ x = โ 5 x different
Test origin symmetry: Let x = โ x and y = โ y
y-intercepts:
y2 = 0 + 9
y2 = 9
y = ยฑ3
The intercepts are ( โ9, 0 ) , ( 0, โ3) and ( 0,3) .
Test x-axis symmetry: Let y = โ y
2
(โ y) = x + 9
y 2 = x + 9 same
โ y = 5 โx = โ5 x
y = 5 x same
Therefore, the graph will have origin symmetry.
61. x 2 + y โ 9 = 0
x-intercepts:
x2 โ 9 = 0
x2 = 9
y-intercepts:
02 + y โ 9 = 0
y=9
y = โ x + 9 different
x = ยฑ3
The intercepts are ( โ3, 0 ) , ( 3, 0 ) , and ( 0,9 ) .
Test origin symmetry: Let x = โ x and y = โ y .
Test x-axis symmetry: Let y = โ y
( โ y )2 = โ x + 9
x 2 โ y โ 9 = 0 different
Test y-axis symmetry: Let x = โ x
2
y 2 = โ x + 9 different
Test y-axis symmetry: Let x = โ x
Therefore, the graph will have x-axis symmetry.
59. y = 3 x
x-intercepts:
y-intercepts:
3
y=30 =0
0= x
0=x
The only intercept is ( 0, 0 ) .
( โ x )2 + y โ 9 = 0
x 2 + y โ 9 = 0 same
Test origin symmetry: Let x = โ x and y = โ y
( โ x )2 โ y โ 9 = 0
x 2 โ y โ 9 = 0 different
Therefore, the graph will have y-axis symmetry.
Test x-axis symmetry: Let y = โ y
โ y = 3 x different
164
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Graphs of Equations in Two Variables; Intercepts; Symmetry
62. x 2 โ y โ 4 = 0
x-intercepts:
y-intercept:
x2 โ 0 โ 4 = 0
02 โ y โ 4 = 0
โy = 4
x2 = 4
y = โ4
x = ยฑ2
The intercepts are ( โ2, 0 ) , ( 2, 0 ) , and ( 0, โ4 ) .
Test x-axis symmetry: Let y = โ y
x2 โ ( โ y ) โ 4 = 0
64. 4 x 2 + y 2 = 4
x-intercepts:
y-intercepts:
2
4 x 2 + 02 = 4
4 ( 0) + y2 = 4
4 x2 = 4
y2 = 4
y = ยฑ2
x2 = 1
x = ยฑ1
The intercepts are ( โ1, 0 ) , (1, 0 ) , ( 0, โ2 ) , and
( 0, 2 ) .
x 2 + y โ 4 = 0 different
Test y-axis symmetry: Let x = โ x
( โ x )2 โ y โ 4 = 0
Test x-axis symmetry: Let y = โ y
2
4 x2 + ( โ y ) = 4
4 x 2 + y 2 = 4 same
x 2 โ y โ 4 = 0 same
Test origin symmetry: Let x = โ x and y = โ y
Test y-axis symmetry: Let x = โ x
2
( โ x )2 โ ( โ y ) โ 4 = 0
4 ( โx) + y2 = 4
Therefore, the graph will have y-axis symmetry.
Test origin symmetry: Let x = โ x and y = โ y
4 x 2 + y 2 = 4 same
x 2 + y โ 4 = 0 different
2
y-intercepts:
2
2
9 x 2 + 4 ( 0 ) = 36
9 ( 0 ) + 4 y 2 = 36
9 x = 36
x2 = 4
x = ยฑ2
4 y = 36
y2 = 9
y = ยฑ3
2
2
The intercepts are ( โ2, 0 ) , ( 2, 0 ) , ( 0, โ3) , and
( 0,3) .
Test x-axis symmetry: Let y = โ y
2
9 x 2 + 4 ( โ y ) = 36
9 x 2 + 4 y 2 = 36 same
Test y-axis symmetry: Let x = โ x
2
9 ( โ x ) + 4 y = 36
2
4 x 2 + y 2 = 4 same
Therefore, the graph will have x-axis, y-axis, and
origin symmetry.
65. y = x 3 โ 27
x-intercepts:
0 = x3 โ 27
y-intercepts:
y = 03 โ 27
y = โ27
x3 = 27
x=3
The intercepts are ( 3, 0 ) and ( 0, โ27 ) .
Test x-axis symmetry: Let y = โ y
โ y = x3 โ 27 different
Test y-axis symmetry: Let x = โ x
9 x 2 + 4 y 2 = 36 same
3
Test origin symmetry: Let x = โ x and y = โ y
2
2
4(โx) + (โ y) = 4
63. 9 x 2 + 4 y 2 = 36
x-intercepts:
2
9 ( โ x ) + 4 ( โ y ) = 36
y = ( โ x ) โ 27
y = โ x3 โ 27 different
Test origin symmetry: Let x = โ x and y = โ y
9 x 2 + 4 y 2 = 36 same
3
Therefore, the graph will have x-axis, y-axis, and
origin symmetry.
โ y = ( โ x ) โ 27
y = x3 + 27 different
Therefore, the graph has none of the indicated
symmetries.
165
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
66. y = x 4 โ 1
x-intercepts:
0 = x4 โ 1
Test x-axis symmetry: Let y = โ y
y-intercepts:
y = 04 โ 1
y = โ1
x4 = 1
x = ยฑ1
The intercepts are ( โ1, 0 ) , (1, 0 ) , and ( 0, โ1) .
Test x-axis symmetry: Let y = โ y
โ y = x 4 โ 1 different
Test y-axis symmetry: Let x = โ x
4
y = (โx) โ1
y = x 4 โ 1 same
Test origin symmetry: Let x = โ x and y = โ y
4
โ y = (โx) โ1
โ y = x 4 โ 1 different
Therefore, the graph will have y-axis symmetry.
67. y = x 2 โ 3x โ 4
x-intercepts:
0 = x 2 โ 3x โ 4
0 = ( x โ 4 )( x + 1)
y-intercepts:
y = 02 โ 3 ( 0 ) โ 4
y = โ4
x = 4 or x = โ1
The intercepts are ( 4, 0 ) , ( โ1, 0 ) , and ( 0, โ4 ) .
Test x-axis symmetry: Let y = โ y
โ y = x 2 โ 3 x โ 4 different
Test y-axis symmetry: Let x = โ x
2
โ y = x 2 + 4 different
Test y-axis symmetry: Let x = โ x
2
y = (โx) + 4
y = x 2 + 4 same
Test origin symmetry: Let x = โ x and y = โ y
2
โ y = (โx) + 4
โ y = x 2 + 4 different
Therefore, the graph will have y-axis symmetry.
69. y =
3x
2
x +9
x-intercepts:
y-intercepts:
3(0) 0
3x
y= 2
= =0
0= 2
0 +9 9
x +9
3x = 0
x=0
The only intercept is ( 0, 0 ) .
Test x-axis symmetry: Let y = โ y
3x
โy =
different
x +9
Test y-axis symmetry: Let x = โ x
3( โx )
y=
( โ x )2 + 9
y=โ
2
3x
x2 + 9
different
y = ( โx) โ 3( โx) โ 4
Test origin symmetry: Let x = โ x and y = โ y
y = x 2 + 3 x โ 4 different
โy =
Test origin symmetry: Let x = โ x and y = โ y
2
โ y = ( โx ) โ 3( โ x ) โ 4
3( โx)
( โ x )2 + 9
โy = โ
โ y = x 2 + 3x โ 4 different
Therefore, the graph has none of the indicated
symmetries.
y=
3x
2
x +9
3x
x2 + 9
Therefore, the graph has origin symmetry.
2
68. y = x + 4
x-intercepts:
0 = x2 + 4
same
y-intercepts:
y = 02 + 4
y=4
x 2 = โ4
no real solution
The only intercept is ( 0, 4 ) .
166
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Graphs of Equations in Two Variables; Intercepts; Symmetry
x2 โ 4
2x
x-intercepts:
x2 โ 4
0=
2x
2
x โ4 = 0
Test y-axis symmetry: Let x = โ x
70. y =
3
y-intercepts:
02 โ 4 โ4
y=
=
2 (0)
0
undefined
2
x =4
x = ยฑ2
The intercepts are ( โ2, 0 ) and ( 2, 0 ) .
Test x-axis symmetry: Let y = โ y
x2 โ 4
โy =
different
2x
Test y-axis symmetry: Let x = โ x
( โ x )2 โ 4
y=
2(โx)
y=โ
x โ4
different
2x
(โx) โ 4
2(โx)
x2 โ 4
โ2 x
x2 โ 4
y=
same
2x
Therefore, the graph has origin symmetry.
โy =
โ x3
x2 โ 9
x-intercepts:
โ x3
0= 2
x โ9
3
โx = 0
y-intercepts:
โ03
0
y= 2
=
=0
0 โ 9 โ9
Test x-axis symmetry: Let y = โ y
y=
โ x3
x2 โ 9
x3
x2 โ 9
( โ x )2 โ 9
x3
Test origin symmetry: Let x = โ x and y = โ y
โy =
โy =
y=
โ (โx)
3
( โ x )2 โ 9
x3
x2 โ 9
โ x3
same
x2 โ 9
Therefore, the graph has origin symmetry.
x4 + 1
0=
y-intercepts:
04 + 1 1
y=
=
5
0
2 ( 0)
x4 + 1
2 x5
undefined
x 4 = โ1
no real solution
There are no intercepts for the graph of this
equation.
Test x-axis symmetry: Let y = โ y
โy =
x4 + 1
different
2 x5
Test y-axis symmetry: Let x = โ x
y=
y=
( โ x )4 + 1
5
2(โx)
x4 + 1
โ2 x5
โy =
โy =
different
different
x2 โ 9
different
Test origin symmetry: Let x = โ x and y = โ y
x=0
The only intercept is ( 0, 0 ) .
โy =
โ (โx)
2 x5
x-intercepts:
2
71. y =
y=
72. y =
2
Test origin symmetry: Let x = โ x and y = โ y
โy =
y=
y=
( โ x )4 + 1
5
2(โx)
x4 + 1
โ2 x5
x4 + 1
2 x5
same
Therefore, the graph has origin symmetry.
167
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
73. y = x3
77. If the point ( a, 4 ) is on the graph of
y = x 2 + 3 x , then we have
4 = a 2 + 3a
0 = a 2 + 3a โ 4
0 = ( a + 4 )( a โ 1)
a + 4 = 0 or a โ 1 = 0
a = โ4
a =1
Thus, a = โ4 or a = 1 .
78. If the point ( a, โ5 ) is on the graph of
74. x = y 2
y = x 2 + 6 x , then we have
โ5 = a 2 + 6a
0 = a 2 + 6a + 5
0 = ( a + 5 )( a + 1)
a + 5 = 0 or a + 1 = 0
a = โ5
a = โ1
Thus, a = โ5 or a = โ1 .
79. For a graph with origin symmetry, if the point
( a, b ) is on the graph, then so is the point
75. y = x
( โa, โb ) . Since the point (1, 2 ) is on the graph
of an equation with origin symmetry, the point
( โ1, โ2 ) must also be on the graph.
80. For a graph with y-axis symmetry, if the point
( a, b ) is on the graph, then so is the point
( โa, b ) . Since 6 is an x-intercept in this case, the
point ( 6, 0 ) is on the graph of the equation. Due
to the y-axis symmetry, the point ( โ6, 0 ) must
76. y =
1
x
also be on the graph. Therefore, โ6 is another xintercept.
81. For a graph with origin symmetry, if the point
( a, b ) is on the graph, then so is the point
( โa, โb ) . Since โ4 is an x-intercept in this case,
the point ( โ4, 0 ) is on the graph of the equation.
Due to the origin symmetry, the point ( 4, 0 )
must also be on the graph. Therefore, 4 is
another x-intercept.
82. For a graph with x-axis symmetry, if the point
( a, b ) is on the graph, then so is the point
( a, โb ) . Since 2 is a y-intercept in this case, the
168
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.2: Graphs of Equations in Two Variables; Intercepts; Symmetry
point ( 0, 2 ) is on the graph of the equation. Due
Test origin symmetry: Let x = โ x and y = โ y
(( โ x ) + ( โ y ) โ ( โ x )) = ( โ x ) + ( โ y )
to the x-axis symmetry, the point ( 0, โ2 ) must
2
also be on the graph. Therefore, โ2 is another yintercept.
83. a.
( x + y โ x) = x + y
2
2
2
2
2
2
( x โ x) = x
2
2
2
84. a.
2
2
x 4 โ 2 x3 = 0
x3 ( x โ 2 ) = 0
x3 = 0 or
xโ2 = 0
x=0
x=2
(( 0) + y โ 0) = ( 0) + y
2
2
(y ) = y
2 2
2
4
2
y =y
2
different
16 y 2 = 120 x โ 225
x-intercepts:
16 y 2 = 120 ( 0 ) โ 225
2
16 ( 0 ) = 120 x โ 225
0 = 120 x โ 225
โ120 x = โ225
โ225 15
x=
=
โ120 8
2
๏ฆ 15 ๏ถ
The only intercept is ๏ง , 0 ๏ท .
๏จ8 ๏ธ
4
y โ y2 = 0
(
2
y-intercepts:
y-intercepts:
2
2
16 y 2 = โ225
225
y2 = โ
16
no real solution
x 4 โ 2 x3 + x 2 = x 2
2
2
2
Thus, the graph will have x-axis symmetry.
( x + ( 0) โ x ) = x + ( 0)
2
2
( x + y + x) = x + y
2
x-intercepts:
2
2
2
b. Test x-axis symmetry: Let y = โ y
)
2
16 ( โ y ) = 120 x โ 225
y2 y2 โ1 = 0
y 2 = 0 or
y2 โ1 = 0
16 y 2 = 120 x โ 225 same
y=0
y2 = 1
y = ยฑ1
Test y-axis symmetry: Let x = โ x
16 y 2 = 120 ( โ x ) โ 225
The intercepts are ( 0, 0 ) , ( 2, 0 ) , ( 0, โ1) ,
16 y 2 = โ120 x โ 225 different
and ( 0,1) .
Test origin symmetry: Let x = โ x and y = โ y
2
16 ( โ y ) = 120 ( โ x ) โ 225
b. Test x-axis symmetry: Let y = โ y
( x + (โ y) โ x) = x + (โ y)
2
2
2
2
( x + y โ x) = x + y
2
2
2
2
2
16 y 2 = โ120 x โ 225 different
2
Thus, the graph will have x-axis symmetry.
same
85. a.
Test y-axis symmetry: Let x = โ x
(( โ x ) + y โ ( โ x )) = ( โ x ) + y
2
2
2
2
( x + y + x) = x + y
2
2
2
2
2
2
different
169
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
88. Answers will vary
89. Answers will vary
90. Answers will vary.
Case 1: Graph has x-axis and y-axis symmetry,
show origin symmetry.
( x, y ) on graph โ ( x, โ y ) on graph
(from x-axis symmetry)
( x, โ y ) on graph โ ( โ x, โ y ) on graph
( from y-axis symmetry )
Since the point ( โ x, โ y ) is also on the graph, the
graph has origin symmetry.
Case 2: Graph has x-axis and origin symmetry,
show y-axis symmetry.
( x, y ) on graph โ ( x, โ y ) on graph
b.
Since
x 2 = x for all x , the graphs of
y = x 2 and y = x are the same.
c.
For y =
( x ) , the domain of the variable
2
x is x โฅ 0 ; for y = x , the domain of the
variable x is all real numbers. Thus,
( x ) = x only for x โฅ 0.
2
d. For y = x 2 , the range of the variable y is
y โฅ 0 ; for y = x , the range of the variable
y is all real numbers. Also,
if x โฅ 0 . Otherwise,
x 2 = x only
x2 = โ x .
86. Answers will vary. A complete graph presents
enough of the graph to the viewer so they can
โseeโ the rest of the graph as an obvious
continuation of what is shown.
87. Answers will vary. One example:
y
x
( from x-axis symmetry )
( x, โ y ) on graph โ ( โ x, y ) on graph
( from origin symmetry )
Since the point ( โ x, y ) is also on the graph, the
graph has y-axis symmetry.
Case 3: Graph has y-axis and origin symmetry,
show x-axis symmetry.
( x, y ) on graph โ ( โ x, y ) on graph
( from y-axis symmetry )
( โ x, y ) on graph โ ( x, โ y ) on graph
( from origin symmetry )
Since the point ( x, โ y ) is also on the graph, the
graph has x-axis symmetry.
91. Answers may vary. The graph must contain the
points ( โ2,5 ) , ( โ1,3) , and ( 0, 2 ) . For the
graph to be symmetric about the y-axis, the graph
must also contain the points ( 2,5 ) and (1,3)
(note that (0, 2) is on the y-axis).
For the graph to also be symmetric with respect
to the x-axis, the graph must also contain the
points ( โ2, โ5 ) , ( โ1, โ3) , ( 0, โ2 ) , ( 2, โ5 ) , and
(1, โ3) . Recall that a graph with two of the
symmetries (x-axis, y-axis, origin) will
necessarily have the third. Therefore, if the
original graph with y-axis symmetry also has x170
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Lines
axis symmetry, then it will also have origin
symmetry.
92.
6 + ( โ2) 4 1
= =
6 โ ( โ 2) 8 2
93. 3x 2 โ 30 x + 75 =
3( x 2 โ 10 x + 25) =
3( x โ 5)( x โ 5) = 3( x โ 5) 2
6. m1 = m2 ; y-intercepts; m1 โ
m2 = โ1
7. 2
8. โ
9. False; perpendicular lines have slopes that are
opposite-reciprocals of each other.
10. d
94.
โ196 = ( โ1)(196) = 14i
11. c
95.
x2 โ 8x + 4 = 0
12. b
x 2 โ 8 x = โ4
x 2 โ 8 x + 16 = โ4 + 16
1
2
13. a.
( x โ 4)2 = 12
Slope =
b. If x increases by 2 units, y will increase
by 1 unit.
x โ 4 = ยฑ 12
x = 4 ยฑ 12
= 4ยฑ2 3
1โ 0 1
=
2โ0 2
14. a.
Slope =
1โ 0
1
=โ
โ2โ0
2
b. If x increases by 2 units, y will decrease
by 1 unit.
Section 2.3
15. a.
1. undefined; 0
2. 3; 2
x-intercept: 2 x + 3(0) = 6
2x = 6
x=3
y-intercept: 2(0) + 3 y = 6
3y = 6
y=2
Slope =
b. If x increases by 3 units, y will decrease
by 1 unit.
16. a.
Slope =
2 โ1
1
=
2 โ (โ1) 3
b. If x increases by 3 units, y will increase
by 1 unit.
3. True
4. False; the slope is 3 .
2
2 y = 3x + 5
3
5
y = x+
2
2
1โ 2
1
=โ
1 โ (โ 2)
3
17.
Slope =
y2 โ y1 0 โ 3
3
=
=โ
x2 โ x1 4 โ 2
2
?
5. True; 2 (1) + ( 2 ) = 4
?
2 + 2=4
4 = 4 True
171
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
18. Slope =
y2 โ y1 4 โ 2 2
=
=
= โ2
x2 โ x1 3 โ 4 โ1
22. Slope =
y2 โ y1
2โ2
0
=
=
=0
x2 โ x1 โ5 โ 4 โ9
19. Slope =
y2 โ y1
1โ 3
โ2
1
=
=
=โ
x2 โ x1 2 โ (โ 2)
4
2
23. Slope =
y2 โ y1
โ2โ2
โ4
=
=
undefined.
x2 โ x1 โ1 โ (โ1)
0
20. Slope =
y2 โ y1
3 โ1
2
=
=
x2 โ x1 2 โ (โ 1) 3
24. Slope =
y2 โ y1 2 โ 0 2
=
= undefined.
x2 โ x1 2 โ 2 0
21. Slope =
y2 โ y1 โ1 โ (โ1) 0
=
= =0
x2 โ x1
2 โ (โ3) 5
25. P = (1, 2 ) ; m = 3 ; y โ 2 = 3( x โ 1)
172
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Lines
26. P = ( 2,1) ; m = 4 ; y โ 1 = 4( x โ 2)
30. P = ( 2, โ4 ) ; m = 0 ; y = โ4
3
3
27. P = ( 2, 4 ) ; m = โ ; y โ 4 = โ ( x โ 2)
4
4
31. P = ( 0,3) ; slope undefined ; x = 0
(note: the line is the y-axis)
28. P = (1,3) ; m = โ
2
2
; y โ 3 = โ ( x โ 1)
5
5
29. P = ( โ1, 3) ; m = 0 ; y โ 3 = 0
32. P = ( โ2, 0 ) ; slope undefined x = โ2
4
; point: (1, 2 )
1
If x increases by 1 unit, then y increases by 4
units.
Answers will vary. Three possible points are:
x = 1 + 1 = 2 and y = 2 + 4 = 6
33. Slope = 4 =
( 2, 6 )
x = 2 + 1 = 3 and y = 6 + 4 = 10
( 3,10 )
x = 3 + 1 = 4 and y = 10 + 4 = 14
( 4,14 )
173
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
2
; point: ( โ2,3)
1
If x increases by 1 unit, then y increases by 2
units.
Answers will vary. Three possible points are:
x = โ2 + 1 = โ1 and y = 3 + 2 = 5
34. Slope = 2 =
( โ1,5)
( โ1, โ5 )
x = โ1 + 1 = 0 and y = โ5 โ 2 = โ7
( 0, โ7 )
x = 0 + 1 = 1 and y = โ7 โ 2 = โ9
(1, โ9 )
x = โ1 + 1 = 0 and y = 5 + 2 = 7
( 0, 7 )
โ1
; point: ( 4,1)
1
If x increases by 1 unit, then y decreases by 1
unit.
Answers will vary. Three possible points are:
x = 4 + 1 = 5 and y = 1 โ 1 = 0
38. Slope = โ1 =
x = 0 + 1 = 1 and y = 7 + 2 = 9
(1,9 )
3 โ3
=
; point: ( 2, โ4 )
2 2
If x increases by 2 units, then y decreases by 3
units.
Answers will vary. Three possible points are:
x = 2 + 2 = 4 and y = โ4 โ 3 = โ7
35. Slope = โ
( 4, โ7 )
( 5, 0 )
x = 5 + 1 = 6 and y = 0 โ 1 = โ1
( 6, โ1)
x = 6 + 1 = 7 and y = โ1 โ 1 = โ2
x = 4 + 2 = 6 and y = โ7 โ 3 = โ10
( 6, โ10 )
x = 6 + 2 = 8 and y = โ10 โ 3 = โ13
(8, โ13)
4
; point: ( โ3, 2 )
3
If x increases by 3 units, then y increases by 4
units.
Answers will vary. Three possible points are:
x = โ3 + 3 = 0 and y = 2 + 4 = 6
36. Slope =
( 0, 6 )
x = 0 + 3 = 3 and y = 6 + 4 = 10
( 3,10 )
x = 3 + 3 = 6 and y = 10 + 4 = 14
( 6,14 )
โ2
; point: ( โ2, โ3)
1
If x increases by 1 unit, then y decreases by 2
units.
37. Slope = โ2 =
Answers will vary. Three possible points are:
x = โ2 + 1 = โ1 and y = โ3 โ 2 = โ5
( 7, โ2 )
39. (0, 0) and (2, 1) are points on the line.
1โ 0 1
Slope =
=
2โ0 2
y -intercept is 0; using y = mx + b :
1
y = x+0
2
2y = x
0 = x โ 2y
1
x โ 2 y = 0 or y = x
2
40. (0, 0) and (โ2, 1) are points on the line.
1โ 0
1
1
Slope =
=
=โ
โ2โ0 โ2
2
y -intercept is 0; using y = mx + b :
1
y = โ x+0
2
2 y = โx
x + 2y = 0
1
x + 2 y = 0 or y = โ x
2
174
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Lines
41. (โ1, 3) and (1, 1) are points on the line.
1โ 3
โ2
Slope =
=
= โ1
1 โ (โ1) 2
Using y โ y1 = m( x โ x1 )
y โ 1 = โ1( x โ 1)
y โ1 = โx +1
y = โx + 2
x + y = 2 or y = โ x + 2
42. (โ1, 1) and (2, 2) are points on the line.
2 โ1
1
Slope =
=
2 โ (โ1) 3
Using y โ y1 = m( x โ x1 )
46. y โ y1 = m( x โ x1 ), m = 1
y โ 1 = 1( x โ (โ1))
y โ1 = x +1
y = x+2
x โ y = โ 2 or y = x + 2
47. Slope = 3; containing (โ2, 3)
y โ y1 = m( x โ x1 )
y โ 3 = 3( x โ (โ 2))
y โ 3 = 3x + 6
y = 3x + 9
3x โ y = โ 9 or y = 3 x + 9
48. Slope = 2; containing the point (4, โ3)
y โ y1 = m( x โ x1 )
1
( x โ (โ1) )
3
1
y โ 1 = ( x + 1)
3
1
1
y โ1 = x +
3
3
1
4
y = x+
3
3
y โ1 =
y โ (โ3) = 2( x โ 4)
y + 3 = 2x โ 8
y = 2 x โ 11
2 x โ y = 11 or y = 2 x โ 11
1
4
x โ 3 y = โ 4 or y = x +
3
3
2
49. Slope = โ ; containing (1, โ1)
3
y โ y1 = m( x โ x1 )
2
( x โ 1)
3
2
2
y +1 = โ x +
3
3
2
1
y = โ xโ
3
3
43. y โ y1 = m( x โ x1 ), m = 2
y โ 3 = 2( x โ 3)
y โ 3 = 2x โ 6
y = 2x โ 3
2 x โ y = 3 or y = 2 x โ 3
y โ (โ1) = โ
44. y โ y1 = m( x โ x1 ), m = โ1
y โ 2 = โ1( x โ 1)
y โ 2 = โx +1
y = โx + 3
x + y = 3 or y = โ x + 3
2 x + 3 y = โ1 or y = โ
45. y โ y1 = m( x โ x1 ), m = โ
1
2
1
y โ 2 = โ ( x โ 1)
2
1
1
yโ2 = โ x+
2
2
1
5
y = โ x+
2
2
2
1
xโ
3
3
1
50. Slope = ; containing the point (3, 1)
2
y โ y1 = m( x โ x1 )
1
( x โ 3)
2
1
3
y โ1 = x โ
2
2
1
1
y = xโ
2
2
y โ1 =
x โ 2 y = 1 or y =
1
5
x + 2 y = 5 or y = โ x +
2
2
175
Copyright ยฉ 2016 Pearson Education, Inc.
1
1
xโ
2
2
Chapter 2: Graphs
51. Containing (1, 3) and (โ1, 2)
2 โ 3 โ1 1
m=
=
=
โ1 โ 1 โ 2 2
56. x-intercept = โ4; y-intercept = 4
Points are (โ4, 0) and (0, 4)
4โ0
4
m=
= =1
0 โ (โ 4) 4
y = mx + b
y = 1x + 4
y = x+4
x โ y = โ 4 or y = x + 4
y โ y1 = m( x โ x1 )
1
( x โ 1)
2
1
1
y โ3 = xโ
2
2
1
5
y = x+
2
2
y โ3 =
x โ 2 y = โ 5 or y =
57. Slope undefined; containing the point (2, 4)
This is a vertical line.
x=2
No slope-intercept form.
1
5
x+
2
2
52. Containing the points (โ3, 4) and (2, 5)
5โ4
1
m=
=
2 โ (โ3) 5
y โ y1 = m( x โ x1 )
1
y โ 5 = ( x โ 2)
5
1
2
y โ5 = x โ
5
5
1
23
y = x+
5
5
x โ 5 y = โ 23 or y =
58. Slope undefined; containing the point (3, 8)
This is a vertical line.
x=3
No slope-intercept form.
59. Horizontal lines have slope m = 0 and take the
form y = b . Therefore, the horizontal line
passing through the point ( โ3, 2 ) is y = 2 .
60. Vertical lines have an undefined slope and take
the form x = a . Therefore, the vertical line
passing through the point ( 4, โ5 ) is x = 4 .
1
23
x+
5
5
53. Slope = โ3; y-intercept =3
y = mx + b
y = โ3 x + 3
3x + y = 3 or y = โ3x + 3
54. Slope = โ2; y-intercept = โ2
y = mx + b
y = โ 2 x + (โ 2)
2 x + y = โ 2 or y = โ 2 x โ 2
55. x-intercept = 2; y-intercept = โ1
Points are (2,0) and (0,โ1)
โ1 โ 0 โ1 1
m=
=
=
0โ2 โ2 2
y = mx + b
1
y = x โ1
2
1
x โ 2 y = 2 or y = x โ 1
2
61. Parallel to y = 2 x ; Slope = 2
Containing (โ1, 2)
y โ y1 = m( x โ x1 )
y โ 2 = 2( x โ (โ1))
y โ 2 = 2x + 2 โ y = 2x + 4
2 x โ y = โ 4 or y = 2 x + 4
62. Parallel to y = โ3 x ; Slope = โ3; Containing the
point (โ1, 2)
y โ y1 = m( x โ x1 )
y โ 2 = โ3( x โ (โ 1))
y โ 2 = โ3 x โ 3 โ y = โ3x โ 1
3x + y = โ1 or y = โ3 x โ 1
176
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Lines
63. Parallel to 2 x โ y = โ 2 ; Slope = 2
Containing the point (0, 0)
y โ y1 = m( x โ x1 )
y โ 0 = 2( x โ 0)
y = 2x
2 x โ y = 0 or y = 2 x
69. Perpendicular to 2 x + y = 2 ; Containing the
point (โ3, 0)
1
Slope of perpendicular =
2
y โ y1 = m( x โ x1 )
1
1
3
( x โ (โ3)) โ y = x +
2
2
2
1
3
x โ 2 y = โ 3 or y = x +
2
2
yโ0 =
64. Parallel to x โ 2 y = โ 5 ;
1
Slope = ; Containing the point ( 0, 0 )
2
y โ y1 = m( x โ x1 )
1
1
( x โ 0) โ y = x
2
2
1
x โ 2 y = 0 or y = x
2
yโ0 =
65. Parallel to x = 5 ; Containing (4,2)
This is a vertical line.
x = 4 No slope-intercept form.
66. Parallel to y = 5 ; Containing the point (4, 2)
This is a horizontal line. Slope = 0
y=2
1
x + 4; Containing (1, โ2)
2
Slope of perpendicular = โ2
y โ y1 = m( x โ x1 )
67. Perpendicular to y =
70. Perpendicular to x โ 2 y = โ5 ; Containing the
point (0, 4)
Slope of perpendicular = โ2
y = mx + b
y = โ2 x + 4
2 x + y = 4 or y = โ2 x + 4
71. Perpendicular to x = 8 ; Containing (3, 4)
Slope of perpendicular = 0 (horizontal line)
y=4
72. Perpendicular to y = 8 ;
Containing the point (3, 4)
Slope of perpendicular is undefined (vertical
line). x = 3 No slope-intercept form.
73. y = 2 x + 3 ; Slope = 2; y-intercept = 3
y โ (โ 2) = โ 2( x โ 1)
y + 2 = โ 2x + 2 โ y = โ 2x
2 x + y = 0 or y = โ 2 x
68. Perpendicular to y = 2 x โ 3 ; Containing the
point (1, โ2)
1
Slope of perpendicular = โ
2
y โ y1 = m( x โ x1 )
74. y = โ3 x + 4 ; Slope = โ3; y-intercept = 4
1
y โ (โ 2) = โ ( x โ 1)
2
1
1
1
3
y+2= โ x+ โ y = โ xโ
2
2
2
2
1
3
x + 2 y = โ3 or y = โ x โ
2
2
177
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
75.
76.
1
y = x โ1 ; y = 2x โ 2
2
Slope = 2; y-intercept = โ2
1
79. x + 2 y = 4 ; 2 y = โ x + 4 โ y = โ x + 2
2
1
Slope = โ ; y-intercept = 2
2
1
1
x+ y = 2; y = โ x+2
3
3
1
Slope = โ ; y-intercept = 2
3
77. y =
80. โ x + 3 y = 6 ; 3 y = x + 6 โ y =
Slope =
1
x+2
3
1
; y-intercept = 2
3
1
1
x + 2 ; Slope = ; y-intercept = 2
2
2
81. 2 x โ 3 y = 6 ; โ3 y = โ 2 x + 6 โ y =
Slope =
78. y = 2 x +
2
; y-intercept = โ2
3
1
1
; Slope = 2; y -intercept =
2
2
178
Copyright ยฉ 2016 Pearson Education, Inc.
2
xโ2
3
Section 2.3: Lines
3
82. 3 x + 2 y = 6 ; 2 y = โ 3 x + 6 โ y = โ x + 3
2
3
Slope = โ ; y-intercept = 3
2
86. y = โ1 ; Slope = 0; y-intercept = โ1
87. y = 5 ; Slope = 0; y-intercept = 5
83. x + y = 1 ; y = โ x + 1
Slope = โ1; y-intercept = 1
88. x = 2 ; Slope is undefined
y-intercept – none
84. x โ y = 2 ; y = x โ 2
Slope = 1; y-intercept = โ2
89. y โ x = 0 ; y = x
Slope = 1; y-intercept = 0
85. x = โ 4 ; Slope is undefined
y-intercept – none
179
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
90. x + y = 0 ; y = โ x
Slope = โ1; y-intercept = 0
93. a.
x-intercept: 2 x + 3 ( 0 ) = 6
2x = 6
x=3
The point ( 3, 0 ) is on the graph.
y-intercept: 2 ( 0 ) + 3 y = 6
3y = 6
y=2
The point ( 0, 2 ) is on the graph.
y
b.
91. 2 y โ 3 x = 0 ; 2 y = 3x โ y =
5
3
x
2
(0, 2)
3
Slope = ; y-intercept = 0
2
(3, 0)
5
โ5
x
โ5
94. a.
x-intercept: 3x โ 2 ( 0 ) = 6
3x = 6
x=2
The point ( 2, 0 ) is on the graph.
y-intercept: 3 ( 0 ) โ 2 y = 6
3
92. 3x + 2 y = 0 ; 2 y = โ3 x โ y = โ x
2
3
Slope = โ ; y-intercept = 0
2
โ2 y = 6
y = โ3
The point ( 0, โ3) is on the graph.
y
b.
5
(2, 0)
5
โ5
(0, โ3)
โ5
180
Copyright ยฉ 2016 Pearson Education, Inc.
x
Section 2.3: Lines
95. a.
x-intercept: โ4 x + 5 ( 0 ) = 40
97. a.
x-intercept: 7 x + 2 ( 0 ) = 21
โ4 x = 40
7 x = 21
x = โ10
The point ( โ10, 0 ) is on the graph.
x=3
The point ( 3, 0 ) is on the graph.
y-intercept: โ4 ( 0 ) + 5 y = 40
y-intercept: 7 ( 0 ) + 2 y = 21
5 y = 40
y =8
2 y = 21
y=
The point ( 0,8 ) is on the graph.
21
2
๏ฆ 21 ๏ถ
The point ๏ง 0, ๏ท is on the graph.
๏จ 2๏ธ
b.
b.
96. a.
x-intercept: 6 x โ 4 ( 0 ) = 24
6 x = 24
x=4
The point ( 4, 0 ) is on the graph.
98. a.
x-intercept: 5 x + 3 ( 0 ) = 18
5 x = 18
x=
y-intercept: 6 ( 0 ) โ 4 y = 24
โ4 y = 24
18
5
๏ฆ 18 ๏ถ
The point ๏ง , 0 ๏ท is on the graph.
๏จ5 ๏ธ
y = โ6
The point ( 0, โ6 ) is on the graph.
y-intercept: 5 ( 0 ) + 3 y = 18
3 y = 18
b.
y=6
The point ( 0, 6 ) is on the graph.
b.
181
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
99. a.
1
1
x + (0) = 1
2
3
1
x =1
2
x=2
The point ( 2, 0 ) is on the graph.
x-intercept:
y-intercept:
1
1
( 0) + y = 1
2
3
1
y =1
3
y=3
101. a.
x-intercept: 0.2 x โ 0.5 ( 0 ) = 1
0.2 x = 1
x=5
The point ( 5, 0 ) is on the graph.
y-intercept: 0.2 ( 0 ) โ 0.5 y = 1
โ0.5 y = 1
y = โ2
The point ( 0, โ2 ) is on the graph.
b.
The point ( 0,3) is on the graph.
b.
102. a.
x-intercept: โ0.3 x + 0.4 ( 0 ) = 1.2
โ0.3x = 1.2
100. a.
x = โ4
The point ( โ4, 0 ) is on the graph.
2
x-intercept: x โ ( 0 ) = 4
3
x=4
The point ( 4, 0 ) is on the graph.
2
y=4
3
2
โ y=4
3
y = โ6
y-intercept: โ0.3 ( 0 ) + 0.4 y = 1.2
0.4 y = 1.2
y=3
y-intercept: ( 0 ) โ
The point ( 0,3) is on the graph.
b.
The point ( 0, โ6 ) is on the graph.
b.
103. The equation of the x-axis is y = 0 . (The slope
is 0 and the y-intercept is 0.)
104. The equation of the y-axis is x = 0 . (The slope
is undefined.)
105. The slopes are the same but the y-intercepts are
different. Therefore, the two lines are parallel.
182
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Lines
106. The slopes are opposite-reciprocals. That is, their
product is โ1 . Therefore, the lines are
perpendicular.
107. The slopes are different and their product does
not equal โ1 . Therefore, the lines are neither
parallel nor perpendicular.
108. The slopes are different and their product does
not equal โ1 (in fact, the signs are the same so
the product is positive). Therefore, the lines are
neither parallel nor perpendicular.
109. Intercepts: ( 0, 2 ) and ( โ2, 0 ) . Thus, slope = 1.
y = x + 2 or x โ y = โ 2
110. Intercepts: ( 0,1) and (1, 0 ) . Thus, slope = โ1.
y = โ x + 1 or x + y = 1
115. P1 = ( โ1, 0 ) , P2 = ( 2,3) , P3 = (1, โ2 ) , P4 = ( 4,1)
m12 =
m34 =
3โ0
3
1โ 3
= = 1 ; m24 =
= โ1 ;
2 โ ( โ1) 3
4โ2
1 โ ( โ2 )
4 โ1
=
3
โ2 โ 0
= 1 ; m13 =
= โ1
3
1 โ ( โ1)
Opposite sides are parallel (same slope) and
adjacent sides are perpendicular (product of slopes
is โ1 ). Therefore, the vertices are for a rectangle.
116. P1 = ( 0, 0 ) , P2 = (1,3) , P3 = ( 4, 2 ) , P4 = ( 3, โ1)
3โ0
2โ3
1
=โ ;
= 3 ; m23 =
4 โ1
3
1โ 0
โ1 โ 2
โ1 โ 0
1
m34 =
= 3 ; m14 =
=โ
3โ 4
3โ0
3
m12 =
d12 =
(1 โ 0 )2 + ( 3 โ 0 )2 = 1 + 9 = 10
1
111. Intercepts: ( 3, 0 ) and ( 0,1) . Thus, slope = โ .
3
1
y = โ x + 1 or x + 3 y = 3
3
d 23 =
( 4 โ 1)2 + ( 2 โ 3)2 = 9 + 1 = 10
d34 =
( 3 โ 4 )2 + ( โ1 โ 2 )2 = 1 + 9 = 10
d14 =
( 3 โ 0 )2 + ( โ1 โ 0 )2 = 9 + 1 = 10
112. Intercepts: ( 0, โ1) and ( โ2, 0 ) . Thus,
Opposite sides are parallel (same slope) and
adjacent sides are perpendicular (product of
slopes is โ1 ). In addition, the length of all four
sides is the same. Therefore, the vertices are for a
square.
1
slope = โ .
2
1
y = โ x โ 1 or x + 2 y = โ 2
2
5โ3
2
2
=
=โ
โ2 โ 1 โ3
3
3โ0
3
=
P2 = (1,3) , P3 = ( โ1, 0 ) : m2 =
1 โ ( โ1) 2
113. P1 = ( โ2,5 ) , P2 = (1,3) : m1 =
Since m1 โ
m2 = โ1 , the line segments P1 P2 and
P2 P3 are perpendicular. Thus, the points P1 , P2 ,
and P3 are vertices of a right triangle.
114. P1 = (1, โ1) , P2 = ( 4,1) , P3 = ( 2, 2 ) , P4 = ( 5, 4 )
1 โ ( โ1)
2
4 โ1
= ; m24 =
= 3;
4 โ1
3
5โ4
2 โ ( โ1)
4โ2 2
=3
m34 =
= ; m13 =
5โ2 3
2 โ1
Each pair of opposite sides are parallel (same
slope) and adjacent sides are not perpendicular.
Therefore, the vertices are for a parallelogram.
m12 =
117. Let x = number of miles driven, and let C = cost
in dollars.
Total cost = (cost per mile)(number of miles) +
fixed cost
C = 0.60 x + 39
When x = 110, C = ( 0.60)(110) + 39 = $105.00 .
When x = 230, C = ( 0.60)( 230) + 39 = $177.00 .
118. Let x = number of pairs of jeans manufactured,
and let C = cost in dollars.
Total cost = (cost per pair)(number of pairs) +
fixed cost
C = 8 x + 500
When x = 400, C = ( 8 )( 400 ) + 500 = $3700 .
When x = 740, C = ( 8 )( 740 ) + 500 = $6420 .
119. Let x = number of miles driven annually, and
let C = cost in dollars.
Total cost = (approx cost per mile)(number of
miles) + fixed cost
C = 0.17 x + 4462
183
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
120. Let x = profit in dollars, and let S = salary in
dollars.
Weekly salary = (% share of profit)(profit) +
weekly pay
S = 0.05 x + 375
121. a.
C = 0.0821x + 15.37 ; 0 โค x โค 800
b.
c.
For 200 kWh,
C = 0.0821(200) + 15.37 = $31.79
d.
For 500 kWh,
C = 0.0821(500) + 15.37 = $56.42
e.
For each usage increase of 1 kWh, the
monthly charge increases by $0.0821
(that is, 8.21 cents).
122. a.
123. (ยฐC , ยฐ F ) = (0, 32); (ยฐC , ยฐ F ) = (100, 212)
212 โ 32 180 9
=
=
100 โ 0 100 5
9
ยฐ F โ 32 = (ยฐC โ 0)
5
9
ยฐ F โ 32 = (ยฐC )
5
5
ยฐC = (ยฐ F โ 32)
9
If ยฐ F = 70 , then
5
5
ยฐC = (70 โ 32) = (38)
9
9
ยฐC โ 21.1ยฐ
slope =
124. a.
b.
C = 0.0907 x + 7.24 ; 0 โค x โค 1000
b.
125. a.
K =ยบ C + 273
5
ยบ C = (ยบ F โ 32)
9
5
K = (ยฐ F โ 32) + 273
9
5
160
+ 273
K = ยบF โ
9
9
5
2297
K = ยบF +
9
9
The y-intercept is (0, 30), so b = 30. Since
the ramp drops 2 inches for every 25 inches
โ2
2
of run, the slope is m =
= โ . Thus,
25
25
2
the equation is y = โ x + 30 .
25
b. Let y = 0.
c.
0=โ
For 200 kWh,
C = 0.0907 ( 200) + 7.24 = $25.38
d.
For 500 kWh,
C = 0.0907 (500) + 7.24 = $52.59
e.
For each usage increase of 1 kWh, the
monthly charge increases by $0.0907
(that is, 9.07 cents).
2
x + 30
25
2
x = 30
25
25 ๏ฆ 2 ๏ถ 25
๏ง x ๏ท = ( 30 )
2 ๏จ 25 ๏ธ 2
x = 375
The x-intercept is (375, 0). This means that
the ramp meets the floor 375 inches (or
31.25 feet) from the base of the platform.
184
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.3: Lines
c.
No. From part (b), the run is 31.25 feet which
exceeds the required maximum of 30 feet.
d. First, design requirements state that the
maximum slope is a drop of 1 inch for each
1
12 inches of run. This means m โค .
12
Second, the run is restricted to be no more
than 30 feet = 360 inches. For a rise of 30
inches, this means the minimum slope is
30
1
1
. That is, m โฅ . Thus, the
=
12
360 12
1
. The
only possible slope is m =
12
diagram indicates that the slope is negative.
Therefore, the only slope that can be used to
obtain the 30-inch rise and still meet design
1
requirements is m = โ . In words, for
12
every 12 inches of run, the ramp must drop
exactly 1 inch.
126. a.
The year 2000 corresponds to x = 0, and the
year 2012 corresponds to x = 12. Therefore,
the points (0, 20.6) and (12, 9.3) are on the
line. Thus,
9.3 โ 20.6
11.3
m=
=โ
= โ0.942 . The y12 โ 0
12
intercept is 20.6, so b = 20.6 and the
equation is y = โ0.942 x + 20.6
0 = โ0.942 x + 20.6
0.942 x = 20.6
x = 21.9
y-intercept: y = โ0.942 ( 0) + 20.6 = 20.6
b. x-intercept:
The intercepts are (21.9, 0) and (0, 20.6).
c.
The y-intercept represents the percentage of
twelfth graders in 2000 who had reported
daily use of cigarettes. The x-intercept
represents the number of years after 2000
when 0% of twelfth graders will have
reported daily use of cigarettes.
d. The year 2025 corresponds to x = 25.
y = โ0.942 ( 25) + 20.6 = โ2.95
This prediction is not reasonable.
127. a.
( x2 , A2 ) = (200, 000, 60, 000)
60, 000 โ 40, 000
200, 000 โ 100, 000
20, 000 1
=
=
100, 000 5
1
A โ 40, 000 = ( x โ 100, 000 )
5
1
A โ 40, 000 = x โ 20, 000
5
1
A = x + 20, 000
5
slope =
b. If x = 300,000, then
1
A = ( 300, 000 ) + 20, 000 = $80, 000
5
c.
Each additional box sold requires an
additional $0.20 in advertising.
128. Find the slope of the line containing ( a, b ) and
( b, a ) :
aโb
= โ1
bโa
The slope of the line y = x is 1.
slope =
Since โ1 โ
1 = โ1 , the line containing the points
(a, b) and (b, a) is perpendicular to the line
y = x.
The midpoint of (a, b) and (b, a) is
๏ฆ a+b b+a ๏ถ
M =๏ง
,
๏ท.
2 ๏ธ
๏จ 2
Since the coordinates are the same, the midpoint
lies on the line y = x .
Note:
a+b b+a
=
2
2
129. 2x โ y = C
Graph the lines:
2x โ y = โ 4
2x โ y = 0
2x โ y = 2
All the lines have the same slope, 2. The lines
Let x = number of boxes to be sold, and
A = money, in dollars, spent on advertising.
We have the points
( x1 , A1 ) = (100, 000, 40, 000);
185
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
are parallel.
slope 1 and y-intercept (0, โ1). Thus, the lines
are parallel with positive slopes. One line has a
positive y-intercept and the other with a negative
y-intercept.
134. (d)
The equation y โ 2 x = 2 has slope 2 and yintercept (0, 2). The equation x + 2 y = โ1 has
1
1๏ถ
๏ฆ
and y-intercept ๏ง 0, โ ๏ท . The lines
2๏ธ
2
๏จ
๏ฆ 1๏ถ
are perpendicular since 2 ๏ง โ ๏ท = โ1 . One line
๏จ 2๏ธ
has a positive y-intercept and the other with a
negative y-intercept.
slope โ
130. Refer to Figure 47.
length of OA = d ( O, A ) =
1 + m12
length of OB = d ( O, B ) =
1 + m2 2
135 โ 137. Answers will vary.
138. No, the equation of a vertical line cannot be
written in slope-intercept form because the slope
is undefined.
length of AB = d ( A, B ) = m1 โ m2
Now consider the equation
( 1+ m ) + ( 1+ m ) = (m โ m )
2
1
2
2
2
2
1
2
2
If this equation is valid, then ฮAOB is a right
triangle with right angle at vertex O.
(
1 + m12
) (
2
+
1 + m2 2
) = (m โ m )
2
1
2
2
1 + m12 + 1 + m2 2 = m12 โ 2m1m2 + m2 2
2 + m12 + m2 2 = m12 โ 2m1m2 + m2 2
139. No, a line does not need to have both an xintercept and a y-intercept. Vertical and
horizontal lines have only one intercept (unless
they are a coordinate axis). Every line must have
at least one intercept.
140. Two lines with equal slopes and equal
y-intercepts are coinciding lines (i.e. the same).
2 + m12 + m2 2 = m12 โ 2 ( โ1) + m2 2
141. Two lines that have the same x-intercept and yintercept (assuming the x-intercept is not 0) are
the same line since a line is uniquely defined by
two distinct points.
2 + m12 + m2 2 = m12 + 2 + m2 2
0=0
Therefore, by the converse of the Pythagorean
Theorem, ฮAOB is a right triangle with right
angle at vertex O. Thus Line 1 is perpendicular
to Line 2.
142. No. Two lines with the same slope and different xintercepts are distinct parallel lines and have no
points in common.
Assume Line 1 has equation y = mx + b1 and Line
2 has equation y = mx + b2 ,
But we are assuming that m1m2 = โ1 , so we
have
131. (b), (c), (e) and (g)
The line has positive slope and positive
y-intercept.
132. (a), (c), and (g)
The line has negative slope and positive
y-intercept.
b
Line 1 has x-intercept โ 1 and y-intercept b1 .
m
b2
and y-intercept b2 .
Line 2 has x-intercept โ
m
Assume also that Line 1 and Line 2 have unequal
x-intercepts.
If the lines have the same y-intercept, then b1 = b2 .
133. (c)
The equation x โ y = โ2 has slope 1 and yintercept (0, 2). The equation x โ y = 1 has
186
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.4: Circles
b b
b
b
b1 = b2 ๏ 1 = 2 ๏ โ 1 = โ 2
m m
m
m
b1
b2
But โ = โ ๏ Line 1 and Line 2 have the
m
m
same x-intercept, which contradicts the original
assumption that the lines have unequal x-intercepts.
Therefore, Line 1 and Line 2 cannot have the same
y-intercept.
143. Yes. Two distinct lines with the same y-intercept,
but different slopes, can have the same x-intercept
if the x-intercept is x = 0 .
Assume Line 1 has equation y = m1 x + b and Line
2 has equation y = m2 x + b ,
Line 1 has x-intercept โ
b
and y-intercept b .
m1
146.
=
x4 y5
=
โ2
x2
x 4 y5 y3
โ2
1
x 2 y8
x 2 y8
1
2
= x 4 y16
147. h 2 = a 2 + b 2
= 82 + 152
= 16 + 225
= 289
h = 289 = 17
148.
b
and y-intercept b .
m2
Assume also that Line 1 and Line 2 have unequal
slopes, that is m1 โ m2 .
If the lines have the same x-intercept, then
b
b
โ
=โ
.
m1
m2
b
b
=โ
m1
m2
โ m2 b = โm1b
โm2b + m1b = 0
โ2
=
Line 2 has x-intercept โ
( x โ 3)2 + 25 = 49
( x โ 3)2 = 24
x โ 3 = ยฑ 24
x โ 3 = ยฑ2 6
x = 3ยฑ 2 6
{
2 x โ 5 + 7 < 10
2x โ 5 < 3
โ3 < 2 x โ 5 < 3
2 < 2x < 8
But โ m2 b + m1b = 0 ๏ b ( m1 โ m2 ) = 0
๏b=0
or m1 โ m2 = 0 ๏ m1 = m2
Since we are assuming that m1 โ m2 , the only way
that the two lines can have the same x-intercept is
if b = 0.
1< x < 4
The solution set is: { x | 1 < x 0 and ( 0, 0 ) on the graph.
62. (b), (e) and (g)
We need h r .
63. Answers will vary.
64. The student has the correct radius, but the signs
of the coordinates of the center are incorrect. The
student needs to write the equation in the
standard form ( x โ h ) + ( y โ k ) = r 2 .
2
Center: ( 2, โ3)
2
( x + 3) + ( y โ 2 ) = 16
2
x2 + y 2 + 6 x + 4 y + 9 = 0
2
( x โ ( โ3)) + ( y โ 2) = 4
2
( x 2 + 6 x + 9) + ( y 2 + 4 y + 4) = โ 9 + 9 + 4
( x + 3) 2 + ( y + 2)2 = 4
2
2
Thus, ( h, k ) = ( โ3, 2 ) and r = 4 .
Center: ( โ3, โ2 )
Find the slope of the line containing the centers:
โ 2 โ (โ3)
1
m=
=โ
โ3 โ 2
5
Find the equation of the line containing the
centers:
1
y + 3 = โ ( x โ 2)
5
5 y + 15 = โ x + 2
x + 5 y = โ13
x + 5 y + 13 = 0
59. Consider the following diagram:
C = 2ฯ r
65. A = ฯ r 2
= ฯ (13) 2
= 169ฯ cm 2
C = 2ฯ r
= 2ฯ (13)
= 26ฯ cm
66. (3 x โ 2)( x 2 โ 2 x + 3) = 3 x 3 โ 6 x 2 + 9 x โ 2 x 2 + 4 x โ 6
= 3 x3 โ 8 x 2 + 13 x โ 6
67.
2 x 2 + 3x โ 1 = x + 1
2 x 2 + 3x โ 1 = ( x + 1)
2
2 x 2 + 3x โ 1 = x 2 + 2 x + 1
(2,2)
x2 + x โ 2 = 0
( x + 2)( x โ 1) = 0
x = โ2 or x = 1
We need to check each possible solution:
198
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.5: Variation
Check x = โ2
5. y = kx
2 = 10k
2 1
k=
=
10 5
1
y= x
5
2
2( โ2) + 3( โ2) โ 1 = ( โ2) + 1
2(4) โ 6 โ 1 = โ1
no
Check x = 1
6. v = kt
16 = 2k
8=k
v = 8t
2
2(1) + 3(1) โ 1 = (1) + 1
2 + 3 โ1 = 2
4=2
yes
The solution is {1}
68. Let t represent the time it takes to do the job
together.
Part of job done
Time to do job in one minute
1
Aaron
22
22
1
Elizabeth
28
28
1
Together
t
t
1
1 1
+
=
22 28 t
14t + 11t = 308
25t = 308
t = 12.32
Working together, the job can be done in 12.32
minutes.
Section 2.5
1. y = kx
2. False. If y varies directly with x, then y = kx,
where k is a constant.
7. A = kx 2
4ฯ = k (2) 2
4ฯ = 4k
ฯ =k
A = ฯ x2
8. V = kx3
36ฯ = k (3)3
36ฯ = 27 k
36ฯ 4
k=
= ฯ
27
3
4 3
V = ฯx
3
k
d2
k
10 = 2
5
k
10 =
25
k = 250
250
F= 2
d
9. F =
10. y =
3. b
4. c
4=
k
x
k
9
k
3
k = 12
12
y=
x
4=
199
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
(
)
5 = k (3 + 4 )
11. z = k x 2 + y 2
2
(
16
k
4=
2
k =8
)
d2
(
)
2 = k (9 + 4 )
16. z 3 = k x 2 + y 2
1= k
( )( )
3
T = 3 x d2
2
2
8 = k ( 97 )
kd 2
8
97
8 2
z3 =
x + y2
97
k=
x
( )
(
k 42
9
16k
24 =
3
๏ฆ 3๏ถ 9
k = 24 ๏ง ๏ท =
๏จ 16 ๏ธ 2
17. V =
19. A =
2 x
(
)
1 = k (2 + 3 )
14. z = k x3 + y 2
)
4ฯ 3
r
3
18. c 2 = a 2 + b 2
9d 2
3
8a 3
T2 =
2
18 = k (18 )
M =
42
k (8)
4=
( )( )
18 = k ( 8 ) ( 3 )
3
( )
k 23
22 =
12. T = k 3 x d 2
24 =
d2
2
5 = k (25)
5 1
k=
=
25 5
1
z = x2 + y2
5
13. M =
ka3
15. T 2 =
1
bh
2
20. p = 2 ( l + w )
2
1 = k (17 )
๏ฆ mM ๏ถ
21. F = 6.67 ร 10โ11 ๏ง 2 ๏ท
๏จ d ๏ธ
1
17
1 3
z=
x + y2
17
22. T =
(
k=
(
)
23.
)
2ฯ
32
l
p = kB
6.49 = k (1000 )
0.00649 = k
Therefore we have the linear equation
p = 0.00649 B .
If B = 145000 , then
p = 0.00649 (145000 ) = $941.05 .
200
Copyright ยฉ 2016 Pearson Education, Inc.
Section 2.5: Variation
If R = 576, then
12, 288
576 =
l
576l = 12, 288
12, 288 64
inches
l=
=
576
3
p = kB
24.
8.99 = k (1000 )
0.00899 = k
Therefore we have the linear equation
p = 0.00899 B .
If B = 175000 , then
p = 0.00899 (175000 ) = $1573.25 .
25.
s = kt
16 = k (1)
47.40 = k (12 )
3.95 = k
Therefore, we have the linear equation R = 3.95 g .
2
k = 16
Therefore, we have equation s = 16t 2 .
If g = 10.5 , then R = ( 3.95 )(10.5 ) โ $41.48 .
2
If t = 3 seconds, then s = 16 ( 3) = 144 feet.
C = kA
30.
23.75 = k ( 5 )
If s = 64 feet, then
64 = 16t 2
t2 = 4
t = ยฑ2
Time must be positive, so we disregard t = โ2.
It takes 2 seconds to fall 64 feet.
26.
R = kg
29.
2
v = kt
4.75 = k
Therefore, we have the linear equation C = 4.75 A.
If A = 3.5 , then C = ( 4.75 )( 3.5 ) = $16.63 .
D = 156 , p = 2.75 ;
a.
64 = k ( 2 )
k
2.75
k = 429
429
.
So, D =
p
156 =
k = 32
Therefore, we have the linear equation v = 32t.
If t = 3 seconds, then v = 32 ( 3) = 96 ft/sec.
27. E = kW
3 = k ( 20 )
k=
Therefore, we have the linear equation E =
If W = 15, then E =
28.
D=
b.
3
20
3
W.
20
3
(15 ) = 2.25 .
20
k
l
k
256 =
48
k = 12, 288
k
p
31. D =
32. t =
429
= 143 bags of candy
3
k
s
a.
R=
t = 40 , s = 30 ;
k
40 =
30
k = 1200
So, we have the equation t =
b.
Therefore, we have the equation R =
12, 288
.
l
t=
1200
= 30 minutes
40
k
P
V = 600, P = 150 ;
33. V =
201
Copyright ยฉ 2016 Pearson Education, Inc.
1200
.
s
Chapter 2: Graphs
k
150
k = 90, 000
600 =
39. I =
So, we have the equation V =
If P = 200 , then V =
90, 000
P
0.075 =
90, 000
= 450 cm3 .
200
If d = 5, then I =
k
and k = 240 .
8
240
.
So, we have the equation i =
R
240
If R = 10, then i =
= 24 amperes .
10
If i = 30, R = 8 , then 30 =
k
39602
1
Av 2 .
880
If A = 47.125 and v = 36.5 , then
1
F=
( 47.125)( 36.5)2 โ 71.34 pounds.
880
and k = 1,960, 200, 000
41.
45 = (0.06)(125)d 3
45 = 7.5d 3
2
6 = d3
k
d = 3 6 โ 1.82 inches
39602
k = 862, 488, 000
So, we have the equation W =
862, 488, 000
.
d2
If d =3965, then
862, 488, 000
W=
โ 54.86 pounds.
39652
37. V = ฯ r 2 h
ฯ
3
h = ksd 3
36 = k (75)(2)3
36 = 600k
0.06 = k
So, we have the equation h = 0.06sd 3 .
If h = 45 and s = 125, then
k
55 =
= 0.012 foot-candles.
So, we have the equation F =
1,960, 200, 000
.
So, we have the equation W =
d
At the top of Mt. McKinley, we have
d = 3960 + 3.8 = 3963.8 , so
1,960, 200, 000
W=
โ 124.76 pounds.
( 3963.8)2
d
52
11 = k (20)(22) 2
11 = 9860k
11
1
k=
=
9680 880
k
d2
If W = 125, d = 3960 then
125 =
0.3
0.3
.
d2
40. F = kAv 2
35. W =
38. V =
k
and k = 0.3 .
22
So, we have the equation I =
k
34. i =
R
36. W =
k
d2
If I = 0.075, d = 2 , then
42.
kT
P
k (300)
100 =
15
100 = 20k
5=k
V=
So, we have the equation V =
r 2h
202
Copyright ยฉ 2016 Pearson Education, Inc.
5T
.
P
Section 2.5: Variation
If V = 80 and T = 310, then
5(310)
80 =
P
80 P = 1550
1550
P=
= 19.375 atmospheres
80
43.
46.
2
K = 0.5 ( 25 )(15 ) = 2812.5 Joules
44.
375wt 2
.
l
If l = 10, w = 6, and t = 2, then
K = kmv 2
1250 = k (25)(10) 2
1250 = 2500k
k = 0.5
So, we have the equation K = 0.5mv 2 .
If m = 25 and v = 15, then
R=
1.24 =
So, we have the equation S =
S=
51.
3×3 + 25 x 2 โ 12 x โ 100
= (3 x3 + 25 x 2 ) โ (12 x + 100)
2
d
k ( 432 )
= x 2 (3 x + 25) โ 4(3 x + 25)
= ( x 2 โ 4)(3 x + 25)
= ( x โ 2)( x + 2)(3 x + 25)
2
52.
S=
5
xโ2
5
xโ2
+ 2
=
+
x + 3 x + 7 x + 12 x + 3 ( x + 3)( x + 4)
xโ2
5( x + 4)
=
+
( x + 3)( x + 4) ( x + 3)( x + 4)
5( x + 4) + ( x โ 2)
=
( x + 3)( x + 4)
5 x + 20 + x โ 2
=
( x + 3)( x + 4)
6 x + 18
=
( x + 3)( x + 4)
6( x + 3)
6
=
=
( x + 3)( x + 4) ( x + 4)
0.6 = k
4 2
=
25
So, we have the equation R =
1.24l
27 d
.
2
If R = 1.44 and d = 3, then
1.24l
1.44 =
27(3) 2
1.24l
1.44 =
243
349.92 = 1.24l
349.92
โ 282.2 feet
l=
1.24
45.
375(6)(2) 2
= 900 pounds.
10
47 โ 50. Answers will vary.
kl
(4)
1.24 = 27 k
1.24
k=
27
kwt 2
l
k (4)(2)2
750 =
8
750 = 2k
375 = k
S=
kpd
t
k (25)(5)
100 =
0.75
75 = 125k
3
53.
0.6 pd
.
t
If p = 40, d = 8, and t = 0.50, then
So, we have the equation S =
S=
0.6(40)(8)
= 384 psi.
0.50
2
5
3
=
1
3
4 2
25
8
125
54. The term needed to rationalize the denominator
is 7 + 2 .
203
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
Chapter 2 Review Exercises
4. y = x 2 + 4
1. P1 = ( 0, 0 ) and P2 = ( 4, 2 )
a.
d ( P1 , P2 ) =
(โ1, 5)
= 16 + 4 = 20 = 2 5
b. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
๏ฆ0+4 0+2๏ถ ๏ฆ 4 2๏ถ
,
=๏ง
๏ท = ๏ง , ๏ท = ( 2,1)
2 ๏ธ ๏จ2 2๏ธ
๏จ 2
c.
ฮy 2 โ 0 2 1
=
= =
slope =
ฮx 4 โ 0 4 2
d. For each run of 2, there is a rise of 1.
2. P1 = (1, โ1) and P2 = ( โ2,3)
a.
d ( P1 , P2 ) =
( โ2 โ 1)2 + ( 3 โ ( โ1) )
2
= 9 + 16 = 25 = 5
b. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
๏ฆ 1 + ( โ2 ) โ1 + 3 ๏ถ
=๏ง
,
๏ท
2 ๏ธ
๏จ 2
๏ฆ โ1 2 ๏ถ ๏ฆ 1 ๏ถ
= ๏ง , ๏ท = ๏ง โ ,1๏ท
๏จ 2 2๏ธ ๏จ 2 ๏ธ
c.
slope =
3. P1 = ( 4, โ4 ) and P2 = ( 4,8 )
โ1
5 x
5. x-intercepts: โ4, 0, 2 ; y-intercepts: โ2, 0, 2
Intercepts: (โ4, 0), (0, 0), (2, 0), (0, โ2), (0, 2)
6. 2 x = 3 y 2
x-intercepts:
y-intercepts:
2
2 x = 3(0)
2(0) = 3 y 2
2x = 0
0 = y2
y=0
x=0
The only intercept is (0, 0).
Test x-axis symmetry: Let y = โ y
2 x = 3(โ y ) 2
2 x = 3 y 2 same
Test y-axis symmetry: Let x = โ x
2(โ x) = 3 y 2
7. x 2 +4 y 2 =16
x-intercepts:
( 4 โ 4 )2 + (8 โ ( โ4 ) )
2
= 0 + 144 = 144 = 12
b. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
๏ฆ 4 + 4 โ4 + 8 ๏ถ ๏ฆ 8 4 ๏ถ
,
=๏ง
๏ท = ๏ง , ๏ท = ( 4, 2 )
2 ๏ธ ๏จ2 2๏ธ
๏จ 2
c.
(1, 5)
(0, 4)
2(โ x) = 3(โ y ) 2
โ2 x = 3 y 2 different
Therefore, the graph will have x-axis symmetry.
ฮy 3 โ ( โ1) 4
4
=
=
=โ
ฮx
โ2 โ 1
โ3
3
d ( P1 , P2 ) =
โ5
(2, 8)
โ2 x = 3 y 2 different
Test origin symmetry: Let x = โ x and y = โ y .
d. For each run of 3, there is a rise of โ4.
a.
9
(โ2, 8)
( 4 โ 0 )2 + ( 2 โ 0 )2
y
ฮy 8 โ ( โ4 ) 12
slope =
=
= , undefined
ฮx
4โ4
0
2
y-intercepts:
x +4 ( 0 ) =16
( 0 )2 +4 y 2 =16
x 2 = 16
4 y 2 = 16
x = ยฑ4
y2 = 4
y = ยฑ2
2
The intercepts are (โ4, 0), (4, 0), (0, โ2), and
(0, 2).
Test x-axis symmetry: Let y = โ y
2
x 2 + 4 ( โ y ) =16
x 2 + 4 y 2 =16 same
d. An undefined slope means the points lie on a
vertical line. There is no change in x.
204
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Review Exercises
Test y-axis symmetry: Let x = โ x
2
Test y-axis symmetry: Let x = โ x
y = ( โ x )3 โ ( โ x )
( โ x ) + 4 y =16
2
y = โ x3 + x
x 2 + 4 y 2 =16 same
Test origin symmetry: Let x = โ x and y = โ y .
Test origin symmetry: Let x = โ x and y = โ y .
โ y = ( โ x )3 โ ( โ x )
โ y = โ x3 + x
y = x3 โ x same
( โ x )2 + 4 ( โ y )2 =16
x 2 +4 y 2 =16
same
Therefore, the graph will have x-axis, y-axis, and
origin symmetry.
x-intercepts:
0 = x 4 +2 x 2 +1
(
Therefore, the graph will have origin symmetry.
10. x 2 + x + y 2 + 2 y = 0
8. y = x 4 +2 x 2 +1
)(
x-intercepts: x 2 + x + (0) 2 + 2(0) = 0
x2 + x = 0
x( x + 1) = 0
x = 0, x = โ1
y-intercepts:
y = (0) 4 +2(0) 2 +1
=1
)
0 = x2 + 1 x2 + 1
2
x +1 = 0
y-intercepts: (0) 2 + 0 + y 2 + 2 y = 0
y2 + 2 y = 0
y ( y + 2) = 0
y = 0, y = โ2
The intercepts are (โ1, 0), (0, 0), and (0, โ2).
x 2 = โ1
no real solutions
The only intercept is (0, 1).
Test x-axis symmetry: Let y = โ y
โ y = x4 + 2 x2 + 1
y = โ x 4 โ 2 x 2 โ 1 different
Test x-axis symmetry: Let y = โ y
x 2 + x + (โ y ) 2 + 2(โ y ) = 0
Test y-axis symmetry: Let x = โ x
4
x 2 + x + y 2 โ 2 y = 0 different
Test y-axis symmetry: Let x = โ x
(โ x) 2 + (โ x) + y 2 + 2 y = 0
x 2 โ x + y 2 + 2 y = 0 different
Test origin symmetry: Let x = โ x and y = โ y .
2
y = (โx) + 2(โx) +1
y = x4 + 2 x2 + 1
same
Test origin symmetry: Let x = โ x and y = โ y .
4
2
โ y = (โx) + 2(โx) +1
โ y = x4 + 2 x2 + 1
y = โ x4 โ 2 x2 โ 1
(โ x) 2 + (โ x) + (โ y ) 2 + 2(โ y ) = 0
different
x 2 โ x + y 2 โ 2 y = 0 different
The graph has none of the indicated symmetries.
Therefore, the graph will have y-axis symmetry.
11.
9. y = x3 โ x
x-intercepts:
0 = x3 โ x
(
2
different
)
0 = x x โ1
( x โ ( โ2 ) ) + ( y โ 3)2 = 42
2
y-intercepts:
y = (0)3 โ 0
=0
0 = x ( x + 1)( x โ 1)
( x + 2 )2 + ( y โ 3)2 = 16
12.
x = 0, x = โ1, x = 1
( x โ h) 2 + ( y โ k ) 2 = r 2
( x โ h) 2 + ( y โ k ) 2 = r 2
( x โ ( โ1) ) + ( y โ ( โ2 ) ) = 12
2
The intercepts are (โ1, 0), (0, 0), and (1, 0).
Test x-axis symmetry: Let y = โ y
2
( x + 1)2 + ( y + 2 )2 = 1
โ y = x3 โ x
y = โ x 3 + x different
205
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
2
x-intercepts: ( x โ 1) + ( 0 + 2 ) = 32
2
( x โ 1)2 + 4 = 9
( x โ 1)2 = 5
2
13. x 2 + ( y โ 1) = 4
x 2 + ( y โ 1) = 22
Center: (0,1); Radius = 2
2
x โ1 = ยฑ 5
x = 1ยฑ 5
y-intercepts: ( 0 โ 1) + ( y + 2 ) = 32
2
2
1 + ( y + 2) = 9
2
( y + 2 )2 = 8
y+2= ยฑ 8
2
x-intercepts: x 2 + ( 0 โ 1) = 4
y + 2 = ยฑ2 2
x2 + 1 = 4
(
2
y-intercepts: 0 + ( y โ 1) = 4
y โ 1 = ยฑ2
x2 + y2 โ 2 x + 4 y = 0
y = 1ยฑ 2
y = 3 or y = โ1
x2 โ 2x + y2 + 4 y = 0
) ( 3, 0) , ( 0, โ1) ,
The intercepts are โ 3, 0 ,
2
3x 2 + 3 y 2 โ 6 x + 12 y = 0
15.
( y โ 1) 2 = 4
(
)
( 0, โ2 โ 2 2 ) , and ( 0, โ2 + 2 2 ) .
x=ยฑ 3
and ( 0, 3) .
) (
The intercepts are 1 โ 5, 0 , 1 + 5, 0 ,
x2 = 3
2
y = โ2 ยฑ 2 2
( x โ 2 x + 1) + ( y + 4 y + 4) = 1 + 4
( x โ 1) + ( y + 2 ) = ( 5 )
2
2
2
2
Center: (1, โ2) Radius =
2
5
2
x + y โ 2x + 4 y โ 4 = 0
14.
x2 โ 2 x + y 2 + 4 y = 4
( x โ 2 x + 1) + ( y + 4 y + 4 ) = 4 + 1 + 4
2
2
( x โ 1)2 + ( y + 2 )2 = 32
Center: (1, โ2) Radius = 3
2
2
x-intercepts: ( x โ 1) + ( 0 + 2 ) =
( 5)
2
( x โ 1)2 + 4 = 5
( x โ 1)2 = 1
x โ 1 = ยฑ1
x = 1ยฑ1
x = 2 or x = 0
206
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Review Exercises
2
2
y-intercepts: ( 0 โ 1) + ( y + 2 ) =
( 5)
2
2
1 + ( y + 2) = 5
( y + 2 )2 = 4
y + 2 = ยฑ2
y = โ2 ยฑ 2
y = 0 or y = โ4
The intercepts are ( 0, 0 ) , ( 2, 0 ) , and ( 0, โ4 ) .
20. Parallel to 2 x โ 3 y = โ4
2x โ 3y = โ 4
โ3 y = โ2 x โ 4
โ3 y โ2 x โ 4
=
โ3
โ3
2
4
y = x+
3
3
2
Slope = ; containing (โ5,3)
3
y โ y1 = m ( x โ x1 )
16. Slope = โ2; containing (3,โ1)
y โ y1 = m ( x โ x1 )
2
( x โ (โ5) )
3
2
y โ 3 = ( x + 5)
3
2
10
y โ3 = x+
3
3
2
19
y = x+
or 2 x โ 3 y = โ19
3
3
y โ3 =
y โ (โ1) = โ2 ( x โ 3)
y + 1 = โ2 x + 6
y = โ2 x + 5 or 2 x + y = 5
17. vertical; containing (โ3,4)
Vertical lines have equations of the form x = a,
where a is the x-intercept. Now, a vertical line
containing the point (โ3, 4) must have an
x-intercept of โ3, so the equation of the line is
x = โ3. The equation does not have a slopeintercept form.
18. y-intercept = โ2; containing (5,โ3)
Points are (5,โ3) and (0,โ2)
1
1
โ 2 โ (โ3)
m=
=
=โ
0โ5
โ5
5
y = mx + b
21. Perpendicular to x + y = 2
x+ y = 2
y = โx + 2
The slope of this line is โ1 , so the slope of a line
perpendicular to it is 1.
Slope = 1; containing (4,โ3)
y โ y1 = m( x โ x1 )
y โ (โ3) = 1( x โ 4)
y+3= xโ4
1
y = โ x โ 2 or x + 5 y = โ10
5
y = x โ 7 or x โ y = 7
19. Containing the points (3,โ4) and (2, 1)
1 โ (โ4) 5
m=
=
= โ5
2โ3
โ1
y โ y1 = m ( x โ x1 )
y โ (โ 4) = โ5 ( x โ 3)
y + 4 = โ5 x + 15
y = โ5 x + 11 or 5 x + y = 11
207
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
22. 4 x โ 5 y = โ 20
โ5 y = โ4 x โ 20
4
y = x+4
5
4
slope = ; y-intercept = 4
5
24. 2 x โ 3 y = 12
x-intercept:
2 x โ 3(0) = 12
2 x = 12
x=6
y-intercept:
2(0) โ 3 y = 12
โ3 y = 12
y = โ4
The intercepts are ( 6, 0 ) and ( 0, โ4 ) .
x-intercept: Let y = 0.
4 x โ 5(0) = โ 20
4 x = โ 20
x = โ5
25.
23.
1
1
1
xโ y = โ
2
3
6
1
1
1
โ y =โ xโ
3
2
6
3
1
y = x+
2
2
3
1
slope = ; y -intercept =
2
2
x-intercept: Let y = 0.
1
1
1
x โ (0) = โ
2
3
6
1
1
x=โ
2
6
1
x=โ
3
1
1
x+ y = 2
2
3
x-intercept:
1
1
x + (0) = 2
2
3
1
x=2
2
x=4
y-intercept:
1
1
(0) + y = 2
2
3
1
y=2
3
y=6
The intercepts are ( 4, 0 ) and ( 0, 6 ) .
208
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Review Exercises
30. Given the points A = (โ 2, 0), B = (โ 4, 4), and
C = (8, 5).
26. y = x3
a.
Find the distance between each pair of
points.
d ( A, B ) = (โ 4 โ (โ 2)) 2 + (4 โ 0) 2
= 4 + 16
= 20 = 2 5
d ( B, C ) = (8 โ (โ 4)) 2 + (5 โ 4) 2
= 144 + 1
= 145
d ( A, C ) = (8 โ (โ 2)) 2 + (5 โ 0) 2
= 100 + 25
27. y = x
= 125 = 5 5
2
2
๏ฉ๏ซ d ( A, B ) ๏น๏ป + ๏ฉ๏ซ d ( A, C ) ๏น๏ป = ๏ฉ๏ซ d ( B, C ) ๏น๏ป
( 20 ) + ( 125 ) = ( 145 )
2
2
2
2
20 + 125 = 145
145 = 145
The Pythagorean Theorem is satisfied, so
this is a right triangle.
28. slope =
2
, containing the point (1,2)
3
b. Find the slopes:
mAB =
4โ0
4
=
= โ2
โ 4 โ (โ 2) โ 2
mBC =
5โ4
1
=
8 โ ( โ 4 ) 12
mAC =
5โ0
5 1
=
=
8 โ ( โ 2 ) 10 2
1
= โ1 , the sides AB
2
and AC are perpendicular and the triangle is
a right triangle.
Since mAB โ
mAC = โ 2 โ
29. Find the distance between each pair of points.
d A, B = (1 โ 3) 2 + (1 โ 4) 2 = 4 + 9 = 13
d B,C = (โ 2 โ 1) 2 + (3 โ 1) 2 = 9 + 4 = 13
d A,C = (โ 2 โ 3) 2 + (3 โ 4) 2 = 25 + 1 = 26
Since AB = BC, triangle ABC is isosceles.
31. Endpoints of the diameter are (โ3, 2) and (5,โ6).
The center is at the midpoint of the diameter:
๏ฆ โ3 + 5 2 + ( โ 6 ) ๏ถ
,
Center: ๏ง
๏ท = (1, โ 2 )
2
๏จ 2
๏ธ
Radius: r = (1 โ (โ3)) 2 + (โ 2 โ 2) 2
= 16 + 16
= 32 = 4 2
209
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
Chapter 2 Test
2
2
(
Equation: ( x โ 1) + ( y + 2 ) = 4 2
)
2
1. d ( P1 , P2 ) =
( x โ 1)2 + ( y + 2 )2 = 32
= 62 + ( โ4 )
= 52 = 2 13
2. The coordinates of the midpoint are:
๏ฆ x + x y + y2 ๏ถ
( x, y ) = ๏ง 1 2 , 1
2 ๏ท๏ธ
๏จ 2
p = kB
๏ฆ โ1 + 5 3 + (โ1) ๏ถ
,
=๏ง
2 ๏ท๏ธ
๏จ 2
๏ฆ4 2๏ถ
=๏ง , ๏ท
๏จ2 2๏ธ
= ( 2, 1)
854 = k (130, 000 )
k=
854
427
=
130, 000 65, 000
Therefore, we have the equation p =
427
B.
65, 000
If B = 165, 000 , then
427
p=
(165, 000 ) = $1083.92 .
65, 000
34. w =
k
d2
200 =
2
= 36 + 16
1โ 5
= โ1
6โ2
โ1 โ 5
slope of AC =
= โ1
8โ2
Therefore, the points lie on a line.
32. slope of AB =
33.
( 5 โ (โ1) )2 + ( โ1 โ 3)2
3. a.
m=
y2 โ y1
โ1 โ 3
โ4
2
=
=
=โ
x2 โ x1 5 โ (โ1) 6
3
b. If x increases by 3 units, y will decrease
by 2 units.
4. y = x 2 โ 9
k
39602
(
)
k = ( 200 ) 39602 = 3,136,320, 000
Therefore, we have the equation
3,136,320, 000
w=
.
d2
If d = 3960 + 1 = 3961 miles, then
3,136,320, 000
w=
โ 199.9 pounds.
39612
35.
H = ksd
135 = k (7.5)(40)
135 = 300k
k = 0.45
So, we have the equation H = 0.45sd .
If s = 12 and d = 35, then
H = 0.45 (12)(35) = 189 BTU
5. y 2 = x
y
5
(1, 1)
(4, 2)
(9, 3)
y2 = x
10 x
(0, 0)
(1,โ1)
โ5
210
Copyright ยฉ 2016 Pearson Education, Inc.
(4,โ2)
(9,โ3)
Chapter 2 Test
6. x 2 + y = 9
x-intercepts:
x2 + 0 = 9
9.
y-intercept:
(0) 2 + y = 9
y=9
x2 = 9
x = ยฑ3
The intercepts are ( โ3, 0 ) , ( 3, 0 ) , and ( 0, 9 ) .
x2 + y2 + 4 x โ 2 y โ 4 = 0
x2 + 4 x + y 2 โ 2 y = 4
( x 2 + 4 x + 4) + ( y 2 โ 2 y + 1) = 4 + 4 + 1
( x + 2) 2 + ( y โ 1) 2 = 32
Center: (โ2, 1); Radius = 3
y
5
Test x-axis symmetry: Let y = โ y
x2 + ( โ y ) = 9
(โ2, 1)
x 2 โ y = 9 different
Test y-axis symmetry: Let x = โ x
5 x
โ5
2
(โx) + y = 9
x 2 + y = 9 same
โ5
Test origin symmetry: Let x = โ x and y = โ y
( โ x )2 + ( โ y ) = 9
x 2 โ y = 9 different
Therefore, the graph will have y-axis symmetry.
7. Slope = โ2 ; containing (3, โ4)
10. 2 x + 3 y = 6
3 y = โ2 x + 6
2
y = โ x+2
3
Parallel line
Any line parallel to 2 x + 3 y = 6 has slope
y โ y1 = m( x โ x1 )
y โ (โ4) = โ2( x โ 3)
2
m = โ . The line contains (1, โ1) :
3
y โ y1 = m( x โ x1 )
y + 4 = โ2 x + 6
y = โ2 x + 2
2
y โ (โ1) = โ ( x โ 1)
3
2
2
y +1 = โ x +
3
3
2
1
y = โ xโ
3
3
Perpendicular line
Any line perpendicular to 2 x + 3 y = 6 has slope
8. ( x โ h) 2 + ( y โ k ) 2 = r 2
3
. The line contains (0, 3) :
2
y โ y1 = m( x โ x1 )
m=
( x โ 4 )2 + ( y โ (โ3) )2 = 52
( x โ 4 )2 + ( y + 3)2 = 25
General form:
( x โ 4 )2 + ( y + 3)2 = 25
x 2 โ 8 x + 16 + y 2 + 6 y + 9 = 25
x2 + y 2 โ 8x + 6 y = 0
3
( x โ 0)
2
3
y โ3 = x
2
3
y = x+3
2
y โ3 =
211
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
11. Let R = the resistance, l = length, and r = radius.
l
Then R = k โ
2 . Now, R = 10 ohms, when
r
l = 50 feet and r = 6 ร 10โ3 inch, so
50
10 = k โ
2
6 ร 10โ3
(
4. x 2 โ 2 x โ 2 = 0
x=
2ยฑ 4+8
2
2 ยฑ 12
=
2
2ยฑ2 3
=
2
= 1ยฑ 3
โ3 2
โ6
50
Therefore, we have the equation
l
R = 7.2 ร 10โ6 2 .
r
(
)
)
(
{
5. x 2 + 2 x + 5 = 0
)
x=
โ2 ยฑ 22 โ 4 (1)( 5 )
2 (1)
โ2 ยฑ 4 โ 20
2
โ2 ยฑ โ16
=
2
No real solutions
=
Chapter 2 Cumulative Review
1. 3x โ 5 = 0
3x = 5
5
x=
3
6.
2
2x = 8
x 2 โ x โ 12 = 0
( x โ 4 )( x + 3) = 0
x = 4 or x = โ3
2 x2 โ 5x โ 3 = 0
( 2 x + 1)( x โ 3) = 0
x=โ
1
or x = 3
2
๏ฌ 1 ๏ผ
The solution set is ๏ญโ ,3๏ฝ .
๏ฎ 2 ๏พ
2
2x +1 = 9
x=4
Check:
The solution set is {โ3, 4} .
3.
2x +1 = 3
( 2x + 1) = 3
๏ฌ5 ๏ผ
The solution set is ๏ญ ๏ฝ .
๏ฎ3๏พ
2.
}
The solution set is 1 โ 3, 1 + 3 .
If l = 100 feet and r = 7 ร 10โ3 inch, then
100
โ 14.69 ohms.
R = 7.2 ร10โ6
2
7 ร 10โ3
(
( โ2 )2 โ 4 (1)( โ2 )
2 (1)
=
)
( 6 ร10 ) = 7.2 ร10
k = 10 โ
โ ( โ2 ) ยฑ
2(4) + 1 = 3?
9 = 3?
3 = 3 True
The solution set is {4} .
7.
x โ2 =1
x โ 2 = 1 or
x โ 2 = โ1
x=3
x =1
The solution set is {1,3} .
212
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2 Cumulative Review
12. โ1 < x + 4 < 5
โ5 < x < 1
{ x โ 5 < x 3
2 + x 3
x 1
{ x x 1} or ( โโ, โ 5) โช (1, โ )
4 + 8 2 + 8 โ 8 โ 8 2 = 2?
{
4 = 2 True
}
The solution set is โ2 โ 2 2, โ2 + 2 2 .
15. d ( P, Q ) =
9. x 2 = โ9
=
x = ยฑ โ9
x = ยฑ3i
The solution set is {โ3i,3i} .
โ ( โ2 ) ยฑ
( โ5 )2 + ( 5)2
= 50 = 5 2
๏ฆ โ1 + 4 3 + ( โ2 ) ๏ถ ๏ฆ 3 1 ๏ถ
Midpoint = ๏ง
,
๏ท=๏ง , ๏ท
2
๏จ 2
๏ธ ๏จ2 2๏ธ
( โ2 )2 โ 4 (1)( 5 ) 2 ยฑ 4 โ 20
=
2 (1)
2
2 ยฑ โ16 2 ยฑ 4i
=
=
= 1 ยฑ 2i
2
2
The solution set is {1 โ 2i, 1 + 2i} .
11. 2 x โ 3 โค 7
2 x โค 10
xโค5
{ x x โค 5} or ( โโ,5]
2
= 25 + 25
10. x 2 โ 2 x + 5 = 0
x=
( โ1 โ 4 )2 + ( 3 โ ( โ2 ) )
16. y = x3 โ 3x + 1
a.
( โ2, โ1) :
( โ2 )3 โ ( 3)( โ2 ) + 1 = โ8 + 6 + 1 = โ1
( โ2, โ1) is on the graph.
b.
( 2,3) :
( 2 )3 โ ( 3)( 2 ) + 1 = 8 โ 6 + 1 = 3
( 2,3) is on the graph.
c.
( 3,1) :
( 3)3 โ ( 3)( 3) + 1 = 27 โ 9 + 1 = 19 โ 1
( 3,1) is not on the graph.
213
Copyright ยฉ 2016 Pearson Education, Inc.
Chapter 2: Graphs
17. y = x3
20.
x2 + y2 โ 4x + 8 y โ 5 = 0
x2 โ 4 x + y 2 + 8 y = 5
( x 2 โ 4 x + 4) + ( y 2 + 8 y + 16) = 5 + 4 + 16
( x โ 2) 2 + ( y + 4) 2 = 25
( x โ 2) 2 + ( y + 4) 2 = 52
Center: (2,โ4); Radius = 5
18. The points (โ1,4) and (2,โ2) are on the line.
โ2 โ 4 โ6
Slope =
=
= โ2
2 โ (โ1) 3
y โ y1 = m( x โ x1 )
y โ 4 = โ2 ( x โ ( โ1) )
y โ 4 = โ2 ( x + 1)
y = โ2 x โ 2 + 4
y = โ2 x + 2
19. Perpendicular to y = 2 x + 1 ; Contains ( 3,5 )
1
Slope of perpendicular = โ
2
y โ y1 = m( x โ x1 )
Chapter 2 Project
Internet Based Project
1
y โ 5 = โ ( x โ 3)
2
1
3
y โ5 = โ x +
2
2
1
13
y = โ x+
2
2
214
Copyright ยฉ 2016 Pearson Education, Inc.
Document Preview (68 of 1026 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for College Algebra, 10th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Liam Anderson
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)