Solution Manual for Calculus I with Precalculus, 3rd Edition
Preview Extract
NOT FOR SALE
C H A P T E R 2
Polynomial and Rational Functions
Section 2.1
Quadratic Functions and Models ……………………………………………….174
Section 2.2
Polynomial Functions of Higher Degree…………………………………….188
Section 2.3
Polynomial and Synthetic Division ……………………………………………201
Section 2.4
Complex Numbers……………………………………………………………………215
Section 2.5
The Fundamental Theorem of Algebra ………………………………………220
Section 2.6
Rational Functions……………………………………………………………………237
Review Exercises …………………………………………………………………………………………..252
Chapter Test ……………………………………………………………………………………………….270
Problem Solving ……………………………………………………………………………………………272
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
C H A P T E R 2
Polynomial and Rational Functions
Section 2.1 Quadratic Functions and Models
1. polynomial
x 4
8. f x
2
opens upward and has vertex 4, 0 .
Matches graph (c).
2. nonnegative integer; real
x 2 2 opens upward and has vertex 0, 2 .
9. f x
3. quadratic; parabola
Matches graph (b).
4. axis
x 1
10. f x
5. positive; minimum
4 x 2
11. f x
x 2
7. f x
2 opens upward and has vertex
1, 2 . Matches graph (a).
6. negative; maximum
2
2
opens upward and has vertex 2, 0 .
2
x 2
2
4 opens
downward and has vertex 2, 4 . Matches graph (f).
Matches graph (e).
x 4
12. f x
2
opens downward and has vertex
4, 0 . Matches graph (d)
13. (a) y
1 x2
2
(b)
18 x 2
y
(c)
(d)
3 x 2
y
y
y
y
y
5
6
5
6
4
4
4
4
3
3
2
โ6 โ4
1
1
2
x
4
โ2
2
6
3
Vertical shrink
Vertical shrink and
reflection in the x-axis
x2 1
(b)
y
1
โ1
2
(c)
(d)
x2 3
y
y
y
5
4
10
8
4
3
8
6
3
2
6
4
2
1
x
x
โ 3 โ2 โ1
โ1
1
2
โ2
2
3
3
Vertical shift one unit
upward
6
Vertical stretch and
reflection in the x-axis
x2 3
y
y
โ3
4
3
Vertical stretch
x2 1
y
x
2
x
โ3 โ2 โ1
โ6
โ1
x
โ 6 โ4 โ 2
1
โ4
x
โ3 โ2 โ1
14. (a) y
3 2
x
2
y
โ2
Vertical shift one
unit downward
โ 6 โ4 โ2
โ2
x
2
4
6
Vertical shift
three units upward
โ 6 โ4
โ2
4
6
โ4
Vertical shift three
units downward
INSTRUCTOR USE ONLY
174
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
x 1
15. (a) y
2
(b)
y
5
4
3
2
3x
y
1
(c)
Quadratic Function
Functions and Models
2
1x
3
y
y
3
(d)
y
x 3
y
175
2
y
5
8
10
4
6
8
3
4
x
x
โ2
โ1
1
2
3
โ3 โ2 โ1
โ1
4
โ1
Horizontal shift one unit
to the right
12 x 2
16. (a) y
2
x
1
2
โ6
โ2
โ2
3
6
2
x
โ8 โ6 โ4 โ2
โ2
โ4
Horizontal shrink
and a vertical shift
1
Horizontal stretch and
a vertical shift three
one unit upward
12 x 2
(c) y
2
4
Horizontal shift three
units to the left
units downward
2
1
4
6
y
y
8
6
6
4
4
2
6
x
โ8 โ6 โ4
x
โ6 โ4 โ2
2
8 10
โ4
โ6
โ8
Horizontal shift two units to the right, vertical shrink
Horizontal shift two units to the left, vertical shrink
each y -value is multiplied by 12 , reflection in the
each y -value is multiplied by 12 , reflection in
x-axis, and vertical shift one unit upward
x-axis, and vertical shift one unit downward
2
ยช1 x 1 ยบ 3
ยฌ2
ยผ
(b) y
2
ยฌยช2 x 1 ยบยผ 4
(d) y
y
y
7
10
8
6
4
4
3
2
x
โ8 โ6 โ4
2
6
8
1
x
โ4
โ4 โ 3 โ 2 โ1
โ1
โ6
1
2
3
4
Horizontal shift one unit to the right, horizontal
stretch each x-value is multiplied by 2 , and vertical
Horizontal shift one unit to the left, horizontal shrink
shift three units downward
four units upward
1 x2
17. f x
Vertex: 0, 8
y
4
0
2
x
โ4 โ3 โ2
0
1
x
r1
x
2
x-intercepts: 1, 0 , 1, 0
โ1
1
2
3
4
x2 8
0
โ3
2
8
x
r2
x
6
0
Find x-intercepts:
โ2
โ4
y
Axis of symmetry: x
or the y-axis
3
Find x-intercepts:
1 x2
x2 8
18. f x
Vertex: 0, 1
Axis of symmetry: x
or the y-axis
each x-value is multiplied by 12 , and vertical shift
4
2
x
โ8 โ6 โ4
2
4
6
8
โ10
2
x-intercepts: 2 2, 0 , 2 2, 0
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
176
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x2 7
19. f x
x 4
23. f x
y
Vertex: 0, 7
Axis of symmetry: x
or the y-axis
12
x2
7
0
x 4
3
x 4
2
r 3
x 4
x
โ8 โ6 โ4 โ2
2
4
6
8
4 r
2
3
โ7 โ6
3
โ4 โ3
โ1
โ1
x
1
โ2
โ3
โ4
x
x-intercepts: 4
y
Vertex: 0, 12
1
2
2
12 x
3
Find x-intercepts:
6
x-intercepts: none
20. f x
4
4
Axis of symmetry: x
4
0
y
2
Find x-intercepts:
x2 7
3
Vertex: 4, 3
14
0
2
3, 0 , 4
3, 0
14
Axis of symmetry: x
or the y-axis
0
6
Find x-intercepts:
12 x 2
2
8
y
Vertex: 6, 8
4
14
2
0
x
12
x2
x
r2
โ8 โ6
โ2
2
6
8
Axis of symmetry: x
6
12
10
Find x-intercepts:
3
0
1 2
x 4
2
x 6
2
x 6
2
8
6
8
4
2
x-intercepts: 2 3, 0 , 2 3, 0
21. f x
x 6
24. f x
8
8
x
โ2
โ2
2
x 2 8 x 16
25. h x
y
x 4
1 x2 4
2
x
20
x
โ1
1
2
3
4
โ2
0
โ3
2
8
โ5
x
r 8
Axis of symmetry: x
4
16
Find x-intercepts:
12
2
8
x 4
0
x 4
0
x
4
r2 2
x-intercepts:
4
x
โ4
4
8
12
16
1
2
x-intercept: 4, 0
2 2, 0 , 2 2, 0
x2 2 x 1
26. g x
22. f x
y
Vertex: 4, 0
2
1
Find x-intercepts:
8 10 12 14
2
3
0
โ4 โ3
6
x-intercepts: none
2
1
x 0 4
2
Vertex: 0, 4
Axis of symmetry: x
or the y-axis
4
16 14 x 2
14 x 2 16
x 1
2
y
Vertex: 1, 0
6
y
Vertex: 0, 16
Axis of symmetry: x
1
5
18
Axis of symmetry: x
or the y-axis
Find x-intercepts:
16 14 x 2
0
x2
64
x
r8
4
Find x-intercepts:
0
12
x 1
9
6
2
โ9 โ6 โ3
โ3
x
3
6
9
2
1
x 1
0
x
1
3
3
0
x
โ4
โ3
โ2
โ1
x-intercept: 1, 0
x-intercepts: 8, 0 , 8, 0
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
27. f x
5
4
1ยท 1
5
ยง 2
ยจx x ยธ
4ยน 4
4
ยฉ
x 2 2 x 1 1 5
2
x 1
2
1ยท
ยง
ยจx ยธ 1
2ยน
ยฉ
Axis of symmetry: x
1
y
Find x-intercepts:
5
1
2
Axis of symmetry: x
Find x-intercepts:
4
x2 2 x 5
0
3
x 2x 5
0
1
x
2
x
0
โ2
1r
x
6
Vertex: 1, 6
ยง1 ยท
Vertex: ยจ , 1ยธ
ยฉ2 ยน
5
4
177
x2 2 x 5
29. f x
x2 x
x2 x
Quadratic Function
Functions and Models
โ1
1
2
3
2r
4 20
2
1r
6
x-intercepts: 1
15
2
6, 0 , 1
6, 0
y
Not a real number
6
No x-intercepts
28. f x
1
4
9ยท 9
1
ยง 2
ยจ x 3x ยธ
4
4
4
ยฉ
ยน
x 2 3x
x
โ4
2
6
โ2
โ4
2
3ยท
ยง
ยจx ยธ 2
2ยน
ยฉ
30. f x
x2 4x 1
x 2 4 x 4 4 1
ยง 3
ยท
Vertex: ยจ , 2 ยธ
ยฉ 2
ยน
x 2
Axis of symmetry: x
1
4
Find x-intercepts: x 4 x 1
0
x 4x 1
0
2
2
3 r
9 1
x
2
3
r
2
ยง 3
x-intercepts: ยจ
ยฉ 2
5
2
Axis of symmetry: x
0
x
2
Vertex: 2, 5
3
2
Find x-intercepts:
x 2 3x
x2 4 x 1
2
ยท ยง 3
2, 0 ยธ, ยจ
ยน ยฉ 2
ยท
2, 0 ยธ
ยน
x-intercepts: 2
5, 0 , 2
4 r
16 4
2
2 r
5
5, 0
y
5
y
4
4
2
3
1
2
x
1
โ6 โ5
x
โ5 โ4 โ3 โ2 โ1
1
2
โ3 โ2 โ1
1
2
โ2
โ3
โ2
โ3
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
178
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
4 x 2 4 x 21
31. h x
34. f x
1ยท
ยง
ยง1ยท
4ยจ x 2 x ยธ 4ยจ ยธ 21
4ยน
ยฉ
ยฉ 4ยน
13 x 2 9 x 6
13 x 2 9 x 81
13 81
6
4
4
2
1ยท
ยง
4ยจ x ยธ 20
2ยน
ยฉ
y
13 x 92
ยง1
ยท
Vertex: ยจ , 20 ยธ
ยฉ2
ยน
Vertex:
Axis of symmetry: x
1
2
10
โ4
4
8
0
4r
x
16 336
24
2 x2 x 1
8
10
โ4
x 2 9 x 18
0
x 3 x 6
0
x2 2 x 3
x 1
2
4
1
โ8
7
x-intercepts: 3, 0 , 1, 0
โ5
36. f x
2
1ยท
7
ยง
2ยจ x ยธ
4ยน
8
ยฉ
y
x 2 x 30
x 2 x 30
6
ยง1 7ยท
Vertex: ยจ , ยธ
ยฉ4 8ยน
x 2 x 14 14 30
5
4
Axis of symmetry: x
x 12
3
1
4
1
Find x-intercepts:
x
โ3
โ2
โ1
1
2
0
1r
2
35
121
4
โ10
10
Vertex: 12 , 121
4
3
12
Axis of symmetry: x
18
22
โ80
x-intercepts: 6, 0 , 5, 0
Not a real number
37. g x
No x-intercepts
x 2 8 x 11
x 4
2
5
14
Vertex: 4, 5
1 2
x 2 x 12
4
4
Axis of symmetry: x
1 x 2 8 x 16
4
14 16 12
x-intercepts: 4 r
โ18
โ6
y
Vertex: 4, 16
38. f x
4
Axis of symmetry: x
4
x
โ8
4
Find x-intercepts:
1 x 2 2 x 12
4
8
x 2 10 x 14
x 2 10 x 25 25 14
16
x 5
0
x 8 x 48
0
x 4 x 12
0
2
12
5, 0
2
1
x 4 16
4
4 or x
6
โ6
Axis of symmetry: x
2
x
4
5
1ยท
ยง
ยง1ยท
2ยจ x ยธ 2ยจ ยธ 1
4ยน
ยฉ
ยฉ 16 ยน
33. f x
โ2
โ2
9
2
Vertex: 1, 4
1 ยท
ยง
2ยจ x 2 x ยธ 1
2 ยน
ยฉ
x
x
0
35. f x
2x x 1
2
9 3
,
2 4
13 x 2 3 x 6
No x-intercepts
2
y
x-intercepts: 3, 0 , 6, 0
Not a real number
32. f x
34
Find x-intercepts:
x
โ8
2
Axis of symmetry: x
20
Find x-intercepts:
4 x 2 4 x 21
13 x 2 3 x 6
โ12
11
5
โ20
Vertex: 5, 11
10
โ16
โ20
12
2
Axis of symmetry: x
x-intercepts: 5 r
5
11, 0
โ15
INSTRUCTOR USE ONLY
x-intercepts:
x-intercepts: 4, 0 , 12, 0
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
39. f x
2 x 2 16 x 31
2 x 4
2
1
โ6
4
x-intercepts: 4 r 12
2, 0
12
4 x 2 6 x 41
1
Because the graph passes through 0, 3 ,
โ12
4 x 2 24 x 41
2
a x 2
f x
Axis of symmetry: x
179
44. 2, 1 is the vertex.
48
Vertex: 4, 1
40. f x
Quadratic Function
Functions and Models
3
a0 2
3
4a 1
4
4a
1
a.
2
1
2
x 2
So, y
1.
4 x 6 x 9 36 41
2
4 x 3
2
5
45. 2, 2 is the vertex.
0
0
6
Axis of symmetry: x
0
a 1 2
2
a.
โ20
1 2
x 4x 2
2
1
x 2
2
2
3
4
So, y
Vertex: 2, 3
2
Axis of symmetry: x
x-intercepts: 2 r
2
2
Because the graph passes through 1, 0 ,
3
No x-intercepts
41. g x
a x 2
y
Vertex: 3, 5
โ8
4
6, 0
2
2
2 x 2
2
2.
46. 2, 0 is the vertex.
a x 2
f x
2
0
a x 2
2
โ4
Because the graph passes through 3, 2 ,
3 2
x 6x 5
5
42. f x
3 2
x 6x 9
5
27
3
5
2
3
x 3 42
5
5
โ14
Axis of symmetry: x
x-intercepts: 3 r
10
3
a x 1
2
โ10
14, 0
Because the graph passes through 1, 0 ,
0
a11
4
4a
1
a.
So, y
4
1 x 1
a.
2
2x 2 .
a x 2
2
5
Because the graph passes through 0, 9 ,
a0 2
4
4a
1
a.
2
5
1x 2
So, f x
2
5
x 2
2
5.
48. 4, 1 is the vertex.
a x 4
f x
2
2
47. 2, 5 is the vertex.
9
4
2
2
f x
43. 1, 4 is the vertex.
y
a3 2
So, y
6
Vertex: 3, 42
5
2
4
x 1
2
4.
2
1
Because the graph passes through 2, 3 ,
3
a2 4
3
4a 1
4
4a
1
a.
So, f x
2
1
x 4
2
1.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
180
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
49. 1, 2 is the vertex.
a x 1
f x
2
54.
2
Because the graph passes through 1, 14 ,
14
a 1 1
14
4a 2
16
4a
4
a.
2
2
2
4 x 1
So, f x
a x 2
2
2.
f x
a x 52
3
2
34
Because the graph passes through 2, 4 ,
4
a 2 52
4
81
a 34
4
81
a
4
2
34
a.
2
19
x 52
81
So, f x
34 .
55. 52 , 0 is the vertex.
Because the graph passes through 0, 2 ,
2
is the vertex.
19
4
19
81
50. 2, 3 is the vertex.
f x
5
, 34
2
3
a x 52
f x
2
2
a0 2
2
4a 3
Because the graph passes through 72 , 16
,
3
1
4a
16
3
a 72 52
14
a.
16
3
a.
14 x 2
So, f x
2
3.
a x 5
f x
2
56. 6, 6 is the vertex.
12
15
a7 5
3
4a ย a
12
3
.
4
52. 2, 2 is the vertex.
a x 2
f x
2
Because the graph passes through 1, 0 ,
0
a 1 2
0
a 2
2
a.
So, f x
2
2
2
2x 2
a x 14
2
6
61
a 10
6
3
2
1
a 6
100
92
1
a
100
450
a.
2
6
450 x 6
2
6.
x2 4 x
57. f x
4
x-intercepts: 0, 0 , 4, 0
2.
53. 14 , 32 is the vertex.
f x
3
2
So, f x
2
2
61 3
,2 ,
Because the graph passes through 10
2
3
x 5 12.
4
So, f x
a x 6
f x
Because the graph passes through 7, 15 ,
2
2
16
x 52 .
3
So, f x
51. 5, 12 is the vertex.
2
0
x2 4 x
0
x x 4
x
0
or
โ4
8
โ4
x
4
The x-intercepts and the solutions of f x
0 are the
same.
32
Because the graph passes through 2, 0 ,
0
a 2 14
32
49
a ย a
16
2
32
24
.
49
2
INSTRUCTOR USE ONLY
So, f x
24 x 1
49
4
23 .
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
14
2 x 2 10 x
58. f x
63. f x
2 x 2 10 x
0
2 x x 5
2 x
0 ย x
x 5
โ1
g x
ยชยฌ x 1 ยบยผ x 3
x2 2 x 3
5
x2 2x 3
0 are the
same.
a x 1 x 3
Note: f x
x 2 9 x 18
x 2 9 x 18
0
x 3 x 6
x
3 or x
64. f x
โ8
ยชยฌ x 5 ยบยผ x 5
x 5 x 5
16
x 2 25, opens upward
โ4
6
The x-intercepts and the solutions of f x
0 are the
same.
g x
f x , opens downward
g x
x 2 25
a x 2 25
Note: f x
x 8 x 20
2
60. f x
x-intercepts: 2, 0 , 10, 0
0
x 2 8 x 20
0
x 2 x 10
has x-intercepts 1, 0
and 3, 0 for all real numbers a z 0.
12
x-intercepts: 3, 0 , 6, 0
0
opens downward
x 1 x 3
0
The x-intercepts and the solutions of f x
59. f x
opens upward
x2 2x 3
6
โ6
0 ย x
ยชยฌ x 1 ยบยผ x 3
181
x 1 x 3
x-intercepts: 0, 0 , 5, 0
0
Quadratic Function
Functions and Models
has x-intercepts 5, 0
and 5, 0 for all real numbers a z 0.
10
โ4
12
65. f x
x 0 x 10
opens upward
x 10 x
2
โ40
x 2
0 ย x
2
x 10
0 ย x
10
g x
x 0 x 10
opens downward
x 10 x
2
The x-intercepts and the solutions of f x
Note: f x
0 are the
a x 0 x 10
ax x 10 has
x-intercepts 0, 0 and 10, 0 for all real
same.
numbers a z 0.
2 x 7 x 30
2
61. f x
x-intercepts: 52 , 0 , 6, 0
0
2 x 2 7 x 30
0
2x 5 x 6
x
52
or x
10
66. f x
โ5
x 2 12 x 32, opens upward
โ40
6
g x
f x , opens downward
g x
x 2 12 x 32
Note: f x
The x-intercepts and the solutions of f x
67. f x
7
x 2 12 x 45
10
x-intercepts: 15, 0 , 3, 0
0
7
x 2 12 x 45
10
0
x 15 x 3
10
โ18
0 ย x
15
x 3
0 ย x
3
ยชยฌ x 3 ยบยผ ยช x 12 ยบ 2
ยฌ
ยผ
opens upward
x 3 x 12 2
4
x 3 2x 1
2 x2 7 x 3
โ60
x 15
a x 4 x 8 has x-intercepts 4, 0
and 8,0 for all real numbers a z 0.
0 are the
same.
62. f x
x 4 x 8
10
g x
2 x2 7 x 3
opens downward
= 2×2 7 x 3
Note: f x
a x 3 2 x 1 has x-intercepts
INSTRUCTOR USE
E ONLY
The x-intercepts and the solutions of f x
same.
same
0 are the
3,, 0 and 12 , 0 for all real numbers a z 0.
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
182
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
2 ยช x 52 ยบ x 2
ยฌ
ยผ
68. f x
x 2 3x 3
72. y
2 x 52 x 2
(a) From the graph it appears that there are no xintercepts.
2 x 2 12 x 5
(b) There are no x-intercepts and there are no real
solutions to the equation x 2 3 x 3 0.
2 x 2 x 10, opens upward
g x
f x , opens downward
g x
2 x x 10
(c) x 2 3 x 3
0
x 3x 3
0
2
2
a x 52
Note: f x
x 2 has x-intercepts
73. f x
x2 4 x 5
32 4 1 3
3 r
2
3
2
Not a real number ย No x-intercepts
52 , 0 and 2, 0 for all real numbers a z 0.
69. y
3 r
x
ax 2 bx c
(a) x-intercepts: 5, 0 , 1, 0
b ยท
ยง
aยจ x 2 x ยธ c
a ยน
ยฉ
(b) The x-intercepts and the solutions of the equation are
the same.
ยง
b
b2
b2 ยท
aยจ x 2 x
ยธ c
2
a
4a
4a 2 ยน
ยฉ
(c) 0
x2 4x 5
0
x 5 x 1
x
5 or x
ยง
ยง b2 ยท
b
b2 ยท
aยจ 2 ยธ c
aยจ x 2 x
2ยธ
a
4a ยน
ยฉ
ยฉ 4a ยน
1
2
The x-intercepts are 5, 0 and 1, 0 .
b ยท
b2
4ac
ยง
aยจ x
ยธ
2a ยน
4a
4a
ยฉ
2×2 5x 3
b ยท
4ac b 2
ยง
aยจ x
ยธ
2a ยน
4a
ยฉ
2
70. y
(a) From the graph it appears that the x-intercepts are
1
, 0 and 3, 0 .
2
ยง b 4ac b 2 ยท
The vertex is ยจ ,
ยธ.
4a
ยฉ 2a
ยน
(b) The x-intercepts and solutions of
2 x 2 5 x 3 0 are the same.
ยง b ยท
f ยจ ยธ
ยฉ 2a ยน
2×2 5x 3
0
2x 1 x 3
0
(c)
1
or
2
x
ยง b2 ยท b2
aยจ 2 ยธ
c
ยฉ 4a ยน 2a
3 ย The x-intercepts are
x
1
,0
2
and 3, 0 .
71. y
(a) From the graph it appears that the x-intercept is
1, 0 .
(b) The x-intercept and the solution to
x 2 2 x 1 0 are the same.
(c) x 2 2 x 1
0
x 2x 1
0
x 1
2
x 1
x
b2
2b 2
4ac
4a
4a
4a
b 2 4ac
4a
x2 2 x 1
2
2
ยง b ยท
ยง b ยท
a ยจ ยธ bยจ ยธ c
ยฉ 2a ยน
ยฉ 2a ยน
4ac b 2
4a
ยง b
ยง b ยทยท
Thus, the vertex occurs at ยจ , f ยจ ยธ ยธ.
2
a
ยฉ 2a ยน ยน
ยฉ
74. (a) Yes, it is possible for a quadratic equation to have
only one x-intercept. That happens when the vertex
is the x-intercept.
0
0
1 ย The x-intercept
is at 1, 0 .
(b) Yes. If the vertex is above the x-axis and the
parabola opens upward, or if the vertex is below
the x-axis and the parabola opens downward, then
the graph of the quadratic equation will have no
x-intercepts.
Examples: f x
x 2 4; g x
x2 1
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
75. Let x
the first number and y
the second number.
78. Let x
110 ย y
110 x.
The product is P x
xy
x 110 x
110 x x 2 .
x 2 110 x
P x
x 2 110 x 3025 3025
ยช x 55
ยฌ
x 55
2
2
3025ยบ
ยผ
3025
x y
S ย y
The product is P x
42 21
3
and y
the second number.
S x.
the first number and y
The maximum value of the product occurs at the vertex
of P x and is 147. This happens when x
21
The maximum value of the product occurs at the vertex
y
55.
of P x and is 3025. This happens when x
76. Let x the first number and y
Then the sum is
79.
xS x
xy
Sx x 2 .
7. So, the numbers are 21 and 7.
x
y
y
Sx x 2
P x
x 2 Sx
x
2x 2 y
ยง
S
S ยท
ยจ x 2 Sx
ยธ
4
4 ยน
ยฉ
2
2
2
(a) A x
50 x
x 50 x
xy
Domain: 0 x 50
The maximum value of the product occurs at the vertex
of P x and is S 2 4. This happens when
y
100
y
Sยท
S2
ยง
ยจ x ยธ
2ยน
4
ยฉ
x
183
the second number.
42 x
Then the sum is x 3 y
42 ย y
.
3
ยง 42 x ยท
xy
xยจ
The product is P x
ยธ.
ยฉ 3 ยน
1
P x
x 2 42 x
3
1
x 2 42 x 441 441
3
1ยช
1
2
2
x 21 147
x 21 441ยบ
ยผ
3ยฌ
3
Then the sum is
x y
Quadratic Function
Functions and Models
(b)
A
700
S 2.
560
420
77. Let x
the first number and y
the second number.
280
140
Then the sum is
x 2y
24 ย y
The product is P x
P x
x
24 x
.
2
xy
10
ยง 24 x ยท
xยจ
ยธ.
ยฉ 2 ยน
1
x 2 24 x
2
1
x 2 24 x 144 144
2
1ยช
1
2
2
x 12 72
x 12 144ยบ
ยผ
2ยฌ
2
The maximum value of the product occurs at the vertex
of P x and is 72. This happens when x 12 and
y
24 12 2
20
30
40
50
(c) The area is maximum (625 square feet) when
x
y
25. The rectangle has dimensions
25 ft u 25 ft.
80. Let x
length of rectangle and y
2x 2 y
y
(a) A x
36
18 x
x 18 x
xy
Domain: 0 x 18
(b)
(c) The area is maximum
(81 square meters) when
x
y
9 meters. The
rectangle has dimensions
9 meters u 9 meters.
A
100
6. So, the numbers are 12 and 6.
width of rectangle.
80
60
40
20
INSTRUCTOR USE ONLY
x
4
8
12
16
20
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
184
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
4
24
x2
x 12
9
9
81. y
82. y
24 9
2 4 9
b
2a
The vertex occurs at
3. The maximum height is y 3
4 2
24
3
3 12
9
9
16 feet.
16 2
9
x x 1.5
2025
5
(a) The ball height when it is punted is the y-intercept.
y
16
9
2
0 0 1.5
2025
5
(b) The vertex occurs at x
1.5 feet
b
2a
ยง 3645 ยท
The maximum height is f ยจ
ยธ
ยฉ 32 ยน
95
2 16 2025
3645
.
32
2
16 ยง 3645 ยท
9 ยง 3645 ยท
ยจ
ยธ ยจ
ยธ 1.5
2025 ยฉ 32 ยน
5 ยฉ 32 ยน
6561 6561
1.5
64
32
6561 13,122
96
64
64
64
6657
feet | 104.02 feet.
64
(c) The length of the punt is the positive x-intercept.
0
16 2
9
x x 1.5
2025
5
95 r
x
95
2
4 1.5 16 2025
32 2025
|
1.8 r 1.81312
0.01580247
x | 0.83031 or x | 228.64
The punt is about 228.64 feet.
800 10 x 0.25 x 2
83. C
0.25 x 2 10 x 800
The vertex occurs at x
b
2a
The cost is minimum when x
10
2 0.25
20.
12 p 2 150 p
86. R p
(a) R $4
R $6
20 fixtures.
R $8
230 20 x 0.5 x 2
84. P
20
2 0.5
20.
Because x is in hundreds of dollars,
20 u 100
2000 dollars is the amount spent
on advertising that gives maximum profit.
150 $4
$408
12 $6
2
150 $6
$468
12 $8
2
150 $8
$432
p
b
2a
25 p 1200 p
(a) R 20
$14,000 thousand
$14,000,000
R 25
$14,375 thousand
$14,375,000
R 30
$13,500 thousand
$13,500,000
150
2 12
$6.25.
Revenue is maximum when price
$6.25 per pet.
The maximum revenue is
R $6.25
2
85. R p
2
(b) The vertex occurs at
b
2a
The vertex occurs at x
12 $4
12 $6.25
2
150 $6.25
$468.75.
(b) The revenue is a maximum at the vertex.
b
2a
1200
2 25
R 24
14,400
24
The unit price that will yield a maximum revenue of
$14,400 thousand is $24.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
87. (a)
(b)
(c)
x
Quadratic Function
Functions and Models
1
200 4 x
3
4
50 x
3
8 x 50 x
4x 3y
200 ย y
A
ยช4
ยบ
2 x ยซ 50 x ยป
ยฌ3
ยผ
y
x
Section 2.1
2 xy
8
x 50 x
3
185
3
x
This area is maximum
when x
25 feet and
100
1
y
33 feet.
3
3
A
5
600
10
1066
15
1400
20
1600
25
1666
30
1600
2
3
8
x 50 x
3
8
x 2 50 x
3
8 2
x 50 x 625 625
3
8ยช
2
x 25 625ยบ
ยผ
3ยฌ
8
5000
2
x 25
3
3
(d) A
2
3
The maximum area occurs at the vertex and is
5000 3 square feet. This happens when x
25 feet
200 4 25
and y
2000
3
100 3 feet.
1
50 feet by 33 feet.
3
The dimensions are 2 x
(e) They are all identical.
0
60
0
This area is maximum when x
100
1
y
33 feet.
3
3
x
88. (a)
(d) Area of rectangular region:
A
y
1
y
2
Distance around two semicircular parts of track:
ยง1 ยท
d
2S r
2S ยจ y ยธ S y
ยฉ2 ยน
(b) Radius of semicircular ends of track: r
(c) Distance traveled around track in one lap:
S y 2 x 200
d
Sy
y
89. (a) Revenue
Let y
m
1
33 feet
3
25 feet and y
x
25 feet and
200 2 x
xy
ยง 200 2 x ยท
xยจ
ยธ
S
ยฉ
ยน
1
200 x 2 x 2
S
2
S
2
S
2
S
x 2 100 x
x 2 100 x 2500 2500
x 50
2
5000
The area is maximum when x
200 2 50
100
y
.
200 2 x
S
S
S
50 and
S
number of tickets sold price per ticket
attendance, or the number of tickets sold.
100, 20, 1500
y 1500
100 x 20
y 1500
y
100 x 2000
100 x 3500
R x
y x
R x
100 x 3500 x
R x
100 x 2 3500 x
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
186
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
(b) The revenue is at a maximum at the vertex.
3500
2 100
b
2a
17.5
100 17.5
R 17.5
2
3500 17.5
$30,625
A ticket price of $17.50 will yield a maximum revenue of $30,625.
Area of rectangle Area of semicircle
90. (a) Area of window
xy
1
2
S radius
2
xy
1 ยง xยท
Sยจ ยธ
2 ยฉ 2ยน
xy
2
Sx2
8
To eliminate the y in the equation for area, introduce a secondary equation.
perimeter of rectangle perimeter of semicircle
Perimeter
1
circumference
2
1
2y x
2S ย radius
2
ยง xยท
2y x S ยจ ยธ
ยฉ 2ยน
2y x
16
16
16
y
8
Sx
1
x
2
4
Substitute the secondary equation into the area equation.
xy
Area
S x2
8
S x ยท S x2
1
ยง
xยจ 8 x
ยธ
2
4 ยน
8
ยฉ
8x
S x2
1 2 S x2
x
2
4
8
8x
1 2 S x2
x
2
8
1
64 x 4 x 2 S x 2
8
(b) The area is maximum at the vertex.
8x
Area
1 2 S x2
x
2
8
ยง 1 Sยท 2
ยจ ยธ x 8x
8ยน
ยฉ 2
b
2a
x
y
8
8
| 4.48
ยง 1 Sยท
2ยจ ยธ
8ยน
ยฉ 2
S 4.48
1
4.48
| 2.24
2
4
The area will be at a maximum when the width is about 4.48 feet and the length is about 2.24 feet.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
91. (a)
Quadratic Function
Functions and Models
187
4200
0
55
0
(b) The maximum annual consumption occurs at the point 16.9, 4074.813 .
4075 cigarettes
1966 o t
16
The maximum consumption occurred in 1966. After that year, the consumption decreases.
It is likely that the warning was responsible for the decrease in consumption.
(c) Annual Consumption per smoker
Annual consumption in 2005 ย total population
total number of smokers in 2005
1487.9 296,329,000
59,858,458
7365.8
About 7366 cigarettes per smoker annually
Number of cigarettes per year
Number of days per year
Daily Consumption per smoker
7366
365
| 20.2
About 20 cigarettes per day
92. (a), (b)
95. True. The negative leading coefficient causes the
parabola to open downward, making the vertex the
maximum point on the graph.
7
0
7
0
y
0.0408 x 2 0.715 x 2.82
(c) The model is a good fit to the actual data.
(d) The greatest sales occurred in the year 2007.
(e) Sales will be at a maximum at the vertex.
x
b
2a
0.715
| 8.76
2 0.0408
96. True. The positive leading coefficient causes the
parabola to open upward, making the vertex the
minimum point on the graph.
x 2 bx 75, maximum value: 25
97. f x
The maximum value, 25, is the y-coordinate of the
vertex.
Find the x-coordinate of the vertex:
x
Sometime during 2008.
(f ) 2011 o Use x
y 11
11.
0.0408 11
2
0.715 11 2.82 | 5.75
Sales in the year 2011 will be about $5.75 billion.
93. True. The equation 12 x 1 0 has no real solution,
so the graph has no x-intercepts.
2
g x is 54 , 71
.
4
b
2 1
b
2
f x
x 2 bx 75
ยงbยท
fยจ ยธ
ยฉ 2ยน
ยงbยท
ยงbยท
ยจ ยธ bยจ ยธ 75
2
ยฉ ยน
ยฉ 2ยน
25
2
b2
b2
75
4
2
400
b2
4
b2
r20
b
100
94. True. The vertex of f x is 54 , 53
and the vertex of
4
b
2a
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
188
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x 2 bx 16, maximum value: 48
98. f x
x 2 bx 25 , minimum value: โ50
100. f x
The maximum value, 48, is the y-coordinate of the vertex.
The minimum value, โ50, is the y-coordinate of the vertex.
Find the x-coordinate of the vertex:
Find the x-coordinate:
b
2a
x
b
2 1
b
2
x
b
2a
f x
x 2 bx 16
ยงbยท
fยจ ยธ
ยฉ 2ยน
ยงbยท
ยงbยท
ยจ ยธ bยจ ยธ 16
2
ยฉ ยน
ยฉ 2ยน
ยง bยท
f ยจ ยธ
ยฉ 2ยน
b2
b2
16
4
2
50
b
21
b
2
x 2 bx 25
f x
2
2
ยง bยท
ยง bยท
ยจ ยธ bยจ ยธ 25
2
ยฉ ยน
ยฉ 2ยน
25
256
b2
4
b2
100
b2
b2
25
4
2
b 2
4
b2
r16
b
r10
b
48
64
x 2 bx 26 , minimum value: 10
99. f x
The minimum value, 10, is the y-coordinate of the vertex.
Find the x-coordinate of the vertex:
x
b
2a
b
21
b
2
f x
x 2 bx 26
ยง bยท
f ยจ ยธ
ยฉ 2ยน
2
64
r8
b
16
ax 2 bx c has two real zeros, then by the
103. If f x
Quadratic Formula they are
x
2
b
b
26
4
2
b2
4
b2
10
y value is adjusted by a factor of a, and the parabola
becomes narrower or wider. Every point on the parabola
is shifted up k units.
102. Conditions (a) and (d) are preferable because profits
would be increasing.
ยง bยท
ยง bยท
ยจ ยธ bยจ ยธ 26
ยฉ 2ยน
ยฉ 2ยน
2
101. The graph of f x is moved h units to the right. Every
b r
b 2 4ac
.
2a
The average of the zeros of f is
b
b
b 2 4ac
2a
2
b 2 4ac
2a
2b
2a
2
b
.
2a
This is the x-coordinate of the vertex of the graph.
Section 2.2 Polynomial Functions of Higher Degree
1. continuous
9. f x
2 x 3 is a line with y-intercept 0, 3 .
Matches graph (c).
2. Leading Coefficient Test
10. f x
3. x n
x 2 4 x is a parabola with intercepts 0, 0 and
4, 0 and opens upward. Matches graph (g).
4. n; n 1
5. (a) solution; (b) x a ; (c) x-intercept
11. f x
2 x 2 5 x is a parabola with x-intercepts 0, 0
and 52 , 0 and opens downward. Matches graph (h).
6. repeated; multiplicity
7. touches; crosses
8. standard
12. f x
2 x3 3 x 1 has intercepts
0, 1 , 1, 0 , 12 12
3, 0 and 12 12
3, 0 .
INSTRUCTOR USE ONLY
Matches graph (f).
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.2
14 x 4 3 x 2 has intercepts 0, 0 and
13. f x
Polynomial Functions of Hi
Higher Degree
H
18. y
r2 3, 0 . Matches graph (a).
189
x5
x 1
(a) f x
5
y
13 x3 x 2 43 has y-intercept 0, 43 .
14. f x
4
3
Matches graph (e).
2
1
x 4 2 x3 has intercepts 0, 0 and 2, 0 .
15. f x
x
โ 4 โ3
1
2
3
4
Matches graph (d).
โ3
โ4
1 x 5 2 x 3 9 x has intercepts
5
5
16. f x
0, 0 , 1, 0 , 1, 0 , 3, 0 , 3, 0 . Matches graph (b).
Horizontal shift one unit to the left
x5 1
(b) f x
17. y
x3
y
x 4
(a) f x
3
y
4
4
3
3
2
2
1
x
โ2
1
2
4
5
x
6
โ4 โ3 โ2
1
2
3
4
โ2
โ3
โ3
โ4
โ4
Vertical shift one unit upward
Horizontal shift four units to the right
(b) f x
x3 4
1 12 x5
(c) f x
y
y
4
2
3
1
2
x
โ3 โ2
1
2
3
4
x
โ2
โ4 โ3 โ2
โ3
2
3
4
โ3
โ6
โ4
Reflection in the x-axis, vertical shrink
each y -value is multiplied by 12 , and
vertical shift one unit upward
Vertical shift four units downward
(c) f x
1
x3
4
y
(d) f x
12 x 1
4
5
y
3
2
4
1
3
x
โ4 โ3 โ2
2
3
2
4
1
โ2
x
โ3
1
โ5 โ4 โ3 โ2
2
3
โ4
โ3
Reflection in the x-axis and a vertical shrink
each y -value is multiplied by 14
(d) f x
x 4
3
โ4
Refection in the x -axis, vertical shrink
each y -value is multiplied by 12 , and
y
4
horizontal shift one unit to the left
2
1
x
โ2
1
2
3
4
5
6
โ2
โ3
โ4
โ5
โ6
INSTRUCTOR USE ONLY
Horizontal shift four units to the right and vertical
shift four units downward
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
190
NOT FOR SALE
Chapter 2
19. y
Polynomial
ynomial and Rational Function
Functions
x4
x 3
(a) f x
4
(b)
x4 3
f x
y
f x
4 x4
y
6
4
6
5
3
5
4
2
3
f
(c)
y
1
3
x
2
โ4 โ3 โ2
1
2
3
2
4
1
x
โ5 โ4 โ3 โ2 โ1
1
2
x
3
โ4 โ3 โ2
โ2
โ4
Horizontal shift three
units to the left
(e)
f x
2
3
4
โ2
Vertical shift three units
downward
1 x 14
2
(d) f x
1
โ1
4
2x
y
1
Reflection in the x-axis and then
a vertical shift four units upward
(f )
4
1x
2
f x
y
2
y
6
6
5
4
3
2
1
x
โ4 โ3 โ2 โ1
1
2
3
โ4 โ3 โ2 โ1
โ1
4
Horizontal shift one unit to
the right and a vertical shrink
each y -value is multiplied by 12
x6
(a)
f x
1
2
3
โ4 โ3
4
1
3
4
18 x 6
Vertical shift two units downward
and a horizontal stretch each y -value
Vertical shift one unit upward
and a horizontal shrink each
y -value is multiplied by 16
(b)
x 2
f x
y
6
4
1
is multipied by 16
(c)
f x
x6 5
y
y
4
3
3
2
2
1
x
1
x
โ4 โ3 โ2
x
โ1
โ1
โ2
โ2
20. y
x
2
โ1
3
โ4 โ3 โ2
x
4
โ5 โ4
โ2
1
2
1
โ1
2
3
4
3
โ2
โ3
โ4
โ4
Horizontal shift two units
to the left and a vertical
shift four units downward
Vertical shrink each y -value
is multiplied by 18
and
reflection in the x-axis
(d) f x
14 x 6 1
(e)
1x
4
f x
y
6
2
Vertical shift five units downward
(f )
f x
2x
y
6
1
1
2
y
4
3
2
x
โ4 โ3 โ2
โ1
2
3
4
โ2
โ3
โ4
Reflection in the x-axis,
vertical shrink each y -value
is multiplied by 14 , and
x
โ8 โ 6
โ2
2
6
8
โ 4 โ 3 โ2 โ1
4
โ2
โ4
Horizontal stretch each x-value
is multiplied by 4 , and vertical
shift two units downward
x
3
Horizontal shrink each x -value
is multiplied by 12 , and vertical
shift one unit downward
INSTRUCTOR USE ONLY
vertical shift one unit upward
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.2
21. f x
1 x3 4 x
5
The degree is odd and the leading coefficient is positive.
The graph falls to the left and rises to the right.
2 x 3x 1
2
Degree: 2
Leading coefficient: 2
The degree is even and the leading coefficient is positive.
The graph rises to the left and rises to the right.
3 2
t 3t 6
4
Leading coefficient:
3
4
The degree is even and the leading coefficient is
negative. The graph falls to the left and falls to the right.
78 s 3 5s 2 7 s 1
30. f s
Degree: 3
Leading coefficient: 78
The degree is odd and the leading coefficient is negative.
5 72 x 3x 2
The graph rises to the left and falls to the right.
Degree: 2
Leading coefficient: 3
3x 3 9 x 1; g x
31. f x
The degree is even and the leading coefficient is
negative. The graph falls to the left and falls to the right.
24. h x
191
Degree: 2
Leading coefficient: 15
23. g x
29. f x
Degree: 3
22. f x
Polynomial Functions of Hi
Higher Degree
H
8
g
f
โ4
1 x6
Degree: 6
Leading coefficient: 1
The degree is even and the leading coefficient is
negative. The graph falls to the left and falls to the right.
3×3
4
โ8
13 x3 3 x 2 , g x
32. f x
13 x3
6
25. f x
2.1x 4 x 2
5
g
3
f
โ9
Degree: 5
Leading coefficient: 2.1
โ6
The degree is odd and the leading coefficient is negative.
The graph rises to the left and falls to the right.
26. f x
33. f x
4 x5 7 x 6.5
x 4 4 x3 16 x ; g x
x4
12
Degree: 5
Leading coefficient: 4
The degree is odd and the leading coefficient is positive.
The graph falls to the left and rises to the right.
27. f x
9
โ8
f
โ 20
34. f x
6 2 x 4 x 2 5 x3
8
g
3x 4 6 x 2 , g x
3×4
5
Degree: 3
Leading coefficient: 5
f
The degree is odd and the leading coefficient is negative.
g
โ6
6
The graph rises to the left and falls to the right.
3x 4 2 x 5
4
Degree: 4
3
Leading coefficient:
4
The degree is even and the leading coefficient is positive.
โ3
28. f x
The graph rises to the left and rises to the right.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
192
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
35. f x
x 2 36
38. f x
x 2 10 x 25
(a) 0
x 2 36
(a) 0
x 2 10 x 25
x 6 x 6
0
0
x 6
0
x
6
x
6
(b) x
2
5
Zero: x
x 6
x 5
5 has a multiplicity of 2 (even multiplicity).
Turning points: 1 (the vertex of the parabola)
Zeros: r6
(c)
25
(b) Each zero has a multiplicity of one (odd
multiplicity).
Turning points: 1 (the vertex of the parabola)
(c)
โ 25
15
โ5
6
โ 12
12
1 x2 1 x 2
3
3
3
39. f x
(a) 0
โ 42
36. f x
81 x 2
(a) 0
81 x 2
1 2
x x 2
3
1
x 2
3
x 1
2, x
Zeros: x
9 x 9 x
0
1 2
x 13 x 23
3
1
(b) Each zero has a multiplicity of 1 (odd multiplicity).
9 x
0
9 x
0
9
x
x
9
Turning points: 1 (the vertex of the parabola)
(c)
4
Zeros: r 9
โ6
(b) Each zero has a multiplicity of one (odd
multiplicity).
6
โ4
Turning points: 1 (the vertex of the parabola)
(c)
90
1 2
5
3
x x
2
2
2
40. f x
โ 15
(a) For
15
โ9
t 6t 9
2
37. h t
(a) 0
t 6t 9
2
Zero: t
(b) t
3
5
r
2
37
4
Zeros: x
5
,c
2
3
.
2
2
ยง5ยท
ยง 1 ยทยง 3 ยท
ยจ ยธ 4ยจ ยธยจ ยธ
ยฉ 2ยน
ยฉ 2 ยนยฉ 2 ยน
1
3 has a multiplicity of 2 (even multiplicity).
10
1
,b
2
5
r
2
x
t 3
0, a
2
Turning points: 1 (the vertex of the parabola)
(c)
1 2
5
3
x x
2
2
2
5 r 37
2
(b) Each zero has a multiplicity of 1 (odd multiplicity).
Turning points: 1 (the vertex of the parabola)
(c)
โ6
3
12
โ2
โ8
4
โ5
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.2
41. f x
3 x 3 12 x 2 3 x
(a) 0
3 x3 12 x 2 3 x
Zeros: x
3x x 2 4 x 1
2r
0, x
Polynomial Functions of Hi
Higher Degree
H
44. f x
x 4 x3 30 x 2
(a) 0
x 4 x3 30 x 2
0
x 2 x 2 x 30
0
x2 x 6 x 5
x2
0
x 6
0
x 5
0
x
0
x
6
x
5
3 (by the Quadratic
Formula)
(b) Each zero has a multiplicity of 1 (odd multiplicity).
Turning points: 2
(c)
8
Zeros: x
โ6
5
6, x
6
(b) The multiplicity of x
0 is 2 (even multiplicity).
The multiplicity of x
6 is 1 (odd multiplicity).
The multiplicity of x
5 is 1 (odd multiplicity).
โ 24
Turning points: 3
42. g x
5x x2 2x 1
(a) 0
5x x2 2x 1
0
x x2 2x 1
For x 2 2 x 1
x
0, x
193
2 r
(c)
0, a
2
60
โ9
2
2, c
1, b
9
1.
4 1 1
โ300
t 5 6t 3 9t
45. g t
21
1r
tt
3
2
t t 4 6t 2 9
t
3
r
3
t t2 3
2
2
2
Zeros: x
1r
0, x
Zeros: t
2
(b) Each zero has a multiplicity of 1 (odd multiplicity).
(b) t
0, t
0 has a multiplicity of 1 (odd multiplicity).
r
t
Turning points: 2
(c)
t 5 6t 3 9t
(a) 0
2r 8
2
3 each have a multiplicity of 2 (even
multiplicity).
16
Turning points: 4
โ6
(c)
6
6
โ9
โ 16
9
t 3 8t 2 16t
43. f t
โ6
(a) 0
t 8t 16t
0
t t 2 8t 16
0
tt 4 t 4
t
0
t 4
0
t 4
t
0
t
4
t
Zeros: t
0, t
4
3
2
46. (a) f x
x5 x3 6 x
0
x x4 x2 6
0
0
x x2 3 x2 2
4
Zeros: x
0, r
2
(b) Each zero has a multiplicity of 1 (odd multiplicity).
(b) The multiplicity of t
0 is 1 (odd multiplicity).
The multiplicity of t
4 is 2 (even multiplicity).
Turning points: 2
(c)
6
Turning points: 2
10
(c)
โ9
9
INSTRUCTOR USE ONLY
โ6
โ9
9
โ2
โ
2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
194
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
47. f x
3x 4 9 x 2 6
50. f x
x 3 4 x 2 25 x 100
(a) 0
3x 4 9 x 2 6
(a) 0
x 2 x 4 25 x 4
0
3 x 3x 2
0
x 2 25 x 4
0
3 x2 1 x2 2
0
x 5 x 5 x 4
4
2
No real zeros
(c)
r 5, 4
Zeros: x
(b) Turning points: 1
(b) Each zero has a multiplicity of 1 (odd multiplicity).
21
Turning points: 2
(c)
โ6
140
6
โ3
โ9
48. f x
2 x 4 2 x 2 40
(a) 0
2 x 4 2 x 2 40
51. y
0
2 x 4 x 2 20
(a)
0
2 x2 4 x2 5
Zeros: x
r
4 x3 20 x 2 25 x
12
โ2
5
(b) x-intercepts: 0, 0 , 52 , 0
Turning points: 3
20
โ6
(c) 0
4 x3 20 x 2 25 x
0
x 4 x 2 20 x 25
0
x 2x 5
x
0, 52
6
โ 60
x3 3 x 2 4 x 12
49. g x
(a) 0
x3 3 x 2 4 x 12
x2 4 x 3
Zeros: x
r 2, x
6
โ4
(b) Each zero has a multiplicity of 1 (odd multiplicity).
(c)
9
โ 20
x2 x 3 4 x 3
x 2 x 2 x 3
(d) The solutions are the same as the x-coordinates of
the x-intercepts.
52. y
4 x3 4 x 2 8 x 8
(a)
3
2
2
โ3
3
(b) Each zero has a multiplicity of 1 (odd multiplicity).
Turning points: 2
(c)
4
โ8
โ 11
7
(b)
โ16
1, 0 ,
2, 0 ,
2, 0
(c) 0
4 x3 4 x 2 8 x 8
0
4 x2 x 1 8 x 1
0
4×2 8 x 1
0
4 x2 2 x 1
x
r
2, 1
(d) The solutions are the same as the x-coordinates of
the x-intercepts.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.2
53. y
x5 5 x3 4 x
(a)
Polynomial Functions of Higher
Hi
H
Degree
59. f x
195
x 0 x 4 x 5
x x 2 9 x 20
4
x3 9 x 2 20 x
โ6
6
Note: f x
ax x 4 x 5 has zeros 0, 4, and
5 for all real numbers a z 0.
โ4
(b) x-intercepts: 0, 0 , r1, 0 , r2, 0
(c) 0
60. f x
x x 2 11x 10
x5 5 x3 4 x
x3 11x 2 10 x
0
x x2 1 x2 4
0
x x 1 x 1 x 2 x 2
x
0, r1, r 2
(d) The solutions are the same as the x-coordinates of
the x-intercepts.
54. y
1 x3 x 2 9
4
(a)
12
โ18
Note: f x
61. f x
x 4 4 x3 9 x 2 36 x
Note: f x
18
62. f x
x x4 5×2 4
x 5 5 x3 4 x
0, r 3
Note: f x
x 0 x 8
63. f x
ax x 8 has zeros 0 and 8 for all real
3ยบ
ยผ
ยชx 1
ยฌ
3 ยบยช
ยผยฌ x 1
3 ยบยผ
2
3
2
x2 2x 2
x2 7 x
ax x 7 has zeros 0 and 7 for all real
numbers a z 0.
Note: f x
1
64. f x
x 2 x 6
x 2 4 x 12
a x 2 x 6 has zeros 2 and 6 for
a x 2 2 x 2 has zeros
3 and 1
3 for all real numbers a z 0.
x 2 ยชx 4
ยฌ
x 2 ยชยฌ x 4
x 2ยชx 4
ยฌ
all real numbers a z 0.
58. f x
3 ยบยช x 1
ยผยฌ
x2 2x 1 3
x 0 x 7
Note: f x
ยชx 1
ยฌ
x 1
numbers a z 0.
57. f x
ax x 2 x 1 x 1 x 2 has
zeros 2, 1, 0, 1, and 2 for all real numbers a z 0.
x 8x
Note: f x
x 1 x 0 x 1 x 2
x x2 4 x2 1
2
56. f x
x 2
x x 2 x 1 x 1 x 2
1 x3 x 2 9
4
Note: f x
a x 4 4 x3 9 x 2 36 x has zeros
4, 3, 3, and 0 for all real numbers a z 0.
(d) The solutions are the same as the x-coordinates of
the x-intercepts.
55. f x
x 4 x 3 x 3 x 0
x 4 x2 9 x
(b) x-intercepts: 0, 0 , 3, 0 , 3, 0
x
ax x 1 x 10 has zeros 0, 1, and
10 for all real numbers a z 0.
โ12
(c) 0
x 0 x 1 x 10
2
x x 4
2
5 ยบยช x 4
ยผยฌ
5 ยบยช
ยผยฌ x 4
5ยบ
ยผ
5 ยบยผ
5ยบ
ยผ
5x 2 x 4
2
10
x 4 x 5
x 8 x 16 x 5 x 2 x 16 x 32 10
x x 20
x3 10 x 2 27 x 22
3
2
Note: f x
a x 4 x 5 has zeros 4 and 5 for
Note: f x
2
2
a x3 10 x 2 27 x 22 has zeros
INSTRUCTOR USE ONLY
all real numbers a z 0.
2, 4
5, and 4
5 forr all real numbers a z 00.
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
196
Chapter 2
65. f x
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
x 3 x 3
68. f x
x2 6 x 9
zero x
66. f x
x 2 x 2 11x 28
a x 2 6 x 9 , a z 0, has degree 2 and
Note: f x
3.
x 12 x 6
a x 2 18 x 72 , a z 0, has degree 2
and zeros x
12 and 6.
2, 4, and 7.
x 0 x
3 x 3
x x
zeros x
x x2 4 x 5
70. f x
x 4x 5x
2
Note: f x
ax x 2 4 x 5 , a z 0, has degree 3
and zeros x
0, 5, and 1.
3 x
3
x3 3x
a x3 3x , a z 0, has degree 3 and
Note: f x
x 0 x 5 x 1
3
degree 3 and zeros x
69. f x
Note: f x
x3 9 x 2 6 x 56
a x3 9 x 2 6 x 56 , a z 0, has
Note: f x
x 2 18 x 72
67. f x
x2 x4 x7
0,
3, and
3.
x 0 x 2 2 ยช x 2 2 ยบ
ยฌ
ยผ
x x 2 2 x 2 2
x x2 8
x3 8 x
Note: f x
a x3 8 x has these zeros for all real
numbers a z 0.
71. f x
x 1 ยชยฌ x 2 ยบยผ ยช x 1
ยฌ
x 1 x 2 ยชยฌ x 1
x2 x 2 ยช x 1
ยฌ
2
3 ยบยช x 1
ยผยฌ
3 ยบยช
ยผยฌ x 1
3ยบ
ยผ
3 ยบยผ
3ยบ
ยผ
x2 x 2 x2 2x 2
x 4 x3 6 x 2 2 x 4
Note: f x
72. f x
a x 4 x3 6 x 2 2 x 4 has these zeros for all real numbers a z 0.
x 3 ยชยฌ x 2 ยบยผ ยช x 2
ยฌ
x 3 x 2 ยชยฌ x 2
x2 x 6 ยช x 2
ยฌ
2
5 ยบยช x 2
ยผยฌ
5 ยบยช
ยผยฌ x 2
5ยบ
ยผ
5 ยบยผ
5ยบ
ยผ
x2 x 6 x2 4 x 1
x 4 5 x3 3 x 2 25 x 6
Note: f x
73. f x
a x 4 5 x3 3 x 2 25 x 6 has these zeros for all real numbers a z 0.
x4 x 4
x5 4 x 4
or f x
x3 x 4
2
x5 8 x 4 16 x3
or f x
x2 x 4
3
x5 12 x 4 48 x3 64 x 2
or f x
x x 4
4
x5 16 x 4 96 x3 256 x 2 256 x
Note: Any nonzero scalar multiple of these functions would also have degree 5 and zeros x
0 and 4.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.2
x 1
74. f x
2
x 4 x 7 x 8
2
Polynomial Functions of Hi
Higher Degree
H
x5 17 x 4 79 x3 11x 2 332 x 224
or f x
x 1 x 4
or f x
x 1 x 4 x 7
or f x
x 1 x 4 x 7 x 8
x 7 x 8
x5 22 x 4 169 x3 496 x 2 208 x 896
2
x 8
x5 25 x 4 223 x3 787 x 2 532 x 1568
2
x5 26 x 4 241×3 884 x 2 640 x 1792
1, 4, 7, and 8.
Note: Any nonzero scalar multiple of these functions would also have degree 5 and zeros x
x3 25 x
75. f x
x x 5 x 5
x 2 10 x 16
78. g x
x 2 x 8
(a) Falls to the left; rises to the right
(a) Falls to the left; falls to the right
(b) Zeros: 0, 5, 5
(b) Zeros: 2, 8
(c)
(c)
x
2
1
0
1
2
f x
42
24
0
24
42
(d)
197
(d)
y
x
1
3
5
7
9
g x
7
5
9
5
7
y
10
48
8
(โ5, 0)
โ2
2
6
(5, 0)
(0, 0)
โ 8 โ6
4
6
x
4
8
โ 24
2
โ 36
(2, 0)
โ 48
4
x4 9 x2
76. f x
x2 x 3 x 3
(b) Zeros: 0, 2
x
2
1
0
1
2
f x
24
8
0
8
24
(d)
x2 x 2
(a) Falls to the left; rises to the right
(b) Zeros: 3, 0, 3
(c)
x
10
x3 2 x 2
79. f x
(a) Rises to the left; rises to the right
(8, 0)
6
(c)
y
x
1
0
1
2
1
2
3
f x
3
0
83
1
0
9
(d)
y
15
4
10
(โ 3, 0) 5 (0, 0)
โ4
โ2 โ 1
1
(3, 0)
2
3
2
x
4
1
(0, 0) (2, 0)
โ4 โ3 โ2 โ1
3
x
4
โ20
โ25
1 t 12 7
4
2
1 t 2 2t 15
4
77. f t
t
f t
2 x 4 2 x x2
(a) Rises to the left; falls to the right
(b) No real zeros (no x-intercepts)
(c)
8 x3
80. f x
(a) Rises to the left; rises to the right
(b) Zero: 2
1
0
1
2
3
4.5
3.75
3.5
3.75
4.5
(d) The graph is a parabola with vertex 1, 72 .
y
(c)
x
2
1
0
1
2
f x
16
9
8
7
0
(d)
y
14
8
12
10
6
6
4
2
INSTRUCTOR
NSTR
STR
TR
USE
SE ONLY
2
t
โ44
โ
โ2
2
โ44 โ33 โ2
2 โ1
1
โ1
(2, 0)
1
3
x
4
4
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
198
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
3×3 15 x 2 18 x
81. f x
3x x 2 x 3
4 x3 4 x 2 15 x
82. f x
(a) Falls to the left; rises to the right
x 4 x 2 4 x 15
(b) Zeros: 0, 2, 3
x 2x 5 2x 3
(c)
x
0
1
2
2.5
3
3.5
(a) Rises to the left; falls to the right
f x
0
6
0
1.875
0
7.875
(b) Zeros: 32 , 0, 52
(d)
(c)
y
7
6
5
4
3
2
3
2
1
0
1
2
3
f x
99
18
7
0
15
14
27
(0, 0)
(4, 0)
2
6
(d)
y
(2, 0)
(0, 0)
โ3 โ2 โ1
x
20
(3, 0)
1
16
x
4 5 6
12
โ2
8
(โ 23, 0)
4
(0, 0)
( 25, 0)
1
3
โ4 โ3 โ2
5 x 2 x3
83. f x
x
4
x2 5 x
(a) Rises to the left; falls to the right
(d)
y
(b) Zeros: 0, 5
(c)
2
5
(โ5, 0)
โ15
x
5
4
3
2
1
0
1
f x
0
16
18
12
4
0
6
(0, 0)
x
โ10
5
10
โ20
48 x 2 3 x 4
84. f x
3x 2 x 2 16
(a) Rises to the left; rises to the right
(d)
(b) Zeros; 0, r 4
(c)
y
(โ 4, 0)
100
x
4
3
2
1
0
1
2
3
4
5
f x
675
0
189
144
45
0
45
โ144
โ189
0
675
โ6
โ2
x
โ200
โ300
x2 x 4
85. f x
(a) Falls to the left; rises to the right
(d)
y
(b) Zeros: 0, 4
(c)
2
โ4
x
1
0
1
2
3
4
5
f x
5
0
3
8
9
0
25
โ2
(0, 0)
(4, 0)
2
6
x
8
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.2
1 x3 x 4 2
3
86. h x
Polynomial Functions of Hi
Higher Degree
H
89. f x
(a) Falls to the left; rises to the right
x3 16 x
199
x x 4 x 4
32
(b) Zeros: 0, 4
โ6
(c)
x
1
0
1
2
3
4
5
h x
25
3
0
3
32
3
9
0
125
3
(d)
6
โ32
Zeros: 0 of multiplicity 1; 4 of multiplicity 1; and 4 of
y
multiplicity 1.
14
12
10
90. f x
8
1 x4 2 x2
4
6
6
4
(0, 0)
(4, 0)
โ4 โ2
2
4
6
2
14 t 2
87. g t
x
8 10 12
t 2
โ9
2
โ6
Zeros: 2.828 and 2.828 of multiplicity 1; 0 of
multiplicity 2
(a) Falls to the left; falls to the right
(b) Zeros: 2, 2
(c)
9
91. g x
t
3
2
1
0
1
2
3
g t
25
4
0
94
4
94
0
25
4
1 x 12 x 3
5
2x 9
14
y
(d)
(โ 2, 0)
(2, 0)
โ12
t
โ3
โ1
โ1
1
2
18
3
โ6
โ2
Zeros: 1 of multiplicity 2; 3 of multiplicity 1; 92 of
multiplicity 1
โ5
โ6
92. h x
2
3
1
x 1 x 3
10
88. g x
2
2
1
x 2 3x 5
5
21
(a) Falls to the left; rises to the right
(b) Zeros: 1, 3
(c)
โ12
x
2
1
0
1
2
4
g x
12.5
0
2.7
3.2
0.9
2.5
(d)
12
โ3
Zeros: 2, 53 , both with multiplicity 2
y
6
4
2
(โ1, 0)
โ6 โ4 โ2
(3, 0)
4
6
x
8
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
200
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
l ยwยh
95. (a) Volume
x 4 ; f x is even.
93. f x
height
length
y
5
4
x
width
2
36 2 x 36 2 x x
So, V x
3
36 2 x
x 36 2 x .
(b) Domain: 0 x 18
2
1
The length and width must be positive.
x
โ3
โ2
โ1
1
2
3
(c)
โ1
(a) g x
f x 2
Vertical shift two units upward
g x
f x 2
f x 2
g x
Even
(b) g x
f x 2
Horizontal shift two units to the left
Box
Height
Box
Width
Box
Volume, V
1
36 2 1
1ยชยฌ36 2 1 ยบยผ
2
36 2 2
2 ยชยฌ36 2 2 ยบยผ
3
36 2 3
3ยชยฌ36 2 3 ยบยผ
4
36 2 4
4 ยชยฌ36 2 4 ยบยผ
5
36 2 5
5ยชยฌ36 2 5 ยบยผ
2
6
36 2 6
6 ยชยฌ36 2 6 ยบยผ
2
7
36 2 7
7 ยชยฌ36 2 7 ยบยผ
2
Neither odd nor even
(c) g x
f x
x
4
x4
Reflection in the y-axis. The graph looks the same.
Even
(d) g x
f x
x
Reflection in the x-axis
(e) g x
(d)
f
1156
2
2
2
2048
2700
3136
3380
3456
3388
The volume is a maximum of 3456 cubic inches
when the height is 6 inches and the length and width
are each 24 inches. So the dimensions are
6 u 24 u 24 inches.
4
Even
1
x
2
2
3600
1 4
x
16
Horizontal stretch
Even
(f ) g x
0
1
f
2
x
1 4
x
2
The maximum point on the graph occurs at x
Vertical shrink
f x3 4
x3 4
4
4
x3
4
x3 , x t 0
l ยwยh
96. (a) Volume
8 x 12 x 6 x
f D f x
(b) x ! 0,
f f x
f x4
x
4
24 2 x 24 4 x x
2 12 x ย 4 6 x x
Neither
(h) g x
6.
This agrees with the maximum found in part (c).
Even
(g) g x
18
0
12 x ! 0,
6 x ! 0
x 12
x 6
Domain: 0 x 6
4
(c)
V
720
16
x
600
Even
480
360
94. R
1
x3 600 x 2
100,000
240
120
x
The point of diminishing returns (where the graph
changes from curving upward to curving downward)
occurs when x
200. The point is 200, 160 which
1
2
3
4
5
6
x | 2.5 corresponds to a maximum of 665 cubic
inches.
corresponds to spending $2,000,000 on advertising to
obtain a revenue of $160 million.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
97. False. A fifth-degree polynomial can have at most four
turning points.
x 1
98. True. f x
6
Polynomial and Synthetic
Synth
Division
201
100. (a) Degree: 3
Leading coefficient: Positive
(b) Degree: 2
has one repeated solution.
Leading coefficient: Positive
99. True. A polynomial of degree 7 with a negative leading
coefficient rises to the left and falls to the right.
(c) Degree: 4
Leading coefficient: Positive
(d) Degree: 5
Leading coefficient: Positive
Section 2.3 Polynomial and Synthetic Division
1. f x is the dividend; d x is the divisor: q x is the
9. y1
quotient: r x is the remainder
x2 2 x 1
, y2
x 3
(a) and (b)
2. improper; proper
x 1
2
x 3
3
โ9
9
3. improper
4. synthetic division
โ9
5. Factor
x 1
(c) x 3 x 2 2 x 1
x 2 3x
x 1
x 3
2
6. Remainder
7. y1
x2
and y2
x 2
x 2
4
x 2
x 2
x 2 x2 0x 0
x2 2x
2 x 0
2 x 4
4
So,
8. y1
x2
x 2
10. y1
4
and y1
x 2
x 2
x 4 3x 2 1
and y2
x2 5
x 3x 1
So,
x2 5
2
x 1
x4 x2 1
, y2
x2 1
x2
x2 8
(a) and (b)
y2 .
39
x2 5
y2 .
6
6
โ2
x2
(c) x 0 x 1 x 0 x x 2 0 x 1
x 4 0 x3 x 2
1
39
and y1
x 8 2
x 5
2
2
and y1
x 3
1
x2 1
โ6
x2 8
2
4
x 5 x 3x 2 1
x4 5×2
8 x 2 1
8 x 2 40
39
4
x2 2x 1
x 3
So,
y 2.
2
4
3
So,
x4 x2 1
x2 1
x2
1
and y1
x2 1
y2 .
2x 4
11. x 3 2 x 2 10 x 12
2 x2 6x
4 x 12
4 x 12
0
2 x 2 10 x 12
x 3
2 x 4, x z 3
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
202
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
5x 3
x 2 3x 9
12. x 4 5 x 17 x 12
5 x 2 20 x
3 x 12
3 x 12
0
17. x 3 x 0 x 2 0 x 27
x3 3x 2
3x 2 0 x
3x 2 9 x
9 x 27
9 x 27
0
2
5 x 2 17 x 12
x 4
3
5 x 3, x z 4
x
x3 27
x 3
3x 1
2
13. 4 x 5 4 x3 7 x 2 11x 5
4 x3 5 x 2
12 x 2 11x
12 x 2 15 x
4x 5
4x 5
0
4 x3 7 x 2 11x 5
4x 5
x 2 5 x 25
x 2 3x 1, x z
18. x 5 x3 0 x 2 0 x 125
x3 5 x 2
5 x 2 0 x
5 x 2 25 x
25 x 125
25 x 125
0
5
4
x3 125
x 5
2x 4x 3
2
14. 3x 2 6 x3 16 x 2 17 x 6
12 x 2 17 x
12 x 2 8 x
7x 3
x 2
9x 6
9x 6
0
2 x 2 4 x 3, x z
2
3
x3 3x 2
1
15. x 2 x 4 5 x3 6 x 2 x 2
x 4 2 x3
3×3 6 x 2
3×3 6 x 2
16. x 3 x 4 x 2
x3 3x 2 1, x z 2
3 x 12
x 3x
7 x 2 3x
7 x 2 21x
18 x 12
18 x 54
42
3
2
x3 4 x 2 3 x 12
x 3
11
x 2
4
20. 2 x 1 8 x 5
8x 4
9
8x 5
2x 1
x3 9
x2 1
x 2 7 x 18
3
7
4
9
2x 1
x
21. x 2 0 x 1 x3 0 x 2 0 x 9
x3 0 x 2 x
x 9
x 2
x 2
0
x 4 5 x3 6 x 2 x 2
x 2
x 2 5 x 25, x z 5
7
19. x 2 7 x 3
7 x 14
11
6 x3 4 x 2
6 x3 16 x 2 17 x 6
3x 2
x 2 3 x 9, x z 3
x 9
x2 1
x2
22. x3 0 x 2 0 x 1 x5 0 x 4 0 x3 0 x 2 0 x 7
x5 0 x 4 0 x3 x 2
7
x2
x5 7
x3 1
x 2 7 x 18
x
x2
x2 7
x3 1
42
x 3
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
2x 8
23. x 2 0 x 1 2 x3 8 x 2 3x 9
2 x3 0 x 2 2 x
8 x 2 x 9
8 x 2 0 x 8
x 1
2 x3 8 x 2 3x 9
x2 1
2x 8
29.
Polynomial and Synthetic
Synth
Division
3
6
x 1
x2 1
24. x 2 x 3 x 4 5 x3 0 x 2 20 x 16
x 4 x3 3 x 2
6 x3 3 x 2 20 x
6 x3 6 x 2 18 x
9 x 2 2 x 16
9 x 2 9 x 27
7 x 11
30.
x 1
x 3
3
6
31.
x 1
27.
5
17
3
3
15
3
2
10
25
2
5
0
3x 17 x 15 x 25
x 5
3
28.
3
2
5
5
18
7
32.
2
6
3
2
0
5 x3 18 x 2 7 x 6
x 3
7
12
192
2
32
199
8
9
18
8
0
18
0
9
0
18
32
18
0
32
0
16
0
9 x3 18 x 2 16 x 32
x 2
1
1
34.
6
3
75
250
10
100
250
10
25
0
0
72
18
12
72
2
12
0
3x 16 x 72
x 6
35.
4
2
5
5
36.
2
0
8
20
56
224
14
56
232
2
5
5
3x 2 2 x 12, x z 6
6
5x 6x 8
x 4
3
x 2 10 x 25, x z 10
16
3
5 x 2 14 x 56
0
6
8
10
20
52
10
26
44
5 x3 6 x 8
x 2
199
x 6
9 x 2 16, x z 2
0
x 3 75 x 250
x 10
248
x 3
4 x 2 9, x z 2
16
9
3
5 x 2 3 x 2, x z 3
2 x 2 2 x 32
2
9
6
9
20
4 x 8 x 9 x 18
x 2
2
3x 2 2 x 5, x z 5
15
14
4
33. 10
17 x 5
x 2x 1
6 x 2 25 x 74
12
4
25
15
248
2
3
26. x 2 2 x 1 2 x3 4 x 2 15 x 5
2 x3 4 x 2 2 x
17 x 5
2x
222
74
2
2x
2
75
25
2 x 14 x 20 x 7
x 6
6×2 8x 3
2 x3 4 x 2 15 x 5
18
2
7 x 11
x 6x 9 2
x x 3
x 1
26
3
2
x 3
25. x3 3x 2 3 x 1 x 4 0 x3 0 x 2 0 x 0
x 4 3×3 3x 2 x
3×3 3x 2 x 0
3×3 9 x 2 9 x 3
6×2 8x 3
x4
1
6 x 3 7 x 2 x 26
x 3
x2 6 x 9
x 4 5 x3 20 x 16
x2 x 3
7
6
203
232
x 4
44
x 2
INSTRUCTOR USE ONLY
5 x 2 10 x 26
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
204
Chapter 2
37.
6
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
10
50
60
60
360
2160
10
10
60
360
1360
0
10 x 4 50 x 3 800
x 6
38.
3
1
1
10 x 3 10 x 2 60 x 360
13
0
0
120
80
3
48
144
16
48
144
432
312
936
856
x 13 x 120 x 80
x 3
5
39.
4
8
1
1
9
1
0
0
512
8
64
512
8
64
0
0
0
729
9
81
729
9
81
0
x 729
x 9
3
2
x 4 16 x 3 48 x 2 144 x 312
856
x 3
45.
x 2 8 x 64, x z 8
1
41.
1360
x 6
1
2
4
46.
3
0
6
12
24
48
3
6
12
24
48
3 x 4
x 2
0
3
2
3
3
0
3 x 3 6 x 2 12 x 24
2
3
3
3 x
x 2
4
43.
6
48
x 2
0
0
6
12
24
48
6
12
24
48
4
1
1
1
1
2
0
0
180
0
6
36
216
6
36
36
216
216
4
7
15
14
30
0
4 x 2 14 x 30, x z
4
0
5
9
2
1
2
3
4
3
4
9
8
49
8
3x 2
1
3
49
x
2
4 8 x 12
x3 x 2 14 x 11, k
1
48
3 x 6 x 12 x 24
x 2
180 x x
x 6
1
0
3
1
44.
0
2
3×3 4 x 2 5
3
x
2
47. f x
42.
15
4 x3 16 x 2 23 x 15
1
x
2
x 2 9 x 81, x z 9
0
23
16
4
x3 512
x 8
40.
800
0
1
14
11
4
12
8
3
2
3
4
f x
x 4 x 2 3x 2 3
f 4
43 42 14 4 11
3
48. f x
x3 5 x 2 11x 8, k
2
โ2
216
x3 6 x 2 36 x 36
x 6
1
1
5
11
8
2
14
6
7
3
2
5
f x
x 2 x2 7 x 3 2
3
6
f 2
2
โ6
11
2
3
1
3
5 3 x 2 x 2 x3
x 1
3
5 2
2
1
2
11 2 8
2
11
x 1
INSTRUCTOR USE ONLY
x 2 3x 6
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
49. f x
23
15 x 4 10 x3 6 x 2 14, k
10
6
0
14
10
0
4
83
0
6
4
34
3
15
15
23
f 23
4
15 23
10 23
3
x3 3 x 2 2 x 14, k
51. f x
2
6 23
f x
x
2
2
f
14
50. f x
1
5
10 x 22 x 3x 4, k
22
10
10
1
5
2
3
4
2
4
75
20
7
13
5
x 15 10 x 2 20 x 7 13
5
f 15
10 15
53. f x
1
3
22 15
54. f x
2
3
4
f
1
4 4 3
10 2 3
4
2 4 3
2 2 3
0
4 1
3
61
3 x3 8 x 2 10 x 8, k
3
3
2
12 1
2
8
10
8
2 4 2
8
23 2
8 4 2
0
2
3 2
2
3 2
8
2 ยชx 2 3
ยฌ
3
3
2
2
2 x 3 2ยบ 8
ยผ
2 2 14
8
5
5
1
5
2
5
4
5
2 5 5
10
1
2
5
2 5
6
x
5 ยชx 2 2
ยฌ
5
3
2
5 x 2 5ยบ 6
ยผ
5
2
5
5 4
6
3 4
0
2
6 3 2
x 2
6
3 ยช4 x 2 2 4 3 x 2 2 3 ยบ
ยฌ
ยผ
3
f x
2 3 2
3
4
3
2
13
5
12
x 1
2
6
f x
3
f 2
3 15 4
4 x3 6 x 2 12 x 4, k
4
f 1
2
14
x3 2 x 2 5 x 4, k
f x
f x
2
34
3
52. f x
3
3
1
205
2
3
1
2
x 23 15 x3 6 x 4 34
3
f x
Polynomi
Polynomial
al and Synthetic
Synth
Division
2 ยช3x 2 2 3 2 x 8 4 2 ยบ
ยฌ
ยผ
2
3
82
2
2
10 2
2 8
0
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
206
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Functions
2 x3 7 x 3
55. f x
(a) Using the Remainder Theorem:
f 1
21
3
71 3
(b) Using the Remainder Theorem:
2
f 2
Using synthetic division:
1
2
7
3
2
2
5
2
5
2
0
2
3
2 2
7 2 3
Using synthetic division:
โ2
7
3
โ4
8
โ2
โ4
1
1
2
0
2
Verify using long division:
Verify using long division:
2x 2x 5
x 1 2x 0 x2 7 x 3
2 x3 2 x 2
2×2 7 x
2×2 2x
5x 3
5x 5
2
2×2 4x 1
x 2 2 x 0 x2 7 x 3
2 x3 4 x 2
4×2 7 x
4×2 8x
x 3
x 2
1
(d) Using the Remainder Theorem:
2
3
3
(c) Using the Remainder Theorem:
3
ยง1ยท
fยจ ยธ
ยฉ 2ยน
ยง1ยท
ยง1ยท
2ยจ ยธ 7ยจ ยธ 3
2
ยฉ ยน
ยฉ 2ยน
1
4
Using synthetic division:
1
2
2
0
1
2
1
f 2
22
13
4
1
4
72 3
7
2
0
4
8
2
2
4
1
5
3
3
5
Using synthetic division:
2
7
1
2
13
2
1
3
Verify using long division:
2×2 4 x 1
x 2 2x 0 x2 7 x 3
2 x3 4 x 2
4×2 7 x
4×2 8x
x 3
x 2
5
3
Verify using long division:
13
2
1
x
2 x3 0 x 2 7 x 3
2
2 x3 x 2
2×2 x
x2 7 x
1
x2 x
2
13
x 3
2
13
13
x
2
4
1
4
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.3
Polynomi
Polynomial
al and Synth
Synthetic Division
207
2 x6 3x 4 x2 3
56. g x
(a) Using the Remainder Theorem:
g 2
22
6
32
4
2
2
(b) Using the Remainder Theorem:
3
175
g1
Using synthetic division:
2
2
2
0
1
0
4
8
22
44
86
172
4
11
22
43
86
175
0
3
1
2 x 4 x 11x 22 x 43x 86
x 2 2 x 6 0 x5 3 x 4 0 x3 x 2 0 x 3
2 x6 4 x5
4 x5 3 x 4
4 x5 8 x 4
11x 4 0 x3
11x 4 22 x3
22 x3 x 2
22 x3 44 x 2
43 x 2 0 x
43 x 2 86 x
86 x 3
86 x 172
175
3
2
(c) Using the Remainder Theorem:
g3
23
33
3
2
2
2
3
0
1
0
3
6
18
63
6
21
63
189
188
564
564
1692
1695
Verify using long division:
2x
3
7
0
3
0
1
0
3
2
2
5
2
5
5
5
4
4
4
4
7
2 1
6
3 1
4
1
2
3
7
4
โ1
2
2
0
3
0
1
0
3
2
2
5
2
5
5
5
4
โ4
โ4
4
7
Verify using long division:
6 x 21x 63 x 188 x 564
4
3
2
x 3 2 x 0 x 3x 0 x
x 0x
3
2 x 6 6 x5
6 x5 3 x 4
6 x 4 18 x 4
21x 4 0 x3
21x 4 63 x3
x2
63×3
3
63x 189 x 2
188 x 2 0 x
188 x 2 564 x
564 x
3
564 x 1692
1695
5
2
Using synthetic division:
3
6
1
2 x 5 2 x 4 5 x3 5 x 2 4 x 4
x 1 2 x 6 0 x5 3x 4 0 x3 x 2 0 x 3
2 x 6 2 x5
2 x5 3x 4
2 x5 2 x 4
5 x 4 0 x3
5 x 4 5 x3
5 x3 x 2
5 x3 5 x 2
4×2 0x
4×2 4x
4x 3
4x 4
7
g 1
1695
0
5
4
(d) Using the Remainder Theorem:
Using synthetic division:
3
31
Verify using long division:
4
4
2
2
Verify using long division:
6
6
Using synthetic division:
3
5
21
3
2
2 x5 2 x 4 5 x3 5 x 2 4 x 4
x 1 2 x 0 x 5 3 x 4 0 x3 x 2 0 x 3
2 x6 2 x5
2 x5 3x 4
2 x5 2 x 4
5 x 4 0 x3
5 x 4 5 x3
5 x3 x 2
5 x3 5 x 2
4×2 0x
4×2 4x
4 x 3
4 x 4
7
6
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
208
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Functions
x3 5 x 2 7 x 4
57. h x
(a) Using the Remainder Theorem:
h3
3
3
53
2
(b) Using the Remainder Theorem:
73 4
35
h2
Using synthetic division:
3
1
1
2
3
52
2
72 4
Using synthetic division:
5
7
4
3
6
39
2
13
35
2
1
1
5
7
4
2
6
26
3
13
22
Verify using long division:
Verify using long division:
x 2 x 13
x 3 x 5×2 7 x 4
x3 3x 2
2 x 2 7 x
2 x 2 6 x
13 x 4
13 x 39
35
x 2 3 x 13
x 2 x 5×2 7 x 4
x3 2 x 2
3x 2 7 x
3x 2 6 x
13 x 4
13 x 26
22
(c) Using the Remainder Theorem:
(d) Using the Remainder Theorem:
2
3
h 2
2
3
5 2
2
3
7 2 4
10
Using synthetic division:
โ2
22
h 5
5
3
5 5
2
7 5 4
211
Using synthetic division:
1
5
7
2
14
14
1
7
7
10
โ5
4
Verify using long division:
1
5
7
4
5
50
215
1
10
43
211
Verify using long division:
x2 7 x 7
x 2 10 x 43
x 2 x3 5 x 2 7 x 4
x3 2 x 2
7 x 2 7 x
7 x 2 14 x
7x 4
7 x 14
10
x 5 x3 5 x 2 7 x 4
x3 5 x 2
10 x 2 7 x
10 x 2 50 x
43 x 4
43 x 215
211
4 x 4 16 x3 7 x 2 20
58. f x
(a) Using the Remainder Theorem:
f 1
41
4
16 1
3
(b) Using the Remainder Theorem:
7 1 20
Using synthetic division:
1
4
4
15
f 2
4 2
4
16 2
3
7 2
2
20
240
Using synthetic division:
16
7
0
4
12
5
20
5
12
5
5
15
Verify using long division:
4 x 3 12 x 2 5 x 5
x 1 4 x 4 16 x 3 7 x 2 0 x 20
4 x 4 4 x3
12 x 3 7 x 2
12 x 3 12 x 2
5 x 2 0 x
5 x 2 5 x
5 x 20
5 x 5
15
2
4
4
16
7
0
20
8
48
110
24
55
110
220
240
Verify using long division:
4 x3 24 x 2 55 x 110
x 2 4 x 4 16 x3 7 x 2 0 x 20
4 x3 8 x3
24 x3 7 x 2
24 x3 48 x 2
55 x 2 0 x
55 x 2 110 x
110 x 20
110 x 220
240
24
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
(c) Using the Remainder Theorem:
f 5
45
4
16 5
3
75
2
4
20
695
7
0
20
20
20
135
675
4
27
135
695
Verify using long division:
4x
3
2
1
1
0
7
6
2
4
6
2
3
0
x3 7 x 6
4
4 10
10
4
16 10
3
7 10
4
0
20
40
560
5670
56
567
5670
56,700
56,720
1
1
4 x 27 x 135
4 x3
56 x 2 567 x
62.
2
3
48
80
41
32
32
6
48
48
9
0
6
48 x3 80 x 2 41x 6
x 23 48 x 2 48 x 9
x 23 4 x 3 12 x 3
3x 2 4 x 3 4 x 1
0
28
48
4
16
48
4
12
0
Zeros: 23 , 34 , 14
63.
3
x 4 x 2 4 x 12
3
Zeros: 4, 2, 6
1
2
2
2
15
27
1
10
14
20
0
2x 1 x 2 x 5
64.
6
3
2 3
0
2 3
3
2 3
2
0
x
2
Zeros: 3,
x 12 2 x 2 14 x 20
6
3
x 2 x 3x 6
7
3
3 2 3
2
1
1
2 x 3 15 x 2 27 x 10
2
10
3
2
3
1
1
x 4 x 6 x 2
61.
5670
7 x2
0x
20
x 10 4 x 4 16 x3
4 x 4 40 x3
56 x3 7 x 2
56 x3 560 x 2
567 x 2
0x
567 x 2 5670 x
20
5670 x
5670 x 56,700
56,720
x 2 x2 2x 3
x3 28 x 48
56,720
Verify using long division:
Zeros: 2, 3, 1
4
20
7
x 2 x 3 x 1
60.
2
16
2
x 5 4 x 4 16 x3 7 x 2 0 x 20
4 x 4 20 x3
4 x3 7 x 2
4 x 3 20 x 2
27 x 2 0 x
27 x 2 135 x
135 x 20
135 x 675
695
59.
f 10
Using synthetic division:
16
4
209
(d) Using the Remainder Theorem:
Using synthetic division:
5
Polynomial and Synthetic
Synth
Division
Zeros: 12 , 2, 5
2
1
2
1
2
2
4
2
2 2 2
4
2
2 2
0
2
2
2 2
2
2 2
2
0
1
x 2x 2x 4
3
x
2
Zeros: 2,
3 x 2
3, 2
1
2
3 x
2 x 2 x
2
INSTRUCTOR USE ONLY
2,
2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
210
Chapter 2
65.
1
NOT FOR SALE
Polynomial
ynomial and Rational Functions
3
1
3
1
1
3
1
3x 3 2 x 2 19 x 6;
68. f x
1
3
1
3
2
Factors: x 3 , x 2
3
1
3
0
(a)
2
3
1
3
1
3
1
3
โ1
ยชx 1
ยฌ
3, 1
3
3 ยบยช x 1
ยผยฌ
2
3 ยบ x 1
ยผ
3 x 1
3
3
3
2
19
6
9
21
6
7
2
0
3
3
0
x 1 x 1
Zeros: 1, 1
2
2
1
x3 3x 2 2
0
7
2
6
2
1
0
Both are factors of f x because the remainders
3
are zero.
66.
2
2
1
13
3
(b) The remaining factor is 3x 1 .
2
5
7 3 5
3
1
1
5
6 3 5
(c) f x
0
1
1
5
6 3 5
2
5
63 5
3
0
1
5
5
1
x 3 x 2 13 x 3
x2
Zeros: 2
5, 3
5 x2
3×3 2 x 2 19 x 6
3x 1 x 3 x 2
(d) Zeros: 13 , 3, 2
(e)
35
5 x3
โ4
2
1
2
2
x 4 4 x3 15 x 2 58 x 40;
69. f x
1
5
2
Factors: x 5 , x 4
4
6
2
(a)
3
1
0
2
2
3
1
2
1
1
0
5
4
are zero.
(e)
2x 1 x 2 x 1
15
58
40
5
5
50
1
10
8
40
0
1
10
8
4
12
8
3
2
0
1
1
Both are factors of f x because the remainders
(b) The remaining factor is 2 x 1 .
(d) Zeros:
4
1
1
Both are factors of f x because the remainders
(c) f x
3
โ10
2 x 3 x 2 5 x 2; Factors: x 2 , x 1
67. f x
(a)
5, 2
are zero.
(b) x 2 3 x 2
1
, 2, 1
2
x 1 x 2
The remaining factors are x 1 and x 2
(c) f x
7
x 1 x 2 x 5 x 4
(d) Zeros: 1, 2, 5, 4
(e)
โ6
6
20
โ6
6
โ1
โ180
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
8 x 4 14 x 3 71x 2 10 x 24;
70. f x
2
4
Factors: 2 x 1 , 3x 2
14
71
10
16
60
22
24
24
8
30
11
12
0
8
30
11
12
32
8
12
2
3
0
8
8
211
6 x 3 41x 2 9 x 14;
71. f x
Factors: x 2 , x 4
(a)
Polynomial and Synthetic
Synth
Division
(a)
12
6
6
2
3
41
9
14
3
19
14
38
28
0
6
38
28
4
28
6
42
0
Both are factors of f x because the remainders
Both are factors of f x because the remainders
are zero.
are zero.
(b) 8 x 2 2 x 3
4x 3 2x 1
(b) 6 x 42
The remaining factors are 4 x 3 and 2 x 1 .
(c)
6 x 7
This shows that
4x 3 2x 1 x 2 x 4
f x
(d) Zeros: 34 , 12 , 2, 4
(e)
so
f x
1 ยทยง
2ยท
ยง
ยจ x ยธยจ x ยธ
2 ยนยฉ
3ยน
ยฉ
f x
2 x 1 3x 2
6x 7,
x 7.
40
โ3
The remaining factor is x 7 .
5
(c)
f x
x 7 2 x 1 3x 2
1 2
(d) Zeros: 7, ,
2 3
โ380
(e)
320
โ9
3
โ 40
10 x 3 11x 2 72 x 45;
72. f x
Factors: 2 x 5 , 5 x 3
(a)
52
3
5
11
72
45
25
90
45
10
36
18
0
10
36
18
6
18
30
0
10
10
(b) 10 x 30
10 x 3
This shows that
so
f x
5
3ยท
ยง
ยทยง
ยจ x ยธยจ x ยธ
2
5
ยฉ
ยนยฉ
ยน
f x
2 x 5 5x 3
10 x 3 ,
x 3.
The remaining factor is x 3 .
Both are factors of f x because the
remainders are zero.
(c)
f x
(e)
x 3 2x 5 5x 3
5 3
(d) Zeros: 3, ,
2 5
100
โ4
4
INSTRUCTOR USE ONLY
โ80
โ
80
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
212
Chapter 2
Polynomial
ynomial and Rational Function
Functions
(d) Zeros: r 4 3, 3
2 x3 x 2 10 x 5;
73. f x
Factors: 2 x 1 , x
(a)
1
2
2
1
10
5
1
0
5
0
10
0
2
5
(e)
5
2
โ8
10
2 5
10
2 5
0
(a) The zeros of f are x
2 and x | r2.236.
(b) An exact zero is x
2.
(c)
are zero.
2x
x 3 2 x 2 5 x 10
75. f x
Both are factors of f x because the remainders
(b) 2 x 2 5
8
โ240
0
2
60
2
1
5
1
f x
1ยท
ยง
ยจx ยธ x
2ยน
ยฉ
This shows that
so
f x
2x
x
(d) Zeros: 5,
(e)
5,
10
0
5
0
5 x
5
x3 4 x 2 2 x 8
76. g x
5 .
5 2x 1
1
2
4, x | 1.414, x | 1.414.
(a) The zeros of g are x
(b) x
4 is an exact zero.
(c)
1
4
4
14
2
8
4
0
8
0
2
0
x 4 x2 2
f x
x 4 x
6
โ6
2
t 3 2t 2 7t 2
77. h t
x 3x 2 48 x 144;
2 x
3
74. f x
(a) The zeros of h are t
Factors: x 4 3 , x 3
(a)
0
x 2 x 5
1
โ6
2
5.
5
5 x
10
x 2 x
The remaining factor is x
(c) f x
5
2
f x
5
x
2x 1 x
5,
2
3
2.
(b) An exact zero is t
3
48
144
3
0
144
0
48
0
0
48
ht
4 3
48
4 3
0
By the Quadratic Formula, the zeros of
t 2 4t 1 are 2 r 3. Thus,
1
1
4 3
2, t | 3.732, t | 0.268.
1
1
Both are factors of f x because the remainders
are zero.
(c)
2
1
1
ht
2
7
2
2
8
2
4
1
0
t 2 t 2 4t 1
t 2 ยชt 2
ยฌ
3 ยบยชt 2
ยผยฌ
3 ยบ.
ยผ
(b) The remaining factor is x 4 3 .
(c) f x
x 4 3 x 4 3 x 3
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
s 3 12 s 2 40 s 24
78. f s
6, s | 0.764, s | 5.236
(a) The zeros of f are s
(b) s
6 is an exact zero.
(c)
1
6
1
81.
12
40
24
6
36
24
6
4
0
5. Thus,
f s
s 6 ยชs 3
ยฌ
So,
5 ยบยชs 3
ยผยฌ
5 ยบ.
ยผ
82.
x 7 x 10 x 14 x 24 x
5
79. h x
4
3
2
(a) The zeros of h are x
0, x
3, x
(c)
4
1
8
4,
1
1
1
10
14
24
4
12
8
24
3
2
6
0
x x 4 x 3 x
83.
(a) The zeros of a are x
2 x
3, x
3, x
2
(c)
โ3
6
1.5,
3.
11
51
99
27
18
87
108
27
0
29
6
9
36
3
2
2
0
4×2 2 x 2
2 2×2 x 1
2 x 2 x 1, x z
1
64
64
8
56
64
7
8
0
2
1
1
3
.
2
x 2 7 x 8, x z 8
2
1
1
x 4 6 x3 11x 2 6 x
x 1 x 2
6
11
6
0
1
5
6
0
5
6
0
0
1
x | 0.333.
(b) An exact zero is x
3
x 4 6 x 3 11x 2 6 x
x 2 3x 2
6 x 4 11x 3 51x 2 99 x 27
80. g x
6
x x 64 x 64
x 8
3
x 4 x 4 3 x3 2 x 2 6 x
h x
3
x 3 x 2 64 x 64
x 8
4.
7
1
4 x3 8 x 2 x 3
2x 3
x | 1.414, x | 1.414.
(b) An exact zero is x
8
4 x3 8 x 2 x 3
3
x
2
By the Quadratic Formula, the zeros of s 2 6 s 4
are 3 r
4
4
s 6 s 6s 4
213
4 x3 8 x 2 x 3
2x 3
3
2
2
f s
Polynomi
Polynomial
al and Synth
Synthetic Division
5
6
0
2
6
0
3
0
0
x 4 6 x3 11x 2 6 x
x 1 x 2
x 2 3 x, x z 2, 1
x 3 6 x 29 x 36 x 9
3
a x
2
x 3 x 3 2 x 3 3x 1
84.
x 4 9 x3 5 x 2 36 x 4
x2 4
2
1
1
2
1
1
x 4 9 x3 5 x 2 36 x 4
x 2 x 2
9
5
36
4
2
22
34
4
11
17
2
0
11
17
2
2
18
2
9
1
0
x 4 9 x3 5 x 2 36 x 4
x2 4
INSTRUCTOR USE ONLY
x 2 9 x 1,, x z r2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
214
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x2n 6 xn 9
(c)
Year
Actual Value
Estimated Value
0
23.2
23.4
1
24.2
23.7
2
23.9
23.8
3
23.9
24.1
4
24.4
24.6
5
25.6
25.7
x 2n x n 3
6
28.0
27.4
86. x n 2 x3n 3 x 2 n 5 x n 6
x 3n 2 x 2 n
x2n 5xn
x2n 2 xn
3x n 6
3x n 6
0
7
29.8
30.1
85. x 3 x 9 x 27 x 27
x3n 3 x 2 n
6 x 2 n 27 x n
6 x 2 n 18 x n
9 x n 27
9 x n 27
0
n
3n
2n
n
x3n 9 x 2 n 27 x n 27
xn 3
x 2 n 6 x n 9, x n z 3
x 3n 3 x 2 n 5 x n 6
xn 2
(d) 2010 o t
10
1
1
4
3
c
5
45
210
9
42
c 210
1
1
1.81
22.3
0.181
2.23
45.7
92. (a) and (b)
65
0
7
25
A | 0.0576t 3 0.913t 2 0.28t 30.7
Year
Actual Value
Estimated Value
0
0
2
1
c
0
30.5
30.7
2
4
8
20
42
1
32.2
31.8
2
4
10
21
c 42
2
34.2
34.5
3
38.0
38.2
4
42.7
42.7
5
47.9
47.7
6
52.7
52.8
7
57.6
57.6
(d) 2010 o t
10
To divide evenly, c 42 must equal zero. So, c must
equal 42.
91. (a) and (b)
35
0
0.349
No, because the model will approach infinity
quickly.
(c)
2
23.4
In 2010, the amount of money supporting higher
education is about $45.7 billion.
To divide evenly, c 210 must equal zero. So, c must
equal 210.
90.
0.42
A 10 | $45.7
x 2 n x n 3, x n z 2
88. You can check polynomial division by multiplying the
quotient by the divisor. This should yield the original
dividend if the multiplication was performed correctly.
5
0.168
0.0349
0.0349
87. A divisor divides evenly into a dividend if the remainder
is zero.
89.
10
7
10
0
0.0576
A | 0.0349t 3 0.168t 2 0.42t 23.4
0.0576
0.913
0.28
30.7
0.576
3.37
36.5
0.337
3.65
67.2
In 2010, the amount of money spent on health care is
about $67.2 billion.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.4
93. False. If 7 x 4 is a factor of f , then 74 is a zero
100. If x 3 is a factor of f x
of f .
then f 3
f 3
94. True.
1
2
6
6
1
92
45
184
4
48
3
2
45
0
92
48
4
90
0
184
96
0
2 x 1 x 1 x 2 x 3 3x 2 x 4
f x
95. True. The degree of the numerator is greater than the
degree of the denominator.
k is a zero of f x , then x k is a factor
96. True. If x
of f x , and f k
215
x3 kx 2 2kx 12
0.
3
0
3
k 3
2
2k 3 12
27 9k 6k 12
15
3k
5
k
x 1
101. (a) x 1 x 2 0 x 1
x2 x
x 1
x 1
0
x2 1
x 1
0.
x 1, x z 1
x2 x 1
97. False.
(b) x 1 x3 0 x 2 0 x 1
x3 x 2
x2 0x
x2 x
x 1
x 1
0
To divide x 4 3 x 2 4 x 1 by x 2 using synthetic
division, the set up would be:
2
Comp
Complex Numbers
1
3
0
1
4
A zero must be included for the missing x3 term.
x3 1
x 1
x k q x r
98. f x
(a) k
2, r
5, q x
x3
any quadratic ax 2 bx c
x 2 x2 5
3, r
(b) k
1, q x
x3 2 x 2 5
any quadratic
ax 2 bx c where a 0. One example:
x 3 x2 1
f x
99. If x 4 is a factor of f x
then f 4
f 4
0
x3 3x 2 1
x3 kx 2 2kx 8,
x4 1
x3 x 2 x 1, x z 1
x 1
xn 1
x n 1 x n 2 ” x 1, x z 1
x 1
0.
4
3
k 4
2
2k 4 8
64 16k 8k 8
56
8k
7
k
x2 x 1
(c) x 1 x 4 0 x3 0 x 2 0 x 1
x 4 x3
x3 0 x 2
x3 x 2
x2 0 x
x2 x
x 1
x 1
0
where a ! 0. One example:
f x
x 2 x 1, x z 1
102. (a) f 3
0 because x 3 is a factor of f .
(b) Because f x is in factored form, it is easier to
evaluate directly.
Section 2.4 Complex Numbers
1. (a) iii
2.
1; 1
(b) i
(c) ii
3. principal square
4. complex conjugates
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
216
NOT FOR SALE
Chapter 2
5. a bi
Polynomial
ynomial and Rational Function
Functions
12 7i
a
12
b
7
6. a bi
20. 3 2i 6 13i
3 11i
21. 2
13 4i
a
13
b
4
22. 8
5 ย a
6
b 3
8 ย b
5
6 ย a
18 4 3 2i
8 3 2i 4 3 2i
4
23. 13i 14 7i
13i 14 7i
14 20i
24. 32 52 i
0
5
11
i
3
3
32 52 i 53 11
i
3
96 15
i 10
22
i
6
6
6
52
9. 8
25
8 5i
10. 2
27
2
1 7i
6
6
25.
27i
5 ย
10
2 3 3i
75
2
11.
80
4 5i
26.
12.
4
2i
27. 1 i 3 2i
13.
0.09
75i
5i
10i
50i 2
5 2 1
2
75i 2
5 2
75
3 2i 3i 2i 2
3i 2
5 i
0.09i
28. 7 2i 3 5i
0.3i
14. 14
2 2 2i 5 5 2i
6 5i
5 ย b
2b
50
5 8i
a 1
8. a 6 2bi
8 5
3 3 2i
7. a 1 b 3 i
a 6
3 2i 6 13i
14 0i
15. 10i i
2
16. 4i 2 2i
21 35i 6i 10i 2
21 41i 10
14
11 41i
10i 1
1 10i
29. 12i 1 9i
12i 108i 2
4 1 2i
12i 108
4 2i
108 12i
17. 7 i 3 4i
30. 8i 9 4i
10 3i
72i 32i 2
32 72i
18. 13 2i 5 6i
8 4i
31.
19. 9 i 8 i
1
32. 3
10
5 7
14
10i
14
10i
14 10i 2
14 10
3
5i 7
10i
21 3 10i 7 5i
21
24
50i 2
50 7 5 3 10 i
21 5 2 7 5 3 10 i
33. 6 7i
2
36 84i 49i 2
34. 5 4i
2
25 40i 16i 2
36 84i 49
25 40i 16
13 84i
9 40i
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.4
35. The complex conjugate of 9 2i is 9 2i.
9 2i 9 2i
46.
81 4i 2
2i
5
2 i
2i
85
1
5i 1
5i is 1
15
37. The complex conjugate of
2 5i 2 5i
20i 2
38. The complex conjugate of
6
39.
3 i
ย
i i
40.
41.
6
44.
3i
i 2
14 2i
ย
2i 2i
28i
4i 2
8 16i 2i
ย
2i
2i
3i
2
6
20
2 5i is 2 5i .
47.
i 3 8i 2i 3 2i
i
2i
3 2i
3 8i
3 2i 3 8i
3i 8i 2 6i 4i 2
9 24i 6i 16i 2
20
6 is
4i 2 9i
9 18i 16
4 9i 25 18i
ย
25 18i 25 18i
6.
28i
4
13 13i
1 i2
100 72i 225i 162i 2
625 324
62 297i
62
297
i
949
949
949
7i
13 13i
2
16i 32i 2
4i 2
48.
1i
3
4 i
i
3i
9 40i
ย
9 40i 9 40i
21 i 31 i
1i 1i
1 i 4 i 3i
i4i
4 i 4i i 2 3i
4i i 2
5
1 4i
ย
1 4i 1 4i
5 20i
1 16i 2
5
20
i
17 17
8 4i
3i
16 40i 25i 2
2
3
1i 1i
13 13
i
2
2
6 12i 7i 14i 2
1 4i 2
20 5i
4i
5
27i 120i 2
120 27i
81 1600
1681
120
27
i
1681 1681
45.
2i 2i
3i
1i
13
ย
1i 1i
4 5i
2i 2 i 5 2 i
6
6 7i 1 2i
ย
42.
1 2i 1 2i
43.
5i.
1 5i 2
5i
217
4i 2i 2 10 5i
4 i2
12 9i
5
12 9
i
5
5
81 4
36. The complex conjugate of 1
Comp
Complex Numbers
49. x 2 2 x 2
0; a
2 r
2
x
1, b
2
2, c
2
41 2
21
2 r
4
2
2 r 2i
2
1ri
2 2i 3 3i
11
1 5i
2
1
5
i
2
2
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
218
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
50. 4 x 2 16 x 17
16 r
x
0; a
16
2
4, b
16, c
53. 1.4 x 2 2 x 10
17
7 x 10 x 50
2
4 4 17
x
16 r 16
8
16 r 4i
8
1
2 r i
2
6 r
6, c
0; a
9, b
2
4 9 37
54.
37
1296
18
6 r 36i
1
r 2i
18
3
4
2
12 r
4, c
16, b
3
55. 6i 3 i 2
4 16 3
57. i
1
2i
3
1
i
1
8i 3
72
2r
2i
6i 2i i 2
6 1 i 1
11
i
8
1
i 2i
4 3 18
6i 1
1 6i
1
r
8
1
i3
2
6
56. 4i 2 2i 3
2i
12
12 r 6 2i
6
176
32
6
0
23
4 r 4 11i
32
2
58.
60.
0; a
0 Multiply both sides by 2.
12 r
2 16
4 r
59.
3 2
x 6x 9
2
3x 2 12 x 18
x
6r
4 r
4 7 50
5
5 15
r
7
7
29
t
2
10 r 10 15
14
1500
14
6
52. 16t 2 4t 3
10
27
10 r
51. 9 x 2 6 x 37
x
0
10 r
24
0 Multiply both sides by 5.
6
8i 6
1 i
ย
i i
1
8i 2i
1
8i
8 1 1 1
8i 2i 2i 2
i
i 2
1 i 3
4 1 2 1 i
1 i 2 i
1 1 i
4 2i
i
8
61. a bi a bi
i
a 2 abi abi b 2i 2
a 2 b 2 1
1 8i
ย
8i 8i
8i
64i 2
a 2 b2
1
i
8
which is a real number since a and b are real numbers.
Thus, the product of a complex number and its conjugate
is a real number.
62.
63. a1 b1i a2 b2i
3
4i 2 2i 2i
6
6
6i 6i
6i 2
6
a1 a2 b1 b2 i
The complex conjugate of this sum is a1 a2 b1 b2 i.
The sum of the complex conjugates is a1 b1i a2 b2i
a1 a2 b1 b2 i.
So, the complex conjugate of the sum of two complex numbers is the sum of their complex conjugates.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.4
64. (a) 24
16
(b)
2
(c)
2i
4
24 i 4
4
16 1 1
16i 2i 2
4 4
2 i
2 x 3
66. f x
i2
(b) i 25
i2
(c) i 50
i2
(d) i 67
i2
16
4
2i
(d)
65. (a) i 40
2
16 1 1
2 2
16i i
4, g x
16
2 x 3
2
16
20
1
12
33
20
1 i
1
i
25
1
33
i
1 i
i
219
1
12
ยi
25
Complex
Comp
Numbers
4
(a) The graph of f is a parabola with vertex at the point 3, 4 .
(c) If all the zeros contain i, then the graph has no
x-intercepts.
The a value is positive, so the graph opens upward.
The graph of g is also a parabola with vertex at the point 3, 4 .
The a value is negative, so the graph opens downward.
f has an x-intercept and g does not because when g x
0,
x is a complex number.
f x
2x 3
2
4
0
2x 3
2
4
4
2x 3
2
2
x 3
r 2
x 3
(b)
3r
2
(d) If a and k have the same sign (both positive
or both negative), then the graph of f has no
x-intercepts and the zeros are complex.
Otherwise, the graph of f has x-intercepts and
the zeros are real.
2
x
2 x 3
2
4
2 x 3
2
4
4
2 x 3
2
2
x 3
r 2
x 3
g x
0
3r
2i
67. False, if b
2
x
0 then a bi
a bi
68. True.
a.
x 4 x 2 14
That is, if the complex number is real, the number equals
its conjugate.
i 6
4
i 6
2
14
36 6 14
56
56
?
56
?
56
56
69. False.
i 44 i150 i 74 i109 i 61
22
i2
1
22
i2
75
1
i2
75
1
111i i
70. (a) z1
(b)
1
z
9 16i, z2
1
1
z1
z2
37
i2
37
54
i i2
54
30
i
30
1 i 1 i
1
20 10i
1
1
9 16i
20 10i
ยง 340 230i ยทยง 29 6i ยท
ยจ
ยธยจ
ยธ
ยฉ 29 6i ยนยฉ 29 6i ยน
20 10i 9 16i
9 16i 20 10i
11,240 4630i
877
29 6i
340 230i
11,240
4630
i
877
877
INSTRUCTOR USE ONLY
z
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
220
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
Section 2.5 The Fundamental Theorem of Algebra
1. Fundamental Theorem of Algebra
x3 6 x 2 11x 6
17. f x
2. Linear Factorization Theorem
Possible rational zeros: r1, r 2, r 3, r 6
3. Rational Zero
1
1
4. conjugate
1
5. linear; quadratic; quadratic
6
11
6
1
5
6
5
6
0
x3 6 x 2 11x 6
x 1 x2 5x 6
6. irreducible; reals
7. f x
x x 6
x 1 x 2 x 3
2
The zeros are: x
8. f x
0, x
11. f x
3
6, x
3
9
6
3
2
0
So, the rational zeros are 2, 1, and 3.
8
x3 4 x 2 x 4
19. g x
i , x
x2 x 4 1 x 4
i
x 4 x2 1
2, x
3i, x
3i
x 4 x 1 x 1
So, the rational zeros are 4, 1, and 1.
x 2x x 2
3
6
x 3 x 2 x 1
t 3 t 2 t 3i t 3i
3, x
7
0
x 3 x 2 3x 2
2
2
x3 9 x 2 20 x 12
20. h x
Possible rational zeros: r1, r 2
Possible rational zeros: r1, r 2, r 3, r 4, r 6, r12
Zeros shown on graph: 2, 1, 1
1
14. f x
1
f x
x 6 x i x i
The zeros are: x
13. f x
4
5, x
The zeros are: x
12. h t
1
1, x
Possible rational zeros: r1, r 2, r 3, r 6
1
2, x
The zeros are: x
x2 x 3 x 1 x 1
3
x 2 x 4
x 5 x 8
x3 7 x 6
18. f x
3, x
0, x
The zeros are: x
10. f x
6
x2 x 3 x2 1
The zeros are: x
9. g x
So, the rational zeros are 1, 2, and 3.
1
x3 4 x 2 4 x 16
Possible rational zeros: r1, r 2, r 4, r 8, r16
Zeros shown on graph: 2, 2, 4
1
h x
9
20
12
1
8
12
8
12
0
x 1 x 2 8 x 12
2 x 4 17 x 3 35 x 2 9 x 45
x 1 x 2 x 6
Possible rational zeros: r1, r 3, r 5, r 9, r15, r 45,
So, the rational zeros are 1, 2, and 6.
15. f x
r 12 , r 32 , r 52 , r 92 , r 15
, r 45
2
2
Zeros shown on graph: 1, 32 , 3, 5
16. f x
4 x5 8 x 4 5 x3 10 x 2 x 2
Possible rational zeros: r1, r 2, r 12 , r 14
INSTRUCTOR USE ONLY
Zeros shown on graph: 1, 12 , 12 , 1, 2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
t 3 8t 2 13t 6
21. h t
1
Possible rational zeros:
r1, r 2, r 3, r 4, r 6, r 8, r12, r 24,
8
13
6
6
12
6
r 13 , r 23 , r 43 , r 83 , r 19 , r 92 , r 94 , r 98
2
1
0
รญ2
1
t 3 8t 2 13t 6
9
t 6 t 1 t 1
1
1
9
27
27
3
18
27
6
9
0
2
1
2
1
1
1
1
2 x3 3 x 2 1
1
0
x 1 2×2 x 1
2
รญ1
3
3
f x
รญ19
33
รญ9
9
รญ30
9
รญ10
3
0
0
23
15
รญ25
รญ10
2
รญ5
รญ2
5
25
0
2
รญ5
รญ2
5
2
รญ3
รญ5
2
รญ3
รญ5
0
รญ3
รญ5
รญ2
5
รญ5
0
2
x 3 3 x 2 10 x 3
x 3 3x 1 x 3
So, the rational zeros are 3 and 13 .
f x
x 5 x 1 x 1 2x 5
So, the rational zeros are 5, 1, 1 and 52 .
3×3 19 x 2 33 x 9
Possible rational zeros: r1, r 3, r 9, r 13
3
รญ12
รญ4
รญ25
2
2x 1
So, the rational zeros are 1 and 12 .
24. f x
0
0
10
x 1 x 1 2x 1
x 1
27
รญ15
2
Possible rational zeros: r1, r 12
0
12
Possible rational zeros: r1, r 5, r 25, r 12 , r 52 , r 25
2
5
3
รญ4
2 x 4 15 x3 23x 2 15 x 25
2 x3 3x 2 1
2
8
12
x 2 x 3 9×2 4
f x
26. f x
So, the rational zero is 3.
1
รญ24
0
54
รญ4
So, the rational zeros are 2, 3, 23 , and 23 .
x 3 x 3 x 3
23. C x
24
รญ27
รญ27
9
4
x 2 x 3 3x 2 3x 2
x 3 x2 6x 9
f x
รญ58
รญ18
9
Possible rational zeros: r1, r 3, r 9, r 27
3
3
x3 9 x 2 27 x 27
22. p x
รญ9
9
t 6 t 2 2t 1
So, the rational zeros are 1 and 6.
221
9 x 4 9 x3 58 x 2 4 x 24
25. f x
Possible rational zeros: r1, r 2, r 3, r 6
6
The Fundamental Theorem
Theore of Algebra
27. z 4 z 3 z 2 3 z 6
0
Possible rational zeros: r1, r 2, r 3, r 6
1
1
1
1
1
3
รญ6
1
2
3
2
3
6
6
0
z 1 z 3 2 z 2 3z 6
0
z 1 z 3 z 2
0
2
So, the real zeros are รญ2 and 1.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
222
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
28. x 4 13 x 2 12 x
0
x x3 13 x 12
0
x3 x 2 4 x 4
31. f x
(a) Possible rational zeros: r1, r 2, r 4
Possible rational zeros of x3 13 x 12:
y
(b)
4
r1, r 2, r 3, r 4, r 6, r12
รญ1
2
0
รญ13
รญ12
รญ1
1
รญ1
รญ12
12
0
x x 1 x 2 x 12
0
x x 1 x 4 x 3
0
1
1
x
โ6
โ4
4
6
โ4
โ6
โ8
(c) Real zeros: 2, 1, 2
The real zeros are 0, 1, 4, and 3.
29. 2 y 4 3 y 3 16 y 2 15 y 4
0
Possible rational zeros: r 12 , r1, r 2, r 4
1
2
2
3
รญ16
15
รญ4
2
5
รญ11
4
5
รญ11
4
0
3 x3 20 x 2 36 x 16
32. f x
(a) Possible rational zeros: r1, r 2, r 4, r 8, r16, r 13 ,
r 23 , r 43 , r 83 , r 16
3
(b)
y
10
8
6
4
2
x
โ4 โ2
1
2
2
5
รญ11
4
2
7
โ4
7
รญ4
0
โ6
(c) Real zeros: 23 , 2, 4
0
y 1 y 1 2y 1 y 4
0
So, the real zeros are 4, 12 and 1.
30. x5 x 4 3×3 5 x 2 2 x
0
x x x 3x 5 x 2
0
3
8 10 12
โ4
y 1 y 1 2 y2 7 y 4
4
6
2
33. f x
4 x3 15 x 2 8 x 3
(a) Possible rational zeros: r1, r 3, r 12 , r 32 , r 14 , r 34
y
(b)
4
2
x
Possible rational zeros of x 4 x3 3x 2 5 x 2:
โ6 โ4 โ2
6
8 10
โ6
1
1
รญ2
4
โ4
r1, r 2
1
2
1
1
รญ1
รญ3
5
รญ2
1
0
รญ3
2
0
รญ3
2
0
0
รญ3
2
รญ2
4
รญ2
รญ2
1
0
(c) Real zeros: 14 , 1, 3
34. f x
4 x3 12 x 2 x 15
(a) Possible rational zeros: r1, r 3, r 5, r15, r 12 , r 23 ,
r 52 , r 15
, r 14 , r 43 , r 54 , r 15
2
4
y
(b)
15
12
x x 1 x 2 x2 2x 1
0
x x 1 x 2 x 1 x 1
0
The real zeros are 2, 0, and 1.
x
โ9 โ6 โ3
6
9
12
INSTRUCTOR USE ONLY
((c)) Real zeros: 1,, 32 , 52
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
2 x 4 13 x3 21x 2 2 x 8
35. f x
The Fundamental Theorem
Theore of Algebra
x 4 3x 2 2
39. f x
r1, about r1.414
(a) Possible rational zeros: r1, r 2, r 4, r 8, r 12
(a) x
(b)
(b) An exact zero is x
1.
0
รญ3
0
2
1
1
รญ2
รญ2
1
รญ2
รญ2
0
16
1
โ4
223
1
8
1
โ8
(c)
(c) Real zeros: 12 , 1, 2, 4
รญ1
4 x 4 17 x 2 4
36. f x
รญ2
รญ2
รญ1
0
2
0
รญ2
0
1
(a) Possible rational zeros: r1, r 2, r 4, r 12 , r 14
(b)
1
1
x 1 x 1 x2 2
f x
x 1 x 1 x
9
โ8
8
2 x
2
t 4 7t 2 12
40. P t
r 2, about r1.732
(a) t
โ15
(b) An exact zero is t
2.
รญ7
0
12
2
4
รญ6
รญ12
2
รญ3
รญ6
0
An exact zero is t
2.
(c) Real zeros: 2, 12 , 12 , 2
2
32 x3 52 x 2 17 x 3
37. f x
0
1
(a) Possible rational zeros: r1, r 3, r 12 , r 23 , r 14 , r 43 ,
1,r 3,r 1,r 3
r 18 , r 83 , r 16
16
32
32
(b)
1
รญ2
2
รญ3
รญ6
รญ2
0
6
0
รญ3
0
1
6
1
โ1
3
t 2 t 2 t2 3
(c) P t
โ2
t 2 t 2 t
(c) Real zeros: 18 , 34 , 1
4 x 7 x 11x 18
38. f x
2
1 3 9 1 3 9
r ,r ,r ,r ,r ,r
2 2 2 4 4 4
(b)
x
0, 3, 4, about r1.414
(b) An exact zero is x
3
8
โ8
x x 4 7 x3 10 x 2 14 x 24
(a) h x
(a) Possible rational zeros: r1, r 2, r 3, r 6, r 9, r18,
(c)
(c) Real zeros: 2,
1
r
8
4
145
8
10
14
รญ24
3
รญ12
รญ6
24
1
รญ4
รญ2
8
0
1
รญ4
รญ2
8
4
0
รญ8
0
รญ2
0
1
h x
3.
รญ7
1
8
โ24
3
x5 7 x 4 10 x3 14 x 2 24 x
41. h x
3
3 t
x x 3 x 4 x2 2
INSTRUCTOR USE ONLY
x x 3 x 4 x
2 x
2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
224
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
44. If 3i is a zero, so is its conjugate, 3i.
6 x 4 11×3 51x 2 99 x 27
42. g x
(a) x
r 3, 1.5, about 0.333
(b) An exact zero is x
3
6
x 4 x 3i x 3i
x 4 x2 9
3.
x3 4 x 2 9 x 36
รญ11
รญ51
99
รญ27
18
21
รญ90
27
Note: f x
7
รญ30
9
0
real number, has the zeros 4, 3i, and 3i.
6
3.
An exact zero is x
รญ3
f x
6
45. If 5 i is a zero, so is its conjugate, 5 i.
7
รญ30
9
รญ18
33
รญ9
รญ11
3
0
6
a x3 4 x 2 9 x 36 , where a is any
f x
x 2 x 5i
x 5i
x 2 x 10 x 26
2
x3 12 x 2 46 x 52
x 3 x 3 6 x 11x 3
Note: f x
x 3 x 3 3x 1 2 x 3
any nonzero real number, has the zeros 2 and 5 r i.
2
(c) g x
43. If 5i is a zero, so is its conjugate, 5i.
f x
46. If 3 2i is a zero, so is its conjugate, 3 2i.
x 1 x 5i x 5i
f x
x 3 2i
x 5 x 2 6 x 13
x3 x 2 25 x 25
x3 11x 2 43 x 65
a x3 x 2 25 x 25 , where a is any
Note: f x
2i is a zero, so is its conjugate, 3
a x3 11x 2 43 x 65 , where a is
any nonzero real number, has the zeros 5 and 3 r 2i.
nonzero real number, has the zeros 1 and r 5i.
f x
x 5 x 3 2i
x 1 x 2 25
Note: f x
47. If 3
a x3 12 x 2 46 x 52 , where a is
2i.
3x 2 x 1 ยช x 3
ยฌ
2i ยบยช x 3
ยผยฌ
2i ยบ
ยผ
3x 2 x 1 ยชยฌ x 3
2iยบยช
ยผยฌ x 3
2iยบยผ
2
3 x 2 x 2 ยชยซ x 3
ยฌ
2
2i ยบยป
ยผ
3x 2 x 2 x 2 6 x 9 2
3 x 2 x 2 x 2 6 x 11
3x 4 17 x3 25 x 2 23x 22
Note: f x
48. If 1
f x
a 3 x 4 17 x3 25 x 2 23 x 22 , where a is any nonzero real number, has the zeros 23 , 1, and 3 r
3i is a zero, so is its conjugate, 1
x 5
2
x 1
3i x 1
3i.
49. f x
3i
x 2 10 x 25 x 2 2 x 4
Note: f x
3
x 4 6 x 2 27
(a) f x
x2 9 x2 3
(b) f x
x2 9 x
(c) f x
x 3i x 3i x
x 8 x 9 x 10 x 100
4
2i.
3 x
3
2
a x 4 8 x3 9 x 2 10 x 100 , where
a is any real number, has the zeros 5, 5, and 1 r
3 x
3
3i.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
50. f x
x 6 x 2 x 3x 2 12 x 18
6×2
x4
3
2 x 3x 2 12 x
2 x3
12 x
2
18
3x
18
3x 2
0
51. f x
225
x 4 2 x3 3 x 2 12 x 18
x2 2x 3
2
The Fundamental Theorem
Theore of Algebra
4
3
(a) f x
x2 6 x2 2 x 3
(b) f x
x
6 x
6 x2 2x 3
(c) f x
x
6 x
6 x 1
2i x 1
2i
Note: Use the Quadratic Formula for (c).
x 4 4 x3 5 x 2 2 x 6
x2 2x 3
x 2x 2 x 4 x 5×2 2x 6
x 4 2 x3 2 x 2
2 x3 7 x 2 2 x
2 x3 4 x 2 4 x
3x 2 6 x 6
3x 2 6 x 6
0
2
4
3
(a) f x
x2 2x 2 x2 2 x 3
(b) f x
x 1
3 x 1
3 x2 2 x 3
(c) f x
x 1
3 x 1
3 x 1
2i x 1
2i
Note: Use the Quadratic Formula for (b) and (c).
52. f x
x 4 3 x3 x 2 12 x 20
x 2 3x 5
x 2 4 x 4 3 x3 x 2 12 x 20
4×2
x4
3
3 x 5 x 2 12 x
3 x3
12 x
5 x 2
20
5 x 2
20
0
(a) f x
x 2 4 x 2 3x 5
(b) f x
ยง
3 29 ยทยง
3 29 ยท
x 2 4 ยจยจ x
x
ยธยจ
ยธยธ
ยธยจ
2
2
ยฉ
ยนยฉ
ยน
(c) f x
ยง
3 29 ยทยง
3 29 ยท
x 2i x 2i ยจยจ x
x
ยธยจ
ยธยธ
ยธยจ
2
2
ยฉ
ยนยฉ
ยน
Note: Use the Quadratic Formula for (b).
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
226
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
x3 x 2 4 x 4
53. f x
Alternate Solution:
Because x
Because 2i is a zero, so is รญ2i.
2i
1
รญ1
4
รญ4
x 2i x 2i
2i
4 2i
4
By long division, you have:
1
2i 1
2i
0
x 1
x 2 0 x 4 x3 x 2 4 x 4
x3 0 x 2 4 x
x2 0x 4
x2 0x 4
0
2i
1
1
2i 1
รญ2i
2i
2i
รญ1
0
f x
x 2i x 2i x 1
f x
2 x3 3 x 2 18 x 27
54. f x
x2 4 x 1
Because x
r 3i are zeros of f x ,
2
3
18
27
x 3i x 3i
6i
9i 18
รญ27
By long division, you have:
2
3 6i
9i
0
รญ3i
2
2
3 6i
9i
6i
รญ9i
3
0
The zeros of f x are x
2x 3
f x
r 3i, 32 .
2
Because x
r 5i are zeros of f x ,
รญ1
49
รญ25
รญ25
x 5i x 5i
10i
5i 50
5i 25
25
By long division, you have:
1 10i
1 5i
รญ5i
0
2
f x
1 10i
1 5i
รญ5i
10i
5i
5i
รญ1
รญ1
0
x 5i x 5i 2 x 2 x 1
x 5i x 5i 2 x 1 x 1
The zeros of f x are x
r5i, 12 , 1.
x 2 25 is a factor of f x .
2×2
x 1
x 0 x 25 2 x x 49 x 2 25 x 25
2 x 4 0 x3 50 x 2
x3 x 2 25 x
x3 0 x 2 25 x
x 2 0 x 25
x 2 0 x 25
0
2
2
r 3i, 32 .
Alternate Solution:
Because 5i is a zero, so is รญ5i.
2
x2 9 2 x 3
The zeros of f x are x
2 x 4 x3 49 x 2 25 x 25
55. f x
x 2 9 is a factor of f x .
x 2 0 x 9 2 x3 3 x 2 18 x 27
2 x3 0 x 2 18 x
3 x 2 0 x 27
3 x 2 0 x 27
0
x 3i x 3i 2 x 3
f x
รญ5i
1, r 2i.
Alternate Solution:
Because 3i is a zero, so is 3i.
5i
x 2 4 is a factor of f x .
The zeros of f x are x
1, r 2i.
The zeros of f x are x
3i
r 2i are zeros of f x ,
f x
4
3
x 2 25 2 x 2 x 1
The zeros of f x are x
r 5i, 12 , 1.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
The Fundamental Theorem
Theore of Algebra
227
x3 7 x 2 x 87
56. g x
Because 5 2i is a zero, so is 5 2i.
5 2i
รญ7
รญ1
87
5 2i
14 6i
รญ87
1
2 2i
15 6i
0
1
2 2i
15 6i
5 2i
15 6i
3
0
1
5 2i
1
The zero of x 3 is x
3. The zeros of f x are x
4 x3 23 x 2 34 x 10
57. g x
Alternate Solution
Because 3 r i are zeros of g x ,
Because 3 i is a zero, so is 3 i.
3 i
3 i
23
34
รญ10
12 4i
37 i
10
4
11 4i
3 i
0
4
11 4i
3 i
12 4i
3i
4
รญ1
4
The zero of 4 x 1 is x
g x are x
3, 5 r 2i.
ยฌยช x 3 i ยบยช
ยผยฌ x 3 i ยบยผ
x 3
4x 1
x 6 x 10 4 x 23 x 34 x 10
4 x3 24 x 2 40 x
x 2 6 x 10
x 2 6 x 10
0
2
0
1 . The zeros of
4
3 r i, 14 .
3
2
x 2 6 x 10 4 x 1
3 r i, 14 .
3×3 4 x 2 8 x 8
Because 1
1
i2
is a factor of g x . By long division, you have:
The zeros of g x are x
1
3
x 2 6 x 10
g x
58. h x
ยชยฌ x 3 iยบยช
ยผยฌ x 3 iยบยผ
3i
3i
3i is a zero, so is 1
3i.
รญ4
8
8
3 3 3i
10 2 3i
รญ8
3
1 3 3i
2 2 3i
0
3
1 3 3i
2 2 3i
3 3 3i
2 2 3i
2
0
3
3
The zero of 3x 2 is x
23 . The zeros of f x are x
23 , 1 r
3i.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
228
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x 4 3 x3 5 x 2 21x 22
59. f x
2i is a zero, so is 3
Because 3
ยช x 3
ยฌ
2i ยบยช x 3
ยผยฌ
2i ยบ
ยผ
2i, and
ยชx 3
ยฌ
x 3
2
2iยบยช
ยผยฌ x 3
2i
2iยบยผ
2
x 2 6 x 11
is a factor of f x . By long division, you have:
x 2 3x 2
x 6 x 11 x 3 x 5 x 2 21x 22
2
4
3
x 4 6 x3 11x 2
3 x3 16 x 2 21x
3 x3 18 x 2 33x
2 x 2 12 x 22
2 x 2 12 x 22
0
x 2 6 x 11 x 2 3 x 2
f x
x 2 6 x 11 x 1 x 2
3 r
The zeros of f x are x
2i, 1, 2.
x3 4 x 2 14 x 20
60. f x
63. h x
Because 1 3i is zero, so is 1 3i.
1 3i
1 3i
1
By the Quadratic Formula, the zeros of f x are
4
14
20
1 3i
12 6i
รญ20
1
3 3i
2 6i
0
1
3 3i
2 6i
1 3i
2 6i
2
0
1
x
f x
2.
The zeros of f x are x
2, 1 r 3i.
x 2 36
64. g x
x
f x
65. f x
x
f x
1 224
2
1 r 4i.
x 1 4i
x 2 10 x 17
10 r
100 68
2
x 5 2 2
10 r
2
32
5 r 2
2.
x 5 2 2
2 x 5 2
2
x 4 16
x2 4 x2 4
By the Quadratic Formula, the zeros of f x are
1r
64
2
x 1 4i
x 5 2
r 6i.
x 2 x 56
62. f x
2r
4 68
2
x 1 4i x 1 4i
x 6i x 6i
The zeros of f x are x
2r
By the Quadratic Formula, the zeros of f x are
The zero of x 2 is x
61. f x
x 2 2 x 17
1r
223i
2
.
x 2 x 2 x 2i x 2i
Zeros: r 2, r 2i
ยง
1 223i ยทยง
1 223i ยท
x
ยจยจ x
ยธยจ
ยธยธ
ยธยจ
2
2
ยฉ
ยนยฉ
ยน
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
66.
y 4 256
f y
The Fundamental Theorem
Theore of Algebra
x3 x 2 x 39
70. f x
y 2 16 y 2 16
Possible rational zeros: r1, r 3, r13, r 39
y 4 y 4 y 4i y 4i
3
1
Zeros: r 4, r 4i
1
z2 2z 2
67. f z
By the Quadratic Formula, the zeros of f z are
z
2r
48
2
1
39
3
12
39
4
13
0
4r
16 52
2
2 r 3i
Zeros: 3, 2 r 3i
ยชยฌ z 1 i ยบยช
ยผยฌ z 1 i ยบยผ
f z
1
By the Quadratic Formula, the zeros of x 2 4 x 13
are: x
1 r i.
229
x 3 x 2 3i x 2 3i
f x
z 1i z 1 i
x3 x 6
71. h x
x3 3x 2 4 x 2
68. h x
Possible rational zeros: r1, r 2, r 3, r 6
Possible rational zeros: r1, r 2
1
1
1
รญ3
4
รญ2
1
รญ2
2
รญ2
2
0
2
1
are x
48
2
1 r i.
x
2r
x 1 x 1i x 1 i
h x
1
1
3
1
5
4
6
2
3
0
4 12
2
1r
2i.
2i.
x 2 ยชx 1
ยฌ
2i ยบยช x 1
ยผยฌ
x 2 x 1
2i x 1
2i ยบ
ยผ
2i
1
4
5
4
5
0
Possible rational zeros: r1, r 5, r 7, r 35
5
4r
16 20
2
2ri
x 1 x 2i x 2i
9
27
35
5
20
35
4
7
0
By the Quadratic Formula, the zeros of x 2 4 x 7
are x
Zeros: 1, 2 r i
1
1
By the Quadratic Formula, the zeros of x 2 4 x 5
g x
2
x3 9 x 2 27 x 35
72. h x
Possible rational zeros: r1, r 5
are: x
6
x3 3x 2 x 5
69. g x
1
1
Zeros: 2, 1 r
Zeros: 1, 1 r i
h x
0
By the Quadratic Formula, the zeros of x 2 2 x 3 are
By the Quadratic Formula, the zeros of x 2 2 x 2
2r
1
4 r
Zeros: 5, 2 r
h x
16 28
2
2 r
3i.
3i
x 5 x 2
3i x 2
3i
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
230
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
5 x3 9 x 2 28 x 6
73. f x
Possible rational zeros: r1, r 3, r 9
Possible rational zeros:
1 2 3 6
r1, r 2, r 3, r 6, r , r , r , r
5 5 5 5
15
9
28
6
1
2
6
10
30
0
5
5
3
2r
4 24
2
1
Zeros: , 1 r
5
3
1r
1
1
6
10
6
9
3
9
3
3
1
3
9
0
3
1
3
3
0
3
0
1
0
r i.
The zeros of x 2 1 are x
5i.
Zeros: 3, r i
5i.
h x
ยช
ยง 1 ยทยบ ยช
ยซ x ยจ 5 ยธยป 5 ยฌ x 1
ยฉ ยนยผ
ยฌ
f x
1
1
By the Quadratic Formula, the zeros of
5 x 2 10 x 30 5 x 2 2 x 6 are
x
x 4 6 x3 10 x 2 6 x 9
76. h x
5x 1 x 1
5i ยบยช x 1
ยผยฌ
5i x 1
5i ยบ
ยผ
77. f x
2
x 3
x i x i
x 4 10 x 2 9
x2 1 x2 9
5i
x i x i x 3i x 3i
2 x3 x 2 8 x 21
74. g x
Zeros: r i, r 3i
Possible rational roots:
1
3
7
21
r , r1, r , r 3, r , r 7, r , r 21
2
2
2
2
3
2
2
2
1
8
21
3
6
21
4
14
0
78. f x
x 2 25 x 2 4
x 2i x 2i x 5i x 5i
Zeros: r 2i, r 5i
By the Quadratic Formula, the zeros of 2 x 2 4 x 14
4r
are x
16 112
4
4r
96
4
6i x 1
x 4 4 x3 8 x 2 16 x 16
Possible rational zeros: r1, r 2, r 4, r 8, r16
2
2
1
4
8
2
1
2
1
2
4
8
2
0
8
0
4
0
1
g x
x3 24 x 2 214 x 740
Possible rational zeros: r1, r 2, r 4, r 5, r10, r 20, r 37,
r 74, r148, r185, r 370, r 740
6i.
6i
3ยท
ยง
ยจx ยธ x 1
2ยน
ยฉ
75. g x
1r
79. f x
2000
3
Zeros: , 1 r
2
f x
x 4 29 x 2 100
16
16
4
8
4
8
16
0
6i
โ20
10
โ1000
Based on the graph, try x
10
1
1
10.
24
214
740
10
140
740
14
74
0
By the Quadratic Formula, the zeros of x 2 14 x 74
are x
14 r
196 296
2
The zeros of f x are x
7 r 5i.
10 and x
7 r 5i.
x 2 x 2 x2 4
x 2
2
x 2i x 2i
INSTRUCTOR USE ONLY
2i
Zeros: 2, r 2i
Zeros
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
2 s 3 5s 2 12 s 5
80. f s
The Fundamental Theorem
Theore of Algebra
9 x3 15 x 2 11x 5
82. f x
1 5
Possible rational zeros: r1, r 5, r , r
2 2
1 5 1 5
Possible rational zeros: r1, r 5, r , r , r , r
3 3 9 9
10
5
โ10
โ5
10
5
โ5
โ10
Based on the graph, try s
1
2
2
5
12
1
2
5
2
4
10
0
Based on the graph, try x
1
.
2
1
2r
4 20
2
9
1
and s
2
5
6
5
0
The zeros of f x are x
1 and x
1
2
r i.
3
3
2 x 4 5 x3 4 x 2 5 x 2
1
2
20
โ4
4
Based on the graph, try x
2 and x
2
2
โ5
Based on the graph, try x
3
.
4
20
4
15
12
24
15
32
20
0
2
64 80
8
1
2
2
2
5
4
5
2
4
2
4
1
2
1
2
0
1
2
1
1
0
1
0
2
0
The zeros of 2 x 2 2
By the Quadratic Formula, the zeros of
16 x 2 32 x 20
4 4 x 2 8 x 5 are
x
6
Possible rational zeros: r1, r 2, r
3
8r
9
โ5
โ3
16
5
1
2
r i.
3 3
20
16
11
36 180
18
83. f x
16 x3 20 x 2 4 x 15
3
4
15
6r
are x
1 r 2i.
Possible rational zeros:
1 3 5 15 1 3
r1, r 3, r 5, r15, r , r , r , r , r , r ,
2 2 2
2
4 4
5 15 1 3 5 15
1
3
5 15
r ,r ,r ,r ,r ,r ,r ,r ,r ,r
4
4 8 8 8
8 16 16 16 16
1.
By the Quadratic Formula, the zeros of 9 x 2 6 x 5
1 r 2i.
The zeros of f s are s
81. f x
9
5
By the Quadratic Formula, the zeros of 2 s 2 2 s 5
are s
231
The zeros of f x are x
1
1 r i.
2
The zeros of f x are x
3
and x
4
1r
2 x 2 1 are x
2, x
1
.
2
r i.
1
, and x
2
r i.
1
i.
2
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
232
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x5 8 x 4 28 x3 56 x 2 64 x 32
84. g x
Possible rational zeros: r1, r 2, r 4, r 8, r16, r 32
10
4 y3 3 y 2 8 y 6
87. f y
Possible rational zeros: r1, r 2, r 3, r 6, r 12 , r 32 , r 14 , r 34
34
โ10
4
10
3
8
6
3
0
6
0
8
0
4
โ10
Based on the graph, try x
2
2
2
4 y3 3 y2 8 y 6
2.
1
8
28
56
64
32
1
2
6
12
16
32
24
48
16
y 34 4 y 2 2
32
0
4 y 3 y2 2
1
6
16
24
16
1
2
4
8
8
16
8
16
0
1
4
8
8
2
4
8
2
4
0
1
So, the only real zero is 34 .
2r
are x
4 16
2
Possible rational zeros:
r1, r 2, r 5, r10, r 13 , r 23 , r 53 , r 10
3
2
3
1r
The zeros of g x are x
3i.
2 and x
3
3
1r
3i.
4
0
3x 2 x 2 5
1
1 4 x2
9
4
x2 4
4
4
1
1
0
1 2
x 3
4
2x 3 x 2 x 2
4
x 1 4 x2 4 x 1
2
The rational zeros are r 32 and r 2.
1 2 x 3 3 x 2 23 x 12
2
90. f x
Possible rational zeros: r1, r 2, r 3, r 4, r 6, r12, r 12 , 23
4
Possible rational zeros: r1, r 3, r 9, r 12 , r 32 , r 92 , r 13 ,
1
r 14 , r 34 , r 94 , r 16 , r 12
f z
15
1 4 x4
25 x 2 36
4
2
12 z 3 4 z 2 27 z 9
12
0
3
1
So, the real zeros are 1 and .
2
12
10
x 4 25
x2 9
4
89. P x
x 1 2x 1
3
2
10
0
0
4 x3 3x 1
86. f z
15
2
So, the only real zero is 23 .
Possible rational zeros: r1, r 12 , r 14
4
2
x 23 3 x 2 15
g x
4 x3 3x 1
85. f x
3 x3 2 x 2 15 x 10
88. g x
By the Quadratic Formula, the zeros of x 2 2 x 4
1
y 34 4 y 2 8
4
27
9
18
21
9
14
6
0
2
f x
3
23
12
8
20
12
5
3
0
1 x 4
2
2×2 5x 3
1 x 4
2
2x 1 x 3
The rational zeros are 3, 12 , and 4.
2 z 32 6 z 2 7 z 3
2 z 3 3z 1 2 z 3
INSTRUCTOR USE ONLY
So, the real zeros are 32 , 13 , and 32 .
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
1
4 x3 x 2 4 x 1
4
1 ยชx 2 4 x 1
4ยฌ
233
97. Zeros: 2, 12 , 3
x3 14 x 2 x 14
91. f x
The Fundamental Theore
Theorem of Algebra
x 2 2x 1 x 3
f x
2 x3 3x 2 11x 6
1 4 x 1 ยบยผ
1 4x 1
4
x2 1
Any nonzero scalar multiple of f would have the same
three zeros.
1
4x 1
4
x 1 x 1
Let g x
and r1.
The rational zeros are 14
af x , a ! 0.
There are infinitely many possible functions for f.
y
1 6 z 3 11z 2 3 z 2
6
92. f z
8
Possible rational zeros: r1, r 2, r 12 , r 13 , r 23 , r 16
2
11
3
2
12
2
2
1
1
0
6
6
f x
6 x2 x 1
1 x 2
6
3x 1 2 x 1
(3, 0)
x
โ8
1 x 2
6
( 21, 0)
(โ2, 0)
98.
โ4
4
8
12
y
50
(โ1, 0)
The rational zeros are 2, 13 , and 12 .
10
(1, 0)
(4, 0)
x
93. f x
x 1
x 1 x x 1
3
2
Rational zeros: 1 x
99. Interval: f, 2 , 2, 1 , 1, 4 , 4, f
Matches (d).
Value of f(x): Positive Negative Negative Positive
1, x
4.
x 3 2 x2 3 2x 3 4
(b) The graph touches the x-axis at x
1.
3
Irrational zeros: 1 x
(c) The least possible degree of the function is 4 because
there are at least four real zeros (1 is repeated) and a
function can have at most the number of real zeros
equal to the degree of the function. The degree
cannot be odd by the behavior at r f.
2
Matches (a).
x3 x
x x 1 x 1
Rational zeros: 3 x
0, r1
(d) The leading coefficient of f is positive. From the
information in the table, you can conclude that the
graph will eventually rise to the left and to the right.
x 2 x 1
(e) f x
Irrational zeros: 0
4
3
x 4
2
(Any nonzero multiple of f(x) is also a solution.)
x3 2 x
(f )
x x2 2
x x
2
x 4 x 3x 14 x 8
Matches (b).
96. f x
2, x
x3 2
(a) Zeros of f x : x
Rational zeros: 0
95. f x
5
1
Irrational zeros: 0
94. f x
(3, 0) 4
y
(โ 2, 0)
2
2 x
Rational zeros: 1 x
Irrational zeros: 2 x
2
0
r
โ3
(1, 0)
โ1
โ4
โ6
โ8
โ10
2
(4, 0)
3
x
5
2
Matches (c).
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
234
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
100. (a) 2, 0, 2
2
x 0 ยชยฌ x 2 ยบยผ x 2
(e) f x
(b) The graph touches the x-axis at x
x
2.
0 and at
x 5 2 x 4 4 x3 8 x 2
(c) The least possible degree of f is 5 because there are
at least 5 real zeros (0 and 2 are repeated) and a
function can have at most the number of real zeros
equal to the degree of the function. The degree
cannot be even by the definition of multiplicity.
(f )
120 ย y
Volume
l ยwยh
y
14
12
10
8
6
(d) The leading coefficient of f is positive. From the
information in the table, you can conclude that the
graph will eventually fall to the left and rise to the
right.
4x y
2
x2 x 2 x 2
101. (a) Combined length and width:
(โ2, 0)
โ4 โ 3
(2, 0)
(0, 0)
(c)
120 4 x
1
2
3
x
4
13,500
4 x 2 30 x
4 x3 120 x 2 13,500
0
x3 30 x 2 3375
0
2
x y
x 2 120 4 x
15
1
30
1
4 x 30 x
2
(b) 18,000
0
3375
15
225
3375
15
225
0
x 15 x 2 15 x 225
0
Using the Quadratic Formula, x
0
2
15,
30
15 r 15 5
.
2
0
Dimensions with maximum volume:
20 in. u 20 in. u 40 in.
The value of
15 15 5
is not possible because it is
2
negative.
102. (a)
(b) V
15
9โ
x
2x
15
x
โ2
Because length, width, and height must be positive,
you have 0 x 92 for the domain.
x
(c)
V
125
Volume of box
15 2 x 9 2 x x
x 9 2 x 15 2 x
x
9
l ยwยh
100
75
50
(d) 56
x 9 2 x 15 2 x
56
135 x 48 x 2 4 x3
0
4 x3 48 x 2 135 x 56
The zeros of this polynomial are 12 , 72 , and 8.
25
x
1
2
3
4
x cannot equal 8 because it is not in the domain of V.
5
Length of sides of
squares removed
[The length cannot equal 1 and the width cannot
equal 7. The product of 8 1 7
56 so it
The volume is maximum when x | 1.82.
The dimensions are: length | 15 2 1.82
width | 9 2 1.82
height
x | 1.82
11.36
showed up as an extraneous solution.]
5.36
So, the volume is 56 cubic centimeters when x
centimeter or x
7
2
1
2
centimeters.
1.82 cm u 5.36 cm u 11.36 cm
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.5
103.
The Fundamental Theorem
Theore of Algebra
235
76 x3 4830 x 2 320,000, 0 d x d 60
P
76 x3 4830 x 2 320,000
2,500,000
76 x 3 4830 x 2 2,820,000
0
The zeros of this equation are x | 46.1, x | 38.4, and x | 21.0. Because 0 d x d 60, we disregard x | 21.0.
The smaller remaining solution is x | 38.4. The advertising expense is $384,000.
P
45 x3 2500 x 2 275,000
800,000
45 x 2500 x 275,000
105. (a) Current bin: V
New bin:
V
0
45 x 3 2500 x 2 1,075,000
V x
0
9 x3 500 x 2 215,000
104.
3
2
2u3u4
24 cubic feet
5 24
120 cubic feet
2 x 3 x 4 x
(b) x3 9 x 2 26 x 24
120
120
The zeros of this equation are x | 18.0, x | 31.5,
x 9 x 26 x 96
and x | 42.0. Because 0 d x d 50, disregard
x | 18.02. The smaller remaining solution is
x | 31.5, or an advertising expense of $315,000.
The only real zero of this polynomial is x
2. All
the dimensions should be increased by 2 feet, so the
new bin will have dimensions of 4 feet by 5 feet by
6 feet.
250 x 160 x
106. (a) A x
1.5 160 250
(b) 60,000
x 2 410 x 40,000
0
x 2 410 x 20,000
x
410 r
4102 4 1 20,000
3
2
60,000
410 r
21
248,100
2
410
248,100
| 44.05.
2
The new length is 250 44.05
294.05 ft and the new width is 160 44.05
so the new dimensions are 294.05 ft u 204.05 ft .
x must be positive, so x
(c) A x
250 2 x 160 x
2 x 570 x 20,000
570 r
0
5702 4 2 20,000
570 r
22
x must be positive, so x
204.05 ft,
60,000
2
x
0
484,900
4
570
The new length is 250 2 31.6
484,900
| 31.6.
4
313.2 ft and the new width is 160 31.6
191.6 ft,
so the new dimensions are 313.2 ft u 191.6 ft.
107. C
x ยท
ยง 200
100ยจ 2
ยธ, x t 1
x 30 ยน
ยฉ x
C is minimum when
3×3 40 x 2 2400 x 36000
108. (a)
0.
The only real zero is x | 40 or 4000 units.
12
0
7
8
(b) A | 0.01676t 4 0.2152t 3 0.794t 2 0.44t 8.7
(c) The model is a good fit to the actual data.
(d) A t 10 when t
3, 4, and 7, which corresponds
to the years 2003, 2004, and 2007.
(e) Yes. The degree of A is even and the leading
coefficient is positive, so as t increases, A will
increase. This implies that attendance will continue
to ggrow.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
236
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
119. Because 1 i is a zero of f, so is 1 i. From the graph,
1 is also a zero.
16t 2 48t 6
109. h t
Let h
64 and solve for t.
64
16t 2 48t 58
16t 2 48t 6
48 r i 1408
.
32
Because the equation yields only imaginary zeros, it
is not possible for the ball to have reached a height of
64 feet.
R C
P
x
f x
0.0001x 60 x 150,000
0.0001x 2 60 x 9,150,000.
x 1
Because the graph rises to the left and falls to the right,
a
1, and f x
x3 x 2 2.
121. Because f i
0, then i and 2i are zeros of f.
f 2i
Because i and 2i are zeros of f, so are i and โ2i.
300,000 r10,000 15i
111. False. The most complex zeros it can have is two, and
the Linear Factorization Theorem guarantees that there
are three linear factors, so one zero must be real.
f x
x4 5×2 4
122. Because f 2
3 f x . This function has the same zeros as f
because it is a vertical stretch of f. The zeros of g are
r1 , r2 , and r3.
0, 2 is a zero of f. Because f i
f x
1 x 2 x i x i
1 x 2 x 2 1
x3 2 x 2 x 2
123. Answers will vary. Some of the factoring techniques are:
1. Factor out the greatest common factor.
2
Use special product formulas.
a 2 b2
a b a b
f x 5 . The graph of g x is a horizontal
a 2 2ab b 2
a b
2
shift of the graph of f x five units of the right, so the
a 2 2ab b 2
a b
2
zeros of g x are 5 r1 , 5 r2 , and 5 r3 .
a 3 b3
a b a 2 ab b 2
a 3 b3
a b a 2 ab b 2
115. g x
116. g x
f 2 x . Note that x is a zero of g if and only if
2x is a zero of f. The zeros of g are
117. g x
r1 r2
r
, , and 3 .
2 2
2
3 f x . Because g x is a vertical shift of
the graph of f x , the zeros of g x cannot be
determined.
118. g x
f x . Note that x is a zero of g if and only if
x is a zero of f. The zeros of g are r1 , r2 , and r3 .
0,
i is a zero of f. Because i is a zero of f, so is i .
f x . This function would have the same
zeros as f x , so r1 , r2 , and r3 are also zeros of g x .
x i x i x 2i x 2i
x2 1 x2 4
112. False. f does not have real coefficients.
114. g x
x 1i
x3 x 2 2
Because the solutions are both complex, it is not possible
to determine a price p that would yield a profit of 9
million dollars.
113. g x
x 1i
x2 2 x 2 x 1
2
60 r 60
0.0002
x 1
120. Because 1 i is a zero of f, so is 1 i. From the graph,
1 is also a zero.
xp C
0.0001x 2 60 x 150,000
Thus, 0
x 1i
x3 3x 2 4 x 2
x 140 0.0001x 80 x 150,000
9,000,000
x 1i
x2 2 x 2 x 1
0
By the Quadratic Formula, t
110.
f x
3. Factor by grouping, if possible.
4. Factor general trinomials with binomial factors by
โguess-and-testโ or by the grouping method.
5. Use the Rational Zero Test together with synthetic
division to factor a polynomial.
6. Use Descartesโs Rule of Signs to determine the
number of real zeros. Then find any zeros and use
them to factor the polynomial.
7. Find any upper and lower bounds for the real zeros
to eliminate some of the possible rational zeros.
Then test the remaining candidates by synthetic
division and use any zeros to factor the polynomial.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
237
x4 4×2 k
124. f x
x
Ration
Rational Functions
4 r
2
4
2
41 k
4r 2 4 k
2
21
r
x
2r
2r
4 k
4 k
(a) For there to be four distinct real roots, both 4 k
(d) For there to be four complex zeros, 2 r 4 k
must be nonreal. This occurs when k ! 4. Some
5, k
6, k
7.4, etc.
possible k-values are k
and 2 r 4 k must be positive. This occurs
when 0 k 4.
So, some possible k-values are
1
k 1, k
2, k
3, k
,k
2, etc.
2
(e) g x
No. This function is a horizontal shift of f x . Note
that x is a zero of g if and only if x 2 is a zero of
f; the number of real and complex zeros is not
affected by a horizontal shift.
(b) For there to be two real roots, each of multiplicity
2, 4 k must equal zero. So, k
4.
(c) For there to be two real zeros and two complex
zeros, 2 4 k must be positive and
(f ) g x
2 4 k must be negative. This occurs
when k 0. So, some possible k-values are
1
k
1, k
2, k
, etc.
2
x
125. (a) f x
bi x
126. (a) f x cannot have this graph because it also has a
zero at x
ยชยฌ x a bi ยบยช
ยผยฌ x a bi ยบยผ
(b) f x
x a
function. Its graph is a parabola.
2
bi
x 2ax a b
2
2
0.
(b) g x cannot have this graph because it is a quadratic
ยชยฌ x a biยบยช
ยผยฌ x a biยบยผ
2
f 2x
No. Because x is a zero of g if and only if 2x is a zero
of f, the number of real and complex zeros of g is the
same as the number of real and complex zeros of f.
x2 b
bi
f x 2
(c) h x is the correct function. It has two real zeros,
2
x
2 and x
3.5, and it has a degree of four,
needed to yield three turning points.
(d) k x cannot have this graph because it also has a zero
at x
1. In addition, because it is only of degree
three, it would have at most two turning points.
Section 2.6 Rational Functions
1. rational functions
3. horizontal asymptote
2. vertical asymptote
4. slant asymptote
1
x 1
5. f x
(a)
x
f x
x
f x
x
f x
0.5
โ2
1.5
2
5
0.25
0.9
โ10
1.1
10
10
0. 1
0.99
โ100
1.01
100
100
0.01
0.999
โ1000
1.001
1000
1000
0.001
(b) The zero of the denominator is x 1, so
x 1 is a vertical asymptote. The degree
of the numerator is less than the degree of
the denominator, so the x-axis, or y
0,
is a horizontal asymptote.
(c) The domain is all real numbers x except x
1.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
238
NOT FOR SALE
Chapter 2
5x
x 1
6. f x
(a)
Polynomial
ynomial and Rational Function
Functions
x
f x
x
f x
x
f x
0.5
โ5
1.5
15
5
6.25
0.9
โ45
1.1
55
10
5.5
0.99
โ495
1.01
505
100
5.05
(b) The zero of the denominator is x 1, so
x 1 is a vertical asymptote. The degree
of the numerator is equal to the degree of
5
5
the denominator, so the line y
1
is a horizontal asymptote.
(c) The domain is all real numbers x except x
0.999
9. f x
5005
1000
5.005
x
f x
x
f x
x
f x
0.5
โ1
1.5
5.4
5
3.125
0.9
โ12.79
1.1
17.29
10
3.03
0.99
โ147.8
1.01
152.3
100
3.0003
0.999
โ1498
1.001
1502
1000
3
r1,
(b) The zeros of the denominator are x
so both x 1 and x
1 are vertical
asymptotes. The degree of the numerator
equals the degree of the denominator, so
3
y
3 is a horizontal asymptote.
1
(c) The domain is all real numbers x except
x
r1.
4x
x2 1
x
f x
x
f x
x
f x
0.5
2.6
1.5
4.8
5
0.83
0.9
โ18.95
1.1
20.95
10
0.40
0.99
โ199
1.01
201
100
0.04
0.999
โ1999
1.001
2001
1000
0.004
4
x2
(b) The zeros of the denominator are x
r1,
so both x 1 and x
1 are vertical
asymptotes. The degree of the numerator is
less than the degree of the denominator, so the
x-axis, or y
0, is a horizontal asymptote.
(c) The domain is all real numbers x except
x
r1.
11. f x
Domain: all real numbers x except x
Vertical asymptote: x
0
0
Domain: all real numbers x except x
ยชยฌDegree of N x
12. f x
4
3
Domain: all real numbers x except x
Vertical asymptote: x
Horizontal asymptote: y
x 5
x 5
2
3 7x
3 2x
1
degree of D x ยบยผ
7 x 3
2x 3
Domain: all real numbers x except x
2
Vertical asymptote: x
0
ยชยฌDegree of N x degree of D x ยบยผ
Horizontal asymptote: y
ยชยฌDegree of N x
5
5
Horizontal asymptote: y
ยชยฌDegree of N x degree of D x ยบยผ
x 2
5 x
5 x
Vertical asymptote: x
0
Horizontal asymptote: y
10. f x
1.
2
8. f x
(a)
1.001
3x 2
x 1
7. f x
(a)
โ4995
3
2
3
2
7
2
degree of D x ยบยผ
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
13. f x
x3
x 1
Domain: all real numbers x except x
Vertical asymptotes: x
r1
Vertical asymptote: x
r1
x 2
x 4
20. f x
4 x2
x 2
Vertical asymptote: x
Domain: all real numbers x except x
4
1
Horizontal asymptote: y
2
Matches graph (b).
2
Horizontal asymptote: None
ยชยฌDegree of N x
1
Matches graph (c).
ยชยฌDegree of N x ! degree of D x ยบยผ
Vertical asymptote: x
4
Horizontal asymptote: y
Horizontal asymptote: None
14. f x
degree of D x ยบยผ
x2 9
x 3
21. g x
x 3 x 3
x 3
The only zero of g x is x
15. f x
3x 2 1
2
x x 9
3 makes g x
10
x2 5
10
4 2
x 5
10
x2 5
10
4
h x
22.
Vertical asymptote: None
0
Horizontal asymptote: y
3
4
degree of D x ยบยผ
4 x 2 5
3x x 5
x2 1
2
16. f x
3. x
undefined.
Domain: All real numbers x. The denominator has no real
zeros. [Try the Quadratic Formula on the denominator.]
ยชยฌDegree of N x
239
x 1
x 4
19. f x
2
Ration
Rational Functions
4 x 2
30
15
2
x2
Domain: All real numbers x. The denominator has no
real zeros. [Try the Quadratic Formula on the
denominator.]
No real solution, h x has no real zeros.
Vertical asymptote: None
Horizontal asymptote: y
ยฌยชDegree of N x
17. f x
degree of D x ยบยผ
0
4
x 5
Vertical asymptote: x
2
x 7
x 7
x
5
Horizontal asymptote: y
0
x
Matches graph (d).
18. f x
5
x 2
Vertical asymptote: x
Horizontal asymptote: y
Matches graph (a).
24.
2
0
1
2
9
9 is a zero of f x .
g x
x3 8
x2 1
x3 8
x3 8
x2 1
0
0
3
8
x
2
x
x
2
x 7
2
1
x 7
1
f x
23.
3
2 is a real zero of g x .
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
240
Chapter 2
25. f x
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
x 4
x 2 16
x 4
x 4 x 4
r4
x 2 3x 4
2×2 x 1
x 1 x 4
Because x 4 is a
2x 1 x 1
Domain: all real numbers x except x
Vertical asymptote: x
4
common factor of N x and D x , x
1
,x z 4
x 4
4 is not a
x 1
x2 1
x 1
x 1 x 1
1
, x z 1
x 1
asymptote of f x . )
vertical asymptote of f x . )
ยฌยชDegree of N x
x 2 25
x 4x 5
0
Vertical asymptote: x
x5
,x z 5
x 1
x 5 x 1
5 and x
1
1 Because x 5 is a
common factor of N x and D x , x
5 is not a
vertical asymptote of f x .
Horizontal asymptote: y
ยชยฌDegree of N x
28. f x
1
degree of D x ยบยผ
x2 4
2
x 3x 2
x 2 x 2
x 2 x 1
Domain: all real numbers x except
3
1
x
or x
2
3
1
(Because 2 x 3 is a
3
3
common factor of N x and D x , x
is not a
2
vertical asymptote of f x . )
x 2
,x z 2
x 1
Vertical asymptote: x
Horizontal asymptote: y
ยชยฌDegree of N x
Domain: all real numbers x except x 1 and x
2
Vertical asymptote: x 1 (Because x 2 is a common
2 is not a vertical
factor of N x and D x , x
1
degree of D x ยบยผ
1
x 2
31. f x
(a) Domain: all real numbers x except x
Horizontal asymptote: y
2
Horizontal asymptote: y
1
degree of D x ยบยผ
2
ยง 1ยท
(b) y-intercept: ยจ 0, ยธ
ยฉ 2ยน
(c) Vertical asymptote: x
asymptote of f x . )
ยชยฌDegree of N x
3x 1
3
,x z
3x 1
2
2 x 3 3x 1
x5 x5
Domain: all real numbers x except x
degree of D x ยบยผ
6 x 2 11x 3
6×2 7 x 3
2 x 3 3x 1
30. f x
2
1
2
Horizontal asymptote: y
ยชยฌDegree of N x degree of D x ยบยผ
27. f x
1
1
(Because x 1 is a
2
1 is not a
common factor of N x and D x , x
Domain: all real numbers x except x
r1
Vertical asymptote: x 1 (Because x 1 is a common
factor of N x and D x , x
1 is not a vertical
Horizontal asymptote: y
1
and x
2
Vertical asymptote: x
0
ยชยฌDegree of N x degree of D x ยบยผ
26. f x
x 4
, x z 1
2x 1
Domain: all real numbers x except x
vertical asymptote of f x .
Horizontal asymptote: y
29. f x
(d)
x
โ4
y
1
2
3
โ1
0
1
0
1
1
1
2
1
3
y
2
(0, 12 )
โ3
1
x
โ1
โ1
INSTRUCTOR USE
S ONLY
โ2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
(d)
1
x 3
32. f x
(a) Domain: all real numbers x except x
3
x
4
5
7
8
y
1
2
1
โ1
1ยท
ยง
(b) y-intercept: ยจ 0, ยธ
3ยน
ยฉ
0
1
y
1
3
1
2
1
2
6
3
4
Horizontal asymptote: y
x
241
y
(c) Vertical asymptote: x
(d)
Ration
Rational Functions
2
0
2
โ1
4
5
6
1
1
2
1
3
y
x
โ2
โ2
2
4
10
โ4
โ6
7 2x
2 x
35. C x
3
2
(0, 16 )
2x 7
x 2
2
(a) Domain: all real numbers x except x
1
ยง 7 ยท
(b) x-intercept: ยจ , 0 ยธ
ยฉ 2 ยน
x
2
4
5
6
โ1
โ2
(0, โ 13 )
ยง 7ยท
y-intercept: ยจ 0, ยธ
ยฉ 2ยน
โ3
1
x 4
33. h x
2
(c) Vertical asymptote: x
Horizontal asymptote: y
(a) Domain: all real numbers x except x
4
(d)
1ยท
ยง
(b) y-intercept: ยจ 0, ยธ
4ยน
ยฉ
x
โ3
โ1
1
3
y
โ1
5
3
13
5
4
(c) Vertical asymptote: x
2
y
Horizontal asymptote: y
(d)
0
6
5
x
โ5
โ3
โ1
1
)0, )
7
2
3
y
1
โ1
1
3
1
5
1
x
โ6 โ5 โ4
7
โ 2, 0
)
y
1
โ1
)
2
โ2
4
3
2
โ7 โ6 โ5
x
โ1
โ2
)0, โ )
1
4
1
ยง1 ยท
(b) x-intercept: ยจ , 0 ยธ
ยฉ3 ยน
โ4
1
6 x
3x 1
x 1
(a) Domain: all real numbers x except x
โ3
34. g x
1 3x
1 x
36. P x
1
1
x 6
y-intercept: 0, 1
(a) Domain: all real numbers x except x
Horizontal asymptote: y
(c) Vertical asymptote: x
Horizontal asymptote: y
ยง 1ยท
(b) y-intercept: ยจ 0, ยธ
ยฉ 6ยน
(c) Vertical asymptote: x
6
(d)
6
1
3
y
x
โ1
0
2
3
y
2
1
5
4
6
5
4
0
(0, 1)
( 13 , 0)
โโ1
2
INSTRUCTOR USE ONLY
N
x
โ22
3
4
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
242
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x2
x 9
37. f x
1
40. f x
2
2
x 2
(a) Domain: all real numbers x
(a) Domain: all real numbers x except x
(b) Intercept: 0, 0
1ยท
ยง
(b) y-intercept: ยจ 0, ยธ
4ยน
ยฉ
(c) Horizontal asymptote: y
(d)
1
y
x
ยฑ1
ยฑ2
ยฑ3
y
1
10
4
13
1
2
(c) Vertical asymptote: x
3
2
x
Horizontal asymptote: y
0
1
2
โ1
1
x
0
y
2
โ1
1 2t
t
38. f t
2t 1
t
y
โ1
5
2
โ3
1
โ1
โ4
โ4
โ1
4
4
9
1
4
3
โ3
2
1
2
1
0
โ1
โ4
2
x2 5x 4
x2 4
41. h x
3
2
x 1 x 4
x 2 x 2
(a) Domain: all real numbers x except x
r2
(b) x-intercepts: 1, 0 , 4, 0
y-intercept: 0, 1
t
1
7
2
x
0
0
( 12 , 0)
โ1
3
โ2
y
โ2
4
9
5
2
โ1
Horizontal asymptote: y
โ2
3
2
(0, โ 14 )
ยง1 ยท
(b) t-intercept: ยจ , 0 ยธ
ยฉ2 ยน
(c) Vertical asymptote: t
t
1
4
1
y
(a) Domain: all real numbers t except t
(d)
2
(d)
(0, 0)
โ2
2
2
โ1
(c) Vertical asymptotes: x
Horizontal asymptote: y
2, x
2
1
โ3
(d)
4s
s2 4
39. g s
x
โ4
3
1
y
10
3
28
5
10
3
โ1
1
3
4
0
2
5
0
y
(a) Domain: all real numbers s
6
(b) Intercept: 0, 0
4
2
(c) Vertical asymptote: none
Horizontal asymptote: y
(d)
0
โ6 โ4
0
(1, 0)
x
(4, 0) 6
(0, โ1)
s
โ2
โ1
0
1
2
y
โ1
4
5
0
4
5
1
y
4
3
2
1
โ2
โ1
(0, 0) 2 3 4
s
INSTRUCTOR
T
USE ONLY
โ2
โ3
3
โ4
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
x 4 x 2
x2 2 x 8
x2 9
42. g x
r3
(a) Domain: all real numbers x except x
and x
(c) Vertical asymptotes: x
โ5
4
y
27
16
16
7
y
โ6 โ4
Horizontal asymptote: y
2
0
2
0
8
9
8
5
4
5
0
7
16
(d)
โ4
y
4
2
4
0
5
9
0
โ1
0
0
5
12
3
1
3
3
2
1
(4, 0)
4
6
x
2
(
1
0, โ 3
โ6
)
4 5
(2, 0)
โ2
โ3
โ4
โ5
2x 1 x 3
2×2 5x 3
x 2×2 x 2
x 2 x 1 x 1
2
(a) Domain: all real numbers x except x
2, x
1
and x
1, x
y
(โ1, 0)
2
3
9
35
4
โ4
x x3
x 2 3x
x x6
45. f x
x3 x2
2
1,
(a) Domain: all real numbers x except x
x
2
ยง 1 ยท
(b) x-intercept: ยจ , 0 ยธ, 3, 0
ยฉ 2 ยน
(c) Vertical asymptote: x
x
โ3
2
0
y
3
4
5
4
1, x
2, x
Horizontal asymptote: y
3
2
3 and
2
Horizontal asymptote: y
(c) Vertical asymptotes: x
x
, x z 3
x2
(b) Intercept: 0, 0
3ยท
ยง
y-intercept: ยจ 0, ยธ
2ยน
ยฉ
(d)
x
6
โ2
2, x
(c) Vertical asymptotes: x
1
x
(โ 2, 0)
43. f x
3
(0, 89)
2
2,
1ยท
ยง
y-intercept: ยจ 0, ยธ
3ยน
ยฉ
3
3, x
Horizontal asymptote: y
x
1, x
(b) x-intercepts: 1, 0 , 2, 0
ยง 8ยท
y-intercept: ยจ 0, ยธ
ยฉ 9ยน
(d)
x 1 x 2 x 3
3
(a) Domain: all real numbers x except x
(b) x-intercepts: 4, 0 , 2, 0
243
x 1 x 2
x2 x 2
x 2 x2 5x 6
44. f x
x 3 x 3
Ration
Rational Functions
1
(d)
x
โ1
0
1
3
4
y
1
3
0
โ1
3
2
0
1.5
3
4
48
5
0
3
10
1
y
6
4
y
2
(
(
โ4 โ3
(0, 0)
6
3
x
โ6 โ4 โ2
9
โ 1, 0
2
(3, 0)
3
4
4
6
โ4
x
โ6
(0, โ 32(
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
244
NOT FOR SALE
Chapter 2
46. f x
Polynomial
ynomial and Rational Function
Functions
5×4
5×4
x x 12
x4 x3
2
(a) Domain: all real numbers x except x
x
3
5
, x z 4
x3
4 and
5ยท
ยง
(b) y-intercept: ยจ 0, ยธ
3ยน
ยฉ
(c) Vertical asymptote: x
(d)
x
y
โ2
0
โ1
5
3
3x 2
,x z 2
2x 1
x 2 2x 1
(a) Domain: all real numbers x except x
1
x
2
3
Horizontal asymptote: y
3x 2 8 x 4
2 x 2 3x 2
x 2 3x 2
48. f x
2 and
ยง2 ยท
(b) x-intercept: ยจ , 0 ยธ
ยฉ3 ยน
0
2
5
7
โ5
5
2
5
4
y-intercept: 0, โ 2
(c) Vertical asymptote: x
1
2
y
3
2
Horizontal asymptote: y
6
4
(d)
2
x
(
2
)
4
6
x
โ3
โ1
0
2
3
3
y
11
5
5
โ2
0
1
8
5
0, โ 3
โ4
โ6
y
2 x2 5x 2
2×2 x 6
2x 1 x 2
47. f x
2x 1
,x z 2
2x 3
2x 3 x 2
(a) Domain: all real numbers x except x
3
x
2
x
โ4 โ3 โ 2 โ 1
( 23 , 0) 3 4
(0, โ 2)
2 and
t 1 t 1
t2 1
t 1
49. f t
ยง1 ยท
(b) x-intercept: ยจ , 0 ยธ
ยฉ2 ยน
t 1
t 1; t z 1
(a) Domain: all real numbers t except t
1ยท
ยง
y-intercept: ยจ 0, ยธ
3ยน
ยฉ
1
(b) t-intercept: 1, 0
y-intercept: 0, 1
3
2
(c) Vertical asymptote: x
Horizontal asymptote: y
(d)
1
(c) Vertical asymptote: none
Horizontal asymptote: none
1
(d)
x
โ3
โ2
โ1
0
y
7
3
5
โ3
1
1
3
1
5
t
โ1
0
2
3
y
0
1
3
4
y
4
y
3
4
2
3
โ4 โ3
1
โ5 โ4 โ3 โ 2
1
0, โ 3
)
)
1
(0, 1)
โ1
1
(โ 1, 0)
2
)12 , 0) 3
x
t
2
3
4
โ2
โ3
โ4
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
x 6 x 6
x 2 36
x 6
50. f x
x 6
(a) Domain: all real numbers x except x
x 6; x z 6
6
y-intercept: 0, 6
(b) f x
(c) Vertical asymptote: none
Horizontal asymptote: none
x
1
2
3
4
y
โ5
โ4
โ3
โ2
(c)
x 2x
x x 2
x
2
0
1
1.5
2
2.5
3
f x
โ1
Undef.
1
1.5
Undef.
2.5
3
g x
โ1
0
1
1.5
2
2.5
3
8 10
โ4
โ6
x2 x 2
2
โ1
x
6
x2 x 2
0 and
x
(6, 0)
2
x
and the denominator of f, neither x
0 nor x
is a vertial asymptote of f. So, f has no vertical
asymptotes.
y
โ6 โ4 โ2
,g x
245
Because x x 2 is a factor of both the numerator
4
2
x2 2x
(a) Domain of f: All real numbers x except x
x
2
Domain of g: All real numbers x
(b) x-intercept: 6, 0
(d)
x2 x 2
52. f x
Ration
Rational Functions
(0, โ 6)
(d)
โ10
2
โ12
โ2
x2 1
,g x
x 1
51. f x
x 1
โ2
(a) Domain of f: all real numbers x except x
1
(e) Because there are only a finite number of pixels, the
utility may not attempt to evaluate the function
where it does not exist.
Domain of g: all real numbers x
(b) f x
x2 1
x 1
x 1 x 1
Because x 1 is a factor of both the numerator and
1 is not a vertical
the denominator of f , x
(c)
x
โ3
โ2
โ1.5
โ1
โ0.5
0
1
f x
โ4
โ3
โ2.5
Undef.
โ1.5
โ1
0
(d)
โ2.5
โ2
โ1.5
โ1
x 2
x x 2
0
1
x
asymptote. The only vertical asymptote of f is x
0
1
โ4
x 2
x2 2 x
0 and
Because x 2 is a factor of both the numerator and
2 is not a vertical
the denominator of f , x
(c)
โ3
1
x
(a) Domain of f: All real numbers x except x
x
2
Domain of g: All real numbers x except x
(b) f x
asymptote. So, f has no vertical asymptotes.
โ4
x 2
,g x
x2 2x
53. f x
x 1
x 1
g x
4
2
x
โ0.5 0
f x
โ2
Undef. 2
1
g x
โ2
Undef. 2
1
(d)
0.5 1 1.5 2
2
3
2
3
Undef.
1
2
0.
3
1
3
1
3
2
โ3
(e) Because there are only a finite number of pixels, the
utility may not attempt to evaluate the function
where it does not exist.
โ3
3
โ2
(e) Because there are only a finite number of pixels, the
utility may not attempt to evaluate the function
where
here it does not exist.
e
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
246
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
2x 6
,g x
x 7 x 12
54. f x
2
x 4
2
(a) Domain of f: All real numbers x except x
x
4
Domain of g: All real numbers x except x
3 and
(c) Vertical asymptote: x
x
x
โ2
โ1
1
2
y
5
2
8
โ8
2
x 4
0
1
f x
1
2
1
2
2
3
2
3
g x
(d)
2
y=x
4
4 as its only vertical
4
(3, 0)
4
6
x
8
โ4
5 6
โ6
โ8
โ1 Undef. Undef. 2 1
x2 5
5
x
x
x
(a) Domain: all real numbers x except x
56. g x
โ1 โ2
Undef. 2 1
0
(b) No intercepts
3
โ1
2
(โ 3, 0)
โ8 โ 6
3
5
2
y
Because x 3 is a factor of both the numerator and
3 is not a vertical
the denominator of f , x
x
0
Slant asymptote: y
x 3 x 4
(c)
0
(b) x-intercepts: 3, 0 , 3, 0
4
(d)
asymptote of f. So, f has x
asymptote.
9
x
x
(a) Domain: all real numbers x except x
2x 6
x 2 7 x 12
2 x 3
(b) f x
x2 9
x
55. h x
(c) Vertical asymptote: x
0
Slant asymptote: y
x
8
(d)
x
โ3
y
โ3
(e) Because there are only a finite number of pixels, the
utility may not attempt to evaluate the function
where it does not exist.
14
3
โ2
โ1
1
2
3
9
2
โ6
6
9
2
14
3
y
6
4
y=x
2
โ6 โ4 โ2
โ2
x
2
4
6
โ4
2 x2 1
1
2x
x
x
(a) Domain: all real numbers x except x
57. f x
0
(d)
x
โ4
y
(b) No intercepts
(c) Vertical asymptote: x
Slant asymptote: y
0
33
4
โ2
2
4
6
9
2
9
2
33
4
73
6
2x
y
6
4
2
y = 2x
x
โ6
โ4
โ2
2
4
6
INSTRUCTOR USE ONLY
โ6
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
1 x2
1
x
x
x
(a) Domain: all real numbers x except x
x2 1
1
x
x
x
(a) Domain: all real numbers x except x
58. f x
247
59. g x
0
(b) x-intercepts: 1, 0 , 1, 0
0
(b) No intercepts
(c) Vertical asymptote: x
0
Slant asymptote: y
x
(c) Vertical asymptote: x
0
Slant asymptote: y
x
(d)
Ration
Rational Functions
(d)
x
โ6
4
2
2
y
35
6
15
4
3
2
4
3
2
6
15
4
35
6
x
โ4
y
2
2
4
6
5
2
5
2
17
4
37
6
17
4
y
y
y = โx
6
8
4
6
4
y=x
2
2
(โ1, 0)
(1, 0)
โ8 โ6 โ4 โ2
4
x
x
6
โ6
โ4
โ2
2
4
6
8
โ4
โ6
โ6
โ8
x2
x 1
60. h x
1
x 1
x 1
(a) Domain: all real numbers x except x
1
(d)
y
x
โ4
y
(b) Intercept: 0, 0
(c) Vertical asymptote: x
1
Slant asymptote: y
x 1
16
5
2
2
4
6
4
3
4
16
3
36
5
8
6
4
y=x+1
2
(0, 0)
x
โ4
2
4
6
8
โ2
โ4
61. f t
t2 1
t 5
t 5
26
t 5
(a) Domain: all real numbers t except t
1ยท
ยง
(b) y-intercept: ยจ 0, ยธ
5ยน
ยฉ
5
1
1
1
x
3
9
9 3x 1
(a) Domain: all real numbers x except x
1
3
(b) Intercept: 0, 0
(c) Vertical asymptote: t
5
Slant asymptote: y
t 5
t
โ7
โ6
โ4
โ3
0
y
25
37
โ17
โ5
(d)
x2
3x 1
62. f x
y
1
5
1
3
(c) Vertical asymptote: x
Slant asymptote: y
1
1
x
3
9
x
โ3
โ2
1
y
9
8
4
5
(d)
25
1
2
1
2
1
2
0
2
0
4
7
20
y=5โt
y
15
(0, โ 15( 5
โ20 โ15 โ 10 โ 5
1
t
1
1
y = 3x โ 9
2
3
(0, 0)
x
โ1
1
3
2
3
1
4
3
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
248
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x3
4x
x 2
x 4
x 4
(a) Domain: all real numbers x except x
63. f x
r2
x
1
x 1
(a) Domain: all real numbers x except x
1
(b) y-intercept: 0, 1
(b) Intercept: 0, 0
2
2 and x
(c) Vertical asymptotes: x
Slant asymptote: y
x
(d)
x2 x 1
x 1
65. f x
2
(c) Vertical asymptote: x 1
Slant asymptote: y
x
(d)
x
โ3
โ1
1
3
y
27
5
1
3
1
3
27
5
x
โ4
โ2
0
2
4
y
21
5
7
3
โ1
3
13
3
y
y
8
8
6
4
6
y=x
4
(0, 0)
โ8 โ 6 โ 4
4
x
6
y=x
2
(0, โ1)
8
โ4
โ2
x
2
4
6
8
โ4
x3
2x 8
64. g x
1
4x
x
2
2×2 8
2
2 x2 5x 5
3
2x 1
x 2
x 2
2
(a) Domain: all real numbers x except x
66. f x
(a) Domain: all real numbers x except x
r2
5ยท
ยง
(b) y-intercept: ยจ 0, ยธ
2ยน
ยฉ
(c) Vertical asymptote: x
2
Slant asymptote: y
2x 1
(b) Intercept: 0, 0
r2
(c) Vertical asymptote: x
Slant asymptote: y
1
x
2
x
โ6
โ4
โ1
1
4
6
y
27
8
8
3
1
6
1
6
8
3
27
8
(d)
(d)
x
โ6
y
โ3
107
8
38
5
1
3
6
7
โ2
8
47
4
68
5
y
y
15
8
12
6
9
4
6
(0, 0)
y = 2x โ 1
3
x
โ8 โ6 โ4
4
6
x
8
โ9 โ6 โ3
y = 12 x
(
0, โ 52
3
6
9 12 15
)
โ9
67. f x
2 x3 x 2 2 x 1
x 2 3x 2
2x 1 x 1 x 1
x 1 x 2
2x 1 x 1
,
x 2
2 x 2 3x 1
x 2
15
2x 7
,
x 2
x z 1
x z 1
1 and x
2
INSTRUCTOR USE ONLY
(a) Domain: all real numbers x except x
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
ยง 1ยท
(b) y-intercept: ยจ 0, ยธ
ยฉ 2ยน
(d)
ยง1 ยท
x-intercepts: ยจ , 0 ยธ, 1, 0
ยฉ2 ยน
(c) Vertical asymptote: x
2
x
โ4
y
3
2
0
1
โ28
20
1
2
0
18
12
71. f x
(1, 0)
โ5 โ4 โ3
,x z 2
x2 5x 8
x 3
x 2
Vertical asymptote: x
3
Slant asymptote: y
x 2
Line: y
2×2 5x 2
x 1
9
2x 7
,x z 2
x 1
3
) 12 , 0)
y = 2x โ 7
2
x 3
3
8
โ14
x 2
10
โ8
72. f x
(a) Domain: all real numbers x except x
2
x
1 and
ยง 1 ยท
x-intercepts: 2, 0 , ยจ , 0 ยธ
ยฉ 2 ยน
(c) Vertical asymptote: x
1
Slant asymptote: y
2x 7
2 x2 x
x 1
2x 1
1
x 1
Domain: all real numbers x except x
(b) y-intercept: 0, 2
(d)
x
โ1
โ12
โ18
โ24
Domain: all real numbers x except x
x 2 x 1
x 1
)0, 12 )
โ30
โ36
2 x3 x 2 8 x 4
x 2 3x 2
x 2 x 2 2x 1
x 2 2x 1
249
y
โ3
2x 7
Slant asymptote: y
68. f x
45
2
Ration
Rational Functions
Vertical asymptote: x
1
Slant asymptote: y
2x 1
Line: y
2x 1
1
6
โ12
12
โ10
x
โ3
โ2
โ1
0
1
2
y
5
4
0
1
2
โ2
โ10
3
2
3
4
28
35
2
18
y
30
73. g x
1 3x 2 x3
x2
1
3 x
x2
Domain: all real numbers x except x
Vertical asymptote: x
0
Slant asymptote: y
x 3
Line: y
x 3
1
x2
0
12
x 3
24
โ12
12
18
y = 2x + 7 12
(โ2, 0)
โ6
โ2
โ4
(
1
โ ,0
2
2
4
)
x
6
74. h x
(0, โ2)
1
x 2
2
Domain: All real numbers except x
One possibility: f x
1
2
x 1
2
4 x
Domain: all real numbers x except x
69. Domain: All real numbers
One possibility: f x
12 2 x x 2
24 x
Vertical asymptote: x
4
Slant asymptote: y
1
x 1
2
2.
1
x 2
Line: y
1
x 1
2
4
10
โ16
8
โ6
(Answers are not unique).
70. An asymptote is a line to which a graph gets arbitrarily
close to, but does not reach, as x or y increases
INSTRUCTOR USE ONLY
without bound.
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
250
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
x 1
x 3
75. y
(a) x-intercept: 1, 0
0
x 1
x 3
x 1
1
x
(b)
0
(a) 300,000
0
0
2x
x 3
2x
0
x
C 90
x
x2
x
x 3
78. y
(a)
25,000 90
$225,000
100 90
1 0.04t
,t t 0
N 10
500 deer
N 25
800 deer
(b) The herd is limited by the horizontal asymptote:
60
N
1500 deer
0.04
82. (a) 0.25 50 0.75 x
2
x
0
2
x
x 2 3x 2
0
x 1 x 2
x
1, x
x 3
C 50 x
12.50 0.75 x 4
ย
50 x
4
50 3 x
3x 50
4 50 x
4 x 50
C
C
(b) Domain: x t 0 and x d 1000 50
So, 0 d x d 950. Using interval notation,
the domain is >0, 950@.
2
255 p
, 0 d p 100
100 p
79. C
$25,000
100 50
(a) N 5 | 333 deer
(a) x-intercepts: 1, 0 , 2, 0
(b) 0
25,000 50
20 5 3t
81. N
1
x
x
1
x
1
r1
0
| $4411.76
(c) C o f as x o 100. No. The function is
undefined for p 100.
(a) x-intercepts: 1, 0 , 1, 0
(b)
100 15
C 50
1
x
x
77. y
25,000 15
(b) C 15
(a) x-intercept: 0, 0
(b) 0
100
0
2x
x 3
76. y
25,000 p
, 0 d p 100
100 p
80. C
(c)
C
1.0
0.8
2,000
0.6
0.4
0.2
0
x
100
200 400 600 800 1000
0
(b) C 10
C 40
C 75
255 10
100 10
255 40
100 40
255 75
100 75
| 28.33 million dollars
170 million dollars
(d) As the tank is filled, the concentration increases
more slowly. It approaches the horizontal asymptote
3
of C
0.75 75%.
4
765 million dollars
(c) C o f as x o 100. No. The function is
undefined at p 100.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.6
84. (a) A
83. (a) Let t1
time from Akron to Columbus and
t2
time from Columbus back to Akron.
xt1
100 ย t1
yt2
100 ย t2
50 t1 t2
xy and
x 4 y 2
100
x
100
y
30
30
x 4
y 2
2
y
200
So, A
2 x x 11
ยง 2 x 22 ยท
xยจ
ยธ
ยฉ x 4 ยน
xy
2 x 22
x 4
30
x 4
.
4
100 100
x
y
4
100 y 100 x
4 xy
(b) Domain: Because the margins on the left and right
are each 2 inches, x ! 4. In interval notation, the
domain is 4, f .
xy
(c)
So, y
25 x
xy 25 y
25 x
y x 25
25 x
.
x 25
x 4
200
4
40
4
0
(b) Vertical asymptote: x
25
Horizontal asymptote: y
x
5
6
7
8
9
10
y1 Area
160
102
84
76
72
70
x
11
12
13
14
15
y1 Area
69.143
69
69.333
70
70.999
25
200
25
65
0
(d)
251
t1 t2
25 y 25 x
(c)
Ration
Rational Functions
x
30
35
40
45
50
55
60
y
150
87.5
66.7
56.3
50
45.8
42.9
(e) Sample answer: No. You might expect the average
speed for the round trip to be the average of the
average speeds for the two parts of the trip.
(f ) No. At 20 miles per hour you would use more time
in one direction than is required for the round trip at
an average speed of 50 miles per hour.
The area is minimum when x | 11.75 inches and
y | 5.87 inches.
85. False. Polynomial functions do not have vertical
asymptotes.
x
crosses y
x2 1
which is a horizontal asymptote.
86. False. The graph of f x
0,
87. False. A graph can have a vertical asymptote and a horizontal asymptote or a vertical asymptote and a slant asymptote,
but a graph cannot have both a horizontal asymptote and a slant asymptote.
A horizontal asymptote occurs when the degree of N x is equal to the degree of D x or when the degree of N x is
less than the degree of D x . A slant asymptote occurs when the degree of N x is greater than the degree of D x by one.
Because the degree of a polynomial is constant, it is impossible to have both relationships at the same time.
88. (a) f x
x 1
x3 8
(b) f x
x 2
x3 1
(c) f x
(d) f x
2 x2 9
x 2 x 1
2 x 2 x 3
x 1 x 2
89. No; Yes;
2 x 2 18
x2 x 2
Not every rational function is a polynomial because
1
3
and h x
are rational functions, but
g x
x 2
x
they are not polynomials. Every polynomial f x is a
rational function because it can be written as
f x
1
.
2 x 2 2 x 12
x2 x 2
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
252
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
Review Exercises for Chapter 2
1. (a) y
2×2
2. (a) y
Vertical stretch
x2 4
Vertical shift four units downward
y
y
4
3
3
2
1
2
x
โ4 โ3
x
โ4 โ3 โ2 โ1
โ1
1
2
3
โ1
4
1
3
4
โ2
โ2
โ3
โ4
(b) y
โ5
2 x 2
(b) y
Vertical stretch and a reflection in the x-axis
y
4 x2
Reflection in the x-axis and a vertical shift four units
upward
y
4
3
5
2
1
3
x
โ4 โ3 โ2 โ1
1
2
3
2
4
1
x
โ4 โ3
โ3
โ1
โ1
โ4
(c) y
1
3
4
โ2
โ3
x2 2
Vertical shift two units upward
x 3
(c) y
2
Horizontal shift three units to the right
y
y
4
3
5
4
1
3
x
โ4 โ3 โ2 โ1
โ1
1
2
3
4
2
โ2
1
โ3
x
โ4
(d) y
โ2 โ1
โ1
2
3
4
5
โ2
2
x 2
1
Horizontal shift two units to the left
(d) y
1 x2 1
2
Vertical shrink each y -value is multiplied by 12 ,
y
4
and a vertical shift one unit downward
y
1
โ4 โ3 โ2 โ1
โ1
4
x
1
2
3
3
4
2
โ2
1
โ3
โ4
x
โ4 โ3 โ2
2
3
4
โ2
โ3
โ4
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
x2 2 x
3. g x
3 4x x2
6. h x
x2 2 x 1 1
x 1
2
x2 4x 3
1
x2 4x 4 4 3
Vertex: 1, 1
ยช x 2
ยฌ
Axis of symmetry: x
x2 2x
0
1
2
x 2
x x 2
7ยบ
ยผ
2
y
7
10
8
Vertex: 2, 7
x-intercepts: 0, 0 , 2, 0
6
4
Axis of symmetry: x
y
7
6
5
4
3
0
3 4x x
0
x2 4x 3
x
2 3 4 5 6
4 r
6x x2
x
โ2
4
28
2
2
4
6
8
10
4 1 3
2r
2
4. f x
2
21
4r
โ2
2
2
x
โ3 โ2 โ1
253
x-intercepts: 2 r
7
7, 0
x 6x 9 9
2
x 3
2
2t 2 4t 1
7. f t
9
2 t 2 2t 1 1 1
Vertex: 3, 9
3
2 ยช t 1
ยฌ
x6 x
2 t 1
Axis of symmetry: x
6x x2
0
1ยบ 1
ยผ
2
2
3
Vertex: 1, 3
x-intercepts: 0, 0 , 6, 0
Axis of symmetry: t
y
10
0
2 t 1
1
2
3
8
2t 1
6
2
y
3
6
5
4
3
4
t 1
2
โ2
3
2
r
x
โ2
4
2
8
t
x 2 8 x 10
5. f x
2
8. f x
2
x 4
x
t
โ3 โ2 โ1
1
2 3 4 5
6
4
10
6 ยท
, 0 ยธยธ
2
ยน
x 4
2
x-intercepts: 4 r
2
4
y
Vertex: 4, 4
6
4 r
x 4
y
6
8
6
2
r 6
x 2 8 x 12
x 2 8 x 16 16 12
4
Axis of symmetry: x
x 4
1r
6
Vertex: 4, 6
0
6
2
ยง
t-intercepts: ยจยจ1 r
ยฉ
x 2 8 x 16 16 10
x 4
2
1
10
Axis of symmetry: x
4
4
x
โ8
6
6, 0
โ4
โ2
0
x 2 8 x 12
โ4
0
x 2 x 6
2
โ6
x-intercepts: 2, 0 , 6, 0
2
x
โ2
โ2
8
โ4
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
254
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Functions
4 x 2 4 x 13
9. h x
11. h x
4 x 2 x 13
x2 5x
4 x 2 x 14 14 13
2
2
2
5ยท
41
ยง
ยจx ยธ
2
4
ยฉ
ยน
12
Vertex: 12 , 12
0
4 x 12
2
3
x 12
2
20
12
โ3
โ2
โ1
Axis of symmetry: x
0
x2 5x 4
โ10
x
1
2
3
x
6 r
6
3
12. f x
32
2
41 1
21
4 x2 4x 5
2
ยชยง
ยบ
1ยท
4 ยซยจ x ยธ 1ยป
2ยน
ยซยฌยฉ
ยปยผ
3r 2 2
2
52 4 1 4
1
1
5ยท
ยง
4ยจ x 2 x ยธ
4
4
4ยน
ยฉ
21
6r
5 r
5 r 41
2
x2 6x 1
x
8
2
2
ยง 1 ยท
Vertex: ยจ , 4 ยธ
ยฉ 2 ยน
y
2
Axis of symmetry: x
โ8 โ6 โ4 โ2
โ2
x
โ2
โ4
2
4
8
10
0
โ6
โ8
y
12
1ยท
ยง
4ยจ x ยธ 4
2ยน
ยฉ
x-intercepts: 3 r 2 2, 0
โ2
2
โ2
ยง 5 r 41 ยท
x-intercepts: ยจยจ
, 0 ยธยธ
2
ยฉ
ยน
8
Vertex: 3, 8
0
โ2
5
x2 6 x 9 9 1
2
โ4
10
x 6x 1
x 3
โ6
โ4
2
10. f x
x
โ8
Axis of symmetry:
5
x
2
15
No real zeros
x-intercepts: none
y
ยง 5 41 ยท
Vertex: ยจ , ยธ
4ยน
ยฉ 2
y
12
Axis of symmetry: x
25
25
4
4
4
5ยท
25 16
ยง
ยจx ยธ
2ยน
4
4
ยฉ
4 x 2 x 14 1 13
4 x 12
x2 5x 4
x
x
2
4
6
1
2
4 x2 4 x 5
4 r
42 4 4 5
24
4 r
64
8
4 r 8i
8
1
ri
2
The equation has no real zeros.
x-intercepts: none
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
1 2
x 5x 4
3
1ยง 2
25
25
ยท
4ยธ
ยจ x 5x
3ยฉ
4
4
ยน
13. f x
1 ยชยง
5ยท
41ยบ
ยซยจ x ยธ ยป
3 ยซยฌยฉ
2ยน
4 ยปยผ
15. Vertex: 4, 1 ย f x
a x 4
Point: 2, 1 ย 1
2
2
2
4a
12
a
2
1
12 x 4
f x
a2 4
2
255
1
1
2
1ยง
5ยท
41
ยจx ยธ
3ยฉ
2ยน
12
ยง 5 41 ยท
Vertex: ยจ , ยธ
ยฉ 2 12 ยน
Axis of symmetry: x
5 r
x
a x 2
Point: 0, 3 ย 3
a0 2
2
3
4a 2
1
4a
1
4
a
5
2
x2 5x 4
0
16. Vertex: 2, 2 ย f x
21
5 r 41
2
17. Vertex: 1, 4 ย f x
ยง 5 r 41 ยท
, 0 ยธยธ
x-intercepts: ยจยจ
2
ยฉ
ยน
2
4
2
a x 1
Point: 2, 3 ย 3
a21
1
y
2
1 x 2 2 2
4
f x
52 4 1 4
2
x 1
f x
2
2
4
a
4
4
18. Vertex: 2, 3 ย f x
2
x
โ8
โ6
14. f x
โ4
โ2
Point: 1, 6 ย 6
2
6
9a 3
โ6
3
9a
1
3
a
1 2
6 x 24 x 22
2
3 x 2 12 x 11
3x 2
2
3 4 11
3x 2
2
1
Axis of symmetry: x
12
2 r
3
3
x
(b) x x y y
2x 2 y
y
2
2
A
4 3 11
P
1000
500 x
xy
x 500 x
500 x x 2
y
(c) A
14
500 x x 2
x 2 500 x 62,500 62,500
12
10
8
x 250
6
2
62,500
4
x-intercepts:
ยง
3 ยท
, 0 ยธยธ
ยจยจ 2 r
3
ยฉ
ยน
3
y
23
12 r 12
6
3
19. (a)
3x 2 12 x 11
12 r
2
2
2
1
x 2 3
3
f x
Vertex: 2, 1
x
a 1 2
โ4
3 x 2 4 x 4 4 11
0
a x 2
2
x
โ6 โ4 โ2
4
6
8 10
The maximum area occurs at the vertex when
500 250
250.
x
250 and y
The dimensions with the maximum area are
x
250 meters and y
25 meters.
250
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
256
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Functions
10 p 2 800 p
20. R
(a) R 20
$12,000
R 25
$13,750
R 30
$15,000
4 x3
x3 , f x
24. y
y
3
2
1
(b) The maximum revenue occurs at the vertex of the
parabola.
800
2 10
b
2a
R 40
โ3
โ2
โ1
x
2
3
โ2
โ3
$40
Transformation: Reflection in the x-axis and a vertical
stretch
$16,000
The revenue is maximum when the price is $40 per
unit.
6 x4
x4 , f x
25. y
The maximum revenue is $16,000.
y
Any price greater or less than $40 per unit will not
yield as much revenue.
7
5
4
70,000 120 x 0.055 x 2
21. C
1
โ1
3
2
The minimum cost occurs at the vertex of the parabola.
120
| 1091 units
2 0.055
b
Vertex:
2a
About 1091 units should be produced each day to yield a
minimum cost.
1
0.107 x 5.68 x 48.5
0
0.107 x 2 5.68 x 74.5
1
2
3
4
Transformation: Reflection in the x-axis and a vertical
shift six units upward
2 x 8
x4 , f x
26. y
22. 26
x
โ4 โ3 โ 2
4
2
5.68 r
x
5.68
2
y
10
4 0.107 74.5
8
6
2 0.107
4
x | 23.7, 29.4
The age of the bride is about 24 years when the age of
the groom is 26 years.
x
โ2
โ2
2
4
6
8
10
Transformation: Horizontal shift eight units to the right
and a vertical stretch
y
Age of groom
27
26
24
5
y
23
4
22
3
x
2
20 21 22 23 24 25
Age of bride
1
x
โ2
23. y
x 5
x5 , f x
27. y
25
x 2
x3 , f x
1
2
3
5
6
3
โ3
โ4
y
4
Transformation: Horizontal shift five units to the right
3
2
1
x
โ 4 โ3 โ 2
1
2
4
โ2
โ3
โ4
INSTRUCTOR USE ONLY
Transformation: Reflection in the x-axis and a horizontal
shift two units to the right
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
1 x5 3
2
x5 , f x
28. y
36. f x
x3 8 x 2
0
x3 8 x 2
0
x2 x 8
y
8
257
10
โ 10
10
6
โ6 โ4
โ 80
Zeros: x
0 of multiplicity 2
(even multiplicity)
4
x
โ2
2
4
x 8 of multiplicity 1
(odd multiplicity)
6
Turning points: 2
Transformation: Vertical shrink and a vertical shift three
units upward
37. f x
18 x3 12 x 2
0
18 x3 12 x 2
0
6 x 2 3 x 2
2 x 2 5 x 12
29. f x
The degree is even and the leading coefficient is
negative. The graph falls to the left and falls to the right.
1 x3 2 x
2
30. f x
x
The degree is odd and the leading coefficient is positive.
The graph falls to the left and rises to the right.
3 4
x 3x 2 2
4
31. g x
2
3
Zeros: x
0 of multiplicity 2 (even multiplicity)
Turning points: 2
2
โ3
3
The degree is even and the leading coefficient is positive.
The graph rises to the left and rises to the right.
x7 8 x 2 8 x
32. f x
โ2
38. g x
x 4 x3 12 x 2
0
x 4 x3 12 x 2
0
x 2 x 2 x 12
0
x2 x 4 x 3
The degree is odd and the leading coefficient is negative.
The graph rises to the left and falls to the right.
33. f x
3x 2 20 x 32
0
3x 2 20 x 32
0
3x 4 x 8
4
3
Zeros: x
and x
40
โ12
4
8,
0 of multiplicity 2 (even multiplicity)
x
4 of multiplicity 1 (odd multiplicity)
x
3 of multiplicity 1 (odd multiplicity)
Turning points: 3
both of multiplicity 1 (odd multiplicity)
0
Zeros: x
โ 80
Turning points: 1
34. f x
x3 x 2 2
39. f x
x x 3
2
x x 3
2
of multiplicity 1 (odd multiplicity)
3
โ6
Zeros: x
0 of multiplicity 1
(odd multiplicity)
6
(a) The degree is odd and the leading coefficient is
negative. The graph rises to the left and falls to
the right.
1
(b) Zero: x
โ5
(c)
x
3 of multiplicity 2
(even multiplicity)
x
โ3
โ2
1
0
1
2
f x
34
10
0
โ2
โ2
โ6
Turning points: 2
35. f t
t 3 3t
0
t 3 3t
0
(d)
3
y
4
3
โ5
tt 3
2
4
2
(โ 1, 0)
1
x
โ4 โ3 โ2
Zeros: t
0, r
3, all of
multiplicity 1 (odd multiplicity)
1
2
3
4
โ3
โ3
โ4
INSTRUCTOR USE ONLY
Turning points: 2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
258
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Functions
2 x3 4 x 2
40. g x
(c)
(a) The degree is odd and the leading coefficient, 2, is
positive. The graph falls to the left and rises to the
right.
(b) g x
2 x3 4 x 2
0
2 x3 4 x 2
0
2×2 x 2
โ2
1
0
1
2
h x
โ4
2
0
2
โ4
(d)
y
4
2
( 3, 0)
(โ 3, 0)
โ4 โ3
x x 2
x
โ1
โ1
1
3
4
โ2
โ3
2, 0
Zeros: x
(0, 0)
3
2
0
(c)
x
โ4
x
โ3
2
1
0
1
g x
โ18
0
2
0
6
6x 3
43. 5 x 3 30 x 2 3x 8
30 x 2 18 x
y
(d)
15 x 8
4
15 x 9
3
2
โ4 โ3
17
(0, 0)
(โ 2, 0)
x
โ1
โ1
1
2
3
30 x 2 3 x 8
5x 3
4
โ2
โ3
6x 3
17
5x 3
โ4
4
3
44. 3x 2 4 x 7
x x x 5x 3
3
41. f x
2
(a) The degree is even and the leading coefficient is
positive. The graph rises to the left and rises to the
right.
x
โ4
3
2
โ1
0
1
2
3
f x
100
0
โ18
โ8
0
0
10
72
(d)
(โ 3, 0)
4x 7
3x 2
4
29
3
3 3x 2
5x 4
45. x 2 5 x 1 5 x3 21x 2 25 x 4
y
โ4
8
3
29
3
0, 1, 3
(b) Zeros: x
(c)
4x
3
(1, 0)
5 x 3 25 x 2 5 x
x
โ2 โ1
1
2
3
4
(0, 0)
4 x 2 20 x 4
4 x 2 20 x 4
โ15
โ18
0
โ21
3x x
2
42. h x
5 x3 21x 2 25 x 4
x2 5x 1
4
(a) The degree is even and the leading coefficient, 1,
is negative. The graph falls to the left and falls to the
right.
(b) g x
3x 2 x 4
0
3x 2 x 4
0
x2 3 x2
Zeros: x
0, r
5 x 4, x z
3x 2
5
r
2
29
2
3
46. x 1 3 x 0 x 0 x 2 0 x 0
2
4
3x 4
3
3x 2
3x 2
0
3x 2
3
3
3
4
3x
x2 1
3x 2 3
3
x2 1
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
259
x 2 3x 2
47. x 0 x 2 x 3 x 4 x 2 6 x 3
2
4
3
x 4 0 x3 2 x 2
3×3 2 x 2 6 x
3×3 0 x 2 6 x
2×2 0 x 3
2×2 0 x 4
1
x 3x 4 x 6 x 3
x2 2
4
3
2
x 2 3x 2
1
x2 2
3x 2 5 x 8
48. 2 x 0 x 1 6 x 10 x 13 x 2 5 x 2
2
4
3
6 x 4 0 x3 3x 2
10 x3 16 x 2 5 x
10 x3 0 x 2 5 x
16 x 2 0 x 2
16 x 2 0 x 8
10
6 x 4 10 x3 13 x 2 5 x 2
2 x2 1
49.
2
6
โ4
6
โ 27
18
12
16
โ 22
โ8
8
โ11
โ4
โ8
0.1
0.1
6 x3 8 x 2 11x 4
0
0.5
53. f x
0.5
4
20
(a)
0.8
4
19.5
0.1x 2 0.8 x 4
2
โ 25
16
66
โ 72
48
โ 48
2
โ9
โ6
0
2 x 25 x 66 x 48
x 8
3
52.
โ4
2
5
5
8
x 2
0.3
0.1×3 0.3 x 2 0.5
x 5
51. 8
10
2 x2 1
0
6 x 4 4 x3 27 x 2 18 x
x 2
50. 5
3x 2 5 x 8
โ8
โ20
โ 52
8
13
โ2
0
20
9
โ 20
14
11
โ3
3
0
0
20
โ11
โ3
0
0
1 is a zero of f.
3
4
Yes, x
x z 8
(d)
5 x 2 13 x 2, x z 4
0
9
14
โ3
0
15
18
3
0
24
4
0
0
20
20
(c)
50
โ1
Yes, x
(b)
2 x 2 9 x 6,
33
5 x3 33 x 2 50 x 8
x 4
19.5
x 5
20 x 4 9 x3 14 x 2 3 x
3
4
is a zero of f.
20
9
0
14
0
โ3
0
0
0
20
9
โ14
โ3
0
Yes, x
0 is a zero of f.
1
20
9
20
14
29
โ3
15
0
12
20
29
15
12
12
INSTRUCTOR USE ONLY
No, x
1 is not a zero off ff.
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
260
NOT FOR SALE
Chapter 2
3 x3 8 x 2 20 x 16
54. f x
(a)
Polynomial
ynomial and Rational Functions
4
3
โ8
โ 20
16
12
16
โ16
4
โ4
0
3
Yes, x
(b)
โ4
(c)
2
3
16
โ12
80
โ 240
3
โ 20
60
โ 224
โ3
4 is not a zero of f.
โ8
โ 20
16
2
โ4
โ16
โ6
โ 24
0
2
3
10 3
3
24 3
2
10
โ 24
20
44
1
โ3
7
โ 21
โ 45
135
155
โ 465
โ 421
So, f 3
20 3 44
421.
(b) Remainder Theorem:
f 1
1
4
10 1
3
24 1
2
20 1 44
9
is a zero of f.
โ 20
1
Synthetic Division:
3
โ8
โ3
11
9
3
โ11
โ9
25
1
1 is not a zero of f.
So, f 1
No, x
4
Synthetic Division:
โ 20
Yes, x
3
421
โ8
3
โ1
f 3
3
3
(d)
(a) Remainder Theorem:
4 is a zero of f.
No, x
x 4 10 x3 24 x 2 20 x 44
55. f x
16
โ1
1
10
โ 24
20
44
โ1
โ9
33
โ 53
9
โ33
53
โ9
9.
2t 5 5t 4 8t 20
56. g t
(a) Remainder Theorem:
g 4
2 4
5
4
5 4
8 4 20
3276
Synthetic Division:
โ4
2
โ5
0
0
โ8
20
2
โ8
โ13
52
52
โ208
โ208
832
824
โ 3296
โ 3276
So, g 4
3276.
(b) Remainder Theorem:
g
2
2
2
5
5
2
4
8
2 20
0
Synthetic Division:
2
So, g
2
โ5
0
0
โ8
20
5 2 4
5 2 4
10 4 2
10 4 2
10 2 8
10 2
โ20
2
2 2
5 2 2
2
0.
0
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
x 3 4 x 2 25 x 28; Factor: x 4
57. f x
(a)
4
1
1
(b) x 2 3 x 4
x 1 x 4
The remaining factors are x 1 and x 4 .
4
25
28
4
32
28
(c) f x
8
7
0
(d) Zeros: 2, 1, 3, 4
Yes, x 4 is a factor of f x .
(b) x 8 x 7
261
x 1 x 4 x 2 x 3
(e)
40
x 7 x 1
2
The remaining factors are x 7 and x 1 .
โ3
5
x3 4 x 2 25 x 28
(c) f x
โ10
x 7 x 1 x 4
(a)
(e)
x 4 11x 3 41x 2 61x 30
60. f x
(d) Zeros: 7, 1, 4
80
โ8
2
1
โ11
41
โ 61
30
2
โ18
โ 30
1
โ9
23
46
โ15
1
โ9
23
โ15
5
โ20
15
โ4
3
0
0
5
5
โ60
1
2 x 3 11x 2 21x 90; Factor: x 6
58. f x
(a)
โ6
11
21
โ 90
โ12
6
90
โ1
โ15
0
2
2
Yes, x 2 and x 5 are both factors of f x .
(b) x 2 4 x 3
The remaining factors are x 1 and x 3 .
Yes, x 6 is a factor of f x .
(b) 2 x x 15
2
2x 5 x 3
(d) Zeros: x
(e)
2x 5 x 3 x 6
(d) Zeros: x
52 , 3, 6
(e)
50
x 1 x 3 x 2 x 5
(c) f x
The remaining factors are 2 x 5 and x 3 .
(c) f x
x 1 x 3
1, 2, 3, 5
4
โ6
12
โ8
โ7
61. A | 0.0022t 3 0.044t 2 0.17t 2.3
5
62.
8
โ100
x 4 4 x 3 7 x 2 22 x 24
59. f x
0
Factors: x 2 , x 3
(a)
โ2
3
1
1
12
0
1
โ4
7
22
24
โ2
12
โ10
โ24
1
โ6
5
12
0
โ6
5
12
3
โ9
โ12
โ3
โ4
0
The model is a good fit to the actual data.
INSTRUCTOR USE ONLY
Yes, x 2 and x 3 are both factors of f x .
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
262
63.
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Functions
t
A, actual
A, cubic model
0
2.3
2.3
1
2.4
2.5
2
2.9
2.8
3
3.2
3.1
4
3.6
3.5
5
4.0
4.0
6
4.2
7
64. 18
โ0.0022
0.044
0.17
2.3
โ0.0396
0.0792
4.4856
0.0044
0.2492
6.7856
โ0.0022
A 18 | 6.8 million
No, the model falls to the right as t increases since the
degree is odd and the leading coefficient is negative.
65. 8
100
8 10i
4.4
66. 5
49
5 7i
4.9
4.9
67. i 2 3i
1 3i
8
5.4
5.3
68. 5i i 2
1 5i
9
5.8
5.8
10
6.4
6.2
11
6.5
6.6
12
6.9
6.9
ยง 2
70. ยจยจ
ยฉ 2
2 ยท ยง 2
iยธ ยจ
2 ยธยน ยจยฉ 2
71. 7i 11 9i
2 ยท
iยธ
2 ยธยน
77i 63i 2
72. 1 6i 5 2i
69. 7 5i 4 2i
2
2
i
2
2
2
2
2
i
2
ยง 2 ยท
2ยจยจ
i ยธยธ
ยฉ 2 ยน
i 20 9i
5 28i 12
20i 9i 2
17 28i
9 20i
20 30i 16i 24i 2
20 46i 24
75. 8 5i
2
4 7i
2
2
64 80i 25i 2
64 80i 25
4 46i
76. 4 7i
i 18 12i 3i 2i 2
i 18 9i 2
5 2i 30i 12i 2
73. 10 8i 2 3i
3 7i
2i
74. i 6 i 3 2i
63 77i
7 4 5i 2i
39 80i
16 56i 49i 2 16 56i 49i 2
32 98i 2
66
77.
6i
4 i
6i 4i
ย
4i 4i
79.
4
2
2 3i 1 i
24 10i i 2
16 1
23 10i
17
23 10
i
17 17
8 5i i
78.
ย
i
i
8i 5i 2
i 2
5 8i
1
5 8i
4
2 3i
2
1i
ย
ย
2 3i 2 3i 1 i 1 i
8 12i
2 2i
4 9
11
8
12
i 1i
13 13
ยง8
ยท ยง 12
ยท
ยจ 1ยธ ยจ i i ยธ
ยฉ 13
ยน ยฉ 13
ยน
21
1
i
13 13
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
80.
1 4i 5 2 i
1
5
2 i 1 4i
18 81i 2i 9i 2
4 81i 2
9 83i
9
83
i
85
85 85
0
5×2
2
x2
x
r
2
i
5
x
r
10
i
5
2
5
2
x
2
14
x
r 12 i
Zeros: x
4, 6, 2i, 2i
2
x 3i x 3i
5, 8, 3 r i
4 x 3 8 x 2 3 x 15
Possible rational zeros:
r1, r 3, r 5, r15, r 12 , r 32 , r 52 , r 15
, r 14 , r 34 , r 54 , r 15
2
4
3x 4 4 x3 5 x 2 8
Possible rational zeros: r1, r 2, r 4, r 8, r 13 , r 23 , r 43 , r 83
x 3 3 x 2 28 x 60
93. f x
Possible rational zeros:
r1, r 2, r 3, r 4, r 5, r 6, r10, r12, r15, r 20, r 30, r 60
10 1
2
9
x 1
r 9
x
1 r 3i
โ2
60
โ2
โ2
60
1
โ30
0
x 2 x 2 x 30
x 2 x 6 x 5
32 4 6 27
2, x
The zeros of f x are x
26
639
6, and x
5.
4 x 3 27 x 2 11x 42
94. f x
Possible rational zeros: r 14 , r 12 , r 34 , r1, r 32 , r 74 ,
12
3 r 3i 71
12
28
3
x3 3 x 2 28 x 60
0
3 r
4x x 3
1
1
b 2 4ac
2a
1
r
4
71
i
4
r 2, r 3, r 72 , r 21
, r 6, r 7, r 21
, r14, r 21, r 42
4
2
โ1
4
2
4
โ27
11
42
โ4
31
โ 42
โ31
42
0
0, 3
4 x3 27 x 2 11x 42
86. f x
10i
0, r 10i
x 8 x 5
91. f x
b r
Zeros: x
10i x
x 4 x 6 x 2i x 2i
92. f x
84. 6 x 2 3x 27
85. f x
x x
0
x2 2 x 1
3 r
x x 2 10
Zeros: x
0
8x
2, 9
x3 10 x
88. f x
90. f x
83. x 2 2 x 10
x
Zeros: x
Zeros: x
2
x 1
x 2 x 9
89. f x
81. 5 x 2 2
82. 2 8 x 2
x 2 11x 18
87. f x
2 i 1 4i
1 4i 10 5i
2 8i i 4i 2
2 9i
9 i
ย
2 9i 2 9i
263
x 4 x 9
9, 4
2
x 1 4 x 2 31x 42
x 1 x 6 4x 7
INSTRUCTOR USE ONLY
Zeros: x
The zeros of f x are x
1, x
7
, and x
4
6.
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
264
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
x 3 10 x 2 17 x 8
95. f x
Possible rational zeros: r1, r 2, r 4, r 8
1
1
1
โ10
17
โ8
1
โ9
8
โ9
8
0
x3 10 x 2 17 x 8
x 1 x2 9x 8
The zeros of f x are x
1 and x
x 1 x 1 x 8
2
x 8
8.
x 3 9 x 2 24 x 20
96. f x
x 1
x 4 x3 11x 2 x 12
97. f x
Possible rational zeros: r1, r 2, r 4, r 5, r10, r 20
Possible rational zeros: r1, r 2, r 3, r 4, r 6, r12
โ5
3
1
9
1
24
20
โ5
โ20
โ20
4
4
0
x3 9 x 2 24 x 20
1
1
x 5 x2 4 x 4
โ4
1
โ11
1
โ12
3
12
3
12
4
1
4
0
1
4
1
4
โ4
0
โ4
0
1
0
2
x 5 x 2 .
5 and x
The zeros of f x are x
2.
1
x 4 x3 11x 2 x 12
The zeros of f x are x
x 3 x 4 x2 1
3 and x
4.
25 x 4 25 x3 154 x 2 4 x 24
98. f x
Possible rational zeros: r1, r 2, r 3, r 4, r 6, r 8, r12, r 24, r 15 , r 52 , r 53 , r 54 , r 56 , r 85 , r 12
,
5
1 , r 2 , r 3 , r 4 , r 6 , r 8 , r 12 , r 24
r 24
, r 25
5
25
25
25
25
25
25
25
โ3
25
25
2
25
25
25
โ154
โ4
24
โ75
150
12
โ24
โ 50
โ4
8
0
โ 50
โ4
8
50
0
โ8
0
โ4
0
25 x 4 25 x3 154 x 2 4 x 24
x 3 x 2 25 x 2 4
3, x
The zeros of f x are x
2, and x
x3 4 x 2 x 4, Zero: i
99. f x
Because i is a zero, so is i.
i
i
โ4
1
โ4
i
1 4i
4
1
4 i
4i
0
4 i
4i
i
4i
โ4
0
1
f x
2
r .
5
100. h x
x3 2 x 2 16 x 32
Because 4i is a zero, so is 4i.
1
1
x 3 x 2 5x 2 5x 2 .
x i x i x 4
โ1
2
16
32
4i
16 8i
โ32
โ1
2 4i
8i
0
โ1
2 4i
8i
4i
8i
2
0
4i
4i
โ1
h x
x 4i x 4i x 2
INSTRUCTOR USE ONLY
Zeros:
Zeros x
ri, 4
Zeros: x
r4i, 2
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
2 x 4 3 x3 13 x 2 37 x 15, Zero: 2 i
101. g x
105. g x
Because 2 i is a zero, so is 2 i.
2i
2
2
โ4
3
13
37
โ15
4 2i
5i
15
1 2i
13 5i
31 3i
6 3i
2
1 2i
13 5i
6 3i
4 2i
10 5i
3
6 3i
2
5
2 r i, 12 , 3
12
โ208
52
0
1
0
3
52
โ4
16
โ52
โ4
13
0
x 4
2
2 r 3i.
2
x 4 ยชยฌ x 2 3i ยบยช
ยผยฌ x 2 3i ยบยผ
1i
11
14
โ6
11 3i
4
7 4i
3 3i
6
0
4
7 4i
3 3i
4 4i
3 3i
0
3
4
1
1
8
8
โ72
โ153
3
33
123
153
11
41
51
0
1
1
x x 1 i x 1 i 4x 3
Zeros: 0, 34 , 1 i, 1 i
103. f x
3
x
โ2
1
1
41
51
โ3
โ24
โ51
8
17
8 r
8
2
4 1 17
8 r
21
4
2
x3 4 x 2 5 x
The zeros of f x are 3, 3, 4 i, 4 i.
x x2 4x 5
f x
4 r i.
x 3 x 3 x 4i x 4 i
3i is a zero, so is 3i.
107. Because
0, 5, 1
Multiply by 3 to clear the fraction.
x3 7 x 2 36
104. g x
11
By the Quadratic Formula, the zeros of
x 2 8 x 17 are
x x 5 x 1
Zeros: x
x 2 3i x 2 3i
x 4 8 x3 8 x 2 72 x 153
106. f x
โ3
x ยชยฌ x 1 i ยบยช
ยผยฌ x 1 i ยบยผ 4 x 3
f x
2
x 4
2
4 4i
4
x 2 4 x 13
By the Quadratic Formula the zeros of x 2 4 x 13
4 and
are x
2 r 3i. The zeros of g x are x
x 4 x 11x 14 x 6
1i
208
0
1
x
0. Because 1 i is a zero, so is 1 i.
40
โ3
4 x 4 11×3 14 x 2 6 x
One zero is x
3
0
g x
3
4
โ4
0
x 2 i x 2 i 2x 1 x 3
102. f x
4
0
2
ยชยฌ x 2 i ยบยช
ยผยฌ x 2 i ยบยผ 2 x 5 x 3
Zeros: x
x 4 4 x3 3 x 2 40 x 208, Zero: x
1
g x
g x
265
1
โ4
2i
Review Exercises ffor Chapter 2
f x
3 x 23 x 4 x
3i x
โ7
0
36
3x 2 x 4 x 2 3
โ2
18
โ36
3 x 2 14 x 8 x 2 3
โ9
18
0
The zeros of x 2 9 x 18
3i
3x 4 14 x3 17 x 2 42 x 24
x 3 x 6 are
x
3, 6. The zeros of g x are x
g x
x 2 x 3 x 6
2, 3, 6.
Note: f x
a 3 x 4 14 x3 17 x 2 42 x 24 ,
where a is any real nonzero number, has zeros 23 , 4,
and r 3i.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
266
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
108. Because 1 2i is a zero, so is 1 2i.
f x
x 2 x 3 x 1 2i x 1 2i
x2 x 6 ยช x 1
ยฌ
2
4ยบ
ยผ
1
(a) Domain: all real numbers x except x
0
(b) No intercepts
3x
x 10
(c) Vertical asymptote: x
Domain: all real numbers x except x
4 x3
2 5x
2, x
3
2×2
117. f x
x 4 x3 3 x 2 17 x 30
110. f x
x 2 x 1
2
Vertical asymptotes: x
x2 x 6 x2 2x 5
109. f x
x2 x 4
x3 4 x 2
x 3x 2
116. h x
10
Horizontal asymptote: y
(d)
4 x3
5x 2
Domain: all real numbers x except x
0
2
5
0
x
โ1
1
2
1
2
1
y
3
2
โ6
6
3
2
y
111. f x
8
x 2 10 x 24
8
x 4 x 6
1
Domain: all real numbers x except x
112. f x
x
โ4 โ3
x2 x 2
x2 4
4 and x
1
โ1
3
4
6
4
x
118. f x
Domain: all real numbers x
(a) Domain: all real numbers x except x
113. f x
4
x 3
Vertical asymptote: x
(b) No intercepts
(c) Vertical asymptote: x
3
Horizontal asymptote: y
(d)
2 x 5x 3
x2 2
x
y
Horizontal asymptote: y
0
Horizontal asymptote: y
0
2
114. f x
0
0
โ3
โ2
โ1
1
2
3
4
3
โ2
โ4
4
2
4
3
2
y
115. f x
5 x 20
x 2 2 x 24
5x 4
4
3
2
1
x
x 6 x 4
โ3 โ2 โ1
1
2
3
4
โ2
5
; x z 4
x 6
Vertical asymptote: x
Horizontal asymptote: y
โ3
6
0
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
2 x
1 x
119. g x
x 2
x 1
(d)
(a) Domain: all real numbers x except x
1
x
โ2
โ1
0
1
2
y
20
17
1
0
1
20
17
(b) x-intercept: 2, 0
y
y-intercept: 0, 2
2
(c) Vertical asymptote: x
1
x
โ1
y
1
2
0
1
1
Horizontal asymptote: y
(d)
267
2
3
โ4
5
2
โ2
x
(0, 0)1
โ1
2
โ1
โ2
2
2x
x2 4
122. f x
y
6
(a) Domain: all real numbers x
4
(0, 2)
(โ2, 0)
2
(b) Intercept: 0, 0
x
(c) Horizontal asymptote: y
0
โ4
(d)
โ6
x
โ2
โ1
0
1
2
2
5
0
2
5
1
2
โ8
y
x 4
x 7
120. f x
1
2
y
(a) Domain: all real numbers x except x
7
2
(b) x-intercept: 4, 0
1
(0, 0)
ยง 4ยท
y-intercept: ยจ 0, ยธ
ยฉ 7ยน
x
1
2
โ1
(c) Vertical asymptote: x
โ2
7
Horizontal asymptote: y
(d)
1
x
โ2
โ1
0
1
2
y
2
3
5
8
4
7
1
2
2
5
y
x
x2 1
123. f x
(a) Domain: all real numbers x
(b) Intercept: 0, 0
(c) Horizontal asymptote: y
0
8
(d)
6
(0, 47) 4
x
โ4 โ 2
x
โ2
โ1
0
1
2
y
2
5
1
2
0
1
2
2
5
(4, 0)
2
4
10 12
โ4
โ6
y
โ8
2
2
121. f x
5x
4×2 1
1
(0, 0)
x
1
(a) Domain: all real numbers x
โ1
(b) Intercept: 0, 0
โ2
(c) Horizontal asymptote: y
2
5
4
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
268
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
9
124. h x
x 3
(a) Domain: all real numbers x except x
3
2
(a) Domain: all real numbers x except x
r2
(b) Intercept: 0, 0
(b) y-intercept: 0, 1
(c) Vertical asymptote: x
(c) Vertical asymptotes: x
3
Horizontal asymptote: y
(d)
2×2
x 4
126. y
2
2, x
Horizontal asymptote: y
0
x
โ3
โ2
โ1
0
1
2
y
1
4
9
25
9
16
1
9
4
9
(d)
2
2
x
r5
r4
r3
r1
0
y
50
21
8
3
18
5
2
3
0
y
y
8
6
6
4
4
(0, 0)
x
2
โ6 โ4
(0, 1)
โ2
4
6
x
2
4
6
8
โ2
6 x 2
x2 1
125. f x
6 x 2 11x 3
3x 2 x
3x 1 2 x 3
127. f x
(a) Domain: all real numbers x
(c) Horizontal asymptote: y
(d)
x
r3
y
r2
27
5
2x 3
1
,x z
3
x
x 3x 1
(b) Intercept: 0, 0
24
5
6
r1
0
โ3
0
(a) Domain: all real numbers x except x
1
x
3
0 and
ยง3 ยท
(b) x-intercept: ยจ , 0 ยธ
ยฉ2 ยน
y
(c) Vertical asymptote: x
4
2
0
Horizontal asymptote: y
2
x
โ2
โ1
1
2
3
4
y
7
2
5
โ1
1
2
1
5
4
(0, 0)
โ6
โ4
x
โ2
2
โ8
4
6
(d)
y
2
โ8 โ6 โ4
x
โ2
โ4
4 6
3
,0
2
( (
8
โ6
โ8
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
6 x2 7 x 2
4×2 1
2 x 1 3x 2
128. f x
3x 2
1
,x z
2x 1
2
2x 1 2x 1
(a) Domain: all real numbers x except x
(c) Vertical asymptote: x
1
Slant asymptote: y
x 1
(d)
r
1
2
x
โ6
y
3
2
13
2
โ2
37
5
ยง2 ยท
(b) x-intercept: ยจ , 0 ยธ
ยฉ3 ยน
โ5
1
2
5
2
0
4
1
17
5
269
y
4 (0, 1)
y-intercept: 0, 2
x
โ6 โ4
1
2
(c) Vertical asymptote: x
(d)
x
โ3
โ2
โ1
0
2
3
1
2
4
6
y
11
5
8
3
5
โ2
0
1
3
4
5
3×3 2 x 2 3x 2
3x 2 x 4
3x 2 x 1 x 1
131. f x
3x 4 x 1
y
3x 2 x 1
3x 4
1
23
x
, x z 1
3 3x 4
2
x
โ3 โ2 โ1
2
(23, 0)
(a) Domain: all real numbers x except x
4
x
3
3
(0, โ2)
2 x3
x2 1
1ยท
ยง
y-intercept: ยจ 0, ยธ
2ยน
ยฉ
(b) Intercept: 0, 0
(c) Slant asymptote: y
1 and
ยง2 ยท
(b) x-intercepts: 1, 0 , ยจ , 0 ยธ
ยฉ3 ยน
2x
2x 2
x 1
(a) Domain: all real numbers x
(d)
2
3
2
Horizontal asymptote: y
129. f x
โ2
2x
x
โ2
โ1
0
1
2
y
16
5
โ1
0
1
16
5
(c) Vertical asymptote: x
4
3
Slant asymptote: y
x
(d)
1
3
x
โ3
โ2
0
1
2
3
y
44
13
12
5
1
2
0
2
14
5
y
3
2
y
1
(0, 0)
โ3
130. f x
โ2
โ1
4
x
1
2
3
3
โ2
2
โ3
(0, โ 12 ( 1
(1, 0)
โ2 โ1
2
x2 1
x 1
x 1
(23 , 0(
3
x
4
โ2
2
x 1
(a) Domain: all real numbers x except x
1
(b) y-intercept: 0, 1
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
270
NOT FOR SALE
Chapter 2
Polynomial
ynomial and Rational Function
Functions
3x 3 4 x 2 12 x 16
3x 2 5 x 2
x 2 x 2 3x 4
132. f x
0.5 x 500
,0 x
x
0.5
1
Horizontal asymptote: C
x 2 3x 1
x 2 3x 4
5
, x z 2
3x 1
528 p
, 0 d p 100
100 p
134. C
(a) Domain: all real numbers x except x
1
x
3
2 and
(a)
ยง4 ยท
(b) x-intercepts: ยจ , 0 ยธ, 2, 0
ยฉ3 ยน
4000
0
100
0
y-intercept: 0, 8
528 25
(c) Vertical asymptote: x
1
3
(b) When p
25, C
100 25
Slant asymptote: y
x 3
When p
50, C
100 50
x
0
When p
75, C
100 75
(d)
y
โ4
โ1
96
13
0.5
As x increases, the average cost per unit approaches the
0.5 $0.50.
horizontal asymptote, C
3x 1
x 3
C
x
133. C
21
4
โ8
1
1
2
2
0
4
16
11
528 50
528 75
$176 million.
$528 million.
$1584 million.
(c) As p o 100, C o f. No, it is not possible.
y
4
(43, 0)
2
x
โ 6 โ 4 โ2
โ2
4
6
(2, 0)
โ6
(0, โ 8)
โ8
Chapter Test for Chapter 2
x2
1. f x
(a) g x
3. (a) y
1 x 2 60 x 900 900 5
20
2 x2
Reflection in the x-axis followed by a vertical shift
two units upward
x 32
(b) g x
2
2. Vertex: 3, 6
a x 3
2
6
1 ยช x 30
20
ยฌ
1 x 30
20
2
2
900ยบ 5
ยผ
50
Vertex: 30, 50
Horizontal shift 32 units to the right
y
1 x 2 3x 5
20
The maximum height is 50 feet.
(b) The constant term, c
5, determines the height at
which the ball was thrown. Changing this constant
results in a vertical translation of the graph, and,
therefore, changes the maximum height.
Point on the graph: 0, 3
3
a03
9
9a ย a
2
6
x 3
1
2
6.
INSTRUCTOR USE ONLY
So, y
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Chapter Test ffor Chapter 2
34 t 5 2t 2
4. h t
10. Because 2 i is a zero, so is 2 i.
y
5
4
3
The degree is odd and
the leading coefficient
is negative. The graph
rises to the left and falls
to the right.
โ4 โ 3 โ 2 โ1
x x 3
t
x 4 7 x3 17 x 2 15 x
6. 2
2
2
So,
any non-zero real number, has the zeros 0, 3, and 2 i.
11. Because 1
5
2
f x
x 1
.
x2 1
2
x 1
3i
x 1
3i x 2 x 2
8
6
12
x 4 6 x3 16 x 2 24 x 16
4
3
6
9
9
.
x 2
โ5
โ6
15
5
0
โ15
0
โ6
0
8. (a) 10i 3
25
a is any non-zero real number, has the zeros 1
3×3 14 x 2 7 x 10
Possible rational zeros:
r 13 , r 23 , r1, r 53 , r 2, r 10
, r 5, r10
3
1
3
x 52 2 x 2 6
3
3
3 x
3
โ7
10
3
17
10
17
10
0
x 1 3 x 2 17 x 10
x 1 3x 2 x 5
1, 23 , 5
Zeros: x
x 4 9 x 2 22 x 24
13. f x
4 3i 2
Possible rational zeros:
r1, r 2, r 3, r 4, r 6, r 8, r12, r 24
43
โ2
0
9
22
โ24
โ2
4
10
1
โ2
โ5
โ12
24
0
1
โ2
โ5
12
4
8
12
2
3
0
1
7
5
2 i
ย
2i 2i
52 i
14
3×3 14 x 2 7 x 10
10i 3 5i
3i
3i, 2,
and 2.
12. f x
3 5i
3i 2
x2 x2
a x 4 6 x3 16 x 2 24 x 16 , where
Note: f x
2 x3 4 x 2 3 x 6
r
5
2 i
3i
4
5
,x
2
9.
x 1
x2 2x 4 x2 4x 4
2 x x
2
3i
โ3
2 x 52 x 2 3
(b)
x 1
0
2 x 3 5 x 2 6 x 15
Zeros: x
3i.
โ5
2 x3 5 x 2 6 x 15
2
3i is a zero, so is 1
0
2 x4 5×2 3
x 2
7. f x
a x 4 7 x3 17 x 2 15 x , where a is
Note: f x
x 1
3x
x 2 i
x x3 7 x 2 17 x 15
2
3×3 4 x 1
x2 1
x 2 i
x 2i
x x 3 x2 4x 5
2 3 4 5
โ2
โ3
โ4
โ5
3x 0 x 3x
So,
x 0 x 3 x 2i
f x
x 1
3x 2
x 1
5. x 2 0 x 1 3 x3 0 x 2 4 x 1
3
271
4
41
2i
1
f x
x 2 x 4 x2 2 x 3
By the Quadratic Formula, the zeros of x 2 2 x 3
are x
1 r
1 r
2i.
2i. The zeros of f are: x
2, 4,
INSTRUCTOR U
USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
272
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
4
1
x2
14. h x
x2 2
x 1
y
16. g x
4 x2
x2
2 x 2 x
x 1
3
x 1
y-intercept: 0, 2
4
3
2
1
(โ 2, 0)
x2
(2, 0)
โ1
1
x
2
Vertical asymptote: x
1
Slant asymptote: y
x 1
โ2
x-intercepts: r 2, 0
y
10
Vertical asymptote: x
0
8
6
1
Horizontal asymptote: y
4
2
2 x 5 x 12
x 2 16
2x 3 x 4
2
15. f x
x
โ8 โ6 โ4
y
2
โ4
8
4
6
8
(0, โ2)
โ6
6
(โ 32, 0( (0, 34 (
x 4 x 4
2x 3
,x z 4
x 4
โ8
โ6 โ 4
x
โ2
2
โ4
ยง 3 ยท
x-intercept: ยจ , 0 ยธ
ยฉ 2 ยน
18.47 x 2.96
,0 x
0.23 x 1
17. y
2
4
The limiting amount of CO2 uptake is determined by the
horizontal asymptote.
18.47
| 80.3 mg dm 2 hr.
0.23
y
ยง 3ยท
y-intercept: ยจ 0, ยธ
ยฉ 4ยน
90
4
Vertical asymptote: x
Horizontal asymptote: y
2
0
100
0
Problem Solving for Chapter 2
1. V
l ยwยh
x2 x 3
x2 x 3
20
x 3 x 20
3
2
f x
d x
0
Possible rational zeros: r1, r 2, r 4, r 5, r10, r 20
2
1
1
3
0
20
2
10
20
5
10
0
x
2 or x
x+3
0
x
5 r
q x
r x
d x
.
The statement should be corrected to read f 1
because
x
x 2 x 2 5 x 10
d x q x r x , you have
2. False. Because f x
f x
x 1
q x
f 1
x 1
2
.
3. If h
0 and k
0, then a 1 produces a stretch
that is reflected in the x-axis, and 1 a 0 produces
a shrink that is reflected in the x-axis.
15i
2
Choosing the real positive value for x we have:
x
2 and x 3 5.
The dimensions of the mold are
2 inches u 2 inches u 5 inches.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Problem Solving ffor Chapter 2
4. (a) y1
y2
13 x 2
3
5
x 2
5
5
273
1 is decreasing.
3 is increasing.
8
โ12
12
y1
y2
โ8
(b) The graph is either always increasing or always decreasing.
The behavior is determined by a.
If a ! 0, g x will always be increasing.
If a 0, g x will always be decreasing.
x5 3×3 2 x 1
(c) H x
Since H x is not always increasing or always decreasing, H x z a x h
5
k.
6
โ9
9
โ6
ax
5. f x
x b
2
(a) b z 0 ย x
b is a vertical asymptote. a causes a vertical stretch if a ! 1 and a vertical shrink if 0 a 1.
For a ! 1, the graph becomes wider as a increases. When a is negative, the graph is reflected about the x-axis.
(b) a z 0. Varying the value of b varies the vertical asymptote of the graph of f. For b ! 0, the graph is translated to
the right. For b 0, the graph is reflected in the x-axis and is translated to the left
6. G
0.003t 3 0.137t 2 0.458t 0.839, 2 d t d 34
7. f x
2 x2 x 1
x 1
(a)
6
60
(a)
โ9
โ10
9
45
โ5
(b) The tree is growing most rapidly when it is
approximately 15.2 years old.
The graph has a โholeโ when x
vertical asymptotes.
0.009t 2 0.274t 0.458
(c) y
โ6
b
2a
0.274
| 15.2222
2 0.009
y 15.2222 | 2.5434
(b)
2 x2 x 1
x 1
(c) As x o 1,
Vertex: 15.2222, 2.5434
2x 1 x 1
x 1
1. There are no
2 x 1, x z 1
2×2 x 1
o 3
x 1
(d) In both (b) and (c) the point of diminishing returns
occured when t | 15.2.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
274
NOT FOR SALE
Chapter 2
8. Let x
Polynomial
ynomial and Rational Function
Functions
length of the wire used to form the square.
Then 100 x
(a) let s
length of wire used to form the circle.
the side of the square. Then 4 s
Let r
the radius of the circle. Then 2S r
is S r 2
Sยจ
x ย s
x
and the area of the square is s 2
4
100 x ย r
2
ยง xยท
ยจ ยธ .
ยฉ4ยน
100 x
and the area of the circle
2S
2
ยง 100 x ยท
ยธ .
ยฉ 2S ยน
The combined area is:
2
Ax
ยง xยท
ยง 100 x ยท
ยจ ยธ Sยจ
ยธ
ยฉ 4ยน
ยฉ 2S ยน
2
ยง 10,000 200 x x 2 ยท
x2
Sยจ
ยธ
16
4S 2
ยฉ
ยน
2500 50 x
x2
x2
S
S
16
4S
1 ยท 2
50 x
2500
ยง1
ยจ
ยธx
S
S
4S ยน
ยฉ 16
50
2500
ยงS 4ยท 2
x
ยจ
ยธx
S
S
ยฉ 16S ยน
(b) Domain: Since the wire is 100 cm, 0 d x d 100.
(c) A x
50
2500
ยงS 4ยท 2
x
ยจ
ยธx
16
S
S
S
ยฉ
ยน
800 ยท 2500
ยง S 4 ยทยง 2
x
ยจ
ยธยจ x
S 4 ยนยธ
S
ยฉ 16S ยนยฉ
2
2
800
ยงS 4ยทยช 2
ยง 400 ยท
ยง 400 ยท ยบ 2500
x
x
ยซ
ยจ
ยธ
ยจ
ยธ
ยจ
ยธ ยป
S 4
S
ยฉ 16S ยน ยซยฌ
ยฉS 4ยน
ยฉ S 4 ยน ยปยผ
2
2500
ยงS 4ยทยช
ยง 400 ยทยบ
ยง S 4 ยทยง 400 ยท
ยจ
ยธ ยซx ยจ
ยธยป ยจ
ยธยจ
ยธ
S
ยฉ 16S ยน ยฌ
ยฉ S 4 ยนยผ
ยฉ 16S ยนยฉ S 4 ยน
2
2
10,000
2500
ยงS 4ยทยช
ยง 400 ยทยบ
ยจ
ยธ ยซx ยจ
ยธยป
S S 4
S
ยฉ 16S ยน ยฌ
ยฉ S 4 ยนยผ
2
2500
ยงS 4ยทยช
ยง 400 ยทยบ
ยจ
ยธ ยซx ยจ
ยธยป
S 4
ยฉ 16S ยน ยฌ
ยฉ S 4 ยนยผ
The minimum occurs at the vertex when x
400
S 4
| 56 cm and A x | 350 cm 2 .
The maximum occurs at one of the endpoints of the domain.
When x
0, A x | 796 cm 2 .
When x
100, A x
625 cm 2 .
Thus, the area is maximum when x
0 cm.
(d) Answers will vary. Graph A x to see where the minimum and maximum values occur.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Problem Solving ffor Chapter 2
1
z
9. (a) zm
1
1i
ย
1i 1i
1
1
i
2
2
1
1i
1i
2
10. y
(a)
1
z
(b) zm
1
3i
3i
10
275
1
z
1
2 8i
1
2 8i
ย
2 8i 2 8i
1
2
2 8i
i
68
34 17
(c) zm
1
3i
ย
3i 3i
3
1
i
10 10
ax 2 bx c
0, 4 : 4
(b)
c
1, 0 :
0
a b c ย a b
2, 2 :
2
4a 2b c ย 4a 2b
L1
4
6
Solve the system of equations:
0
โ4
1
0
4a 2b
6 ย
2a b
3
2
2
a
4 ย a b
4
4
0
a
1
1 b
4
6
โ 10
b
5
b
Thus, y
x 2 5 x 4.
Check:
4, 0 :
0
6, 10 : 10
11. (a) Slope
4
2
54 4
6
2
56 4
9 4
3 2
5. Slope of tangent line is less
4 1
2 1
3. Slope of tangent line is greater
12. (a) x 2 y
than 5.
(b) Slope
Ax
100 x
2
x2
ยง 100 x ยท
50 x
xยจ
ยธ
2
2
ยฉ
ยน
100 ย y
xy
Domain: 0 x 100
than 3.
4.41 4
(c) Slope
2.1 2
less than 4.1.
(d) Slope
Use the โQuad Regโ feature
of your graphing utility to
obtain y
x2 5x 4
L2
(b)
4.1. Slope of tangent line is
A
1400
1200
1000
f 2 h f 2
800
2 h 2
400
600
200
2 h
2
4
x
20
h
Slope
Ax
(c)
4 h, h z 0
4 1
3
41
5
4 0.1
4.1
60
80
100
Maximum of 1250 m 2 at x
4h h 2
h
4 h, h z 0
(e)
40
A 50
The results are the same as in (a)โ(c).
x
50 m, y
25 m
1 2
x 100 x
2
1
x 2 100 x 2500 1250
2
1
2
x 50 1250
2
1250 m 2 is the maximum.
50 m, y
25 m
(f ) Letting h get closer and closer to 0, the slope
approaches 4. Hence, the slope at 2, 4 is 4.
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
276
Chapter 2
NOT FOR SALE
Polynomial
ynomial and Rational Function
Functions
ax b
cx d
13. f x
f x has a vertical asymptote at x
d
and a horizontal asymptote at y
c
a
.
c
(i) a ! 0
(ii) a ! 0
b 0
b ! 0
c ! 0
c 0
d 0
d 0
x
d
is positive.
c
x
y
a
is positive.
c
y
a
is negative.
c
Both asymptotes are positive on graph (d).
d
is negative.
c
Both asymptotes are negative on graph (b).
(iii) a 0
(iv) a ! 0
b ! 0
b 0
c ! 0
c ! 0
d 0
d ! 0
x
d
is positive.
c
x
y
a
is negative.
c
y
a
is positive.
c
The vertical asymptote is positive and the
horizontal asymptote is negative on graph (a).
d
is negative.
c
The vertical asymptote is negative and the
horizontal asymptote is positive on graph (c).
INSTRUCTOR USE ONLY
ยฉ 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Document Preview (104 of 1133 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Calculus I with Precalculus, 3rd Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Ethan Young
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)