Solution Manual for Biocalculus: Calculus, Probability, and Statistics for the Life Sciences, 1st Edition

Preview Extract
NOT FOR SALE 2 LIMITS 2.1 Limits of Sequences 1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers. (b) The terms ๏ก๏ฎ approach 8 as ๏ฎ becomes large. In fact, we can make ๏ก๏ฎ as close to 8 as we like by taking ๏ฎ sufficiently large. (c) The terms ๏ก๏ฎ become large as ๏ฎ becomes large. In fact, we can make ๏ก๏ฎ as large as we like by taking ๏ฎ sufficiently large. 2. (a) From Definition 1, a convergent sequence is a sequence for which lim ๏ก๏ฎ exists. Examples: {1๏€ฝ๏ฎ}, {1๏€ฝ2๏ฎ } ๏ฎโ†’โˆž (b) A divergent sequence is a sequence for which lim ๏ก๏ฎ does not exist. Examples: {๏ฎ}, {sin ๏ฎ} ๏ฎโ†’โˆž 3. The graph shows a decline in the world record for the menโ€™s 100-meter sprint as ๏ด increases. It is tempting to say that this sequence will approach zero, however, it is important to remember that the sequence represents data from a physical competition. Thus, the sequence likely has a nonzero limit as ๏ด โ†’ โˆž since human physiology will ultimately limit how fast a human can sprint 100-meters. This means that there is a certain world record time which athletes can never surpass. 4. (a) If the sequence does not have a limit as ๏ด โ†’ โˆž, then the world record distances for the womenโ€™s hammer throw may increase indefinitely as ๏ด โ†’ โˆž. That is, the sequence is divergent. (b) It seems unlikely that the world record hammer throw distance will increase indefinitely. Human physiology will ultimately limit the maximum distance a woman can throw. Therefore, barring evolutionary changes to human physiology, it seems likely that the sequence will converge. 5. ๏ฎ 1 ๏ก๏ฎ 0.2000 ๏ฎ 6 ๏ก๏ฎ 0.3000 2 0.2500 7 0.3043 3 0.2727 8 0.3077 4 5 0.2857 0.2941 9 10 0.3103 0.3125 0.35 0 0.15 11 The sequence appears to converge to a number between 0๏€บ30 and 0๏€บ35. Calculating the limit gives ๏ฎ2 lim 1 ๏ฎ2 1 1 ๏ฎโ†’โˆž ๏ฎ2 lim ๏ก๏ฎ = lim = = ๏€บ This agrees with the value predicted = lim = 2 ๏ฎโ†’โˆž ๏ฎโ†’โˆž 2๏ฎ + 3๏ฎ2 ๏ฎโ†’โˆž 2๏ฎ + 3๏ฎ2 0+3 3 + lim 3 lim ๏ฎโ†’โˆž ๏ฎ ๏ฎโ†’โˆž ๏ฎ2 from the data. 6. ๏ฎ 1 ๏ก๏ฎ 5.0000 ๏ฎ 6 ๏ก๏ฎ 3.7500 2 3.7500 7 3.7755 3 3.6667 8 3.7969 4 5 3.6875 3.7200 9 10 3.8148 3.8300 5.5 The sequence appears to converge to a number between 3๏€บ9 and 4๏€บ0. Calculating the limit gives ๏‚ต ๏‚ถ 3 2 lim ๏ก๏ฎ = lim 4 โˆ’ + 2 = ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ ๏ฎ 4 โˆ’ 0 + 0 = 4๏€บ So we expect the sequence to 0 2.5 11 converge to 4 as we plot more terms. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 71 72 7. 8. ยค NOT FOR SALE CHAPTER 2 LIMITS ๏ฎ 1 ๏ก๏ฎ 2.3333 2 3.4444 3 2.7037 4 3.1975 5 2.8683 6 3.0878 7 2.9415 8 3.0390 9 10 2.9740 3.0173 ๏ฎ 1 ๏ก๏ฎ 0.5000 2 0.8284 3 1.0981 4 1.3333 5 1.5451 6 1.7394 7 1.9200 8 2.0896 9 10 2.2500 2.4025 9. lim ๏ก๏ฎ = lim ๏ฎโ†’โˆž 4 The sequence appears to converge to approximately 3๏€บ Calculating ๏‚ก ๏‚ก ๏‚ข๏ฎ ๏‚ข the limit gives lim ๏ก๏ฎ = lim 3 + โˆ’ 23 = 3 + 0 = 3๏€บ This ๏ฎโ†’โˆž ๏ฎโ†’โˆž agrees with the value predicted from the data. 0 2 11 3 The sequence does not appear to converge since the values of ๏ก๏ฎ do not approach a fixed number. We can verify this by trying to calculate the limit: 11 0 1 ๏ฎโ†’โˆž 3๏ฎ4 ๏ฎ ๏ฎ 1 = lim . lim ๏ก๏ฎ = lim โˆš = lim โˆš ๏ฎ 1 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž 1 ๏ฎ + 1 ๏ฎโ†’โˆž ๏ฎ + 1 โˆš + ๏ฎ ๏ฎ ๏ฎ The denominator approaches 0 while the numerator remains constant so the limit does not exist, as expected. = 1 1 lim = 0. Converges 3 ๏ฎโ†’โˆž ๏ฎ4 ๏‚ต ๏‚ถ๏ฎ 1 = 5 ยท 0 = 0 Converges 3 10. ๏ก๏ฎ = 5 5 1 is a geometric sequence with ๏ฒ = ๏€บ So lim ๏ก๏ฎ = lim ๏ฎ = 5 lim ๏ฎโ†’โˆž ๏ฎโ†’โˆž 3 ๏ฎโ†’โˆž 3๏ฎ 3 11. ๏ก๏ฎ = 2๏ฎ2 + ๏ฎ โˆ’ 1 1 1 1 1 = 2 + โˆ’ 2 so lim ๏ก๏ฎ = lim 2 + lim โˆ’ lim 2 = 2 + 0 โˆ’ 0 = 2 Converges ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ ๏ฎโ†’โˆž ๏ฎ ๏ฎ2 ๏ฎ ๏ฎ 12. ๏ก๏ฎ = ๏ฎ3 โˆ’ 1 1 1 = ๏ฎ2 โˆ’ so lim ๏ก๏ฎ = lim ๏ฎ2 โˆ’ lim = lim ๏ฎ2 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ ๏ฎโ†’โˆž ๏ฎ ๏ฎ When ๏ฎ is large, ๏ฎ2 is large so lim ๏ก๏ฎ = โˆž and ๏ฎโ†’โˆž the sequence diverges. 3 3 + 5๏ฎ 3 + lim 5 lim +5 3 + 5๏ฎ 0+5 5 ๏ฎโ†’โˆž ๏ฎ ๏ฎโ†’โˆž ๏ฎ ๏ฎ = lim = = = lim = 13. lim ๏ก๏ฎ = lim 2 ๏ฎโ†’โˆž ๏ฎโ†’โˆž 2 + 7๏ฎ ๏ฎโ†’โˆž 2 + 7๏ฎ ๏ฎโ†’โˆž 2 0+7 7 +7 + lim 7 lim ๏ฎโ†’โˆž ๏ฎ ๏ฎโ†’โˆž ๏ฎ ๏ฎ Converges 1 ๏ฎ3 โˆ’ 1 1 lim 1 โˆ’ lim 3 1โˆ’ 3 3 ๏ฎ3 โˆ’ 1 1โˆ’0 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ ๏ฎ ๏ฎ = lim 3 = 1 Converges 14. lim ๏ก๏ฎ = lim 3 = lim = = 1 1 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ + 1 ๏ฎโ†’โˆž ๏ฎ + 1 ๏ฎโ†’โˆž 1+0 1+ 3 lim 1 + lim 3 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ ๏ฎ ๏ฎ3 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.1 15. ๏ก๏ฎ = 1 โˆ’ (0๏€บ2)๏ฎ , so lim ๏ก๏ฎ = 1 โˆ’ 0 = 1 [by (3) with ๏ฒ = 0๏€บ2]. ๏ฎโ†’โˆž LIMITS OF SEQUENCES ยค Converges ๏‚ต ๏‚ถ๏ฎ ๏‚ต ๏‚ถ๏ฎ ๏‚ต ๏‚ถ๏ฎ ๏‚ต ๏‚ถ๏ฎ 1 1 1 1 + so lim ๏ก๏ฎ = lim + lim = 0+0 = 0 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž 2 6 2 6 ๏‚ฃ ๏‚ค by (3) with ๏ฒ = 12 and ๏ฒ = 16 Converges 16. ๏ก๏ฎ = 2โˆ’๏ฎ + 6โˆ’๏ฎ = โˆš โˆš โˆš ๏ฎ ๏ฎ2 ๏ฎ2 ๏€ฝ ๏ฎ3 โˆš = ๏ฐ , so ๏ก๏ฎ โ†’ โˆž as ๏ฎ โ†’ โˆž since lim ๏ฎ = โˆž and = โˆš 3 2 3 3 ๏ฎโ†’โˆž ๏ฎ + 4๏ฎ 1 + 4๏€ฝ๏ฎ ๏ฎ + 4๏ฎ๏€ฝ ๏ฎ 17. ๏ก๏ฎ = โˆš lim ๏ฎโ†’โˆž ๏ฐ 1 + 4๏€ฝ๏ฎ2 = 1. Diverges 18. ๏ก๏ฎ = sin(๏ฎ๏‚ผ๏€ฝ2) โ‡’ ๏ก1 = sin(๏‚ผ๏€ฝ2) = 1๏€ป ๏ก2 = sin(๏‚ผ) = 0๏€ป ๏ก3 = sin(3๏‚ผ๏€ฝ2) = โˆ’1๏€ป ๏ก4 = sin(2๏‚ผ) = 0๏€ป ๏ก5 = sin(5๏‚ผ๏€ฝ2) = 1๏€บ Observe that ๏ก๏ฎ cycles between the values 1,0, and -1 as ๏ฎ increases. Hence the sequence does not converge. 19. ๏ก๏ฎ = cos(๏ฎ๏‚ผ๏€ฝ2) โ‡’ ๏ก1 = cos(๏‚ผ๏€ฝ2) = 0๏€ป ๏ก2 = cos(๏‚ผ) = โˆ’1๏€ป ๏ก3 = cos(3๏‚ผ๏€ฝ2) = 0๏€ป ๏ก4 = cos(2๏‚ผ) = 1๏€ป ๏ก5 = cos(5๏‚ผ๏€ฝ2) = 0. Observe that ๏ก๏ฎ cycles between the values 1, 0, and โˆ’1 as ๏ฎ increases. Hence the sequence does not converge. 20. ๏ก๏ฎ = ๏‚ณ ๏‚ผ ๏‚ด๏ฎ ๏‚ณ ๏‚ผ ๏‚ด๏ฎ ๏‚ผ๏ฎ ๏‚ผ = so lim ๏ก๏ฎ = lim = โˆž since โ‰ˆ 1๏€บ05 ๏€พ 1 ๏ฎ ๏ฎโ†’โˆž ๏ฎโ†’โˆž 3 3 3 3 Diverges 10๏ฎ lim 1 ๏ฎ 10 1 ๏‚ต ๏‚ถ๏ฎ = ๏‚ต ๏‚ถ๏ฎโ†’โˆž ๏‚ต ๏‚ถ๏ฎ = โˆž because the 21. lim ๏ก๏ฎ = lim = lim 10 ๏ฎ = lim ๏ฎ ๏ฎ ๏ฎโ†’โˆž ๏ฎโ†’โˆž 1 + 9 ๏ฎโ†’โˆž 1 + 9 ๏ฎโ†’โˆž 1 9 1 9 + lim + lim 10๏ฎ ๏ฎโ†’โˆž ๏ฎโ†’โˆž 10๏ฎ 10 10 10 ๏ฎ denominator approaches 0 while the numerator remains constant. Diverges 1 ๏ฎ1๏€ฝ3 โˆš lim 3 1๏€ฝ2 ๏ฎ ๏ฎ1๏€ฝ3 0 ๏ฎโ†’โˆž ๏ฎ1๏€ฝ6 ๏ฎ โˆš = lim 1๏€ฝ2 =0 22. lim ๏ก๏ฎ = lim โˆš = lim 1๏€ฝ2 = = 1 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ ๏ฎโ†’โˆž ๏ฎ 1+0 + ๏ฎ1๏€ฝ4 ๏ฎ+ 4๏ฎ + ๏ฎ1๏€ฝ4 lim 1 + lim 1๏€ฝ4 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎ ๏ฎ1๏€ฝ2 Converges 23. ๏ก๏ฎ = ln(2๏ฎ2 + 1) โˆ’ ln(๏ฎ2 + 1) = ln 24. ๏ก๏ฎ = ๏‚ต 2๏ฎ2 + 1 ๏ฎ2 + 1 ๏‚ถ = ln ๏‚ต 2 + 1๏€ฝ๏ฎ2 1 + 1๏€ฝ๏ฎ2 ๏‚ถ โ†’ ln 2 as ๏ฎ โ†’ โˆž. Converges ๏‚ก ๏‚ข๏ฎ ๏‚ก ๏‚ข๏ฎ 3๏ฎ+2 32 3๏ฎ = ๏ฎ = 9 35 , so lim ๏ก๏ฎ = 9 lim 35 = 9 ยท 0 = 0 by (3) with ๏ฒ = 35 . Converges ๏ฎ ๏ฎโ†’โˆž ๏ฎโ†’โˆž 5 5 ๏ฅ๏ฎ + ๏ฅโˆ’๏ฎ ๏ฅโˆ’๏ฎ 1 + ๏ฅโˆ’2๏ฎ ยท = ๏ฎ โ†’ 0 as ๏ฎ โ†’ โˆž because 1 + ๏ฅโˆ’2๏ฎ โ†’ 1 and ๏ฅ๏ฎ โˆ’ ๏ฅโˆ’๏ฎ โ†’ โˆž. Converges ๏ฅ2๏ฎ โˆ’ 1 ๏ฅโˆ’๏ฎ ๏ฅ โˆ’ ๏ฅโˆ’๏ฎ ๏‚ต ๏‚ถ ๏‚ต ๏‚ถ ๏ฎ+1 1 26. ๏ก๏ฎ = ln(๏ฎ + 1) โˆ’ ln ๏ฎ = ln = ln 1 + โ†’ ln (1) = 0 as ๏ฎ โ†’ โˆž. Converges ๏ฎ ๏ฎ 25. ๏ก๏ฎ = 27. ๏ฎ 1 ๏ก๏ฎ 1.0000 ๏ฎ 5 ๏ก๏ฎ 1.9375 2 1.5000 6 1.9688 3 4 1.7500 1.8750 7 8 1.9844 1.9922 The sequence appears to converge to 2๏€บ Assume the limit exists so that lim ๏ก๏ฎ+1 = lim ๏ก๏ฎ = ๏ก๏€ป then ๏ก๏ฎ+1 = 12 ๏ก๏ฎ + 1 โ‡’ ๏ฎโ†’โˆž ๏ฎโ†’โˆž lim ๏ก๏ฎ+1 = lim ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏‚ก1 ๏‚ข 2 ๏ก๏ฎ + 1 Therefore, lim ๏ก๏ฎ = 2. โ‡’ ๏ก = 12 ๏ก + 1 โ‡’ ๏ก = 2 ๏ฎโ†’โˆž INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 73 74 28. 29. 30. 31. NOT FOR SALE ยค CHAPTER 2 LIMITS ๏ฎ 1 ๏ก๏ฎ 2.0000 ๏ฎ 5 ๏ก๏ฎ 0.7654 2 0.3333 6 0.7449 3 4 0.8889 0.7037 7 8 0.7517 0.7494 ๏ฎ 1 ๏ก๏ฎ 2.0000 ๏ฎ 5 ๏ก๏ฎ 17.0000 2 3.0000 6 33.0000 3 4 5.0000 9.0000 7 8 65.0000 129.0000 ๏ฎ 1 ๏ก๏ฎ 1.0000 2 2.2361 3 3.3437 4 4.0888 5 4.5215 6 4.7547 7 8 4.8758 4.9375 ๏ฎ 1 ๏ก๏ฎ 1.0000 2 3.0000 lim ๏ก๏ฎ+1 = lim ๏ก๏ฎ = ๏ก๏€ป then ๏ก๏ฎ+1 = 1 โˆ’ 13 ๏ก๏ฎ ๏ฎโ†’โˆž ๏ฎโ†’โˆž โ‡’ ๏‚ก ๏‚ข โ‡’ ๏ก = 1 โˆ’ 13 ๏ก โ‡’ ๏ก = 3๏€ฝ4 lim ๏ก๏ฎ+1 = lim 1 โˆ’ 13 ๏ก๏ฎ ๏ฎโ†’โˆž ๏ฎโ†’โˆž Therefore, lim ๏ก๏ฎ = 34 . ๏ฎโ†’โˆž The sequence is divergent. The sequence appears to converge to 5๏€บ Assume the limit exists so that โˆš โˆš lim ๏ก๏ฎ+1 = lim ๏ก๏ฎ = ๏ก๏€ป then ๏ก๏ฎ+1 = 5๏ก๏ฎ โ‡’ lim ๏ก๏ฎ+1 = lim 5๏ก๏ฎ ๏ฎโ†’โˆž ๏ก= โˆš 5๏ก ๏ฎโ†’โˆž โ‡’ ๏ฎโ†’โˆž ๏ก2 = 5๏ก โ‡’ ๏ก(๏ก โˆ’ 5) = 0 โ‡’ ๏ฎโ†’โˆž โ‡’ ๏ก = 0 or ๏ก = 5 Therefore, if the limit exists it will be either 0 or 5. Since the first 8 terms of the sequence appear to approach 5, we surmise that lim ๏ก๏ฎ = 5. ๏ฎโ†’โˆž The sequence appears to converge to 2๏€บ Assume the limit exists so that lim ๏ก๏ฎ+1 = lim ๏ก๏ฎ = ๏ก๏€ป then ๏ก๏ฎ+1 = ๏ฎโ†’โˆž 32. The sequence appears to converge to 0๏€บ75๏€บ Assume the limit exists so that ๏ฎโ†’โˆž 6 1 + ๏ก๏ฎ โ‡’ lim ๏ก๏ฎ+1 = lim 6 ๏ฎโ†’โˆž 1 + ๏ก๏ฎ ๏ฎโ†’โˆž โ‡’ 3 1.5000 4 2.4000 ๏ก= 5 1.7647 6 2.1702 Therefore, if the limit exists it will be either โˆ’3 or 2, but since all terms of the sequence are 7 8 1.8926 2.0742 ๏ฎ 1 ๏ก๏ฎ 3.0000 2 5.0000 3 3.0000 4 5.0000 5 3.0000 6 5.0000 7 8 3.0000 5.0000 6 1+๏ก โ‡’ ๏ก2 + ๏ก โˆ’ 6 = 0 โ‡’ (๏ก โˆ’ 2)(๏ก + 3) = 0 โ‡’ ๏ก = โˆ’3 or ๏ก = 2 positive, we see that lim ๏ก๏ฎ = 2. ๏ฎโ†’โˆž The sequence cycles between 3 and 5๏€ป hence it is divergent. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.1 33. 34. LIMITS OF SEQUENCES ๏ฎ 1 ๏ก๏ฎ 1.0000 2 1.7321 The sequence appears to converge to 2๏€บ Assume the limit exists so that โˆš โˆš lim ๏ก๏ฎ+1 = lim ๏ก๏ฎ = ๏ก๏€ป then ๏ก๏ฎ+1 = 2 + ๏ก๏ฎ โ‡’ lim ๏ก๏ฎ+1 = lim 2 + ๏ก๏ฎ 3 1.9319 ๏ก= 4 1.9829 5 1.9957 6 1.9989 7 8 1.9997 1.9999 ๏ฎ 1 ๏ก๏ฎ 100.0000 2 50.1250 3 25.3119 4 13.1498 5 7.5255 6 5.4238 7 8 5.0166 5.0000 ๏ฎโ†’โˆž ๏ฎโ†’โˆž โˆš 2+๏ก โ‡’ ๏ฎโ†’โˆž ๏ก2 โˆ’ ๏ก โˆ’ 2 = 0 โ‡’ (๏ก โˆ’ 2)(๏ก + 1) = 0 ๏ฎโ†’โˆž โ‡’ ยค 75 โ‡’ ๏ก = โˆ’1 or ๏ก = 2 Therefore, if the limit exists it will be either โˆ’1 or 2, but since all terms of the sequence are positive, we see that lim ๏ก๏ฎ = 2. ๏ฎโ†’โˆž The sequence appears to converge to 5๏€บ Assume the limit exists so that lim ๏ก๏ฎ+1 = lim ๏ก๏ฎ = ๏ก๏€ป then ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏‚ถ ๏‚ถ ๏‚ต ๏‚ต 1 25 25 1 ๏ก๏ฎ+1 = โ‡’ lim ๏ก๏ฎ+1 = lim โ‡’ ๏ก= ๏ก๏ฎ + ๏ก๏ฎ + ๏ฎโ†’โˆž ๏ฎโ†’โˆž 2 2 ๏ก๏ฎ ๏ก๏ฎ ๏‚ต ๏‚ถ 25 25 1 ๏ก+ โ‡’ 2๏ก = ๏ก + โ‡’ ๏ก2 = 25 โ‡’ ๏ก = โˆ’5 or ๏ก = 5 2 ๏ก ๏ก Therefore, if the limit exists it will be either โˆ’5 or 5, but since all terms of the sequence are positive, we see that lim ๏ก๏ฎ = 5. ๏ฎโ†’โˆž 35. (a) The quantity of the drug in the body after the first tablet is 100 mg. After the second tablet, there is 100 mg plus 20% of the first 100- mg tablet, that is, [100 + 100(0๏€บ20)] = 120 mg. After the third tablet, the quantity is [100 + 120(0๏€บ20)] = 124 mg. (b) After the ๏ฎth + 1 tablet, there is 100 mg plus 20% of the ๏ฎth tablet, so that ๏‘๏ฎ+1 = 100 + (0๏€บ20) ๏‘๏ฎ (c) From Formula (6), the solution to ๏‘๏ฎ+1 = 100 + (0๏€บ20) ๏‘๏ฎ ๏€ป ๏‘0 = 0 mg is ๏‚ต ๏‚ถ 1 โˆ’ 0๏€บ20๏ฎ 100 ๏‘๏ฎ = (0๏€บ20)๏ฎ (0) + 100 = (1 โˆ’ 0๏€บ20๏ฎ ) = 125 (1 โˆ’ 0๏€บ20๏ฎ ) 1 โˆ’ 0๏€บ20 0๏€บ80 ๏‚ณ ๏‚ด (d) In the long run, we have lim ๏‘๏ฎ = lim 125 (1 โˆ’ 0๏€บ20๏ฎ ) = 125 lim 1 โˆ’ lim 0๏€บ20๏ฎ = 125 (1 โˆ’ 0) = 125 mg ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž 36. (a) The concentration of the drug in the body after the first injection is 1.5 mg๏€ฝmL. After the second injection, there is 1.5 mg๏€ฝmL plus 10% (90% reduction) of the concentration from the first injection, that is, [1๏€บ5 + 1๏€บ5(0๏€บ10)] = 1๏€บ65 mg๏€ฝmL. After the third injection, the concentration is [1๏€บ5 + 1๏€บ65(0๏€บ10)] = 1๏€บ665 mg๏€ฝmL. (b) The drug concentration is 0๏€บ1๏ƒ๏ฎ (90% reduction) just before the ๏ฎth + 1 injection, after which the concentration increases by 1.5 mg๏€ฝmL. Hence ๏ƒ๏ฎ+1 = 0๏€บ1๏ƒ๏ฎ + 1๏€บ5๏€บ (c) From Formula (6), the solution to ๏ƒ๏ฎ+1 = 0๏€บ1๏ƒ๏ฎ + 1๏€บ5๏€ป ๏ƒ0 = 0 mg๏€ฝmL is ๏‚ถ ๏‚ต 1๏€บ5 1 โˆ’ 0๏€บ1๏ฎ 5 = (1 โˆ’ 0๏€บ1๏ฎ ) = (1 โˆ’ 0๏€บ1๏ฎ ) ๏ƒ๏ฎ = (0๏€บ1)๏ฎ (0) + 1๏€บ5 1 โˆ’ 0๏€บ1 0๏€บ9 3 (d) The limiting value of the concentration is ๏‚ด 5 5 5 5๏‚ณ lim 1 โˆ’ lim 0๏€บ1๏ฎ = (1 โˆ’ 0) = โ‰ˆ 1๏€บ667 mg๏€ฝmL. lim ๏ƒ๏ฎ = lim (1 โˆ’ 0๏€บ1๏ฎ ) = ๏ฎโ†’โˆž ๏ฎโ†’โˆž 3 ๏ฎโ†’โˆž 3 ๏ฎโ†’โˆž 3 3 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 76 ยค NOT FOR SALE CHAPTER 2 LIMITS 37. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5% of the first 150- mg tablet, that is, [150 + 150(0๏€บ05)] mg. After the third tablet, the quantity is [150 + 150(0๏€บ05) + 150(0๏€บ05)2 ] = 157๏€บ875 mg. After ๏ฎ tablets, the quantity (in mg) is 3000 150(1 โˆ’ 0๏€บ05๏ฎ ) = (1 โˆ’ 0๏€บ05๏ฎ ). 150 + 150(0๏€บ05) + ยท ยท ยท + 150(0๏€บ05)๏ฎโˆ’1 . We can use Formula 5 to write this as 1 โˆ’ 0๏€บ05 19 ๏‚ค ๏‚ฃ (1 โˆ’ 0๏€บ05๏ฎ ) = 3000 (1 โˆ’ 0) โ‰ˆ 157๏€บ895, (b) The number of milligrams remaining in the body in the long run is lim 3000 19 19 ๏ฎโ†’โˆž only 0๏€บ02 mg more than the amount after 3 tablets. 38. (a) The residual concentration just before the second injection is ๏„๏ฅโˆ’๏ก๏” ; before the third, ๏„๏ฅโˆ’๏ก๏” + ๏„๏ฅโˆ’๏ก2๏” ; before the ๏‚ก ๏‚ข ๏„๏ฅโˆ’๏ก๏” 1 โˆ’ ๏ฅโˆ’๏ก๏ฎ๏” + ๏„๏ฅ + ยท ยท ยท + ๏„๏ฅ . This sum is equal to [Formula 3]. (๏ฎ + 1)st, ๏„๏ฅ 1 โˆ’ ๏ฅโˆ’๏ก๏” ๏‚ก ๏‚ข ๏„๏ฅโˆ’๏ก๏” 1 โˆ’ ๏ฅโˆ’๏ก๏ฎ๏” ๏„๏ฅโˆ’๏ก๏” (1 โˆ’ 0) ๏ฅ๏ก๏” ๏„ = ยท ๏ก๏” = ๏ก๏” (b) The limiting pre-injection concentration is lim . ๏ฎโ†’โˆž 1 โˆ’ ๏ฅโˆ’๏ก๏” 1 โˆ’ ๏ฅโˆ’๏ก๏” ๏ฅ ๏ฅ โˆ’1 ๏‚ข ๏‚ก ๏‚ข ๏‚ก ๏„ โ‰ฅ ๏ƒ โ‡’ ๏„ โ‰ฅ ๏ƒ ๏ฅ๏ก๏” โˆ’ 1 , so the minimal dosage is ๏„ = ๏ƒ ๏ฅ๏ก๏” โˆ’ 1 . (c) ๏ก๏” ๏ฅ โˆ’1 โˆ’๏ก๏” โˆ’๏ก2๏” โˆ’๏ก๏ฎ๏” 39. (a) Many people would guess that ๏ธ ๏€ผ 1, but note that ๏ธ consists of an infinite number of 9s. โˆž ๏ 9 9 9 9 9 , which is a geometric series with ๏ก1 = 0๏€บ9 and + + + + ยทยทยท = ๏ฎ 10 100 1000 10,000 10 ๏ฎ=1 0๏€บ9 0๏€บ9 ๏ฒ = 0๏€บ1. Its sum is = = 1, that is, ๏ธ = 1. 1 โˆ’ 0๏€บ1 0๏€บ9 (b) ๏ธ = 0๏€บ99999 ๏€บ ๏€บ ๏€บ = (c) The number 1 has two decimal representations, 1๏€บ00000 ๏€บ ๏€บ ๏€บ and 0๏€บ99999 ๏€บ ๏€บ ๏€บ . (d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For example, 0๏€บ5 can be written as 0๏€บ49999 ๏€บ ๏€บ ๏€บ as well as 0๏€บ50000 ๏€บ ๏€บ ๏€บ . 40. ๏ก๏ฎ = (5 โˆ’ ๏ฎ)๏ก๏ฎโˆ’1 , ๏ก1 = 1 โ‡’ ๏ก2 = (5 โˆ’ 2)(1) = 3๏€ป ๏ก3 = (5 โˆ’ 3)(3) = 6๏€ป ๏ก4 = (5 โˆ’ 4)(6) = 6๏€ป ๏ก5 = (5 โˆ’ 5)(6) = 0๏€ป ๏ก6 = (5 โˆ’ 6)(0) = 0๏€ป ๏€บand so on. Observe that the fifth term and higher will all be zero. So the sum of all the terms in the sequence is found by adding the first four terms: ๏ก1 + ๏ก2 + ๏ก3 + ๏ก4 = 1 + 3 + 6 + 6 = 16๏€บ 41. 0๏€บ8 = 8 1 ๏ก 8๏€ฝ10 8 8 8 + 2 + ยท ยท ยท is a geometric series with ๏ก = and ๏ฒ = . It converges to = = . 10 10 10 10 1โˆ’๏ฒ 1 โˆ’ 1๏€ฝ10 9 42. 0๏€บ46 = 46๏€ฝ100 46 46 46 1 ๏ก 46 + ยท ยท ยท is a geometric series with ๏ก = + and ๏ฒ = . It converges to = = . 100 1002 100 100 1โˆ’๏ฒ 1 โˆ’ 1๏€ฝ100 99 43. 2๏€บ516 = 2 + 516 516 516 516 516 1 + 6 + ยท ยท ยท . Now 3 + 6 + ยท ยท ยท is a geometric series with ๏ก = 3 and ๏ฒ = 3 . It converges to 103 10 10 10 10 10 ๏ก 516๏€ฝ103 2514 838 516๏€ฝ103 516 516 = . Thus, 2๏€บ516 = 2 + = = . = = 1โˆ’๏ฒ 1 โˆ’ 1๏€ฝ103 999๏€ฝ103 999 999 999 333 44. 10๏€บ135 = 10๏€บ1 + to 35 35 35 35 35 1 + 5 + ยท ยท ยท . Now 3 + 5 + ยท ยท ยท is a geometric series with ๏ก = 3 and ๏ฒ = 2 . It converges 103 10 10 10 10 10 ๏ก 35๏€ฝ103 9999 + 35 10,034 5017 35๏€ฝ103 35 35 = . Thus, 10๏€บ135 = 10๏€บ1 + = = = . = = 1โˆ’๏ฒ 1 โˆ’ 1๏€ฝ102 99๏€ฝ102 990 990 990 990 495 45. 1๏€บ5342 = 1๏€บ53 + It converges to 42 42 42 42 42 1 + 6 + ยท ยท ยท . Now 4 + 6 + ยท ยท ยท is a geometric series with ๏ก = 4 and ๏ฒ = 2 . 104 10 10 10 10 10 ๏ก 42๏€ฝ104 42๏€ฝ104 42 = . = = 2 1โˆ’๏ฒ 1 โˆ’ 1๏€ฝ10 99๏€ฝ102 9900 Thus, 1๏€บ5342 = 1๏€บ53 + 153 42 15,147 42 15,189 5063 42 = + = + = or . 9900 100 9900 9900 9900 9900 3300 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.1 46. 7๏€บ12345 = 7 + It converges to ยค 77 12,345 12,345 12,345 12,345 12,345 1 + + ยท ยท ยท . Now + + ยท ยท ยท is a geometric series with ๏ก = and ๏ฒ = 5 . 105 1010 105 1010 105 10 ๏ก 12,345๏€ฝ105 12,345 12,345๏€ฝ105 = = = . 1โˆ’๏ฒ 1 โˆ’ 1๏€ฝ105 99,999๏€ฝ105 99,999 Thus, 7๏€บ12345 = 7 + 47. LIMITS OF SEQUENCES 699,993 12,345 712,338 237,446 12,345 = + = or . 99,999 99,999 99,999 99,999 33,333 1 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 2๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป ๏ธ0 = 0๏€บ1๏€บ The sequence appears to converge to a value of 0๏€บ5๏€บ Assume the limit exists so that lim ๏ธ๏ด+1 = lim ๏ธ๏ด = ๏ธ๏€ป then ๏ดโ†’โˆž ๏ธ๏ด+1 = 2๏ธ๏ด (1 โˆ’ ๏ธ๏ด ) โ‡’ ๏ดโ†’โˆž lim ๏ธ๏ด+1 = lim 2๏ธ๏ด (1 โˆ’ ๏ธ๏ด ) โ‡’ ๏ดโ†’โˆž ๏ดโ†’โˆž ๏ธ = 2๏ธ(1 โˆ’ ๏ธ) โ‡’ ๏ธ (1 โˆ’ 2๏ธ) = 0 โ‡’ ๏ธ = 0 or ๏ธ = 1๏€ฝ2. Therefore, if the -1 48. 10 0 limit exists it will be either 0 or 12 . Since the graph of the sequence appears to approach 12 , we see that lim ๏ธ๏ด = 12 . ๏ดโ†’โˆž 0.9 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 2๏€บ6๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป ๏ธ0 = 0๏€บ8๏€บ The sequence appears to converge to a value of 0๏€บ6๏€บ Assume the limit exists so that lim ๏ธ๏ด+1 = lim ๏ธ๏ด = ๏ธ๏€ป then ๏ดโ†’โˆž ๏ธ๏ด+1 = 2๏€บ6๏ธ๏ด (1 โˆ’ ๏ธ๏ด ) โ‡’ ๏ดโ†’โˆž lim ๏ธ๏ด+1 = lim 2๏€บ6๏ธ๏ด (1 โˆ’ ๏ธ๏ด ) โ‡’ ๏ดโ†’โˆž ๏ดโ†’โˆž 8 โ‰ˆ 0๏€บ615๏€บ ๏ธ = 2๏€บ6๏ธ(1 โˆ’ ๏ธ) โ‡’ ๏ธ (1๏€บ6 โˆ’ 2๏€บ6๏ธ) = 0 โ‡’ ๏ธ = 0 or ๏ธ = 13 -1 10 0.3 8 . Since the graph of the Therefore, if the limit exists it will be either 0 or 13 8 8 , we see that lim ๏ธ๏ด = 13 . sequence appears to approach 13 ๏ดโ†’โˆž 49. 1 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 3๏€บ2๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป ๏ธ0 = 0๏€บ2๏€บ The sequence does not appear to converge to a fixed value. Instead, the terms oscillate between values near 0๏€บ5 and 0๏€บ8๏€บ 10 0 50. 1 Computer software was used to plot the first 20 points of the recursion equation ๏ธ๏ด+1 = 3๏€บ5๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป ๏ธ0 = 0๏€บ4๏€บ The sequence does not appear to converge to a fixed value. Instead, the terms oscillate between values near 0๏€บ45 and 0๏€บ85๏€บ 0 0.2 20 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 78 ยค NOT FOR SALE CHAPTER 2 LIMITS 51. 1 Computer software was used to plot the first 30 points of the recursion equation ๏ธ๏ด+1 = 3๏€บ8๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป ๏ธ0 = 0๏€บ1๏€บ The sequence does not appear to converge to a fixed value. The terms fluctuate substantially in value exhibiting chaotic behavior๏€บ 30 0 52. 1 Computer software was used to plot the first 50 points of the recursion equation ๏ธ๏ด+1 = 3๏€บ9๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป ๏ธ0 = 0๏€บ6๏€บ The sequence does not appear to converge to a fixed value. The terms fluctuate substantially in value exhibiting chaotic behavior๏€บ 50 0 53. Computer software was used to plot the first 20 points of the recursion equation ๏ธ๏ด+1 = 14 ๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป with ๏ธ0 = 0๏€บ2 and ๏ธ0 = 0๏€บ2001๏€บ The plots indicate that the solutions are nearly identical, converging to zero as ๏ด increases. 0.4 0.4 x0=0.2 x0=0.2001 21 0 _0.1 21 0 _0.1 54. Computer software was used to plot the first 20 points of the recursion equation ๏ธ๏ด+1 = 4๏ธ๏ด (1 โˆ’ ๏ธ๏ด )๏€ป with ๏ธ0 = 0๏€บ2 and ๏ธ0 = 0๏€บ2001. The recursion with ๏ธ0 = 0๏€บ2 behaves chaotically whereas the recursion with ๏ธ0 = 0๏€บ2001 converges to zero. The plots indicate that a small change in initial conditions can significantly impact the behaviour of a recursive sequence. 1 1 x0=0.2 0 x0=0.2001 21 _0.2 1 55. 0 _0.2 21 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 2๏ธ๏ด ๏ฅโˆ’๏ธ๏ด ๏€ป ๏ธ0 = 0๏€บ2๏€บ The sequence appears to converge to a value near 0๏€บ7๏€บ Assume the limit exists so that lim ๏ธ๏ด+1 = lim ๏ธ๏ด = ๏ธ๏€ป then ๏ดโ†’โˆž ๏ดโ†’โˆž โˆ’๏ธ๏ด _1 10 _0.1 โ‡’ lim ๏ธ๏ด+1 = lim 2๏ธ๏ด ๏ฅโˆ’๏ธ๏ด โ‡’ ๏ธ = 2๏ธ๏ฅโˆ’๏ธ โ‡’ ๏ธ๏ด+1 = 2๏ธ๏ด ๏ฅ ๏ดโ†’โˆž ๏ดโ†’โˆž ๏‚ข ๏‚ก โˆ’๏ธ = 0 โ‡’ ๏ธ = 0 or ๏ธ = ln 2 โ‰ˆ 0๏€บ693. Therefore, if the limit ๏ธ 1 โˆ’ 2๏ฅ exists it will be either 0 or ln 2. Since the graph of the sequence appears to approach ln 2, we see that lim ๏ธ๏ด = ln 2. ๏ดโ†’โˆž INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.1 1.4 56. LIMITS OF SEQUENCES ยค 79 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 3๏ธ๏ด ๏ฅโˆ’๏ธ๏ด ๏€ป ๏ธ0 = 0๏€บ4๏€บ The sequence appears to converge to a value of 1๏€บ1๏€บ Assume the limit exists so that lim ๏ธ๏ด+1 = lim ๏ธ๏ด = ๏ธ๏€ป then ๏ดโ†’โˆž ๏ดโ†’โˆž ๏ธ๏ด+1 = 3๏ธ๏ด ๏ฅโˆ’๏ธ๏ด โ‡’ lim ๏ธ๏ด+1 = lim 3๏ธ๏ด ๏ฅโˆ’๏ธ๏ด โ‡’ ๏ธ = 3๏ธ๏ฅโˆ’๏ธ โ‡’ ๏ดโ†’โˆž ๏ดโ†’โˆž ๏‚ข ๏‚ก ๏ธ 1 โˆ’ 3๏ฅโˆ’๏ธ = 0 โ‡’ ๏ธ = 0 or ๏ธ = ln 3 โ‰ˆ 1๏€บ099. Therefore, if the limit exists it will be either 0 or ln 3. Since the graph of the sequence appears to _1 57. 0.2 10 approach ln 3, we surmise that lim ๏ธ๏ด = ln 3. ๏ดโ†’โˆž 5 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 10๏ธ๏ด ๏ฅโˆ’๏ธ๏ด ๏€ป ๏ธ0 = 0๏€บ8๏€บ The sequence does not appear to converge to a fixed value of ๏ธ๏ด . Instead, the terms oscillate between values near 0๏€บ9 and 3๏€บ7๏€บ _1 58. 0 11 10 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 20๏ธ๏ด ๏ฅโˆ’๏ธ๏ด ๏€ป ๏ธ0 = 0๏€บ9๏€บ The sequence does not appear to converge to a fixed value of ๏ธ๏ด . The terms fluctuate substantially in value exhibiting chaotic behaviour๏€บ _1 0 11 59. Let ๏๏ฎ represent the removed area of the Sierpinski carpet after the ๏ฎth step of construction. In the first step, one square of ๏‚ต ๏‚ถ 1 1 1 1 1 = 2 are removed, so area is removed so ๏1 = ๏€บ In the second step, 8 squares each of area 9 9 9 9 9 ๏‚ต ๏‚ถ 8 8 8 1 1 ๏2 = ๏1 + 2 = + 2 = 1+ ๏€บ In the third step, 8 squares are removed for each of the 8 squares removed in the 9 9 9 9 9 ๏‚ต ๏‚ถ 1 1 1 previous step. So there are a total of 8 ยท 8 = 82 squares removed each having an area of = 3 . This gives 9 92 9 ๏€ข ๏‚ต ๏‚ถ ๏‚ต ๏‚ถ2 ๏€ฃ 8 8 8 8 82 1 1 ๏3 = ๏2 + 3 = 1+ + 2 = 1+ + ๏€บ Observing the pattern in the first few terms of the sequence, 9 9 9 9 9 9 9 ๏€ข ๏‚ต ๏‚ถ2 ๏‚ต ๏‚ถ๏ฎโˆ’1 ๏€ฃ 8 8 8 1 1+ + we deduce the general formula for the ๏ฎth term to be ๏๏ฎ = + ๏€บ๏€บ๏€บ + ๏€บ The terms in 9 9 9 9 parentheses represent the sum of a geometric sequence with ๏ก = 1 and ๏ฒ = 8๏€ฝ9๏€บ Using Equation (5), we can write ๏‚ท ๏‚ต ๏‚ถ๏ฎ ๏‚ธ ๏‚ท ๏‚ธ ๏‚ต ๏‚ถ๏ฎ 8 8 1 1(1 โˆ’ (8๏€ฝ9)๏ฎ ) = 1๏€บ Hence the area of the =1โˆ’ ๏€บ As ๏ฎ increases, lim ๏๏ฎ = lim 1 โˆ’ ๏๏ฎ = ๏ฎโ†’โˆž ๏ฎโ†’โˆž 9 1 โˆ’ 8๏€ฝ9 9 9 removed squares is 1 implying that the Sierpinski carpet has zero area. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 80 ยค NOT FOR SALE CHAPTER 2 LIMITS 60. |๏ƒ๏„| = ๏ข sin ๏‚ต, |๏„๏…| = |๏ƒ๏„| sin ๏‚ต = ๏ข sin2 ๏‚ต, |๏…๏† | = |๏„๏…| sin ๏‚ต = ๏ข sin3 ๏‚ต, ๏€บ ๏€บ ๏€บ . Therefore, |๏ƒ๏„| + |๏„๏…| + |๏…๏† | + |๏† ๏‡| + ยท ยท ยท = ๏ข and |sin ๏‚ต| ๏€ผ 1 ๏‚ค ๏‚ฃ because 0 ๏€ผ ๏‚ต ๏€ผ ๏‚ผ2 . ๏‚ต ๏‚ถ sin ๏‚ต sin๏ฎ ๏‚ต = ๏ข since this is a geometric series with ๏ฒ = sin ๏‚ต 1 โˆ’ sin ๏‚ต ๏ฎ=1 โˆž ๏ PROJECT Modeling the Dynamics of Viral Infections 1. Viral replication is an example of exponential growth. The exponential growth recursion formula is ๏Ž(๏ด + 1) = ๏’๏Ž (๏ด) where ๏’ is the growth rate and ๏Ž(๏ด) is the number of viral particles at time ๏ด. In Section 1.6, we saw the general solution of this recursion is ๏Ž๏ด = ๏Ž0 ยท ๏’๏ด ๏€บ With ๏’ = 3 and ๏Ž0 = 1, the recursion equation is ๏Ž๏ด+1 = 3๏Ž๏ด and the general solution is ๏Ž๏ด = 3๏ด ๏€บ 2. Let ๏ด1 be the amount of time spent in phase 1 of the infection. Solving for ๏ด1 in the equation ๏Ž๏ด1 = ๏Ž0 ยท ๏’๏ด1 using logarithms: ๏‚ก ๏‚ข ln(๏Ž๏ด1 ๏€ฝ๏Ž0 ) ln ๏’๏ด1 = ln (๏Ž๏ด1 ๏€ฝ๏Ž0 ) โ‡’ ๏ด1 = . The immune response initiates when ๏Ž๏ด1 = 2 ยท 106 . Therefore the time it ln(๏’) takes for the immune response to kick in is ๏ด1 = ln(2 ยท 106 ) โˆ’ ln(๏Ž0 ) โ‰ˆ 13๏€บ2 โˆ’ 0๏€บ91 ln(๏Ž0 ). Hence, the larger the initial ln(3) viral size the sooner the immune system responds. 3. Let ๏ด2 be the amount of time since the immune response initiated, ๏’immune be the replication rate during the immune response, and ๏คimmune be the number of viruses killed by the immune system at each timestep. The second phase of the infection is modeled by a two-step recursion. First, the virus replicates producing ๏Ž โˆ— = ๏’immune ๏Ž๏ด2 viruses. Then, the immune system kills viruses leaving ๏Ž๏ด2 +1 = ๏Ž โˆ— โˆ’ ๏คimmune leftover. Combining the two steps gives the recursion formula ๏Ž๏ด2 +1 = ๏’immune ๏Ž๏ด2 โˆ’ ๏คimmune . 4. The viral population will decrease over time if โˆ†๏Ž ๏€ผ 0 at each timestep. Solving this inequality for ๏Ž๏ด2 : ๏Ž๏ด2 +1 โˆ’ ๏Ž๏ด2 ๏€ผ 0 โ‡’ (๏’immune โˆ’ 1)๏Ž๏ด2 โˆ’ ๏คimmune ๏€ผ 0 โ‡’ ๏Ž๏ด2 ๏€ผ ๏คimmune where we assumed ๏’immune ๏€พ 1๏€บ (๏’immune โˆ’ 1) Substituting the constants ๏’immune = 12 ยท 3 = 1๏€บ5 and ๏คimmune = 500๏€ป 000 gives ๏Ž๏ด2 ๏€ผ 1๏€ป 000๏€ป 000. Therefore, the immune response will cause the infection to subside over time if the viral count is less than one million. This is not possible since the immune response initiates only once the virus reaches two million copies. 5. The recursion for the third phase can be obtained from the second phase recursion formula by replacing the replication and death rates with the new values. This gives ๏Ž๏ด3 +1 = ๏’drug ๏Ž๏ด3 โˆ’ ๏คdrug where ๏ด3 is the amount of time since the start of drug treatment. 6. Similar to Problem 4, we solve for ๏Ž๏ด3 in the inequality โˆ†๏Ž = ๏Ž๏ด3 +1 โˆ’ ๏Ž๏ด3 ๏€ผ 0 and find that ๏Ž๏ด3 ๏€ผ ๏คdrug . (๏’drug โˆ’ 1) Substituting the constants ๏’drug = 1๏€บ25 and ๏คdrug = 25๏€ป 000๏€ป 000 gives ๏Ž๏ด3 ๏€ผ 100๏€ป 000๏€ป 000. Therefore, the drug and immune system will cause the infection to subside over time if the viral count is less than 100 million. This is possible provided drug treatment begins before the viral count reaches 100 million. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.2 LIMITS OF SEQUENCES ยค 81 7. From Formula (6), the general solution to the recursion equation ๏Ž๏ด2 +1 = ๏’immune ๏Ž๏ด2 โˆ’ ๏คimmune is given ๏‚ถ ๏ด2 1 โˆ’ ๏’immune ๏€บ Solving for ๏ด2 in this expression gives 1 โˆ’ ๏’immune ๏‚ต ๏‚ถ ๏คimmune ๏คimmune ๏Ž๏ด2 + ๏คimmune (1 โˆ’ ๏’immune )โˆ’1 ๏ด2 ๏ด2 ๏Ž0 + โˆ’ ๏Ž๏ด2 = ๏’immune โ‡’ ๏’immune = โ‡’ 1 โˆ’ ๏’immune 1 โˆ’ ๏’immune ๏Ž0 + ๏คimmune (1 โˆ’ ๏’immune )โˆ’1 ๏‚ท ๏‚ธ๏ƒ ๏Ž๏ด2 + ๏คimmune (1 โˆ’ ๏’immune )โˆ’1 ln ๏’immune . Note that the number of viral particles at the start of phase two is ๏ด2 = ln ๏Ž0 + ๏คimmune (1 โˆ’ ๏’immune )โˆ’1 ๏ด2 ๏Ž0 โˆ’ ๏คimmune by ๏Ž๏ด2 = ๏’immune ๏‚ต ๏Ž0 = 2 ยท 106 ๏€บ Substituting ๏’immune = 1๏€บ5, ๏คimmune = 500๏€ป 000 and the critical viral load ๏Ž๏ด2 = 100 ยท 106 into the equation gives ๏ด2 = ln(99) โ‰ˆ 11๏€บ33 h. This is the amount of time spent in phase two after which the infection cannot be controlled. ln(1๏€บ5) From Problem 2, phase two begins after ๏ด1 = ln(2 ยท 106 ) โˆ’ ln(1) โ‰ˆ 13๏€บ21 h. Thus, the total time is ๏ด = ๏ด1 + ๏ด2 โ‰ˆ 24๏€บ54 h. ln(3) Hence, drug treatment must be started within approximately one day (24 hours) of the initial infection in order to control the viral count. 8. A general expression for the time it takes to reach the critical viral load is obtained by combining the expressions for ๏ด1 and ๏ด2 ๏‚ธ ๏Ž๏ด2 + ๏คimmune (1 โˆ’ ๏’immune )โˆ’1 ln 2 ยท 106 + ๏คimmune (1 โˆ’ ๏’immune )โˆ’1 ln(๏Ž0 ) ln(2 ยท 106 ) โˆ’ + from Problems 2 and 7. This gives ๏ด = ๏ด1 + ๏ด2 = . ln(๏’) ln(๏’) ln ๏’immune ๏‚ท Substituting ๏’immune = 0๏€บ5๏’, ๏คimmune = 5 ยท 105 ๏€ป ๏Ž0 = ๏ฎ0 and ๏Ž๏ด2 = 100 ยท 106 gives ๏‚ธ ๏‚ท 100 ยท 106 + (5 ยท 105 )(1 โˆ’ 0๏€บ5๏’)โˆ’1 ln 2 ยท 106 + (5 ยท 105 )(1 โˆ’ 0๏€บ5๏’)โˆ’1 ln(2 ยท 106 ) ln(๏ฎ0 ) ๏ด= โˆ’ + ๏€บ Note: We have inherently assumed that ๏ฎ0 ๏€ผ 2 ยท 106 , ln(๏’) ln(๏’) ln (0๏€บ5๏’) so that some time is spent in phase 1. 9. After 24 hours, the infection has been in the immune response phase for ๏ด2 = 24 โˆ’ 13๏€บ21 = 10๏€บ79 h. Using the general expression for ๏Ž๏ด2 from Problem 7 the number of viruses after 24 hours is ๏‚ต ๏‚ถ 1 โˆ’ 1๏€บ510๏€บ79 10๏€บ79 6 5 )(2 ยท 10 ) โˆ’ (5 ยท 10 ) ๏Ž10๏€บ79 = (1๏€บ5 โ‰ˆ 80๏€ป 555๏€ป 008. Since this is less than the critical viral load (100 1 โˆ’ 1๏€บ5 million), drug intervention will be effective in controlling the virus. Rewriting the equation for ๏ด2 for the drug phase gives ๏‚ท ๏‚ธ๏ƒ ๏Ž๏ด3 + ๏คdrug (1 โˆ’ ๏’drug )โˆ’1 ๏ด3 = ln ln ๏’drug where ๏ด3 is the amount of time since the drug treatment started. Substituting ๏Ž0 + ๏คdrug (1 โˆ’ ๏’drug )โˆ’1 values ๏Ž๏ด3 = 0, ๏Ž0 = 80๏€ป 555๏€ป 008, ๏’drug = 1๏€บ25 and ๏คdrug = 25๏€ป 000๏€ป 000 yields ๏ด3 = 7๏€บ34 h. Therefore, it takes approximately 7 hours after starting the drug treatment to completely eliminate the virus. 2.2 Limits of Functions at Infinity 1. (a) As ๏ธ becomes large, the values of ๏ฆ (๏ธ) approach 5. (b) As ๏ธ becomes large negative, the values of ๏ฆ (๏ธ) approach 3. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 82 NOT FOR SALE ยค CHAPTER 2 LIMITS 2. (a) The graph of a function can intersect a horizontal asymptote. It can even intersect its horizontal asymptote an infinite number of times. (b) The graph of a function can have 0, 1, or 2 horizontal asymptotes. Representative examples are shown. No horizontal asymptote One horizontal asymptote Two horizontal asymptotes 3. If ๏ฆ (๏ธ) = ๏ธ2๏€ฝ2๏ธ , then a calculator gives ๏ฆ(0) = 0, ๏ฆ (1) = 0๏€บ5, ๏ฆ(2) = 1, ๏ฆ (3) = 1๏€บ125, ๏ฆ (4) = 1, ๏ฆ (5) = 0๏€บ78125, ๏ฆ (6) = 0๏€บ5625, ๏ฆ (7) = 0๏€บ3828125, ๏ฆ (8) = 0๏€บ25, ๏ฆ (9) = 0๏€บ158203125, ๏ฆ(10) = 0๏€บ09765625, ๏ฆ (20) โ‰ˆ 0๏€บ00038147, ๏ฆ (50) โ‰ˆ 2๏€บ2204 ร— 10โˆ’12 , ๏ฆ (100) โ‰ˆ 7๏€บ8886 ร— 10โˆ’27 . ๏‚ก ๏‚ข It appears that lim ๏ธ2๏€ฝ2๏ธ = 0. ๏ธโ†’โˆž 4. (a) From a graph of ๏ฆ(๏ธ) = (1 โˆ’ 2๏€ฝ๏ธ)๏ธ in a window of [0๏€ป 10,000] by [0๏€ป 0๏€บ2], we estimate that lim ๏ฆ (๏ธ) = 0๏€บ14 ๏ธโ†’โˆž (to two decimal places.) From the table, we estimate that lim ๏ฆ (๏ธ) = 0๏€บ1353 (to four decimal places.) (b) ๏ธโ†’โˆž ๏ธ ๏ฆ (๏ธ) 10,000 100,000 1,000,000 0๏€บ135308 0๏€บ135333 0๏€บ135335 lim (1๏€ฝ๏ธ) lim (1๏€ฝ๏ธ) 1 1๏€ฝ๏ธ 0 0 ๏ธโ†’โˆž ๏ธโ†’โˆž = lim = = = = =0 ๏ธโ†’โˆž 2๏ธ + 3 ๏ธโ†’โˆž (2๏ธ + 3)๏€ฝ๏ธ lim (2 + 3๏€ฝ๏ธ) lim 2 + 3 lim (1๏€ฝ๏ธ) 2 + 3(0) 2 5. lim ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธโ†’โˆž 1 lim 3 + 5 lim 3 + 5(0) 3๏ธ + 5 (3๏ธ + 5)๏€ฝ๏ธ 3 + 5๏€ฝ๏ธ ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธ = 6. lim = lim = lim = =3 1 ๏ธโ†’โˆž ๏ธ โˆ’ 4 ๏ธโ†’โˆž (๏ธ โˆ’ 4)๏€ฝ๏ธ ๏ธโ†’โˆž 1 โˆ’ 4๏€ฝ๏ธ 1 โˆ’ 4(0) lim 1 โˆ’ 4 lim ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธ lim 3 โˆ’ 2 lim 1๏€ฝ๏ธ 3๏ธ โˆ’ 2 (3๏ธ โˆ’ 2)๏€ฝ๏ธ 3 โˆ’ 2๏€ฝ๏ธ 3 โˆ’ 2(0) 3 ๏ธโ†’โˆž ๏ธโ†’โˆž = lim = lim = = = ๏ธโ†’โˆž 2๏ธ + 1 ๏ธโ†’โˆž (2๏ธ + 1)๏€ฝ๏ธ ๏ธโ†’โˆž 2 + 1๏€ฝ๏ธ lim 2 + lim 1๏€ฝ๏ธ 2+0 2 7. lim ๏ธโ†’โˆž 8. lim 1 โˆ’ ๏ธ2 ๏ธโ†’โˆž ๏ธ3 โˆ’ ๏ธ + 1 ๏ธโ†’โˆž (1 โˆ’ ๏ธ2 )๏€ฝ๏ธ3 1๏€ฝ๏ธ3 โˆ’ 1๏€ฝ๏ธ = lim 3 3 ๏ธโ†’โˆž (๏ธ โˆ’ ๏ธ + 1)๏€ฝ๏ธ ๏ธโ†’โˆž 1 โˆ’ 1๏€ฝ๏ธ2 + 1๏€ฝ๏ธ3 = lim = lim 1๏€ฝ๏ธ3 โˆ’ lim 1๏€ฝ๏ธ ๏ธโ†’โˆž ๏ธโ†’โˆž lim 1 โˆ’ lim 1๏€ฝ๏ธ2 + lim 1๏€ฝ๏ธ3 ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธโ†’โˆž = 0โˆ’0 =0 1โˆ’0+0 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.2 9. LIMITS OF SEQUENCES ยค lim (1๏€ฝ๏ธ2 โˆ’ 1๏€ฝ๏ธ โˆ’ 1) 1 โˆ’ ๏ธ โˆ’ ๏ธ2 (1 โˆ’ ๏ธ โˆ’ ๏ธ2 )๏€ฝ๏ธ2 ๏ธโ†’โˆ’โˆž = = lim ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž (2๏ธ2 โˆ’ 7)๏€ฝ๏ธ2 2๏ธ2 โˆ’ 7 lim (2 โˆ’ 7๏€ฝ๏ธ2 ) lim ๏ธโ†’โˆ’โˆž 2 = lim (1๏€ฝ๏ธ ) โˆ’ lim (1๏€ฝ๏ธ) โˆ’ lim 1 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 10. 11. lim ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž lim 2 โˆ’ 7 lim (1๏€ฝ๏ธ2 ) ๏ธโ†’โˆ’โˆž = 0โˆ’0โˆ’1 1 =โˆ’ 2 โˆ’ 7(0) 2 4๏ธ3 + 6๏ธ2 โˆ’ 2 (4๏ธ3 + 6๏ธ2 โˆ’ 2)๏€ฝ๏ธ3 4 + 6๏€ฝ๏ธ โˆ’ 2๏€ฝ๏ธ3 4+0โˆ’0 = lim =2 = lim = 3 3 3 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 2๏ธ โˆ’ 4๏ธ + 5 (2๏ธ โˆ’ 4๏ธ + 5)๏€ฝ๏ธ 2 โˆ’ 4๏€ฝ๏ธ2 + 5๏€ฝ๏ธ3 2โˆ’0+0 ๏‚ต ๏‚ถ๏ด ๏‚ต ๏‚ถโˆ’๏ด 3 5 = lim = โˆž since 5๏€ฝ3 ๏€พ 1 and โˆ’๏ด โ†’ โˆž as ๏ด โ†’ โˆ’โˆž ๏ดโ†’โˆ’โˆž ๏ดโ†’โˆ’โˆž 5 3 lim 0๏€บ6๏ด = lim ๏ดโ†’โˆ’โˆž 5 = 0 since 10๏ฒ โ†’ โˆž as ๏ฒ โ†’ โˆž 10๏ฒ โˆš โˆš ๏ด + ๏ด2 ( ๏ด + ๏ด2 )๏€ฝ๏ด2 1๏€ฝ๏ด3๏€ฝ2 + 1 0+1 = = โˆ’1 13. lim = lim = lim ๏ดโ†’โˆž 2๏ด โˆ’ ๏ด2 ๏ดโ†’โˆž (2๏ด โˆ’ ๏ด2 )๏€ฝ๏ด2 ๏ดโ†’โˆž 2๏€ฝ๏ด โˆ’ 1 0โˆ’1 12. lim ๏ฒโ†’โˆž โˆš๏‚ข ๏‚ก โˆš ๏ด โˆ’ ๏ด ๏ด ๏€ฝ๏ด3๏€ฝ2 1๏€ฝ๏ด1๏€ฝ2 โˆ’ 1 0โˆ’1 ๏ดโˆ’๏ด ๏ด 1 14. lim = lim = = lim =โˆ’ ๏ดโ†’โˆž 2๏ด3๏€ฝ2 + 3๏ด โˆ’ 5 ๏ดโ†’โˆž (2๏ด3๏€ฝ2 + 3๏ด โˆ’ 5) ๏€ฝ๏ด3๏€ฝ2 ๏ดโ†’โˆž 2 + 3๏€ฝ๏ด1๏€ฝ2 โˆ’ 5๏€ฝ๏ด3๏€ฝ2 2+0โˆ’0 2 (2๏ธ2 + 1)2 (2๏ธ2 + 1)2 ๏€ฝ๏ธ4 [(2๏ธ2 + 1)๏€ฝ๏ธ2 ]2 = lim = lim ๏ธโ†’โˆž (๏ธ โˆ’ 1)2 (๏ธ2 + ๏ธ) ๏ธโ†’โˆž [(๏ธ โˆ’ 1)2 (๏ธ2 + ๏ธ)]๏€ฝ๏ธ4 ๏ธโ†’โˆž [(๏ธ2 โˆ’ 2๏ธ + 1)๏€ฝ๏ธ2 ][(๏ธ2 + ๏ธ)๏€ฝ๏ธ2 ] 15. lim (2 + 1๏€ฝ๏ธ2 )2 (2 + 0)2 = =4 2 ๏ธโ†’โˆž (1 โˆ’ 2๏€ฝ๏ธ + 1๏€ฝ๏ธ )(1 + 1๏€ฝ๏ธ) (1 โˆ’ 0 + 0)(1 + 0) = lim ๏ธ2 ๏ธ2 ๏€ฝ๏ธ2 1 = lim ๏ฐ = lim โˆš ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธ4 + 1 ๏ธ4 + 1๏€ฝ๏ธ2 (๏ธ4 + 1)๏€ฝ๏ธ4 16. lim โˆš ๏ธโ†’โˆž [since ๏ธ2 = โˆš ๏ธ4 for ๏ธ ๏€พ 0] 1 1 = โˆš =1 = lim ๏ฐ 4 ๏ธโ†’โˆž 1+0 1 + 1๏€ฝ๏ธ 17. lim ๏ธโ†’โˆž ๏‚กโˆš ๏‚กโˆš ๏‚ข๏‚กโˆš ๏‚ข ๏‚ข2 9๏ธ2 + ๏ธ โˆ’ 3๏ธ 9๏ธ2 + ๏ธ + 3๏ธ 9๏ธ2 + ๏ธ โˆ’ (3๏ธ)2 โˆš โˆš = lim ๏ธโ†’โˆž ๏ธโ†’โˆž 9๏ธ2 + ๏ธ + 3๏ธ 9๏ธ2 + ๏ธ + 3๏ธ ๏‚ก 2 ๏‚ข 9๏ธ + ๏ธ โˆ’ 9๏ธ2 ๏ธ 1๏€ฝ๏ธ = lim โˆš = lim โˆš ยท ๏ธโ†’โˆž ๏ธโ†’โˆž 9๏ธ2 + ๏ธ + 3๏ธ 9๏ธ2 + ๏ธ + 3๏ธ 1๏€ฝ๏ธ ๏‚กโˆš ๏‚ข 9๏ธ2 + ๏ธ โˆ’ 3๏ธ = lim ๏ธ๏€ฝ๏ธ 1 1 1 1 = lim ๏ฐ = lim ๏ฐ = โˆš = = ๏ธโ†’โˆž 3+3 6 9+3 9๏ธ2 ๏€ฝ๏ธ2 + ๏ธ๏€ฝ๏ธ2 + 3๏ธ๏€ฝ๏ธ ๏ธโ†’โˆž 9 + 1๏€ฝ๏ธ + 3 18. lim ๏ธโ†’โˆž โˆš โˆš ๏‚ข ๏‚กโˆš ๏‚ข ๏‚กโˆš ๏ธ2 + ๏ก๏ธ โˆ’ ๏ธ2 + ๏ข๏ธ ๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ โˆš โˆš ๏ธโ†’โˆž ๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ โˆš ๏‚ข ๏‚กโˆš ๏ธ2 + ๏ก๏ธ โˆ’ ๏ธ2 + ๏ข๏ธ = lim (๏ธ2 + ๏ก๏ธ) โˆ’ (๏ธ2 + ๏ข๏ธ) [(๏ก โˆ’ ๏ข)๏ธ]๏€ฝ๏ธ โˆš = lim โˆš = lim ๏‚กโˆš โˆš ๏‚ข โˆš 2 ๏ธโ†’โˆž ๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ ๏ธโ†’โˆž ๏ธ + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ ๏€ฝ ๏ธ2 19. lim 6 ๏ธโ†’โˆž 3 + ๏ฅโˆ’2๏ธ 20. For ๏ธ ๏€พ 0, = ๏กโˆ’๏ข ๏กโˆ’๏ข ๏กโˆ’๏ข ๏ฐ โˆš = โˆš = lim ๏ฐ = ๏ธโ†’โˆž 2 1+0+ 1+0 1 + ๏ก๏€ฝ๏ธ + 1 + ๏ข๏€ฝ๏ธ 6 6 6 = =2 = 3 + lim ๏ฅโˆ’2๏ธ 3+0 3 ๏ธโ†’โˆž โˆš โˆš โˆš โˆš ๏ธ2 + 1 ๏€พ ๏ธ2 = ๏ธ. So as ๏ธ โ†’ โˆž, we have ๏ธ2 + 1 โ†’ โˆž, that is, lim ๏ธ2 + 1 = โˆž. ๏ธโ†’โˆž INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 83 84 NOT FOR SALE ยค CHAPTER 2 LIMITS ๏‚ท ๏ธ4 โˆ’ 3๏ธ2 + ๏ธ (๏ธ4 โˆ’ 3๏ธ2 + ๏ธ)๏€ฝ๏ธ3 = lim ๏ธโ†’โˆž ๏ธ3 โˆ’ ๏ธ + 2 ๏ธโ†’โˆž (๏ธ3 โˆ’ ๏ธ + 2)๏€ฝ๏ธ3 divide by the highest power of ๏ธ in the denominator 21. lim ๏‚ธ ๏ธ โˆ’ 3๏€ฝ๏ธ + 1๏€ฝ๏ธ2 = lim ๏ธโ†’โˆž 1 โˆ’ 1๏€ฝ๏ธ2 + 2๏€ฝ๏ธ3 =โˆž since the numerator increases without bound and the denominator approaches 1 as ๏ธ โ†’ โˆž. 22. lim (๏ฅโˆ’๏ธ + 2 cos 3๏ธ) does not exist. lim ๏ฅโˆ’๏ธ = 0, but lim (2 cos 3๏ธ) does not exist because the values of 2 cos 3๏ธ ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธโ†’โˆž oscillate between the values of โˆ’2 and 2 infinitely often, so the given limit does not exist. 23. lim (๏ธ4 + ๏ธ5 ) = lim ๏ธ5 ( ๏ธ1 + 1) [factor out the largest power of ๏ธ] = โˆ’โˆž because ๏ธ5 โ†’ โˆ’โˆž and 1๏€ฝ๏ธ + 1 โ†’ 1 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž as ๏ธ โ†’ โˆ’โˆž. ๏‚ก ๏‚ข Or: lim ๏ธ4 + ๏ธ5 = lim ๏ธ4 (1 + ๏ธ) = โˆ’โˆž. ๏ธโ†’โˆ’โˆž 24. ๏ธโ†’โˆ’โˆž ๏‚ท 1 + ๏ธ6 (1 + ๏ธ6 )๏€ฝ๏ธ4 = lim ๏ธโ†’โˆ’โˆž ๏ธ4 + 1 ๏ธโ†’โˆ’โˆž (๏ธ4 + 1)๏€ฝ๏ธ4 divide by the highest power of ๏ธ in the denominator lim ๏‚ธ 1๏€ฝ๏ธ4 + ๏ธ2 =โˆž ๏ธโ†’โˆ’โˆž 1 + 1๏€ฝ๏ธ4 = lim since the numerator increases without bound and the denominator approaches 1 as ๏ธ โ†’ โˆ’โˆž. 2 25. As ๏ด increases, 1๏€ฝ๏ด2 approaches zero, so lim ๏ฅโˆ’1๏€ฝ๏ด = ๏ฅโˆ’(0) = 1 ๏ดโ†’โˆž 26. Divide numerator and denominator by ๏ฅ3๏ธ : lim ๏ฅ3๏ธ โˆ’ ๏ฅโˆ’3๏ธ ๏ธโ†’โˆž ๏ฅ3๏ธ + ๏ฅโˆ’3๏ธ = lim 1 โˆ’ ๏ฅโˆ’6๏ธ ๏ธโ†’โˆž 1 + ๏ฅโˆ’6๏ธ = 1โˆ’0 =1 1+0 1 โˆ’ ๏ฅ๏ธ (1 โˆ’ ๏ฅ๏ธ )๏€ฝ๏ฅ๏ธ 1๏€ฝ๏ฅ๏ธ โˆ’ 1 0โˆ’1 1 = =โˆ’ = lim = lim ๏ธโ†’โˆž 1 + 2๏ฅ๏ธ ๏ธโ†’โˆž (1 + 2๏ฅ๏ธ )๏€ฝ๏ฅ๏ธ ๏ธโ†’โˆž 1๏€ฝ๏ฅ๏ธ + 2 0+2 2 27. lim 28. lim ๏ธโ†’โˆ’โˆž ๏‚ฃ ๏‚ค ln(๏ธ2 ) โˆ’ ln(๏ธ2 + 1) = lim ๏ธโ†’โˆ’โˆž 29. ๏’(๏Ž) = ๏“๏Ž๏€ฝ(๏ฃ + ๏Ž) ๏‚ท ๏‚ต ln ๏ธ2 2 ๏ธ +1 ๏‚ถ๏‚ธ = lim ๏ธโ†’โˆ’โˆž ๏‚ท ln ๏‚ต 1 1 + 1๏€ฝ๏ธ2 ๏‚ถ๏‚ธ = ln ๏‚ต 1 1+0 ๏‚ถ = ln(1) = 0 โ‡’ ๏’(๏ฃ) = ๏“๏ฃ๏€ฝ(๏ฃ + ๏ฃ) = ๏“๏€ฝ2๏€บ Hence, ๏ฃ is the nutrient concentration at which the growth rate is half of the maximum possible value. This is often referred to as the half-saturation constant. ๏‚ธ ๏‚ท 0.14[S] 0.14 0.14 divide numerator and = = lim = 0๏€บ14. So the line ๏ถ = 0๏€บ14 is a 30. (a) lim ๏ถ = lim denominator by [S] [S]โ†’โˆž [S]โ†’โˆž 0๏€บ015 + [S] [S]โ†’โˆž 0๏€บ015๏€ฝ[S] + 1 0+1 horizontal asymptote. Therefore, as the concentration increases, the enzymatic reaction rate will approach 0๏€บ14. Note, we did not need to consider the limit as [S]โ†’ โˆ’โˆž because concentrations must be positive in value. 0.2 (b) v 0 8๏ถ (8๏ถ) ๏€ฝ๏ถ 2 31. lim ๏Ž(๏ถ) = lim = lim 2 ๏ถโ†’โˆž ๏ถโ†’โˆž 1 + 2๏ถ + ๏ถ ๏ถโ†’โˆž (1 + 2๏ถ + ๏ถ 2 ) ๏€ฝ๏ถ 2 = lim 8๏€ฝ๏ถ ๏ถโ†’โˆž 1๏€ฝ๏ถ 2 + 2๏€ฝ๏ถ + 1 = 0 =0 0+0+1 0.5 [S] ๏‚ท divide by the highest power of ๏ถ in the denominator ๏‚ธ Therefore, as the mortality rate increases, the number of new infections approaches zero. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.3 ๏‚ฃ LIMITS OF FUNCTIONS AT FINITE NUMBERS ยค 85 ๏‚ค 32. (a) lim ๏Œ(๏ด) = lim ๏Œโˆž โˆ’ (๏Œโˆž โˆ’ ๏Œ0 )๏ฅโˆ’๏ซ๏ด = ๏Œโˆž โˆ’ (๏Œโˆž โˆ’ ๏Œ0 )(0) = ๏Œโˆž ๏€บ Therefore, as the fish ages the mean length ๏ดโ†’โˆž ๏ดโ†’โˆž approaches ๏Œโˆž ๏€บ (b) 60 The constant ๏ซ affects the rate at which the function k=6 k=2 k=0.8 k=0.3 causes the Bertalanffy growth function to approach the horizontal asymptote at a faster rate. 3 0 7 33. ๏‚(๏ด) = approaches the horizontal asymptote ๏Œโˆž ๏€บ Increasing ๏ซ 8 ร— 10 1 + 3๏ฅโˆ’0๏€บ71๏ด โ‡’ lim ๏‚(๏ด) = lim 8 ร— 107 ๏ดโ†’โˆž 1 + 3๏ฅโˆ’0๏€บ71๏ด ๏ดโ†’โˆž = 8 ร— 107 = 8 ร— 107 ๏€บ This means that in the long run the 1+0 biomass of the Pacific halibut will tend to 8 ร— 107 kg๏€บ 34. (a) After ๏ด minutes, 25๏ด liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains (5000 + 25๏ด) liters of water and 25๏ด ยท 30 = 750๏ด grams of salt. Therefore, the salt concentration at time ๏ด will be 30๏ด g 750๏ด = . ๏ƒ(๏ด) = 5000 + 25๏ด 200 + ๏ด L (b) lim ๏ƒ(๏ด) = lim 30๏ด ๏ดโ†’โˆž 200 + ๏ด ๏ดโ†’โˆž = lim 30๏ด๏€ฝ๏ด ๏ดโ†’โˆž 200๏€ฝ๏ด + ๏ด๏€ฝ๏ด = 30 = 30. So the salt concentration approaches that of the brine 0+1 being pumped into the tank. 35. ๏ฅโˆ’๏ธ ๏€ผ 0๏€บ0001 bigger than 9๏€บ21. ๏‚ข ๏‚ก โ‡’ ln ๏ฅโˆ’๏ธ ๏€ผ ln (0๏€บ0001) โ‡’ โˆ’๏ธ ๏€ผ ln (0๏€บ0001) โ‡’ ๏ธ ๏€พ โˆ’ ln (0๏€บ0001) โ‰ˆ 9๏€บ21๏€ป so ๏ธ must be ๏ธ ๏ธ 1 1 ๏ธ = lim = โ‡’ lim ๏ฆ (๏ธ) = lim = lim =1 1 ๏ธโ†’โˆž ๏ฎโ†’โˆž ๏ธ + 1 ๏ฎโ†’โˆž ๏ธ + 1 ๏ฎโ†’โˆž 1+0 1+ ๏ธ ๏ธ ๏ธ ๏ฆ (๏ธ) ๏€พ 0๏€บ99 โ‡’ ๏€พ 0๏€บ99 โ‡’ ๏ธ ๏€พ 0๏€บ99(๏ธ + 1) โ‡’ 0๏€บ01๏ธ ๏€พ 0๏€บ99 โ‡’ ๏ธ ๏€พ 0๏€บ99๏€ฝ0๏€บ01 โ‡’ ๏ธ ๏€พ 99 ๏ธ+1 ๏‚ณ ๏‚ด โˆ— = ๏ถ โˆ— (1 โˆ’ 0) = ๏ถ โˆ— 37. (a) lim ๏ถ(๏ด) = lim ๏ถ โˆ— 1 โˆ’ ๏ฅโˆ’๏ง๏ด๏€ฝ๏ถ ๏ธ 36. ๏ฆ (๏ธ) = ๏ธ+1 ๏ดโ†’โˆž ๏ดโ†’โˆž โˆ— (b) Substituting the values ๏ถ โˆ— = 7๏€บ5 and ๏ถ(๏ด) = 0๏€บ99 โˆ— 7๏€บ5 into the velocity function gives 0๏€บ99 โˆ— 7๏€บ5 = (7๏€บ5)(1 โˆ’ ๏ฅโˆ’๏ง๏ด๏€ฝ๏ถ ) ๏‚ด ๏‚ณ (7๏€บ5) ln(0๏€บ01) โ‡’ ๏ฅโˆ’๏ด(9๏€บ8)๏€ฝ(7๏€บ5) = 0๏€บ01 โ‡’ ๏ด = โˆ’ = 3๏€บ52 s โ‡’ 0๏€บ99(7๏€บ5) = (7๏€บ5) 1 โˆ’ ๏ฅโˆ’๏ด(9๏€บ8)๏€ฝ(7๏€บ5) 9๏€บ8 2.3 Limits of Functions at Finite Numbers 1. As ๏ธ approaches 2, ๏ฆ (๏ธ) approaches 5. [Or, the values of ๏ฆ (๏ธ) can be made as close to 5 as we like by taking ๏ธ sufficiently close to 2 (but ๏ธ 6= 2).] Yes, the graph could have a hole at (2๏€ป 5) and be defined such that ๏ฆ (2) = 3. 2. As ๏ธ approaches 1 from the left, ๏ฆ (๏ธ) approaches 3; and as ๏ธ approaches 1 from the right, ๏ฆ(๏ธ) approaches 7. No, the limit does not exist because the left- and right-hand limits are different. 3. (a) lim ๏ฆ (๏ธ) = โˆž means that the values of ๏ฆ (๏ธ) can be made arbitrarily large (as large as we please) by taking ๏ธ ๏ธโ†’โˆ’3 sufficiently close to โˆ’3 (but not equal to โˆ’3). (b) lim ๏ฆ(๏ธ) = โˆ’โˆž means that the values of ๏ฆ (๏ธ) can be made arbitrarily large negative by taking ๏ธ sufficiently close to 4 ๏ธโ†’4+ through values larger than 4. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 86 ยค NOT FOR SALE CHAPTER 2 LIMITS 4. (a) As ๏ธ approaches 2 from the left, the values of ๏ฆ(๏ธ) approach 3, so lim ๏ฆ (๏ธ) = 3. ๏ธโ†’2โˆ’ (b) As ๏ธ approaches 2 from the right, the values of ๏ฆ (๏ธ) approach 1, so lim ๏ฆ(๏ธ) = 1. ๏ธโ†’2+ (c) lim ๏ฆ (๏ธ) does not exist since the left-hand limit does not equal the right-hand limit. ๏ธโ†’2 (d) When ๏ธ = 2, ๏น = 3, so ๏ฆ (2) = 3. (e) As ๏ธ approaches 4, the values of ๏ฆ (๏ธ) approach 4, so lim ๏ฆ (๏ธ) = 4. ๏ธโ†’4 (f) There is no value of ๏ฆ (๏ธ) when ๏ธ = 4, so ๏ฆ (4) does not exist. 5. (a) As ๏ธ approaches 1, the values of ๏ฆ (๏ธ) approach 2, so lim ๏ฆ (๏ธ) = 2. ๏ธโ†’1 (b) As ๏ธ approaches 3 from the left, the values of ๏ฆ(๏ธ) approach 1, so lim ๏ฆ (๏ธ) = 1. ๏ธโ†’3โˆ’ (c) As ๏ธ approaches 3 from the right, the values of ๏ฆ (๏ธ) approach 4, so lim ๏ฆ(๏ธ) = 4. ๏ธโ†’3+ (d) lim ๏ฆ (๏ธ) does not exist since the left-hand limit does not equal the right-hand limit. ๏ธโ†’3 (e) When ๏ธ = 3, ๏น = 3, so ๏ฆ (3) = 3. 6. (a) ๏จ(๏ธ) approaches 4 as ๏ธ approaches โˆ’3 from the left, so lim ๏จ(๏ธ) = 4. ๏ธโ†’โˆ’3โˆ’ (b) ๏จ(๏ธ) approaches 4 as ๏ธ approaches โˆ’3 from the right, so lim ๏จ(๏ธ) = 4. ๏ธโ†’โˆ’3+ (c) lim ๏จ(๏ธ) = 4 because the limits in part (a) and part (b) are equal. ๏ธโ†’โˆ’3 (d) ๏จ(โˆ’3) is not defined, so it doesnโ€™t exist. (e) ๏จ(๏ธ) approaches 1 as ๏ธ approaches 0 from the left, so lim ๏จ(๏ธ) = 1. ๏ธโ†’0โˆ’ (f) ๏จ(๏ธ) approaches โˆ’1 as ๏ธ approaches 0 from the right, so lim ๏จ(๏ธ) = โˆ’1. ๏ธโ†’0+ (g) lim ๏จ(๏ธ) does not exist because the limits in part (e) and part (f ) are not equal. ๏ธโ†’0 (h) ๏จ(0) = 1 since the point (0๏€ป 1) is on the graph of ๏จ. (i) Since lim ๏จ(๏ธ) = 2 and lim ๏จ(๏ธ) = 2, we have lim ๏จ(๏ธ) = 2. ๏ธโ†’2โˆ’ ๏ธโ†’2 ๏ธโ†’2+ (j) ๏จ(2) is not defined, so it doesnโ€™t exist. 7. (a) ๏ (๏ด) approaches 260 as ๏ธ approaches 2 from the left, so lim ๏ (๏ด) = 260. ๏ดโ†’2โˆ’ (b) ๏ (๏ด) approaches 254 as ๏ธ approaches 2 from the right, so lim ๏ (๏ด) = 254. ๏ดโ†’2+ (c) lim ๏ (๏ด) does not exist because lim ๏ (๏ด) 6= lim ๏ (๏ด). ๏ดโ†’2 ๏ดโ†’2โˆ’ ๏ดโ†’2+ (d) ๏ (๏ด) approaches 254 as ๏ธ approaches 4 from the left, so lim ๏ (๏ด) = 254. ๏ดโ†’4โˆ’ (e) ๏ (๏ด) approaches 258 as ๏ธ approaches 4 from the right, so lim ๏ (๏ด) = 258. ๏ดโ†’4+ (f) lim ๏ (๏ด) does not exist because lim ๏ (๏ด) 6= lim ๏ (๏ด). ๏ดโ†’4 ๏ดโ†’4โˆ’ ๏ดโ†’4+ (g) lim ๏ (๏ด) = 258 because lim ๏ (๏ด) = 258 = lim ๏ (๏ด) ๏ธโ†’5 ๏ธโ†’5โˆ’ ๏ธโ†’5+ (h) On June 3 (๏ด = 2), the population decreased by 6๏€บ This could have been a result of deaths, emigration, or a combination of the two. On June 5 (๏ด = 4), the population increased by 4๏€บ This could have been a result of births, immigration, or a combination of the two. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.3 8. (a) lim ๏’(๏ธ) = โˆ’โˆž (b) lim ๏’(๏ธ) = โˆž ๏ธโ†’2 (c) ๏ธโ†’5 LIMITS OF FUNCTIONS AT FINITE NUMBERS lim ๏’(๏ธ) = โˆ’โˆž ๏ธโ†’โˆ’3โˆ’ (d) ยค 87 lim ๏’(๏ธ) = โˆž ๏ธโ†’โˆ’3+ (e) The equations of the vertical asymptotes are ๏ธ = โˆ’3, ๏ธ = 2, and ๏ธ = 5. 9. (a) lim ๏ง(๏ธ) = โˆ’โˆž (b) lim ๏ง(๏ธ) = โˆ’โˆž (c) lim ๏ง(๏ธ) = โˆž (d) lim ๏ง(๏ธ) = 2 (e) lim ๏ง(๏ธ) = โˆ’1 (f) Vertical: ๏ธ = 0, ๏ธ = 2; horizontal: ๏น = โˆ’1, ๏น = 2 ๏ธโ†’0 ๏ธโ†’2โˆ’ ๏ธโ†’โˆž 10. ๏ธโ†’2+ ๏ธโ†’โˆ’โˆž lim ๏ฆ (๏ด) = 150 mg and lim ๏ฆ (๏ด) = 300 mg. These limits show that there is an abrupt change in the amount of drug in ๏ดโ†’12โˆ’ + ๏ดโ†’12 the patientโ€™s bloodstream at ๏ด = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection. The right-hand limit represents the amount of the drug just after the fourth injection. 11. lim ๏ฆ (๏ธ) = 4, ๏ธโ†’3+ 12. lim ๏ฆ (๏ธ) = 2, lim ๏ฆ (๏ธ) = 0, lim ๏ฆ (๏ธ) = 3, lim ๏ฆ (๏ธ) = 2, lim ๏ฆ(๏ธ) = 2, ๏ธโ†’โˆ’2 ๏ธโ†’3โˆ’ ๏ธโ†’0โˆ’ ๏ฆ (3) = 3, ๏ฆ(โˆ’2) = 1 ๏ธโ†’4โˆ’ lim ๏ฆ (๏ธ) = 0, ๏ฆ (0) = 2, ๏ฆ (4) = 1 ๏ธโ†’4+ 13. lim ๏ฆ (๏ธ) = โˆ’โˆž, 14. lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’0 ๏ธโ†’2 lim ๏ฆ(๏ธ) = 5, lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’โˆ’2+ lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’2โˆ’ lim ๏ฆ (๏ธ) = โˆ’5 ๏ธโ†’โˆž lim ๏ฆ (๏ธ) = 0, ๏ธโ†’โˆž 16. lim ๏ฆ (๏ธ) = 3, 17. ๏ฆ (0) = 3, ๏ธโ†’โˆž ๏ธโ†’2โˆ’ lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’0+ lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ฆ is odd ๏ธโ†’โˆ’โˆž ๏ธโ†’2+ ๏ธโ†’0+ lim ๏ฆ(๏ธ) = 0, ๏ธโ†’โˆ’โˆž ๏ฆ (0) = 0 lim ๏ฆ(๏ธ) = 4, ๏ธโ†’0โˆ’ lim ๏ฆ (๏ธ) = โˆ’โˆž, lim ๏ฆ(๏ธ) = โˆž, ๏ธโ†’2 lim ๏ฆ (๏ธ) = 0, ๏ธโ†’โˆ’โˆž lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’โˆž lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’0+ lim ๏ฆ (๏ธ) = โˆ’โˆž ๏ธโ†’0โˆ’ 18. lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’3 lim ๏ฆ (๏ธ) = 2, ๏ธโ†’โˆž ๏ฆ (0) = 0, ๏ฆ is even lim ๏ฆ(๏ธ) = 2, ๏ธโ†’4+ 15. lim ๏ฆ (๏ธ) = โˆ’โˆž, lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’4โˆ’ lim ๏ฆ (๏ธ) = 3 ๏ธโ†’โˆž INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 88 ยค CHAPTER 2 LIMITS NOT FOR SALE ๏ธ2 โˆ’ 2๏ธ : ๏ธ2 โˆ’ ๏ธ โˆ’ 2 19. For ๏ฆ (๏ธ) = 20. For ๏ฆ (๏ธ) = ๏ธ2 โˆ’ 2๏ธ : ๏ธ2 โˆ’ ๏ธ โˆ’ 2 ๏ธ ๏ฆ (๏ธ) ๏ธ ๏ฆ (๏ธ) ๏ธ ๏ฆ (๏ธ) ๏ธ ๏ฆ (๏ธ) 2๏€บ5 0๏€บ714286 1๏€บ9 0๏€บ655172 0 0 2 2๏€บ1 0๏€บ677419 1๏€บ95 0๏€บ661017 2๏€บ05 0๏€บ672131 1๏€บ99 0๏€บ665552 โˆ’0๏€บ5 โˆ’1 โˆ’2 11 2๏€บ01 0๏€บ667774 1๏€บ995 0๏€บ666110 2๏€บ005 2๏€บ001 0๏€บ667221 0๏€บ666778 1๏€บ999 0๏€บ666556 โˆ’0๏€บ95 โˆ’19 โˆ’1๏€บ1 โˆ’0๏€บ999 โˆ’999 ๏ธ2 โˆ’ 2๏ธ It appears that lim ๏ธโ†’2 ๏ธ2 โˆ’ ๏ธ โˆ’ 2 = 0๏€บ6ฬ„ = 23 . โˆ’0๏€บ9 โˆ’0๏€บ99 โˆ’1๏€บ5 โˆ’9 โˆ’1๏€บ01 โˆ’99 โˆ’1๏€บ001 ๏ธ2 โˆ’ 2๏ธ It appears that lim ๏ธโ†’โˆ’1 ๏ธ2 โˆ’ ๏ธ โˆ’ 2 3 101 1001 does not exist since ๏ฆ (๏ธ) โ†’ โˆž as ๏ธ โ†’ โˆ’1โˆ’ and ๏ฆ (๏ธ) โ†’ โˆ’โˆž as ๏ธ โ†’ โˆ’1+ . 21. For ๏ฆ (๏ด) = ๏ฅ5๏ด โˆ’ 1 : ๏ด ๏ด ๏ฆ (๏ด) 0๏€บ5 22๏€บ364988 0๏€บ1 6๏€บ487213 0๏€บ01 5๏€บ127110 0๏€บ001 5๏€บ012521 0๏€บ0001 5๏€บ001250 It appears that lim ๏ดโ†’0 23. For ๏ฆ (๏ธ) = ๏ธ 22. For ๏ฆ (๏จ) = ๏ด ๏ฆ (๏ด) ๏จ (2 + ๏จ)5 โˆ’ 32 : ๏จ ๏ฆ (๏จ) ๏จ โˆ’0๏€บ5 1๏€บ835830 0๏€บ5 131๏€บ312500 โˆ’0๏€บ1 3๏€บ934693 0๏€บ1 88๏€บ410100 โˆ’0๏€บ01 4๏€บ877058 0๏€บ01 80๏€บ804010 โˆ’0๏€บ001 4๏€บ987521 0๏€บ001 80๏€บ080040 โˆ’0๏€บ0001 4๏€บ998750 0๏€บ0001 80๏€บ008000 ๏ฅ5๏ด โˆ’ 1 = 5. ๏ด It appears that lim ๏จโ†’0 โˆš ๏ธ+4โˆ’2 : ๏ธ 24. For ๏ฆ (๏ธ) = โˆ’0๏€บ5 48๏€บ812500 โˆ’0๏€บ01 79๏€บ203990 โˆ’0๏€บ0001 79๏€บ992000 โˆ’0๏€บ1 72๏€บ390100 โˆ’0๏€บ001 79๏€บ920040 (2 + ๏จ)5 โˆ’ 32 = 80. ๏จ tan 3๏ธ : tan 5๏ธ ๏ฆ (๏ธ) ๏ธ ๏ฆ (๏ธ) ๏ธ ๏ฆ(๏ธ) 1 0๏€บ236068 ยฑ0๏€บ2 0๏€บ439279 0๏€บ242641 โˆ’1 0๏€บ267949 0๏€บ5 0๏€บ248457 0๏€บ251582 0๏€บ249224 ยฑ0๏€บ05 0๏€บ591893 0๏€บ05 โˆ’0๏€บ1 ยฑ0๏€บ1 0๏€บ566236 0๏€บ1 0๏€บ01 0๏€บ249844 โˆ’0๏€บ01 0๏€บ250156 ยฑ0๏€บ01 ยฑ0๏€บ001 0๏€บ599680 0๏€บ599997 โˆ’0๏€บ5 0๏€บ258343 โˆ’0๏€บ05 0๏€บ250786 โˆš ๏ธ+4โˆ’2 = 0๏€บ25 = 14 . ๏ธโ†’0 ๏ธ It appears that lim ๏ฆ (๏จ) It appears that lim tan 3๏ธ ๏ธโ†’0 tan 5๏ธ = 0๏€บ6 = 35 . INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.3 LIMITS OF FUNCTIONS AT FINITE NUMBERS 25. For ๏ฆ (๏ธ) = ๏ธ6 โˆ’ 1 : ๏ธ10 โˆ’ 1 ๏ธ ๏ฆ (๏ธ) ๏ธ ๏ฆ (๏ธ) ๏ธ ๏ฆ (๏ธ) 0๏€บ5 0๏€บ985337 1๏€บ5 0๏€บ183369 0๏€บ5 1๏€บ527864 0๏€บ711120 26. For ๏ฆ (๏ธ) = 0๏€บ9 0๏€บ719397 1๏€บ1 0๏€บ484119 0๏€บ95 0๏€บ660186 1๏€บ05 0๏€บ540783 0๏€บ05 0๏€บ646496 0๏€บ99 0๏€บ612018 1๏€บ01 0๏€บ588022 0๏€บ01 0๏€บ599082 0๏€บ999 0๏€บ601200 1๏€บ001 0๏€บ598800 0๏€บ001 0๏€บ588906 ๏ธ ๏ฆ (๏ธ) โˆ’0๏€บ5 0๏€บ227761 โˆ’0๏€บ05 0๏€บ534447 โˆ’0๏€บ001 0๏€บ586669 โˆ’0๏€บ1 0๏€บ485984 โˆ’0๏€บ01 0๏€บ576706 9๏ธ โˆ’ 5๏ธ = 0๏€บ59. Later we will be able ๏ธโ†’0 ๏ธ ๏ธ6 โˆ’ 1 = 0๏€บ6 = 35 . ๏ธโ†’1 ๏ธ10 โˆ’ 1 It appears that lim It appears that lim ๏ธโ†’0 to show that the exact value is ln(9๏€ฝ5). cos 2๏ธ โˆ’ cos ๏ธ = โˆ’1๏€บ5. ๏ธ2 (b) ๏ธ โˆ’1๏€บ493759 ยฑ0๏€บ001 โˆ’1๏€บ499999 ยฑ0๏€บ0001 sin ๏ธ ๏ธโ†’0 sin ๏‚ผ๏ธ โ‰ˆ 0๏€บ32. ๏ฆ (๏ธ) ยฑ0๏€บ1 ยฑ0๏€บ01 28. (a) From the graphs, it seems that lim 89 9๏ธ โˆ’ 5๏ธ : ๏ธ 0๏€บ1 27. (a) From the graphs, it seems that lim ยค โˆ’1๏€บ499938 โˆ’1๏€บ500000 (b) ๏ธ ๏ฆ (๏ธ) ยฑ0๏€บ1 0๏€บ323068 ยฑ0๏€บ001 ยฑ0๏€บ0001 0๏€บ318310 0๏€บ318310 ยฑ0๏€บ01 0๏€บ318357 Later we will be able to show that the exact value is 29. 30. lim ๏ธ+2 ๏ธโ†’โˆ’3+ ๏ธ + 3 lim ๏ธ+2 ๏ธโ†’โˆ’3โˆ’ ๏ธ + 3 1 . ๏‚ผ = โˆ’โˆž since the numerator is negative and the denominator approaches 0 from the positive side as ๏ธ โ†’ โˆ’3+ . = โˆž since the numerator is negative and the denominator approaches 0 from the negative side as ๏ธ โ†’ โˆ’3โˆ’ . 31. lim 2โˆ’๏ธ 32. lim ๏ฅ๏ธ = โˆ’โˆž since the numerator is positive and the denominator approaches 0 from the negative side as ๏ธ โ†’ 5โˆ’ . (๏ธ โˆ’ 5)3 ๏ธโ†’1 (๏ธ โˆ’ 1)2 ๏ธโ†’5โˆ’ = โˆž since the numerator is positive and the denominator approaches 0 through positive values as ๏ธ โ†’ 1. 33. Let ๏ด = ๏ธ2 โˆ’ 9. Then as ๏ธ โ†’ 3+ , ๏ด โ†’ 0+ , and lim ln(๏ธ2 โˆ’ 9) = lim ln ๏ด = โˆ’โˆž by (8). ๏ธโ†’3+ 34. lim cot ๏ธ = lim cos ๏ธ ๏ธโ†’๏‚ผ โˆ’ sin ๏ธ ๏ธโ†’๏‚ผ โˆ’ ๏ดโ†’0+ = โˆ’โˆž since the numerator is negative and the denominator approaches 0 through positive values as ๏ธ โ†’ ๏‚ผโˆ’ . INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 90 35. NOT FOR SALE ยค CHAPTER 2 LIMITS lim ๏ธ csc ๏ธ = lim ๏ธ ๏ธโ†’2๏‚ผ โˆ’ sin ๏ธ ๏ธโ†’2๏‚ผ โˆ’ = โˆ’โˆž since the numerator is positive and the denominator approaches 0 through negative values as ๏ธ โ†’ 2๏‚ผ โˆ’ . 36. lim ๏ธโ†’2โˆ’ ๏ธ2 โˆ’ 2๏ธ ๏ธ2 โˆ’ 4๏ธ + 4 = lim ๏ธ(๏ธ โˆ’ 2) ๏ธโ†’2โˆ’ (๏ธ โˆ’ 2)2 = lim ๏ธ ๏ธโ†’2โˆ’ ๏ธ โˆ’ 2 = โˆ’โˆž since the numerator is positive and the denominator approaches 0 through negative values as ๏ธ โ†’ 2โˆ’ . 37. lim ๏ธโ†’2+ (๏ธ โˆ’ 4)(๏ธ + 2) ๏ธ2 โˆ’ 2๏ธ โˆ’ 8 = lim = โˆž since the numerator is negative and the denominator approaches 0 through ๏ธ2 โˆ’ 5๏ธ + 6 ๏ธโ†’2+ (๏ธ โˆ’ 3)(๏ธ โˆ’ 2) negative values as ๏ธ โ†’ 2+ . 38. (a) The denominator of ๏น = ๏ธ2 + 1 ๏ธ2 + 1 is equal to zero when = 3๏ธ โˆ’ 2๏ธ2 ๏ธ(3 โˆ’ 2๏ธ) (b) ๏ธ = 0 and ๏ธ = 32 (and the numerator is not), so ๏ธ = 0 and ๏ธ = 1๏€บ5 are vertical asymptotes of the function. 39. (a) ๏ฆ (๏ธ) = 1 . ๏ธ3 โˆ’ 1 ๏ธ 0๏€บ5 From these calculations, it seems that 0๏€บ9 lim ๏ฆ (๏ธ) = โˆ’โˆž and lim ๏ฆ (๏ธ) = โˆž. 0๏€บ99 ๏ธโ†’1โˆ’ ๏ธโ†’1+ 0๏€บ999 0๏€บ9999 0๏€บ99999 ๏ฆ (๏ธ) ๏ธ ๏ฆ (๏ธ) โˆ’1๏€บ14 1๏€บ5 0๏€บ42 โˆ’3๏€บ69 1๏€บ1 3๏€บ02 โˆ’33๏€บ7 1๏€บ01 33๏€บ0 โˆ’333๏€บ7 1๏€บ001 333๏€บ0 โˆ’3333๏€บ7 1๏€บ0001 3333๏€บ0 โˆ’33,333๏€บ7 1๏€บ00001 33,333๏€บ3 (b) If ๏ธ is slightly smaller than 1, then ๏ธ3 โˆ’ 1 will be a negative number close to 0, and the reciprocal of ๏ธ3 โˆ’ 1, that is, ๏ฆ (๏ธ), will be a negative number with large absolute value. So lim ๏ฆ(๏ธ) = โˆ’โˆž. ๏ธโ†’1โˆ’ 3 If ๏ธ is slightly larger than 1, then ๏ธ โˆ’ 1 will be a small positive number, and its reciprocal, ๏ฆ (๏ธ), will be a large positive number. So lim ๏ฆ (๏ธ) = โˆž. ๏ธโ†’1+ (c) It appears from the graph of ๏ฆ that lim ๏ฆ (๏ธ) = โˆ’โˆž and lim ๏ฆ (๏ธ) = โˆž. ๏ธโ†’1โˆ’ ๏ธโ†’1+ 40. (a) No, because the calculator-produced graph of ๏ฆ (๏ธ) = ๏ฅ๏ธ + ln |๏ธ โˆ’ 4| looks like an exponential function, but the graph of ๏ฆ has an infinite discontinuity at ๏ธ = 4. A second graph, obtained by increasing the numpoints option in Maple, begins to reveal the discontinuity at ๏ธ = 4. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.3 LIMITS OF FUNCTIONS AT FINITE NUMBERS ยค 91 (b) There isnโ€™t a single graph that shows all the features of ๏ฆ . Several graphs are needed since ๏ฆ looks like ln |๏ธ โˆ’ 4| for large negative values of ๏ธ and like ๏ฅ๏ธ for ๏ธ ๏€พ 5, but yet has the infinite discontiuity at ๏ธ = 4. A hand-drawn graph, though distorted, might be better at revealing the main features of this function. 41. (a) Let ๏จ(๏ธ) = (1 + ๏ธ)1๏€ฝ๏ธ . ๏ธ โˆ’0๏€บ001 โˆ’0๏€บ0001 โˆ’0๏€บ00001 โˆ’0๏€บ000001 0๏€บ000001 0๏€บ00001 0๏€บ0001 0๏€บ001 (b) ๏จ(๏ธ) 2๏€บ71964 2๏€บ71842 2๏€บ71830 2๏€บ71828 2๏€บ71828 2๏€บ71827 2๏€บ71815 2๏€บ71692 It appears that lim (1 + ๏ธ)1๏€ฝ๏ธ โ‰ˆ 2๏€บ71828 which is approximately ๏ฅ. ๏ธโ†’0 In Section 3.7 we will see that the value of the limit is exactly ๏ฅ. 42. For ๏ฆ (๏ธ) = ๏ธ2 โˆ’ (2๏ธ๏€ฝ1000): (a) ๏ธ ๏ฆ (๏ธ) 1 0๏€บ8 0๏€บ6 0๏€บ4 0๏€บ2 0๏€บ1 0๏€บ998000 0๏€บ638259 0๏€บ358484 0๏€บ158680 0๏€บ038851 0๏€บ008928 0๏€บ05 0๏€บ001465 (b) ๏ฆ(๏ธ) 0๏€บ04 0๏€บ02 0๏€บ01 0๏€บ005 0๏€บ003 0๏€บ000572 โˆ’0๏€บ000614 โˆ’0๏€บ000907 โˆ’0๏€บ000978 โˆ’0๏€บ000993 0๏€บ001 It appears that lim ๏ฆ (๏ธ) = 0. ๏ธโ†’0 ๏ธ โˆ’0๏€บ001000 It appears that lim ๏ฆ(๏ธ) = โˆ’0๏€บ001. ๏ธโ†’0 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 92 ยค NOT FOR SALE CHAPTER 2 LIMITS 43. No matter how many times we zoom in toward the origin, the graphs of ๏ฆ (๏ธ) = sin(๏‚ผ๏€ฝ๏ธ) appear to consist of almost-vertical lines. This indicates more and more frequent oscillations as ๏ธ โ†’ 0. ๏ฐ ๏ญ0 . As ๏ถ โ†’ ๏ฃโˆ’ , 1 โˆ’ ๏ถ 2๏€ฝ๏ฃ2 โ†’ 0+ , and ๏ญ โ†’ โˆž. 1 โˆ’ ๏ถ2๏€ฝ๏ฃ2 44. lim ๏ญ = lim ๏ฐ ๏ถโ†’๏ฃโˆ’ ๏ถโ†’๏ฃโˆ’ 2.4 Limits: Algebraic Methods 1. (a) lim [๏ฆ (๏ธ) + 5๏ง(๏ธ)] = lim ๏ฆ (๏ธ) + lim [5๏ง(๏ธ)] [Limit Law 1] = lim ๏ฆ (๏ธ) + 5 lim ๏ง(๏ธ) [Limit Law 3] ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ฉ3 lim ๏ง(๏ธ) [Limit Law 6] lim [3๏ฆ (๏ธ)] 3๏ฆ (๏ธ) ๏ธโ†’2 = ๏ธโ†’2 ๏ง(๏ธ) lim ๏ง(๏ธ) [Limit Law 5] (b) lim [๏ง(๏ธ)]3 = ๏ธโ†’2 ๏จ ๏ธโ†’2 = ( โˆ’2)3 = โˆ’8 = 4 + 5(โˆ’2) = โˆ’6 (c) lim ๏ธโ†’2 ๏ฑ ๏ฐ ๏ฆ (๏ธ) = lim ๏ฆ (๏ธ) ๏ธโ†’2 = (d) lim [Limit Law 11] ๏ธโ†’2 โˆš 4=2 3 lim ๏ฆ (๏ธ) ๏ธโ†’2 = lim ๏ง(๏ธ) [Limit Law 3] ๏ธโ†’2 = (e) Because the limit of the denominator is 0, we canโ€™t use Limit Law 5. The given limit, lim ๏ง(๏ธ) ๏ธโ†’2 ๏จ(๏ธ) 3(4) = โˆ’6 โˆ’2 lim [๏ง(๏ธ) ๏จ(๏ธ)] ๏ง(๏ธ) ๏จ(๏ธ) ๏ธโ†’2 = ๏ธโ†’2 ๏ฆ(๏ธ) lim ๏ฆ (๏ธ) (f) lim [Limit Law 5] ๏ธโ†’2 , does not exist because the denominator approaches 0 = lim ๏ง(๏ธ) ยท lim ๏จ(๏ธ) ๏ธโ†’2 ๏ธโ†’2 lim ๏ฆ (๏ธ) [Limit Law 4] ๏ธโ†’2 while the numerator approaches a nonzero number. = โˆ’2 ยท 0 =0 4 2. (a) lim [๏ฆ(๏ธ) + ๏ง(๏ธ)] = lim ๏ฆ (๏ธ) + lim ๏ง(๏ธ) = 2 + 0 = 2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 (b) lim ๏ง(๏ธ) does not exist since its left- and right-hand limits are not equal, so the given limit does not exist. ๏ธโ†’1 (c) lim [๏ฆ(๏ธ)๏ง(๏ธ)] = lim ๏ฆ (๏ธ) ยท lim ๏ง(๏ธ) = 0 ยท 1๏€บ3 = 0 ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.4 LIMITS: ALGEBRAIC METHODS ยค (d) Since lim ๏ง(๏ธ) = 0 and ๏ง is in the denominator, but lim ๏ฆ (๏ธ) = โˆ’1 6= 0, the given limit does not exist. ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏จ (e) lim ๏ธ3 ๏ฆ (๏ธ) = lim ๏ธ3 ๏ธโ†’2 ๏ธโ†’2 ๏ฉ๏จ ๏ฉ lim ๏ฆ (๏ธ) = 23 ยท 2 = 16 ๏ธโ†’2 ๏ฑ ๏ฐ โˆš (f) lim 3 + ๏ฆ (๏ธ) = 3 + lim ๏ฆ (๏ธ) = 3 + 1 = 2 ๏ธโ†’1 ๏ธโ†’1 3. lim (3๏ธ4 + 2๏ธ2 โˆ’ ๏ธ + 1) = lim 3๏ธ4 + lim 2๏ธ2 โˆ’ lim ๏ธ + lim 1 ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 [Limit Laws 1 and 2] ๏ธโ†’โˆ’2 = 3 lim ๏ธ4 + 2 lim ๏ธ2 โˆ’ lim ๏ธ + lim 1 [3] = 3(โˆ’2)4 + 2(โˆ’2)2 โˆ’ (โˆ’2) + (1) [9, 8, and 7] ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 = 48 + 8 + 2 + 1 = 59 4. lim (๏ด2 + 1)3 (๏ด + 3)5 = lim (๏ด2 + 1)3 ยท lim (๏ด + 3)5 ๏ดโ†’โˆ’1 ๏ดโ†’โˆ’1 = = 5. lim ๏ธโ†’2 ๏ฒ ๏ฒ 2๏ธ2 + 1 = 3๏ธ โˆ’ 2 ๏‚ท ๏ดโ†’โˆ’1 ๏‚ท [Limit Law 4] ๏ดโ†’โˆ’1 ๏‚ธ3 ๏‚ท ๏‚ธ5 lim (๏ด2 + 1) ยท lim (๏ด + 3) ๏ดโ†’โˆ’1 ๏‚ธ3 ๏‚ท ๏‚ธ5 lim ๏ด2 + lim 1 ยท lim ๏ด + lim 3 ๏ดโ†’โˆ’1 ๏ดโ†’โˆ’1 ๏ดโ†’โˆ’1 ๏ดโ†’โˆ’1 ๏‚ฃ ๏‚ค3 = (โˆ’1)2 + 1 ยท [โˆ’1 + 3]5 = 8 ยท 32 = 256 2๏ธ2 + 1 ๏ธโ†’2 3๏ธ โˆ’ 2 ๏ถ ๏ต lim (2๏ธ2 + 1) ๏ต ๏ธโ†’2 =๏ด lim (3๏ธ โˆ’ 2) lim [6] [1] [9, 7, and 8] [Limit Law 11] [5] ๏ธโ†’2 ๏ถ ๏ต 2 lim ๏ธ2 + lim 1 ๏ต ๏ธโ†’2 ๏ธโ†’2 =๏ด 3 lim ๏ธ โˆ’ lim 2 [1, 2, and 3] 2(2)2 + 1 = 3(2) โˆ’ 2 [9, 8, and 7] ๏ธโ†’2 ๏ณ = ๏ธโ†’2 ๏ฒ lim cos4 ๏ธ cos4 ๏ธ ๏ธโ†’0 6. lim = ๏ธโ†’0 5 + 2๏ธ3 lim (5 + 2๏ธ3 ) ๏ธโ†’0 ๏‚ณ ๏‚ด4 lim cos ๏ธ ๏ธโ†’0 = lim 5 + 2 lim ๏ธ3 ๏ธโ†’0 = 7. lim ๏‚ต sin ๏‚ต = ๏‚ตโ†’๏‚ผ๏€ฝ2 lim ๏‚ต ๏‚ตโ†’๏‚ผ๏€ฝ2 ๏‚ผ ๏‚ผ ยท sin 2 2 ๏‚ผ = 2 = [5] [6, 1, and 3] ๏ธโ†’0 14 1 = 5 + 2(0)3 5 ๏‚ต 9 3 = 4 2 ๏‚ถ๏‚ต [7, 9, and Equation 5] lim sin ๏‚ต ๏‚ตโ†’๏‚ผ๏€ฝ2 ๏‚ถ [4] [8 and Direct Substitution Property] INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 93 94 ยค CHAPTER 2 LIMITS NOT FOR SALE 8. (a) The left-hand side of the equation is not defined for ๏ธ = 2, but the right-hand side is. (b) Since the equation holds for all ๏ธ 6= 2, it follows that both sides of the equation approach the same limit as ๏ธ โ†’ 2, just as in Example 3. Remember that in finding lim ๏ฆ (๏ธ), we never consider ๏ธ = ๏ก. ๏ธโ†’๏ก ๏ธ2 โˆ’ 6๏ธ + 5 (๏ธ โˆ’ 5)(๏ธ โˆ’ 1) = lim = lim (๏ธ โˆ’ 1) = 5 โˆ’ 1 = 4 ๏ธโ†’5 ๏ธโ†’5 ๏ธโ†’5 ๏ธโˆ’5 ๏ธโˆ’5 9. lim 10. lim ๏ธ2 โˆ’ 4๏ธ ๏ธโ†’4 ๏ธ2 โˆ’ 3๏ธ โˆ’ 4 = lim ๏ธ(๏ธ โˆ’ 4) ๏ธโ†’4 (๏ธ โˆ’ 4)(๏ธ + 1) = lim ๏ธ ๏ธโ†’4 ๏ธ + 1 = 4 4 = 4+1 5 ๏ธ2 โˆ’ 5๏ธ + 6 does not exist since ๏ธ โˆ’ 5 โ†’ 0, but ๏ธ2 โˆ’ 5๏ธ + 6 โ†’ 6 as ๏ธ โ†’ 5. ๏ธโ†’5 ๏ธโˆ’5 11. lim 2๏ธ2 + 3๏ธ + 1 (2๏ธ + 1)(๏ธ + 1) 2๏ธ + 1 2(โˆ’1) + 1 โˆ’1 1 = lim = lim = = = ๏ธโ†’โˆ’1 ๏ธ2 โˆ’ 2๏ธ โˆ’ 3 ๏ธโ†’โˆ’1 (๏ธ โˆ’ 3)(๏ธ + 1) ๏ธโ†’โˆ’1 ๏ธ โˆ’ 3 โˆ’1 โˆ’ 3 โˆ’4 4 12. lim 13. lim ๏ด2 โˆ’ 9 ๏ดโ†’โˆ’3 2๏ด2 + 7๏ด + 3 = lim (๏ด + 3)(๏ด โˆ’ 3) ๏ดโ†’โˆ’3 (2๏ด + 1)(๏ด + 3) = lim ๏ดโˆ’3 ๏ดโ†’โˆ’3 2๏ด + 1 = โˆ’3 โˆ’ 3 โˆ’6 6 = = 2(โˆ’3) + 1 โˆ’5 5 ๏ธ2 โˆ’ 4๏ธ does not exist since ๏ธ2 โˆ’ 3๏ธ โˆ’ 4 โ†’ 0 but ๏ธ2 โˆ’ 4๏ธ โ†’ 5 as ๏ธ โ†’ โˆ’1. ๏ธโ†’โˆ’1 ๏ธ2 โˆ’ 3๏ธ โˆ’ 4 14. lim (4 + ๏จ)2 โˆ’ 16 (16 + 8๏จ + ๏จ2 ) โˆ’ 16 8๏จ + ๏จ2 ๏จ(8 + ๏จ) = lim = lim = lim = lim (8 + ๏จ) = 8 + 0 = 8 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏จ ๏‚ก ๏‚ข 8 + 12๏จ + 6๏จ2 + ๏จ3 โˆ’ 8 (2 + ๏จ)3 โˆ’ 8 12๏จ + 6๏จ2 + ๏จ3 = lim = lim 16. lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏‚ก ๏‚ข 2 = lim 12 + 6๏จ + ๏จ = 12 + 0 + 0 = 12 15. lim ๏จโ†’0 17. By the formula for the sum of cubes, we have lim ๏ธ+2 ๏ธโ†’โˆ’2 ๏ธ3 + 8 ๏ธ+2 = lim ๏ธโ†’โˆ’2 (๏ธ + 2)(๏ธ2 โˆ’ 2๏ธ + 4) = lim 1 ๏ธโ†’โˆ’2 ๏ธ2 โˆ’ 2๏ธ + 4 = 1 1 = . 4+4+4 12 โˆš โˆš โˆš (1 + ๏จ) โˆ’ 1 1+๏จโˆ’1 1+๏จโˆ’1 1+๏จ+1 ๏จ ๏‚ข = lim ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš = lim ยทโˆš ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จโ†’0 ๏จ ๏จ ๏จ 1+๏จ+1 1+๏จ+1 1+๏จ+1 18. lim 1 1 1 = = โˆš = lim โˆš ๏จโ†’0 2 1+๏จ+1 1+1 1 ๏ธ+4 1 + ๏ธ+4 1 1 1 4 ๏ธ 19. lim = lim 4๏ธ = lim = lim = =โˆ’ ๏ธโ†’โˆ’4 4 + ๏ธ ๏ธโ†’โˆ’4 4 + ๏ธ ๏ธโ†’โˆ’4 4๏ธ(4 + ๏ธ) ๏ธโ†’โˆ’4 4๏ธ 4(โˆ’4) 16 20. lim ๏ธโ†’โˆ’1 ๏ธ2 + 2๏ธ + 1 (๏ธ + 1)2 (๏ธ + 1)2 = lim = lim 4 2 2 2 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธ โˆ’1 (๏ธ + 1)(๏ธ โˆ’ 1) (๏ธ + 1)(๏ธ + 1)(๏ธ โˆ’ 1) ๏ธ+1 = lim ๏ธโ†’โˆ’1 (๏ธ2 + 1)(๏ธ โˆ’ 1) = 0 =0 2(โˆ’2) โˆš โˆš โˆš 4โˆ’ ๏ธ (4 โˆ’ ๏ธ )(4 + ๏ธ ) 16 โˆ’ ๏ธ โˆš โˆš = lim = lim 2 ๏ธโ†’16 16๏ธ โˆ’ ๏ธ ๏ธโ†’16 (16๏ธ โˆ’ ๏ธ2 )(4 + ๏ธ ) ๏ธโ†’16 ๏ธ(16 โˆ’ ๏ธ)(4 + ๏ธ ) 21. lim = lim 1 ๏ธโ†’16 ๏ธ(4 + 1 1 1 โˆš โˆš ๏‚ข = = = ๏‚ก 16(8) 128 ๏ธ) 16 4 + 16 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.4 22. lim ๏‚ต 1 1 โˆ’ 2 ๏ด ๏ด +๏ด 23. lim ๏‚ต 1 1 โˆš โˆ’ ๏ด ๏ด 1+๏ด ๏ดโ†’0 ๏ดโ†’0 ๏‚ถ = lim ๏ดโ†’0 ๏‚ถ ๏‚ต 1 1 โˆ’ ๏ด ๏ด(๏ด + 1) ๏‚ถ = lim ๏ดโ†’0 LIMITS: ALGEBRAIC METHODS ยค ๏ด+1โˆ’1 1 1 = lim = =1 ๏ดโ†’0 ๏ด + 1 ๏ด(๏ด + 1) 0+1 ๏‚ก ๏‚ข๏‚ก ๏‚ข โˆš โˆš โˆš 1โˆ’ 1+๏ด 1+ 1+๏ด 1โˆ’ 1+๏ด โˆ’๏ด ๏‚ก ๏‚ข = lim โˆš ๏‚ก ๏‚ข โˆš โˆš โˆš โˆš = lim ๏ดโ†’0 ๏ด ๏ดโ†’0 ๏ดโ†’0 ๏ด 1+๏ด ๏ด ๏ด+1 1+ 1+๏ด 1+๏ด 1+ 1+๏ด = lim โˆ’1 โˆ’1 1 ๏‚ก ๏‚ข = โˆš ๏‚ก ๏‚ข =โˆ’ โˆš โˆš = lim โˆš ๏ดโ†’0 2 1+๏ด 1+ 1+๏ด 1+0 1+ 1+0 24. ๏‚กโˆš ๏‚ข๏‚กโˆš ๏‚ข โˆš ๏ธ2 + 9 โˆ’ 5 ๏ธ2 + 9 + 5 ๏ธ2 + 9 โˆ’ 5 (๏ธ2 + 9) โˆ’ 25 ๏‚กโˆš ๏‚ข ๏‚กโˆš ๏‚ข = lim = lim 2 ๏ธโ†’โˆ’4 ๏ธโ†’โˆ’4 ๏ธโ†’โˆ’4 (๏ธ + 4) ๏ธ+4 (๏ธ + 4) ๏ธ + 9 + 5 ๏ธ2 + 9 + 5 lim ๏ธ2 โˆ’ 16 (๏ธ + 4)(๏ธ โˆ’ 4) ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš ๏‚ข 2 ๏ธโ†’โˆ’4 (๏ธ + 4) ๏ธโ†’โˆ’4 ๏ธ +9+5 (๏ธ + 4) ๏ธ2 + 9 + 5 = lim โˆ’4 โˆ’ 4 โˆ’8 ๏ธโˆ’4 4 = โˆš = = lim โˆš =โˆ’ ๏ธโ†’โˆ’4 5+5 5 16 + 9 + 5 ๏ธ2 + 9 + 5 25. (a) (b) ๏ธ 2 lim โˆš โ‰ˆ 3 1 + 3๏ธ โˆ’ 1 ๏ธโ†’0 (c) lim ๏ธโ†’0 ๏‚ต ๏ธ ๏ฆ (๏ธ) โˆ’0๏€บ001 โˆ’0๏€บ0001 โˆ’0๏€บ00001 โˆ’0๏€บ000001 0๏€บ000001 0๏€บ00001 0๏€บ0001 0๏€บ001 0๏€บ6661663 0๏€บ6666167 0๏€บ6666617 0๏€บ6666662 0๏€บ6666672 0๏€บ6666717 0๏€บ6667167 0๏€บ6671663 The limit appears to be 2 . 3 ๏‚กโˆš ๏‚ข ๏‚กโˆš ๏‚ข โˆš ๏‚ถ ๏ธ 1 + 3๏ธ + 1 ๏ธ 1 + 3๏ธ + 1 ๏ธ 1 + 3๏ธ + 1 โˆš = lim ยทโˆš = lim ๏ธโ†’0 ๏ธโ†’0 (1 + 3๏ธ) โˆ’ 1 3๏ธ 1 + 3๏ธ โˆ’ 1 1 + 3๏ธ + 1 ๏‚กโˆš ๏‚ข 1 lim 1 + 3๏ธ + 1 3 ๏ธโ†’0 ๏‚ธ ๏‚ท 1 ๏ฑ = lim (1 + 3๏ธ) + lim 1 ๏ธโ†’0 ๏ธโ†’0 3 ๏‚ถ ๏‚ต 1 ๏ฑ = lim 1 + 3 lim ๏ธ + 1 ๏ธโ†’0 ๏ธโ†’0 3 = = = ๏‚ข 1 ๏‚กโˆš 1+3ยท0+1 3 [Limit Law 3] [1 and 11] [1, 3, and 7] [7 and 8] 1 2 (1 + 1) = 3 3 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 95 96 ยค NOT FOR SALE CHAPTER 2 LIMITS 26. (a) (b) โˆš โˆš 3+๏ธโˆ’ 3 โ‰ˆ 0๏€บ29 ๏ธโ†’0 ๏ธ lim ๏ธ ๏ฆ (๏ธ) โˆ’0๏€บ001 โˆ’0๏€บ0001 โˆ’0๏€บ00001 โˆ’0๏€บ000001 0๏€บ000001 0๏€บ00001 0๏€บ0001 0๏€บ001 0๏€บ2886992 0๏€บ2886775 0๏€บ2886754 0๏€บ2886752 0๏€บ2886751 0๏€บ2886749 0๏€บ2886727 0๏€บ2886511 The limit appears to be approximately 0๏€บ2887. โˆš โˆš โˆš ๏‚ถ ๏‚ตโˆš (3 + ๏ธ) โˆ’ 3 3+๏ธโˆ’ 3 3+๏ธ+ 3 1 โˆš โˆš ๏‚ข = lim โˆš โˆš (c) lim = lim ๏‚กโˆš ยทโˆš ๏ธโ†’0 ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธ 3+๏ธ+ 3 3+๏ธ+ 3 3+๏ธ+ 3 = lim 1 ๏ธโ†’0 โˆš โˆš lim 3 + ๏ธ + lim 3 ๏ธโ†’0 = ๏ฑ [Limit Laws 5 and 1] ๏ธโ†’0 1 lim (3 + ๏ธ) + ๏ธโ†’0 โˆš 3 1 โˆš = โˆš 3+0+ 3 1 = โˆš 2 3 [7 and 11] [1, 7, and 8] 27. Let ๏ฆ(๏ธ) = โˆ’๏ธ2 , ๏ง(๏ธ) = ๏ธ2 cos 20๏‚ผ๏ธ and ๏จ(๏ธ) = ๏ธ2 . Then โˆ’1 โ‰ค cos 20๏‚ผ๏ธ โ‰ค 1 โ‡’ โˆ’๏ธ2 โ‰ค ๏ธ2 cos 20๏‚ผ๏ธ โ‰ค ๏ธ2 โ‡’ ๏ฆ (๏ธ) โ‰ค ๏ง(๏ธ) โ‰ค ๏จ(๏ธ). So since lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0, by the Squeeze Theorem we have ๏ธโ†’0 ๏ธโ†’0 lim ๏ง(๏ธ) = 0. ๏ธโ†’0 โˆš โˆš โˆš ๏ธ3 + ๏ธ2 sin(๏‚ผ๏€ฝ๏ธ), and ๏จ(๏ธ) = ๏ธ3 + ๏ธ2 . Then โˆš โˆš โˆš โˆ’1 โ‰ค sin(๏‚ผ๏€ฝ๏ธ) โ‰ค 1 โ‡’ โˆ’ ๏ธ3 + ๏ธ2 โ‰ค ๏ธ3 + ๏ธ2 sin(๏‚ผ๏€ฝ๏ธ) โ‰ค ๏ธ3 + ๏ธ2 โ‡’ 28. Let ๏ฆ(๏ธ) = โˆ’ ๏ธ3 + ๏ธ2 , ๏ง(๏ธ) = ๏ฆ (๏ธ) โ‰ค ๏ง(๏ธ) โ‰ค ๏จ(๏ธ). So since lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0, by the Squeeze Theorem ๏ธโ†’0 ๏ธโ†’0 we have lim ๏ง(๏ธ) = 0. ๏ธโ†’0 ๏‚ก ๏‚ข 29. We have lim (4๏ธ โˆ’ 9) = 4(4) โˆ’ 9 = 7 and lim ๏ธ2 โˆ’ 4๏ธ + 7 = 42 โˆ’ 4(4) + 7 = 7. Since 4๏ธ โˆ’ 9 โ‰ค ๏ฆ (๏ธ) โ‰ค ๏ธ2 โˆ’ 4๏ธ + 7 ๏ธโ†’4 ๏ธโ†’4 for ๏ธ โ‰ฅ 0, lim ๏ฆ (๏ธ) = 7 by the Squeeze Theorem. ๏ธโ†’4 30. We have lim (2๏ธ) = 2(1) = 2 and lim (๏ธ4 โˆ’ ๏ธ2 + 2) = 14 โˆ’ 12 + 2 = 2. Since 2๏ธ โ‰ค ๏ง(๏ธ) โ‰ค ๏ธ4 โˆ’ ๏ธ2 + 2 for all ๏ธ, ๏ธโ†’1 ๏ธโ†’1 lim ๏ง(๏ธ) = 2 by the Squeeze Theorem. ๏ธโ†’1 31. โˆ’1 โ‰ค cos(2๏€ฝ๏ธ) โ‰ค 1 ๏‚ก ๏‚ข โ‡’ โˆ’๏ธ4 โ‰ค ๏ธ4 cos(2๏€ฝ๏ธ) โ‰ค ๏ธ4 . Since lim โˆ’๏ธ4 = 0 and lim ๏ธ4 = 0, we have ๏‚ค ๏‚ฃ lim ๏ธ4 cos(2๏€ฝ๏ธ) = 0 by the Squeeze Theorem. ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.4 32. (a) lim ๏ญ(๏ด) = lim ๏ดโ†’0 ๏ดโ†’0 LIMITS: ALGEBRAIC METHODS ๏‚ฃ 1 โˆ’๏ด ๏‚ค (sin ๏ด โˆ’ cos ๏ด) + 12 = 12 (1)(0 โˆ’ 1) + 12 = 0 2๏ฅ This indicates that the concentration of mRNA at ๏ด = 0 is zero. ๏‚ด ๏‚ณ (b) lim ๏ญ(๏ด) = lim 21 ๏ฅโˆ’๏ด (sin ๏ด โˆ’ cos ๏ด) + 12 = 12 lim ๏ฅโˆ’๏ด sin ๏ด โˆ’ lim ๏ฅโˆ’๏ด cos ๏ด + 12 ๏ดโ†’โˆž ยค ๏ดโ†’โˆž ๏ดโ†’โˆž ๏ดโ†’โˆž The Product Law for limits cannot be used since lim๏ดโ†’โˆž sin ๏ด and lim๏ดโ†’โˆž cos ๏ด does not exist. We can use the Squeeze theorem instead. ๏‚ก ๏‚ข โˆ’1 โ‰ค sin ๏ด โ‰ค 1 โ‡’ โˆ’๏ฅโˆ’๏ด โ‰ค ๏ฅโˆ’๏ด sin ๏ด โ‰ค ๏ฅโˆ’๏ด . Since lim ยฑ๏ฅโˆ’๏ด = 0, we have lim ๏ฅโˆ’๏ด sin ๏ด = 0 by the Squeeze ๏ดโ†’โˆž ๏ดโ†’โˆž Theorem. Replacing sin ๏ด with cos ๏ด in the above argument, we similarly find that lim ๏ฅโˆ’๏ด cos ๏ด = 0๏€บ Therefore, ๏ดโ†’โˆž lim ๏ญ(๏ด) = 12 (0 โˆ’ 0) + 12 = 12 ๏€บ This indicates that the concentration of mRNA in the long-term is 0๏€บ5. ๏ดโ†’โˆž 33. |๏ธ โˆ’ 3| = ๏€จ ๏ธโˆ’3 if ๏ธ โˆ’ 3 โ‰ฅ 0 โˆ’(๏ธ โˆ’ 3) if ๏ธ โˆ’ 3 ๏€ผ 0 = ๏€จ ๏ธโˆ’3 if ๏ธ โ‰ฅ 3 3โˆ’๏ธ if ๏ธ ๏€ผ 3 Thus, lim (2๏ธ + |๏ธ โˆ’ 3|) = lim (2๏ธ + ๏ธ โˆ’ 3) = lim (3๏ธ โˆ’ 3) = 3(3) โˆ’ 3 = 6 and ๏ธโ†’3+ ๏ธโ†’3+ ๏ธโ†’3+ lim (2๏ธ + |๏ธ โˆ’ 3|) = lim (2๏ธ + 3 โˆ’ ๏ธ) = lim (๏ธ + 3) = 3 + 3 = 6. Since the left and right limits are equal, ๏ธโ†’3โˆ’ ๏ธโ†’3โˆ’ ๏ธโ†’3โˆ’ lim (2๏ธ + |๏ธ โˆ’ 3|) = 6. ๏ธโ†’3 34. |๏ธ + 6| = ๏€จ ๏ธ+6 if ๏ธ + 6 โ‰ฅ 0 โˆ’(๏ธ + 6) if ๏ธ + 6 ๏€ผ 0 = ๏€จ ๏ธ+6 if ๏ธ โ‰ฅ โˆ’6 โˆ’(๏ธ + 6) if ๏ธ ๏€ผ โˆ’6 Weโ€™ll look at the one-sided limits. 2๏ธ + 12 2(๏ธ + 6) lim = lim = 2 and ๏ธ+6 ๏ธโ†’โˆ’6+ |๏ธ + 6| ๏ธโ†’โˆ’6+ lim ๏ธโ†’โˆ’6โˆ’ 2๏ธ + 12 2(๏ธ + 6) = lim = โˆ’2 |๏ธ + 6| ๏ธโ†’โˆ’6โˆ’ โˆ’(๏ธ + 6) 2๏ธ + 12 does not exist. |๏ธ + 6| ๏‚ต ๏‚ต ๏‚ถ ๏‚ถ 1 1 2 1 1 35. Since |๏ธ| = โˆ’๏ธ for ๏ธ ๏€ผ 0, we have lim โˆ’ = lim โˆ’ = lim , which does not exist since the ๏ธ |๏ธ| ๏ธ โˆ’๏ธ ๏ธโ†’0โˆ’ ๏ธโ†’0โˆ’ ๏ธโ†’0โˆ’ ๏ธ The left and right limits are different, so lim ๏ธโ†’โˆ’6 denominator approaches 0 and the numerator does not. 36. Since |๏ธ| = โˆ’๏ธ for ๏ธ ๏€ผ 0, we have lim ๏ธโ†’โˆ’2 2 โˆ’ |๏ธ| 2 โˆ’ (โˆ’๏ธ) 2+๏ธ = lim = lim = lim 1 = 1. ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 2 + ๏ธ ๏ธโ†’โˆ’2 2+๏ธ 2+๏ธ ๏ธ2 + ๏ธ โˆ’ 6 (๏ธ + 3)(๏ธ โˆ’ 2) = lim |๏ธ โˆ’ 2| |๏ธ โˆ’ 2| ๏ธโ†’2+ ๏ธโ†’2+ 37. (a) (i) lim ๏ง(๏ธ) = lim ๏ธโ†’2+ = lim ๏ธโ†’2+ (๏ธ + 3)(๏ธ โˆ’ 2) ๏ธโˆ’2 [since ๏ธ โˆ’ 2 ๏€พ 0 if ๏ธ โ†’ 2+ ] = lim (๏ธ + 3) = 5 ๏ธโ†’2+ (ii) The solution is similar to the solution in part (i), but now |๏ธ โˆ’ 2| = 2 โˆ’ ๏ธ since ๏ธ โˆ’ 2 ๏€ผ 0 if ๏ธ โ†’ 2โˆ’ . Thus, lim ๏ง(๏ธ) = lim โˆ’(๏ธ + 3) = โˆ’5. ๏ธโ†’2โˆ’ ๏ธโ†’2โˆ’ (b) Since the right-hand and left-hand limits of ๏ง at ๏ธ = 2 (c) are not equal, lim ๏ง(๏ธ) does not exist. ๏ธโ†’2 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 97 98 NOT FOR SALE ยค CHAPTER 2 LIMITS ๏€จ 2 ๏ธ +1 38. (a) ๏ฆ (๏ธ) = (๏ธ โˆ’ 2)2 if ๏ธ ๏€ผ 1 if ๏ธ โ‰ฅ 1 lim ๏ฆ (๏ธ) = lim (๏ธ2 + 1) = 12 + 1 = 2, ๏ธโ†’1โˆ’ lim ๏ฆ (๏ธ) = lim (๏ธ โˆ’ 2)2 = (โˆ’1)2 = 1 ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธโ†’1+ (b) Since the right-hand and left-hand limits of ๏ฆ at ๏ธ = 1 (c) are not equal, lim ๏ฆ(๏ธ) does not exist. ๏ธโ†’1 39. lim ๏ธโ†’0 sin 3๏ธ 3 sin 3๏ธ = lim ๏ธโ†’0 ๏ธ 3๏ธ sin 3๏ธ = 3 lim 3๏ธโ†’0 3๏ธ sin ๏‚ต = 3 lim ๏‚ตโ†’0 ๏‚ต = 3(1) [multiply numerator and denominator by 3] [as ๏ธ โ†’ 0, 3๏ธ โ†’ 0] [let ๏‚ต = 3๏ธ] [Equation 6] =3 sin 4๏ธ = lim ๏ธโ†’0 sin 6๏ธ ๏ธโ†’0 40. lim tan 6๏ด 41. lim = lim ๏ดโ†’0 sin 2๏ด ๏ดโ†’0 ๏‚ต ๏‚ต sin 4๏ธ ๏ธ ยท ๏ธ sin 6๏ธ ๏‚ถ = lim ๏ธโ†’0 sin 6๏ด 1 ๏ด ยท ยท ๏ด cos 6๏ด sin 2๏ด ๏‚ถ 4 sin 4๏ธ 6๏ธ sin 4๏ธ 1 6๏ธ 1 2 ยท lim = 4 lim ยท lim = 4(1) ยท (1) = ๏ธโ†’0 6 sin 6๏ธ ๏ธโ†’0 4๏ธ 4๏ธ 6 ๏ธโ†’0 sin 6๏ธ 6 3 = lim ๏ดโ†’0 6 sin 6๏ด 1 2๏ด ยท lim ยท lim ๏ดโ†’0 cos 6๏ด ๏ดโ†’0 2 sin 2๏ด 6๏ด sin 6๏ด 1 2๏ด 1 1 1 ยท lim ยท lim = 6(1) ยท ยท (1) = 3 ๏ดโ†’0 cos 6๏ด 6๏ด 2 ๏ดโ†’0 sin 2๏ด 1 2 ๏‚ต ๏‚ถ sin2 3๏ด sin 3๏ด sin 3๏ด sin 3๏ด sin 3๏ด ยท = lim ยท lim 42. lim = lim ๏ดโ†’0 ๏ดโ†’0 ๏ดโ†’0 ๏ดโ†’0 ๏ด2 ๏ด ๏ด ๏ด ๏ด ๏‚ถ2 ๏‚ต ๏‚ถ2 ๏‚ต sin 3๏ด sin 3๏ด = 3 lim = (3 ยท 1)2 = 9 = lim ๏ดโ†’0 ๏ดโ†’0 ๏ด 3๏ด = 6 lim ๏ดโ†’0 43. Divide numerator and denominator by ๏‚ต. (sin ๏‚ต also works.) sin ๏‚ต sin ๏‚ต lim sin ๏‚ต 1 1 ๏‚ตโ†’0 ๏‚ต ๏‚ต lim = lim = = = sin ๏‚ต 1 1 sin ๏‚ต ๏‚ตโ†’0 ๏‚ต + tan ๏‚ต ๏‚ตโ†’0 1+1ยท1 2 ยท lim 1+ 1 + lim ๏‚ตโ†’0 ๏‚ต cos ๏‚ต ๏‚ต ๏‚ตโ†’0 cos ๏‚ต ๏ธ cos ๏ธ cos ๏ธ lim cos ๏ธ ๏ธ cos ๏ธ cos ๏ธ 1 ๏ธโ†’0 ๏ธ = lim = lim 44. lim ๏ธ cot ๏ธ = lim ๏ธ ยท = lim 1 = = =1 sin ๏ธ ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 sin ๏ธ ๏ธโ†’0 sin ๏ธ ๏ธโ†’0 sin ๏ธ sin ๏ธ 1 lim ๏ธโ†’0 ๏ธ ๏ธ ๏ธ 45. (a) Since ๏ฐ(๏ธ) is a polynomial, ๏ฐ(๏ธ) = ๏ก0 + ๏ก1 ๏ธ + ๏ก2 ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ ๏ธ๏ฎ . Thus, by the Limit Laws, ๏‚ก ๏‚ข lim ๏ฐ(๏ธ) = lim ๏ก0 + ๏ก1 ๏ธ + ๏ก2 ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ ๏ธ๏ฎ = ๏ก0 + ๏ก1 lim ๏ธ + ๏ก2 lim ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ lim ๏ธ๏ฎ ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก 2 ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ฎ = ๏ก0 + ๏ก1 ๏ก + ๏ก2 ๏ก + ยท ยท ยท + ๏ก๏ฎ ๏ก = ๏ฐ(๏ก) Thus, for any polynomial ๏ฐ, lim ๏ฐ(๏ธ) = ๏ฐ(๏ก). ๏ธโ†’๏ก ๏ฐ(๏ธ) where ๏ฐ(๏ธ) and ๏ฑ(๏ธ) are any polynomials, and suppose that ๏ฑ(๏ก) 6= 0. Then (b) Let ๏ฒ(๏ธ) = ๏ฑ(๏ธ) lim ๏ฐ(๏ธ) ๏ฐ(๏ธ) ๏ฐ(๏ก) ๏ธโ†’๏ก lim ๏ฒ(๏ธ) = lim = [Limit Law 5] = [by part (a)] = ๏ฒ(๏ก). ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ฑ(๏ธ) lim ๏ฑ (๏ธ) ๏ฑ(๏ก) INSTRUCTOR USE ONLY ๏ธโ†’๏ก c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.4 46. lim ๏ถโ†’๏ฃโˆ’ ๏ƒƒ ๏Œ0 ๏ฒ 1โˆ’ ๏€ก ๏ถ2 ๏ฃ2 LIMITS: ALGEBRAIC METHODS ยค 99 โˆš = ๏Œ0 1 โˆ’ 1 = 0. As the velocity approaches the speed of light, the length approaches 0. A left-hand limit is necessary since ๏Œ is not defined for ๏ถ ๏€พ ๏ฃ. 47. lim sin(๏ก + ๏จ) = lim (sin ๏ก cos ๏จ + cos ๏ก sin ๏จ) = lim (sin ๏ก cos ๏จ) + lim (cos ๏ก sin ๏จ) ๏จโ†’0 ๏จโ†’0 = ๏‚ณ ๏จโ†’0 ๏จโ†’0 ๏‚ด๏‚ณ ๏‚ด ๏‚ณ ๏‚ด๏‚ณ ๏‚ด lim sin ๏ก lim cos ๏จ + lim cos ๏ก lim sin ๏จ = (sin ๏ก)(1) + (cos ๏ก)(0) = sin ๏ก ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 48. As in the previous exercise, we must show that lim cos(๏ก + ๏จ) = cos ๏ก to prove that the cosine function has the Direct ๏จโ†’0 Substitution Property. lim cos(๏ก + ๏จ) = lim (cos ๏ก cos ๏จ โˆ’ sin ๏ก sin ๏จ) = lim (cos ๏ก cos ๏จ) โˆ’ lim (sin ๏ก sin ๏จ) ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏‚ด๏‚ณ ๏‚ด ๏‚ณ ๏‚ด๏‚ณ ๏‚ด ๏‚ณ = lim cos ๏ก lim cos ๏จ โˆ’ lim sin ๏ก lim sin ๏จ = (cos ๏ก)(1) โˆ’ (sin ๏ก)(0) = cos ๏ก ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏‚ท ๏‚ธ ๏ฆ(๏ธ) โˆ’ 8 ๏ฆ (๏ธ) โˆ’ 8 ยท (๏ธ โˆ’ 1) = lim ยท lim (๏ธ โˆ’ 1) = 10 ยท 0 = 0. 49. lim [๏ฆ(๏ธ) โˆ’ 8] = lim ๏ธโ†’1 ๏ธโ†’1 ๏ธโ†’1 ๏ธโ†’1 ๏ธโˆ’1 ๏ธโˆ’1 Thus, lim ๏ฆ (๏ธ) = lim {[๏ฆ (๏ธ) โˆ’ 8] + 8} = lim [๏ฆ (๏ธ) โˆ’ 8] + lim 8 = 0 + 8 = 8. ๏ธโ†’1 ๏ธโ†’1 Note: The value of lim ๏ธโ†’1 ๏ธโ†’1 ๏ธโ†’1 ๏ฆ (๏ธ) โˆ’ 8 does not affect the answer since itโ€™s multiplied by 0. Whatโ€™s important is that ๏ธโˆ’1 ๏ฆ (๏ธ) โˆ’ 8 exists. ๏ธโˆ’1 ๏‚ท ๏‚ธ ๏ฆ (๏ธ) 2 ๏ฆ (๏ธ) 50. (a) lim ๏ฆ (๏ธ) = lim ยท ๏ธ = lim 2 ยท lim ๏ธ2 = 5 ยท 0 = 0 ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธ2 ๏‚ท ๏‚ธ ๏ฆ (๏ธ) ๏ฆ (๏ธ) ๏ฆ (๏ธ) = lim ยท ๏ธ = lim 2 ยท lim ๏ธ = 5 ยท 0 = 0 (b) lim ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธ ๏ธ2 lim ๏ธโ†’1 51. Since the denominator approaches 0 as ๏ธ โ†’ โˆ’2, the limit will exist only if the numerator also approaches 0 as ๏ธ โ†’ โˆ’2. In order for this to happen, we need lim ๏ธโ†’โˆ’2 ๏‚ข ๏‚ก 2 3๏ธ + ๏ก๏ธ + ๏ก + 3 = 0 โ‡” 3(โˆ’2)2 + ๏ก(โˆ’2) + ๏ก + 3 = 0 โ‡” 12 โˆ’ 2๏ก + ๏ก + 3 = 0 โ‡” ๏ก = 15. With ๏ก = 15, the limit becomes 3๏ธ2 + 15๏ธ + 18 3(๏ธ + 2)(๏ธ + 3) 3(๏ธ + 3) 3(โˆ’2 + 3) 3 = lim = lim = = = โˆ’1. ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 (๏ธ โˆ’ 1)(๏ธ + 2) ๏ธโ†’โˆ’2 ๏ธ โˆ’ 1 ๏ธ2 + ๏ธ โˆ’ 2 โˆ’2 โˆ’ 1 โˆ’3 lim 52. Solution 1: First, we find the coordinates of ๏ and ๏‘ as functions of ๏ฒ. Then we can find the equation of the line determined by these two points, and thus find the ๏ธ-intercept (the point ๏’), and take the limit as ๏ฒ โ†’ 0. The coordinates of ๏ are (0๏€ป ๏ฒ). The point ๏‘ is the point of intersection of the two circles ๏ธ2 + ๏น 2 = ๏ฒ2 and (๏ธ โˆ’ 1)2 + ๏น 2 = 1. Eliminating ๏น from these equations, we get ๏ฒ2 โˆ’ ๏ธ2 = 1 โˆ’ (๏ธ โˆ’ 1)2 ๏ฒ2 = 1 + 2๏ธ โˆ’ 1 โ‡” ๏ธ = 12 ๏ฒ2 . Substituting back into the equation of the ๏ฑ ๏‚ข2 ๏‚ก ๏‚ข ๏‚ก โ‡” ๏น = ๏ฒ 1 โˆ’ 14 ๏ฒ2 shrinking circle to find the ๏น-coordinate, we get 12 ๏ฒ2 + ๏น 2 = ๏ฒ2 โ‡” ๏น 2 = ๏ฒ2 1 โˆ’ 14 ๏ฒ2 ๏ฑ ๏‚ณ ๏‚ด (the positive ๏น-value). So the coordinates of ๏‘ are 12 ๏ฒ2 ๏€ป ๏ฒ 1 โˆ’ 14 ๏ฒ2 . The equation of the line joining ๏ and ๏‘ is thus ๏ฑ ๏ฒ 1 โˆ’ 14 ๏ฒ2 โˆ’ ๏ฒ (๏ธ โˆ’ 0). We set ๏น = 0 in order to find the ๏ธ-intercept, and get ๏นโˆ’๏ฒ = 1 2 ๏ฒ โˆ’0 2 1 2 2๏ฒ โ‡” ๏ธ = โˆ’๏ฒ ๏‚ณ๏ฑ ๏‚ด = ๏ฒ 1 โˆ’ 14 ๏ฒ2 โˆ’ 1 โˆ’ 12 ๏ฒ2 ๏‚ด ๏‚ณ๏ฑ 1 โˆ’ 14 ๏ฒ2 + 1 1 โˆ’ 14 ๏ฒ2 โˆ’ 1 =2 ๏‚ณ๏ฑ ๏‚ด 1 โˆ’ 14 ๏ฒ2 + 1 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 100 ยค NOT FOR SALE CHAPTER 2 LIMITS ๏‚ณ๏ฑ ๏‚ด ๏‚กโˆš ๏‚ข Now we take the limit as ๏ฒ โ†’ 0+ : lim ๏ธ = lim 2 1 โˆ’ 14 ๏ฒ2 + 1 = lim 2 1 + 1 = 4. ๏ฒโ†’0+ ๏ฒโ†’0+ ๏ฒโ†’0+ So the limiting position of ๏’ is the point (4๏€ป 0). Solution 2: We add a few lines to the diagram, as shown. Note that โˆ ๏ ๏‘๏“ = 90โ—ฆ (subtended by diameter ๏ ๏“). So โˆ ๏“๏‘๏’ = 90โ—ฆ = โˆ ๏๏‘๏” (subtended by diameter ๏๏” ). It follows that โˆ ๏๏‘๏“ = โˆ ๏” ๏‘๏’. Also โˆ ๏ ๏“๏‘ = 90โ—ฆ โˆ’ โˆ ๏“๏ ๏‘ = โˆ ๏๏’๏ . Since 4๏‘๏๏“ is isosceles, so is 4๏‘๏” ๏’, implying that ๏‘๏” = ๏” ๏’. As the circle ๏ƒ2 shrinks, the point ๏‘ plainly approaches the origin, so the point ๏’ must approach a point twice as far from the origin as ๏” , that is, the point (4๏€ป 0), as above. 2.5 Continuity 1. From Definition 1, lim ๏ฆ (๏ธ) = ๏ฆ (4). ๏ธโ†’4 2. The graph of ๏ฆ has no hole, jump, or vertical asymptote. 3. (a) ๏ฆ is discontinuous at โˆ’4 since ๏ฆ (โˆ’4) is not defined and at โˆ’2, 2, and 4 since the limit does not exist (the left and right limits are not the same). (b) ๏ฆ is continuous from the left at โˆ’2 since lim ๏ฆ (๏ธ) = ๏ฆ (โˆ’2). ๏ฆ is continuous from the right at 2 and 4 since ๏ธโ†’โˆ’2โˆ’ lim ๏ฆ(๏ธ) = ๏ฆ (2) and lim ๏ฆ (๏ธ) = ๏ฆ (4). It is continuous from neither side at โˆ’4 since ๏ฆ (โˆ’4) is undefined. ๏ธโ†’2+ ๏ธโ†’4+ 4. ๏ง is continuous on [โˆ’4๏€ป โˆ’2), (โˆ’2๏€ป 2), (2๏€ป 4), (4๏€ป 6), and (6๏€ป 8). 5. The graph of ๏น = ๏ฆ (๏ธ) must have a discontinuity at ๏ธ = 2 and must show that lim ๏ฆ (๏ธ) = ๏ฆ (2). ๏ธโ†’2+ 6. The graph of ๏น = ๏ฆ (๏ธ) must have discontinuities at ๏ธ = โˆ’1 and ๏ธ = 4. It must show that lim ๏ฆ (๏ธ) = ๏ฆ (โˆ’1) and lim ๏ฆ(๏ธ) = ๏ฆ(4). ๏ธโ†’โˆ’1โˆ’ ๏ธโ†’4+ INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.5 7. The graph of ๏น = ๏ฆ (๏ธ) must have a removable ยค 101 8. The graph of ๏น = ๏ฆ (๏ธ) must have a discontinuity discontinuity (a hole) at ๏ธ = 3 and a jump discontinuity at ๏ธ = 5. CONTINUITY at ๏ธ = โˆ’2 with lim ๏ฆ (๏ธ) 6= ๏ฆ (โˆ’2) and ๏ธโ†’โˆ’2โˆ’ lim ๏ฆ (๏ธ) 6= ๏ฆ(โˆ’2). It must also show that ๏ธโ†’โˆ’2+ lim ๏ฆ (๏ธ) = ๏ฆ (2) and lim ๏ฆ (๏ธ) 6= ๏ฆ (2). ๏ธโ†’2โˆ’ ๏ธโ†’2+ 9. (a) C has discontinuities at 12, 24, and 36 hours since the limit does not exist at these points. (b) C has jump discontinuities at the values of ๏ด listed in part (a) because the function jumps from one value to another at these points. 10. There are jump discontinuities at 1, 1.7, 3, and 3.5. They occur because the left and right side limits are different at each of these points, so the limit does not exist. For example, lim๏ดโ†’1โˆ’ ๏ (๏ด) = 26 and lim๏ดโ†’1+ ๏ (๏ด) = 24๏€ป so lim๏ดโ†’1 ๏ (๏ด) does not exist and ๏ (๏ด) is discontinuous at ๏ด = 1๏€บ 11. (a) (b) There are discontinuities at times ๏ด = 1, 2, 3, and 4. A person parking in the lot would want to keep in mind that the charge will jump at the beginning of each hour. 12. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps from one temperature to another. (b) Discontinuous; the population size increases or decreases in whole number increments. (c) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases, without any instantaneous jumps. (d) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one height to another without going through all of the intermediate values โ€” at a cliff, for example. (e) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 102 ยค NOT FOR SALE CHAPTER 2 LIMITS 13. Since ๏ฆ and ๏ง are continuous functions, lim [2๏ฆ (๏ธ) โˆ’ ๏ง(๏ธ)] = 2 lim ๏ฆ (๏ธ) โˆ’ lim ๏ง(๏ธ) ๏ธโ†’3 ๏ธโ†’3 [by Limit Laws 2 and 3] ๏ธโ†’3 = 2๏ฆ(3) โˆ’ ๏ง(3) [by continuity of ๏ฆ and ๏ง at ๏ธ = 3] = 2 ยท 5 โˆ’ ๏ง(3) = 10 โˆ’ ๏ง(3) Since it is given that lim [2๏ฆ (๏ธ) โˆ’ ๏ง(๏ธ)] = 4, we have 10 โˆ’ ๏ง(3) = 4, so ๏ง(3) = 6. ๏ธโ†’3 ๏‚ก ๏‚ข โˆš ๏ฑ 14. lim ๏ฆ (๏ธ) = lim 3๏ธ4 โˆ’ 5๏ธ + 3 ๏ธ2 + 4 = 3 lim ๏ธ4 โˆ’ 5 lim ๏ธ + 3 lim (๏ธ2 + 4) ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 โˆš = 3(2)4 โˆ’ 5(2) + 3 22 + 4 = 48 โˆ’ 10 + 2 = 40 = ๏ฆ(2) ๏ธโ†’2 By the definition of continuity, ๏ฆ is continuous at ๏ก = 2. 15. lim ๏ฆ (๏ธ) = lim ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏‚ก ๏‚ข4 ๏ธ + 2๏ธ3 = ๏‚ต lim ๏ธ + 2 lim ๏ธ3 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏‚ถ4 By the definition of continuity, ๏ฆ is continuous at ๏ก = โˆ’1. ๏‚ฃ ๏‚ค4 = โˆ’1 + 2(โˆ’1)3 = (โˆ’3)4 = 81 = ๏ฆ(โˆ’1). 16. For ๏ก ๏€พ 2, we have lim (2๏ธ + 3) 2๏ธ + 3 ๏ธโ†’๏ก = ๏ธโ†’๏ก ๏ธ โˆ’ 2 lim (๏ธ โˆ’ 2) lim ๏ฆ (๏ธ) = lim ๏ธโ†’๏ก [Limit Law 5] ๏ธโ†’๏ก 2 lim ๏ธ + lim 3 = ๏ธโ†’๏ก ๏ธโ†’๏ก lim ๏ธ โˆ’ lim 2 ๏ธโ†’๏ก = [1, 2, and 3] ๏ธโ†’๏ก 2๏ก + 3 ๏กโˆ’2 [7 and 8] = ๏ฆ (๏ก) Thus, ๏ฆ is continuous at ๏ธ = ๏ก for every ๏ก in (2๏€ป โˆž); that is, ๏ฆ is continuous on (2๏€ป โˆž). 17. ๏ฆ (๏ธ) = ๏€จ ๏ธ ๏ฅ 2 ๏ธ if ๏ธ ๏€ผ 0 if ๏ธ โ‰ฅ 0 The left-hand limit of ๏ฆ at ๏ก = 0 is lim ๏ฆ (๏ธ) = lim ๏ฅ๏ธ = 1. The ๏ธโ†’0โˆ’ ๏ธโ†’0โˆ’ right-hand limit of ๏ฆ at ๏ก = 0 is lim ๏ฆ (๏ธ) = lim ๏ธ2 = 0. Since these ๏ธโ†’0+ ๏ธโ†’0+ limits are not equal, lim ๏ฆ (๏ธ) does not exist and ๏ฆ is discontinuous at 0๏€บ ๏ธโ†’0 ๏€ธ 2 ๏€ผ๏ธ โˆ’๏ธ ๏ธ2 โˆ’ 1 18. ๏ฆ (๏ธ) = ๏€บ 1 if ๏ธ 6= 1 if ๏ธ = 1 ๏ธ2 โˆ’ ๏ธ ๏ธ(๏ธ โˆ’ 1) ๏ธ 1 = lim = lim = , ๏ธโ†’1 ๏ธ2 โˆ’ 1 ๏ธโ†’1 (๏ธ + 1)(๏ธ โˆ’ 1) ๏ธโ†’1 ๏ธ + 1 2 lim ๏ฆ (๏ธ) = lim ๏ธโ†’1 but ๏ฆ (1) = 1, so ๏ฆ is discontinous at 1๏€บ INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.5 ๏€ธ cos ๏ธ ๏€พ ๏€ผ 0 19. ๏ฆ (๏ธ) = ๏€พ ๏€บ 1 โˆ’ ๏ธ2 CONTINUITY ยค 103 if ๏ธ ๏€ผ 0 if ๏ธ = 0 if ๏ธ ๏€พ 0 lim ๏ฆ (๏ธ) = 1, but ๏ฆ (0) = 0 6= 1, so ๏ฆ is discontinuous at 0. ๏ธโ†’0 ๏€ธ 2 ๏€ผ 2๏ธ โˆ’ 5๏ธ โˆ’ 3 ๏ธโˆ’3 20. ๏ฆ (๏ธ) = ๏€บ 6 lim ๏ฆ (๏ธ) = lim ๏ธโ†’3 ๏ธโ†’3 if ๏ธ 6= 3 if ๏ธ = 3 (2๏ธ + 1)(๏ธ โˆ’ 3) 2๏ธ2 โˆ’ 5๏ธ โˆ’ 3 = lim = lim (2๏ธ + 1) = 7, ๏ธโ†’3 ๏ธโ†’3 ๏ธโˆ’3 ๏ธโˆ’3 but ๏ฆ (3) = 6, so ๏ฆ is discontinuous at 3. 21. By Theorem 5, the polynomials ๏ธ2 and 2๏ธ โˆ’ 1 are continuous on (โˆ’โˆž๏€ป โˆž). By Theorem 7, the root function continuous on [0๏€ป โˆž). By Theorem 9, the composite function By part 1 of Theorem 4, the sum ๏’(๏ธ) = ๏ธ2 + โˆš โˆš ๏ธ is ๏‚ฃ ๏‚ข โˆš 2๏ธ โˆ’ 1 is continuous on its domain, 12 ๏€ป โˆž . ๏‚ฃ ๏‚ข โˆš 2๏ธ โˆ’ 1 is continuous on 12 ๏€ป โˆž . 22. By Theorem 7, the root function 3 ๏ธ and the polynomial function 1 + ๏ธ3 are continuous on R. By part 4 of Theorem 4, the ๏‚ข โˆš ๏‚ก product ๏‡(๏ธ) = 3 ๏ธ 1 + ๏ธ3 is continuous on its domain, R. 23. By Theorem 7, the exponential function ๏ฅโˆ’5๏ด and the trigonometric function cos 2๏‚ผ๏ด are continuous on (โˆ’โˆž๏€ป โˆž). By part 4 of Theorem 4, ๏Œ(๏ด) = ๏ฅโˆ’5๏ด cos 2๏‚ผ๏ด is continuous on (โˆ’โˆž๏€ป โˆž). 24. By Theorem 7, the trigonometric function sin ๏ธ and the polynomial function ๏ธ + 1 are continuous on R. By part 5 of Theorem 4, ๏จ(๏ธ) = sin ๏ธ is continuous on its domain, {๏ธ | ๏ธ 6= โˆ’1}. ๏ธ+1 25. By Theorem 5, the polynomial ๏ด4 โˆ’ 1 is continuous on (โˆ’โˆž๏€ป โˆž). By Theorem 7, ln ๏ธ is continuous on its domain, (0๏€ป โˆž). ๏‚ก ๏‚ข By Theorem 9, ln ๏ด4 โˆ’ 1 is continuous on its domain, which is ๏‚ฉ ๏‚ช ๏‚ฉ ๏‚ช ๏ด | ๏ด4 โˆ’ 1 ๏€พ 0 = ๏ด | ๏ด4 ๏€พ 1 = {๏ด | |๏ด| ๏€พ 1} = (โˆ’โˆž๏€ป โˆ’1) โˆช (1๏€ป โˆž) 26. The sine and cosine functions are continuous everywhere by Theorem 7, so ๏† (๏ธ) = sin(cos(sin ๏ธ)), which is the composite of sine, cosine, and (once again) sine, is continuous everywhere by Theorem 9. 27. The function ๏น = 1 is discontinuous at ๏ธ = 0 because the 1 + ๏ฅ1๏€ฝ๏ธ left- and right-hand limits at ๏ธ = 0 are different. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 104 ยค NOT FOR SALE CHAPTER 2 LIMITS 28. The function ๏น = tan2 ๏ธ is discontinuous at ๏ธ = ๏‚ผ2 + ๏‚ผ๏ซ, where ๏ซ is ๏‚ข ๏‚ก any integer. The function ๏น = ln tan2 ๏ธ is also discontinuous ๏‚ก ๏‚ข where tan2 ๏ธ is 0, that is, at ๏ธ = ๏‚ผ๏ซ. So ๏น = ln tan2 ๏ธ is discontinuous at ๏ธ = ๏‚ผ2 ๏ฎ, ๏ฎ any integer. 29. Because we are dealing with root functions, 5 + โˆš โˆš ๏ธ is continuous on [0๏€ป โˆž), ๏ธ + 5 is continuous on [โˆ’5๏€ป โˆž), so the โˆš 5+ ๏ธ is continuous on [0๏€ป โˆž). Since ๏ฆ is continuous at ๏ธ = 4, lim ๏ฆ (๏ธ) = ๏ฆ (4) = 73 . quotient ๏ฆ (๏ธ) = โˆš ๏ธโ†’4 5+๏ธ 30. Because ๏ธ is continuous on R, sin ๏ธ is continuous on R, and ๏ธ + sin ๏ธ is continuous on R, the composite function ๏ฆ (๏ธ) = sin(๏ธ + sin ๏ธ) is continuous on R, so lim ๏ฆ (๏ธ) = ๏ฆ (๏‚ผ) = sin(๏‚ผ + sin ๏‚ผ) = sin ๏‚ผ = 0. ๏ธโ†’๏‚ผ 2 31. Because ๏ธ2 โˆ’ ๏ธ is continuous on R, the composite function ๏ฆ (๏ธ) = ๏ฅ๏ธ โˆ’๏ธ is continuous on R, so lim ๏ฆ (๏ธ) = ๏ฆ (1) = ๏ฅ1 โˆ’ 1 = ๏ฅ0 = 1. ๏ธโ†’1 32. Because ๏ฐ2 โˆ’ 2๏ฐ and ๏ฐ2 โˆ’ 2 are polynomials, they are both continuous on R. Hence, the quotient ๏ฆ (๏ฐ) = โˆš continuous on R except when ๏ฐ2 โˆ’ 2 = 0 โ‡’ ๏ฐ = ยฑ 2. Since ๏ฆ is continuous at ๏ฐ = 1๏€ฝ2, ๏‚ก 1 ๏‚ข2 ๏‚ก ๏‚ข โˆ’ 2 12 3 = . lim ๏ฆ (๏ฐ) = ๏ฆ (1๏€ฝ2) = 2๏‚ก 1 ๏‚ข2 ๏ฐโ†’1๏€ฝ2 7 โˆ’2 ๏ฐ2 โˆ’ 2๏ฐ is ๏ฐ2 โˆ’ 2 2 33. ๏ฆ (๏ธ) = ๏€จ 2 ๏ธ โˆš ๏ธ if ๏ธ ๏€ผ 1 if ๏ธ โ‰ฅ 1 By Theorem 5, since ๏ฆ (๏ธ) equals the polynomial ๏ธ2 on (โˆ’โˆž๏€ป 1), ๏ฆ is continuous on (โˆ’โˆž๏€ป 1). By Theorem 7, since ๏ฆ (๏ธ) โˆš equals the root function ๏ธ on (1๏€ป โˆž)๏€ป ๏ฆ is continuous on (1๏€ป โˆž). At ๏ธ = 1, lim ๏ฆ(๏ธ) = lim ๏ธ2 = 1 and ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ โˆš โˆš lim ๏ฆ (๏ธ) = lim ๏ธ = 1. Thus, lim ๏ฆ(๏ธ) exists and equals 1. Also, ๏ฆ (1) = 1 = 1. Thus, ๏ฆ is continuous at ๏ธ = 1. ๏ธโ†’1+ ๏ธโ†’1 ๏ธโ†’1+ We conclude that ๏ฆ is continuous on (โˆ’โˆž๏€ป โˆž). 34. ๏ฆ (๏ธ) = ๏€จ sin ๏ธ if ๏ธ ๏€ผ ๏‚ผ๏€ฝ4 cos ๏ธ if ๏ธ โ‰ฅ ๏‚ผ๏€ฝ4 By Theorem 7, the trigonometric functions are continuous. Since ๏ฆ(๏ธ) = sin ๏ธ on (โˆ’โˆž๏€ป ๏‚ผ๏€ฝ4) and ๏ฆ (๏ธ) = cos ๏ธ on โˆš (๏‚ผ๏€ฝ4๏€ป โˆž), ๏ฆ is continuous on (โˆ’โˆž๏€ป ๏‚ผ๏€ฝ4) โˆช (๏‚ผ๏€ฝ4๏€ป โˆž)๏€บ lim ๏ฆ (๏ธ) = lim sin ๏ธ = sin ๏‚ผ4 = 1๏€ฝ 2 since the sine ๏ธโ†’(๏‚ผ๏€ฝ4)โˆ’ function is continuous at ๏‚ผ๏€ฝ4๏€บ Similarly, at ๏‚ผ๏€ฝ4. Thus, lim ๏ธโ†’(๏‚ผ๏€ฝ4) lim ๏ธโ†’(๏‚ผ๏€ฝ4)+ ๏ฆ (๏ธ) = lim ๏ธโ†’(๏‚ผ๏€ฝ4)+ ๏ธโ†’(๏‚ผ๏€ฝ4)โˆ’ โˆš cos ๏ธ = 1๏€ฝ 2 by continuity of the cosine function โˆš ๏ฆ (๏ธ) exists and equals 1๏€ฝ 2, which agrees with the value ๏ฆ (๏‚ผ๏€ฝ4). Therefore, ๏ฆ is continuous at ๏‚ผ๏€ฝ4, so ๏ฆ is continuous on (โˆ’โˆž๏€ป โˆž). INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE SECTION 2.5 ๏€ธ ๏ธ+2 ๏€พ ๏€พ ๏€ผ 35. ๏ฆ (๏ธ) = ๏ฅ๏ธ ๏€พ ๏€พ ๏€บ 2โˆ’๏ธ CONTINUITY ยค 105 if ๏ธ ๏€ผ 0 if 0 โ‰ค ๏ธ โ‰ค 1 if ๏ธ ๏€พ 1 ๏ฆ is continuous on (โˆ’โˆž๏€ป 0) and (1๏€ป โˆž) since on each of these intervals it is a polynomial; it is continuous on (0๏€ป 1) since it is an exponential. Now lim ๏ฆ (๏ธ) = lim (๏ธ + 2) = 2 and lim ๏ฆ (๏ธ) = lim ๏ฅ๏ธ = 1, so ๏ฆ is discontinuous at 0. Since ๏ฆ (0) = 1, ๏ฆ is ๏ธโ†’0โˆ’ ๏ธโ†’0โˆ’ ๏ธโ†’0+ ๏ธโ†’0+ continuous from the right at 0. Also lim ๏ฆ (๏ธ) = lim ๏ฅ๏ธ = ๏ฅ and lim ๏ฆ (๏ธ) = lim (2 โˆ’ ๏ธ) = 1, so ๏ฆ is discontinuous ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธโ†’1+ at 1. Since ๏ฆ (1) = ๏ฅ, ๏ฆ is continuous from the left at 1. 36. By Theorem 5, each piece of ๏† is continuous on its domain. We need to check for continuity at ๏ฒ = ๏’. lim ๏† (๏ฒ) = lim ๏ฒโ†’๏’โˆ’ ๏ฒโ†’๏’โˆ’ ๏‡๏ ๏‡๏ ๏‡๏ ๏‡๏ ๏‡๏๏ฒ ๏‡๏ = and lim ๏† (๏ฒ) = lim = , so lim ๏† (๏ฒ) = . Since ๏† (๏’) = , ๏ฒโ†’๏’ ๏’3 ๏’2 ๏’2 ๏’2 ๏’2 ๏ฒโ†’๏’+ ๏ฒโ†’๏’+ ๏ฒ 2 ๏† is continuous at ๏’. Therefore, ๏† is a continuous function of ๏ฒ. 37. ๏ฆ (๏ธ) = ๏€จ ๏ฃ๏ธ2 + 2๏ธ 3 ๏ธ โˆ’ ๏ฃ๏ธ if ๏ธ ๏€ผ 2 if ๏ธ โ‰ฅ 2 ๏ฆ is continuous on (โˆ’โˆž๏€ป 2) and (2๏€ป โˆž). Now lim ๏ฆ (๏ธ) = lim ๏ธโ†’2โˆ’ lim ๏ฆ (๏ธ) = lim ๏ธโ†’2+ ๏ธโ†’2+ ๏ธโ†’2โˆ’ ๏‚ก 2 ๏‚ข ๏ฃ๏ธ + 2๏ธ = 4๏ฃ + 4 and ๏‚ก 3 ๏‚ข ๏ธ โˆ’ ๏ฃ๏ธ = 8 โˆ’ 2๏ฃ. So ๏ฆ is continuous โ‡” 4๏ฃ + 4 = 8 โˆ’ 2๏ฃ โ‡” 6๏ฃ = 4 โ‡” ๏ฃ = 23 . Thus, for ๏ฆ to be continuous on (โˆ’โˆž๏€ป โˆž), ๏ฃ = 23 . 38. ๏ฆ does not satisfy the conclusion of the ๏ฆ does satisfy the conclusion of the Intermediate Value Theorem. Intermediate Value Theorem. 39. ๏ฆ (๏ธ) = ๏ธ2 + 10 sin ๏ธ is continuous on the interval [31๏€ป 32], ๏ฆ (31) โ‰ˆ 957, and ๏ฆ(32) โ‰ˆ 1030. Since 957 ๏€ผ 1000 ๏€ผ 1030, there is a number c in (31๏€ป 32) such that ๏ฆ (๏ฃ) = 1000 by the Intermediate Value Theorem. Note: There is also a number c in (โˆ’32๏€ป โˆ’31) such that ๏ฆ (๏ฃ) = 1000๏€บ 40. Suppose that ๏ฆ(3) ๏€ผ 6. By the Intermediate Value Theorem applied to the continuous function ๏ฆ on the closed interval [2๏€ป 3], the fact that ๏ฆ (2) = 8 ๏€พ 6 and ๏ฆ(3) ๏€ผ 6 implies that there is a number ๏ฃ in (2๏€ป 3) such that ๏ฆ (๏ฃ) = 6. This contradicts the fact that the only solutions of the equation ๏ฆ (๏ธ) = 6 are ๏ธ = 1 and ๏ธ = 4. Hence, our supposition that ๏ฆ (3) ๏€ผ 6 was incorrect. It follows that ๏ฆ(3) โ‰ฅ 6. But ๏ฆ (3) 6= 6 because the only solutions of ๏ฆ (๏ธ) = 6 are ๏ธ = 1 and ๏ธ = 4. Therefore, ๏ฆ (3) ๏€พ 6. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 106 ยค NOT FOR SALE CHAPTER 2 LIMITS 41. ๏ฆ (๏ธ) = ๏ธ4 + ๏ธ โˆ’ 3 is continuous on the interval [1๏€ป 2]๏€ป ๏ฆ (1) = โˆ’1, and ๏ฆ(2) = 15. Since โˆ’1 ๏€ผ 0 ๏€ผ 15, there is a number ๏ฃ in (1๏€ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ธ4 + ๏ธ โˆ’ 3 = 0 in the interval (1๏€ป 2)๏€บ โˆš 3 ๏ธ + ๏ธ โˆ’ 1 is continuous on the interval [0๏€ป 1]๏€ป ๏ฆ (0) = โˆ’1, and ๏ฆ (1) = 1. Since โˆ’1 ๏€ผ 0 ๏€ผ 1, there is a number ๏ฃ in โˆš 3 (0๏€ป 1) such that ๏ฆ(๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ธ + ๏ธ โˆ’ 1 = 0, or โˆš 3 ๏ธ = 1 โˆ’ ๏ธ, in the interval (0๏€ป 1)๏€บ 42. ๏ฆ (๏ธ) = 43. The equation ๏ฅ๏ธ = 3 โˆ’ 2๏ธ is equivalent to the equation ๏ฅ๏ธ + 2๏ธ โˆ’ 3 = 0. ๏ฆ (๏ธ) = ๏ฅ๏ธ + 2๏ธ โˆ’ 3 is continuous on the interval [0๏€ป 1], ๏ฆ (0) = โˆ’2, and ๏ฆ (1) = ๏ฅ โˆ’ 1 โ‰ˆ 1๏€บ72. Since โˆ’2 ๏€ผ 0 ๏€ผ ๏ฅ โˆ’ 1, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ฅ๏ธ + 2๏ธ โˆ’ 3 = 0, or ๏ฅ๏ธ = 3 โˆ’ 2๏ธ, in the interval (0๏€ป 1). 44. The equation sin ๏ธ = ๏ธ2 โˆ’ ๏ธ is equivalent to the equation sin ๏ธ โˆ’ ๏ธ2 + ๏ธ = 0. ๏ฆ (๏ธ) = sin ๏ธ โˆ’ ๏ธ2 + ๏ธ is continuous on the interval [1๏€ป 2]๏€ป ๏ฆ (1) = sin 1 โ‰ˆ 0๏€บ84, and ๏ฆ (2) = sin 2 โˆ’ 2 โ‰ˆ โˆ’1๏€บ09. Since sin 1 ๏€พ 0 ๏€พ sin 2 โˆ’ 2, there is a number ๏ฃ in (1๏€ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation sin ๏ธ โˆ’ ๏ธ2 + ๏ธ = 0, or sin ๏ธ = ๏ธ2 โˆ’ ๏ธ, in the interval (1๏€ป 2). 45. (a) ๏ฆ (๏ธ) = cos ๏ธ โˆ’ ๏ธ3 is continuous on the interval [0๏€ป 1], ๏ฆ (0) = 1 ๏€พ 0, and ๏ฆ (1) = cos 1 โˆ’ 1 โ‰ˆ โˆ’0๏€บ46 ๏€ผ 0. Since 1 ๏€พ 0 ๏€พ โˆ’0๏€บ46, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation cos ๏ธ โˆ’ ๏ธ3 = 0, or cos ๏ธ = ๏ธ3 , in the interval (0๏€ป 1). (b) ๏ฆ (0๏€บ86) โ‰ˆ 0๏€บ016 ๏€พ 0 and ๏ฆ (0๏€บ87) โ‰ˆ โˆ’0๏€บ014 ๏€ผ 0, so there is a root between 0๏€บ86 and 0๏€บ87, that is, in the interval (0๏€บ86๏€ป 0๏€บ87). 46. (a) ๏ฆ (๏ธ) = ln ๏ธ โˆ’ 3 + 2๏ธ is continuous on the interval [1๏€ป 2], ๏ฆ (1) = โˆ’1 ๏€ผ 0, and ๏ฆ (2) = ln 2 + 1 โ‰ˆ 1๏€บ7 ๏€พ 0. Since โˆ’1 ๏€ผ 0 ๏€ผ 1๏€บ7, there is a number ๏ฃ in (1๏€ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ln ๏ธ โˆ’ 3 + 2๏ธ = 0, or ln ๏ธ = 3 โˆ’ 2๏ธ, in the interval (1๏€ป 2). (b) ๏ฆ (1๏€บ34) โ‰ˆ โˆ’0๏€บ03 ๏€ผ 0 and ๏ฆ (1๏€บ35) โ‰ˆ 0๏€บ0001 ๏€พ 0, so there is a root between 1๏€บ34 and 1๏€บ35๏€ป that is, in the interval (1๏€บ34๏€ป 1๏€บ35). 47. (a) Let ๏ฆ (๏ธ) = 100๏ฅโˆ’๏ธ๏€ฝ100 โˆ’ 0๏€บ01๏ธ2 ๏€บ Then ๏ฆ (0) = 100 ๏€พ 0 and ๏ฆ (100) = 100๏ฅโˆ’1 โˆ’ 100 โ‰ˆ โˆ’63๏€บ2 ๏€ผ 0. So by the Intermediate Value Theorem, there is a number ๏ฃ in (0๏€ป 100) such that ๏ฆ (๏ฃ) = 0. This implies that 100๏ฅโˆ’๏ฃ๏€ฝ100 = 0๏€บ01๏ฃ2 . (b) Using the intersect feature of the graphing device, we find that the root of the equation is ๏ธ = 70๏€บ347, correct to three decimal places. โˆš ๏ธโˆ’5โˆ’ 1 . Then ๏ฆ(5) = โˆ’ 18 ๏€ผ 0 and ๏ฆ (6) = 89 ๏€พ 0, and ๏ฆ is continuous on [5๏€ป โˆž). So by the ๏ธ+3 โˆš 1 = ๏ฃ โˆ’ 5. Intermediate Value Theorem, there is a number ๏ฃ in (5๏€ป 6) such that ๏ฆ (๏ฃ) = 0. This implies that ๏ฃ+3 48. (a) Let ๏ฆ (๏ธ) = (b) Using the intersect feature of the graphing device, we find that the root of the equation is ๏ธ = 5๏€บ016, correct to three decimal places. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE CHAPTER 2 REVIEW 49. If there is such a number, it satisfies the equation ๏ธ3 + 1 = ๏ธ ยค 107 โ‡” ๏ธ3 โˆ’ ๏ธ + 1 = 0. Let the left-hand side of this equation be called ๏ฆ (๏ธ). Now ๏ฆ (โˆ’2) = โˆ’5 ๏€ผ 0, and ๏ฆ (โˆ’1) = 1 ๏€พ 0. Note also that ๏ฆ (๏ธ) is a polynomial, and thus continuous. So by the Intermediate Value Theorem, there is a number ๏ฃ between โˆ’2 and โˆ’1 such that ๏ฆ(๏ฃ) = 0, so that ๏ฃ = ๏ฃ3 + 1. 50. ๏ฆ (๏ธ) = ๏ธ4 sin(1๏€ฝ๏ธ) is continuous on (โˆ’โˆž๏€ป 0) โˆช (0๏€ป โˆž) since it is the product of a polynomial and a composite of a trigonometric function and a rational function. Now since โˆ’1 โ‰ค sin(1๏€ฝ๏ธ) โ‰ค 1, we have โˆ’๏ธ4 โ‰ค ๏ธ4 sin(1๏€ฝ๏ธ) โ‰ค ๏ธ4 . Because lim (โˆ’๏ธ4 ) = 0 and lim ๏ธ4 = 0, the Squeeze Theorem gives us lim (๏ธ4 sin(1๏€ฝ๏ธ)) = 0, which equals ๏ฆ(0). Thus, ๏ฆ is ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 continuous at 0 and, hence, on (โˆ’โˆž๏€ป โˆž). 51. Define ๏ต(๏ด) to be the monkโ€™s distance from the monastery, as a function of time ๏ด (in hours), on the first day, and define ๏ค(๏ด) to be his distance from the monastery, as a function of time, on the second day. Let ๏„ be the distance from the monastery to the top of the mountain. From the given information we know that ๏ต(0) = 0, ๏ต(12) = ๏„, ๏ค(0) = ๏„ and ๏ค(12) = 0. Now consider the function ๏ต โˆ’ ๏ค, which is clearly continuous. We calculate that (๏ต โˆ’ ๏ค)(0) = โˆ’๏„ and (๏ต โˆ’ ๏ค)(12) = ๏„. So by the Intermediate Value Theorem, there must be some time ๏ด0 between 0 and 12 such that (๏ต โˆ’ ๏ค)(๏ด0 ) = 0 โ‡” ๏ต(๏ด0 ) = ๏ค(๏ด0 ). So at time ๏ด0 after 7:00 AM , the monk will be at the same place on both days. 2 Review 1. True. If lim ๏ก๏ฎ = ๏Œ, then as ๏ฎ โ†’ โˆž, 2๏ฎ + 1 โ†’ โˆž, so ๏ก2๏ฎ+1 โ†’ ๏Œ. 2. True. 0๏€บ99999 ๏€บ ๏€บ ๏€บ = 0๏€บ9 + 0๏€บ9(0๏€บ1)1 + 0๏€บ9(0๏€บ1)2 + 0๏€บ9(0๏€บ1)3 + ยท ยท ยท = ๏ฎโ†’โˆž โˆž ๏ (0๏€บ9)(0๏€บ1)๏ฎโˆ’1 = ๏ฎ=1 0๏€บ9 = 1 by the formula 1 โˆ’ 0๏€บ1 for the sum of a geometric series [๏“ = ๏ก๏€ฝ(1 โˆ’ ๏ฒ)] with ratio ๏ฒ satisfying |๏ฒ| ๏€ผ 1. 3. False. Limit Law 2 applies only if the individual limits exist (these donโ€™t). 4. False. Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is). 5. True. Limit Law 5 applies. 6. True. The limit doesnโ€™t exist since ๏ฆ (๏ธ)๏€ฝ๏ง(๏ธ) doesnโ€™t approach any real number as ๏ธ approaches 5. (The denominator approaches 0 and the numerator doesnโ€™t.) 7. False. 8. False. Consider lim ๏ธโ†’5 ๏ธ(๏ธ โˆ’ 5) sin(๏ธ โˆ’ 5) or lim . The first limit exists and is equal to 5. By Equation 6 in Section 2.4, ๏ธโ†’5 ๏ธโˆ’5 ๏ธโˆ’5 we know that the latter limit exists (and it is equal to 1). ๏‚ท ๏‚ธ 1 Consider lim [๏ฆ(๏ธ)๏ง(๏ธ)] = lim (๏ธ โˆ’ 6) . It exists (its value is 1) but ๏ฆ (6) = 0 and ๏ง(6) does not exist, ๏ธโ†’6 ๏ธโ†’6 ๏ธโˆ’6 so ๏ฆ (6)๏ง(6) 6= 1. 9. True. 10. False. A polynomial is continuous everywhere, so lim ๏ฐ(๏ธ) exists and is equal to ๏ฐ(๏ข). ๏ธโ†’๏ข Consider lim [๏ฆ(๏ธ) โˆ’ ๏ง(๏ธ)] = lim ๏ธโ†’0 approaches โˆž. ๏ธโ†’0 ๏‚ต ๏‚ถ 1 1 โˆ’ 4 . This limit is โˆ’โˆž (not 0), but each of the individual functions ๏ธ2 ๏ธ INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 108 NOT FOR SALE ยค CHAPTER 2 LIMITS 11. True. For example, the function ๏ฆ (๏ธ) = โˆš 4๏ธ2 + 1 has two different horizontal asymptotes since lim ๏ฆ (๏ธ) = 2 and ๏ธโ†’โˆž ๏ธโˆ’5 lim ๏ฆ (๏ธ) = โˆ’2. The horizontal asymptotes are ๏น = 2 and ๏น = โˆ’2. ๏ธโ†’โˆ’โˆž 12. False. Consider ๏ฆ (๏ธ) = sin ๏ธ for ๏ธ โ‰ฅ 0. lim ๏ฆ (๏ธ) 6= ยฑโˆž and ๏ฆ has no horizontal asymptote. ๏ธโ†’โˆž ๏€จ 1๏€ฝ(๏ธ โˆ’ 1) if ๏ธ 6= 1 13. False. Consider ๏ฆ (๏ธ) = 14. False. The function ๏ฆ must be continuous in order to use the Intermediate Value Theorem. For example, let ๏€จ 1 if 0 โ‰ค ๏ธ ๏€ผ 3 ๏ฆ (๏ธ) = There is no number ๏ฃ โˆˆ [0๏€ป 3] with ๏ฆ (๏ฃ) = 0. โˆ’1 if ๏ธ = 3 15. True. Use Theorem 2.5.7 with ๏ก = 2, ๏ข = 5, and ๏ง(๏ธ) = 4๏ธ2 โˆ’ 11. Note that ๏ฆ (4) = 3 is not needed. 16. True. Use the Intermediate Value Theorem with ๏ก = โˆ’1, ๏ข = 1, and ๏Ž = ๏‚ผ, since 3 ๏€ผ ๏‚ผ ๏€ผ 4. 1. ๏‚ฝ 2 + ๏ฎ3 1 + 2๏ฎ3 2. ๏ก๏ฎ = ๏‚พ 2 if ๏ธ = 1 2 + ๏ฎ3 2๏€ฝ๏ฎ3 + 1 1 = . = lim ๏ฎโ†’โˆž 1 + 2๏ฎ3 ๏ฎโ†’โˆž 1๏€ฝ๏ฎ3 + 2 2 converges since lim ๏‚ก 9 ๏‚ข๏ฎ ๏‚ก 9 ๏‚ข๏ฎ 9๏ฎ+1 = 9 ยท 10 , so lim ๏ก๏ฎ = 9 lim 10 = 9 ยท 0 = 0 by (11.1.9). ๏ฎโ†’โˆž ๏ฎโ†’โˆž 10๏ฎ ๏ฎ3 ๏ฎ = lim = โˆž, so the sequence diverges. ๏ฎโ†’โˆž 1 + ๏ฎ2 ๏ฎโ†’โˆž 1๏€ฝ๏ฎ2 + 1 3. lim ๏ก๏ฎ = lim ๏ฎโ†’โˆž 4. ๏ก๏ฎ = (โˆ’2)๏ฎ = (โˆ’1)๏ฎ ยท 2๏ฎ ๏€บ As ๏ฎ increases 2๏ฎ increases and (โˆ’1)๏ฎ alternates between positive and negative values. Hence lim (โˆ’2)๏ฎ does not exist, so the sequence is divergent. ๏ฎโ†’โˆž 5. ๏ก๏ฎ+1 = 13 ๏ก๏ฎ + 3, ๏ก1 = 1๏€ป ๏ก2 โ‰ˆ 3๏€บ3333๏€ป ๏ก3 โ‰ˆ 4๏€บ1111๏€ป ๏ก4 โ‰ˆ 4๏€บ3704๏€ป ๏ก5 โ‰ˆ 4๏€บ4568๏€ป ๏ก6 โ‰ˆ 4๏€บ4856๏€ป ๏ก7 โ‰ˆ 4๏€บ4952๏€ป ๏ก8 โ‰ˆ 4๏€บ4984 ๏ฎ 1 ๏ก๏ฎ 1.0000 ๏ฎ 5 ๏ก๏ฎ 4.4568 2 3.3333 6 4.4856 3 4 4.1111 4.3704 7 8 4.4952 4.4984 The sequence appears to converge to 4๏€บ5๏€บ Assume the limit exists so that lim ๏ก๏ฎ+1 = lim ๏ก๏ฎ = ๏ก๏€ป then ๏ก๏ฎ+1 = 13 ๏ก๏ฎ + 3 โ‡’ ๏ฎโ†’โˆž ๏ฎโ†’โˆž lim ๏ก๏ฎ+1 = lim ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏‚ก1 3 ๏‚ข ๏ก๏ฎ + 3 โ‡’ ๏ก = 13 ๏ก + 3 โ‡’ ๏ก = 92 = 4๏€บ5๏€บ This agrees with the value estimated from the data table. 6. (a) The concentration of the drug in the body after the first injection is 0.25 mg๏€ฝmL. After the second injection, there is 0.25 mg๏€ฝmL plus 20% of the concentration from the first injection, that is, [0๏€บ25 + 0๏€บ25(0๏€บ20)] = 0๏€บ3 mg๏€ฝmL. After the third injection, the concentration is [0๏€บ25 + 0๏€บ3(0๏€บ20)] = 0๏€บ31 mg๏€ฝmL, and after the fourth injection it is [0๏€บ25 + 0๏€บ31(0๏€บ20)] = 0๏€บ312 mg๏€ฝmL. (b) The drug concentration is 0๏€บ2๏ƒ๏ฎ just before the ๏ฎth + 1 injection, after which the concentration increases by 0.25 mg๏€ฝmL. Hence ๏ƒ๏ฎ+1 = 0๏€บ2๏ƒ๏ฎ + 0๏€บ25๏€บ (c) From Formula (6) in ยง2.1, the solution to ๏ƒ๏ฎ+1 = 0๏€บ2๏ƒ๏ฎ + 0๏€บ25๏€ป ๏ƒ0 = 0 mg๏€ฝmL is ๏‚ต ๏‚ถ 1 โˆ’ 0๏€บ2๏ฎ 5 0๏€บ25 ๏ƒ๏ฎ = (0๏€บ2) (0) + 0๏€บ25 = (1 โˆ’ 0๏€บ2๏ฎ ) = (1 โˆ’ 0๏€บ2๏ฎ ) 1 โˆ’ 0๏€บ2 0๏€บ8 16 (d) The limiting value of the concentration is ๏‚ณ ๏‚ด 5 5 5 5 lim ๏ƒ๏ฎ = lim 16 (1 โˆ’ 0๏€บ2๏ฎ ) = 16 (1 โˆ’ 0) = 16 = 0๏€บ3125 mg๏€ฝmL. lim 1 โˆ’ lim 0๏€บ2๏ฎ = 16 ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž ๏ฎโ†’โˆž INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE CHAPTER 2 REVIEW 7. 1๏€บ2345345345 ๏€บ ๏€บ ๏€บ = 1๏€บ2 + 0๏€บ0345 = 8. (a) ยค 109 12 345๏€ฝ10,000 12 345 4111 + = + = 10 1 โˆ’ 1๏€ฝ1000 10 9990 3330 0.8 Computer software was used to plot the first 10 points of the recursion equation ๏ธ๏ด+1 = 2๏€บ5๏ธ๏ด (1 โˆ’ ๏ธ๏ด ), ๏ธ0 = 0๏€บ5๏€บ The sequence appears to converge to a value of 0๏€บ6๏€บ Assume the limit exists so that lim ๏ธ๏ฎ+1 = lim ๏ธ๏ด = ๏ธ๏€ป then ๏ดโ†’โˆž ๏ธ๏ด+1 = 2๏€บ5๏ธ๏ด (1 โˆ’ ๏ธ๏ด ) โ‡’ ๏ดโ†’โˆž lim ๏ธ๏ด+1 = lim 2๏€บ5๏ธ๏ด (1 โˆ’ ๏ธ๏ด ) โ‡’ ๏ดโ†’โˆž ๏ดโ†’โˆž ๏ธ = 2๏€บ5๏ธ(1 โˆ’ ๏ธ) โ‡’ ๏ธ (1๏€บ5 โˆ’ 2๏€บ5๏ธ) = 0 โ‡’ ๏ธ = 0 or ๏ธ = 1๏€บ5๏€ฝ2๏€บ5 = 0๏€บ6๏€บ _1 10 0.4 This agrees with the value estimated from the plot. 1 (b) Computer software was used to plot the first 20 points of the recursion equation ๏ธ๏ด+1 = 3๏€บ3๏ธ๏ด (1 โˆ’ ๏ธ๏ด ), ๏ธ0 = 0๏€บ4๏€บ The sequence does not appear to converge to a fixed value of ๏ธ๏ด . Instead, the terms oscillate between values near 0๏€บ48 and 0๏€บ82๏€บ _1 20 0 9. (a) (i) lim ๏ฆ (๏ธ) = 3 (ii) ๏ธโ†’2+ lim ๏ฆ (๏ธ) = 0 ๏ธโ†’โˆ’3+ (iii) lim ๏ฆ (๏ธ) does not exist since the left and right limits are not equal. (The left limit is โˆ’2.) ๏ธโ†’โˆ’3 (iv) lim ๏ฆ (๏ธ) = 2 ๏ธโ†’4 (v) lim ๏ฆ (๏ธ) = โˆž (vi) lim ๏ฆ (๏ธ) = โˆ’โˆž (vii) lim ๏ฆ (๏ธ) = 4 (viii) lim ๏ฆ (๏ธ) = โˆ’1 ๏ธโ†’0 ๏ธโ†’2โˆ’ ๏ธโ†’โˆž ๏ธโ†’โˆ’โˆž (b) The equations of the horizontal asymptotes are ๏น = โˆ’1 and ๏น = 4. (c) The equations of the vertical asymptotes are ๏ธ = 0 and ๏ธ = 2. (d) ๏ฆ is discontinuous at ๏ธ = โˆ’3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively. 10. ๏ธโ†’โˆ’โˆž lim ๏ฆ(๏ธ) = โˆ’2, ๏ธโ†’โˆž lim ๏ฆ (๏ธ) = 0, lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’3+ lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’โˆ’3 lim ๏ฆ (๏ธ) = 2, ๏ธโ†’3โˆ’ ๏ฆ is continuous from the right at 3 11. lim 1โˆ’๏ธ ๏ธโ†’โˆž 2 + 5๏ธ = lim 12. lim 3โˆ’2๏ด = lim ๏ดโ†’โˆž 1๏€ฝ๏ธ โˆ’ 1 ๏ธโ†’โˆž 2๏€ฝ๏ธ + 5 1 ๏ดโ†’โˆž 32๏ด = lim 0โˆ’1 ๏ธโ†’โˆž 0 + 5 =โˆ’ 1 5 = 0 since 2๏ด โ†’ โˆž as ๏ด โ†’ โˆž๏€บ 3 13. Since the exponential function is continuous, lim ๏ฅ๏ธ โˆ’๏ธ = ๏ฅ1โˆ’1 = ๏ฅ0 = 1. ๏ธโ†’1 14. Since rational functions are continuous, lim ๏ธ2 โˆ’ 9 ๏ธโ†’3 ๏ธ2 + 2๏ธ โˆ’ 3 = 32 โˆ’ 9 32 + 2(3) โˆ’ 3 = 0 = 0. 12 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 110 ยค CHAPTER 2 LIMITS NOT FOR SALE ๏ธ2 โˆ’ 9 (๏ธ + 3)(๏ธ โˆ’ 3) ๏ธโˆ’3 โˆ’3 โˆ’ 3 โˆ’6 3 = lim = lim = = = ๏ธโ†’โˆ’3 ๏ธ2 + 2๏ธ โˆ’ 3 ๏ธโ†’โˆ’3 (๏ธ + 3)(๏ธ โˆ’ 1) ๏ธโ†’โˆ’3 ๏ธ โˆ’ 1 โˆ’3 โˆ’ 1 โˆ’4 2 15. lim 16. lim ๏ธโ†’1+ ๏ธ2 โˆ’ 9 ๏ธ2 + 2๏ธ โˆ’ 3 = โˆ’โˆž since ๏ธ2 + 2๏ธ โˆ’ 3 โ†’ 0+ as ๏ธ โ†’ 1+ and ๏ธ2 โˆ’ 9 ๏€ผ 0 for 1 ๏€ผ ๏ธ ๏€ผ 3. ๏ธ2 + 2๏ธ โˆ’ 3 ๏‚ก 3 ๏‚ข ๏‚ก ๏‚ข ๏จ โˆ’ 3๏จ2 + 3๏จ โˆ’ 1 + 1 (๏จ โˆ’ 1)3 + 1 ๏จ3 โˆ’ 3๏จ2 + 3๏จ = lim = lim = lim ๏จ2 โˆ’ 3๏จ + 3 = 3 17. lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ Another solution: Factor the numerator as a sum of two cubes and then simplify. ๏‚ค ๏‚ฃ [(๏จ โˆ’ 1) + 1] (๏จ โˆ’ 1)2 โˆ’ 1(๏จ โˆ’ 1) + 12 (๏จ โˆ’ 1)3 + 1 (๏จ โˆ’ 1)3 + 13 = lim = lim lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏‚ฃ ๏‚ค 2 = lim (๏จ โˆ’ 1) โˆ’ ๏จ + 2 = 1 โˆ’ 0 + 2 = 3 ๏จโ†’0 ๏ด2 โˆ’ 4 (๏ด + 2)(๏ด โˆ’ 2) ๏ด+2 2+2 4 1 = lim = lim 2 = = = ๏ดโ†’2 ๏ด3 โˆ’ 8 ๏ดโ†’2 (๏ด โˆ’ 2)(๏ด2 + 2๏ด + 4) ๏ดโ†’2 ๏ด + 2๏ด + 4 4+4+4 12 3 18. lim โˆš โˆš ๏ฒ ๏ฒ 4 + = โˆž since (๏ฒ โˆ’ 9) โ†’ 0 as ๏ฒ โ†’ 9 and ๏€พ 0 for ๏ฒ 6= 9. ๏ฒโ†’9 (๏ฒ โˆ’ 9)4 (๏ฒ โˆ’ 9)4 19. lim 20. lim 4โˆ’๏ถ ๏ถโ†’4+ |4 โˆ’ ๏ถ| 21. lim 4โˆ’๏ถ = lim ๏ถโ†’4+ โˆ’(4 โˆ’ ๏ถ) ๏ต4 โˆ’ 1 ๏ตโ†’1 ๏ต3 + 5๏ต2 โˆ’ 6๏ต = lim 1 ๏ถโ†’4+ โˆ’1 = โˆ’1 (๏ต2 + 1)(๏ต2 โˆ’ 1) (๏ต2 + 1)(๏ต + 1)(๏ต โˆ’ 1) (๏ต2 + 1)(๏ต + 1) 2(2) 4 = lim = lim = = 2 ๏ตโ†’1 ๏ต(๏ต + 5๏ต โˆ’ 6) ๏ตโ†’1 ๏ตโ†’1 ๏ต(๏ต + 6)(๏ต โˆ’ 1) ๏ต(๏ต + 6) 1(7) 7 = lim โˆš โˆš โˆš ๏‚ทโˆš ๏‚ธ ๏ธ+6โˆ’๏ธ ๏ธ+6โˆ’๏ธ ๏ธ+6+๏ธ ( ๏ธ + 6 )2 โˆ’ ๏ธ2 ๏‚กโˆš ๏‚ข โˆš ยท = lim = lim ๏ธโ†’3 ๏ธ3 โˆ’ 3๏ธ2 ๏ธโ†’3 ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธ2 (๏ธ โˆ’ 3) ๏ธ+6+๏ธ ๏ธ+6+๏ธ 22. lim ๏ธ + 6 โˆ’ ๏ธ2 โˆ’(๏ธ2 โˆ’ ๏ธ โˆ’ 6) โˆ’(๏ธ โˆ’ 3)(๏ธ + 2) ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš ๏‚ข ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธ+6+๏ธ ๏ธ+6+๏ธ ๏ธ+6+๏ธ = lim = lim ๏ธโ†’3 ๏ธ2 โˆ’(๏ธ + 2) 5 5 ๏‚ข =โˆ’ ๏‚กโˆš =โˆ’ 9(3 + 3) 54 ๏ธ+6+๏ธ 23. Let ๏ด = sin ๏ธ. Then as ๏ธ โ†’ ๏‚ผ โˆ’ , sin ๏ธ โ†’ 0+ , so ๏ด โ†’ 0+ . Thus, lim ln(sin ๏ธ) = lim ln ๏ด = โˆ’โˆž. ๏ธโ†’๏‚ผ โˆ’ 24. ๏ดโ†’0+ 1 โˆ’ 2๏ธ2 โˆ’ ๏ธ4 (1 โˆ’ 2๏ธ2 โˆ’ ๏ธ4 )๏€ฝ๏ธ4 1๏€ฝ๏ธ4 โˆ’ 2๏€ฝ๏ธ2 โˆ’ 1 0โˆ’0โˆ’1 โˆ’1 1 = = = = lim = lim 4 4 4 ๏ธโ†’โˆ’โˆž 5 + ๏ธ โˆ’ 3๏ธ ๏ธโ†’โˆ’โˆž (5 + ๏ธ โˆ’ 3๏ธ )๏€ฝ๏ธ ๏ธโ†’โˆ’โˆž 5๏€ฝ๏ธ4 + 1๏€ฝ๏ธ3 โˆ’ 3 0+0โˆ’3 โˆ’3 3 lim 25. Since ๏ธ is positive, โˆš ๏ธ2 = |๏ธ| = ๏ธ. Thus, ๏ฐ โˆš โˆš โˆš โˆš 1 โˆ’ 9๏€ฝ๏ธ2 ๏ธ2 โˆ’ 9 ๏ธ2 โˆ’ 9๏€ฝ ๏ธ2 1โˆ’0 1 lim = lim = lim = = ๏ธโ†’โˆž 2๏ธ โˆ’ 6 ๏ธโ†’โˆž (2๏ธ โˆ’ 6)๏€ฝ๏ธ ๏ธโ†’โˆž 2 โˆ’ 6๏€ฝ๏ธ 2โˆ’0 2 2 26. Let ๏ด = ๏ธ โˆ’ ๏ธ2 = ๏ธ(1 โˆ’ ๏ธ). Then as ๏ธ โ†’ โˆž, ๏ด โ†’ โˆ’โˆž, and lim ๏ฅ๏ธโˆ’๏ธ = lim ๏ฅ๏ด = 0. ๏ธโ†’โˆž 27. lim ๏ธโ†’โˆž ๏ดโ†’โˆ’โˆž โˆš ๏‚ทโˆš 2 ๏‚ธ ๏ธ + 4๏ธ + 1 โˆ’ ๏ธ ๏ธ2 + 4๏ธ + 1 + ๏ธ (๏ธ2 + 4๏ธ + 1) โˆ’ ๏ธ2 ยทโˆš = lim โˆš 2 ๏ธโ†’โˆž ๏ธโ†’โˆž 1 ๏ธ + 4๏ธ + 1 + ๏ธ ๏ธ2 + 4๏ธ + 1 + ๏ธ ๏ฉ ๏จ โˆš (4๏ธ + 1)๏€ฝ๏ธ = lim โˆš divide by ๏ธ = ๏ธ2 for ๏ธ ๏€พ 0 2 ๏ธโ†’โˆž ( ๏ธ + 4๏ธ + 1 + ๏ธ)๏€ฝ๏ธ ๏‚กโˆš ๏‚ข ๏ธ2 + 4๏ธ + 1 โˆ’ ๏ธ = lim 4 + 1๏€ฝ๏ธ 4+0 4 = lim ๏ฐ = โˆš = =2 2 ๏ธโ†’โˆž 2 1 + 0 + 0 + 1 1 + 4๏€ฝ๏ธ + 1๏€ฝ๏ธ + 1 INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE CHAPTER 2 REVIEW 28. lim ๏ธโ†’1 ๏‚ต 1 1 + 2 ๏ธโˆ’1 ๏ธ โˆ’ 3๏ธ + 2 111 ๏‚ท ๏‚ธ ๏‚ธ 1 ๏ธโˆ’2 1 1 + = lim + ๏ธโ†’1 ๏ธ โˆ’ 1 ๏ธโ†’1 (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) ๏‚ท ๏‚ธ ๏ธโˆ’1 1 1 = lim = lim = = โˆ’1 ๏ธโ†’1 (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) ๏ธโ†’1 ๏ธ โˆ’ 2 1โˆ’2 = lim 0๏€บ50[S] 29. lim ๏ถ = lim [S]โ†’โˆž ๏‚ถ ยค [S]โ†’โˆž 3.0 ร— 10โˆ’4 + [S] ๏‚ท 0๏€บ50 = lim [S]โ†’โˆž 3.0 ร— 10โˆ’4 ๏€ฝ[S] + 1 = 0๏€บ50 = 0๏€บ50๏€บ As the concentration grows larger the 0+1 enzymatic reaction rate will approach 0๏€บ50๏€บ ๏‚ก ๏‚ฏ ๏‚ข ๏‚ก ๏‚ข๏‚ฏ 30. Let ๏ฆ(๏ธ) = โˆ’๏ธ2 , ๏ง(๏ธ) = ๏ธ2 cos 1๏€ฝ๏ธ2 and ๏จ(๏ธ) = ๏ธ2 . Then since ๏‚ฏcos 1๏€ฝ๏ธ2 ๏‚ฏ โ‰ค 1 for ๏ธ 6= 0, we have ๏ฆ (๏ธ) โ‰ค ๏ง(๏ธ) โ‰ค ๏จ(๏ธ) for ๏ธ 6= 0, and so lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0 โ‡’ ๏ธโ†’0 31. (a) ๏ฆ (๏ธ) = ๏ธโ†’0 lim ๏ง(๏ธ) = 0 by the Squeeze Theorem. ๏ธโ†’0 โˆš โˆ’๏ธ if ๏ธ ๏€ผ 0, ๏ฆ (๏ธ) = 3 โˆ’ ๏ธ if 0 โ‰ค ๏ธ ๏€ผ 3, ๏ฆ (๏ธ) = (๏ธ โˆ’ 3)2 if ๏ธ ๏€พ 3. โˆš โˆ’๏ธ = 0 (i) lim ๏ฆ (๏ธ) = lim (3 โˆ’ ๏ธ) = 3 (ii) lim ๏ฆ (๏ธ) = lim (iii) Because of (i) and (ii), lim ๏ฆ (๏ธ) does not exist. (iv) lim ๏ฆ (๏ธ) = lim (3 โˆ’ ๏ธ) = 0 (v) lim ๏ฆ (๏ธ) = lim (๏ธ โˆ’ 3)2 = 0 (vi) Because of (iv) and (v), lim ๏ฆ (๏ธ) = 0. ๏ธโ†’0+ ๏ธโ†’0โˆ’ ๏ธโ†’0+ ๏ธโ†’0 ๏ธโ†’3+ ๏ธโ†’0โˆ’ ๏ธโ†’3โˆ’ ๏ธโ†’3โˆ’ ๏ธโ†’3 ๏ธโ†’3+ (b) ๏ฆ is discontinuous at 0 since lim ๏ฆ (๏ธ) does not exist. ๏ธโ†’0 (c) ๏ฆ is discontinuous at 3 since ๏ฆ (3) does not exist. 32. (a) ๏ธ2 โˆ’ 9 is continuous on R since it is a polynomial and composition โˆš ๏ธ is continuous on [0๏€ป โˆž) by Theorem 6 in Section 2.5, so the โˆš ๏‚ฉ ๏‚ช ๏ธ2 โˆ’ 9 is continuous on ๏ธ | ๏ธ2 โˆ’ 9 โ‰ฅ 0 = (โˆ’โˆž๏€ป โˆ’3] โˆช [3๏€ป โˆž) by Theorem 8. Note that ๏ธ2 โˆ’ 2 6= 0 on this set and so the quotient function ๏ง(๏ธ) = โˆš ๏ธ2 โˆ’ 9 is continuous on its domain, (โˆ’โˆž๏€ป โˆ’3] โˆช [3๏€ป โˆž) by Theorem 4. ๏ธ2 โˆ’ 2 (b) sin ๏ธ and ๏ฅ๏ธ are continuous on R by Theorem 6 in Section 2.5. Since ๏ฅ๏ธ is continuous on R, ๏ฅsin ๏ธ is continuous on R by Theorem 8 in Section 2.5. Lastly, ๏ธ is continuous on R since itโ€™s a polynomial and the product ๏ธ๏ฅsin ๏ธ is continuous on its domain R by Theorem 4 in Section 2.5. 33. ๏ฆ (๏ธ) = 2๏ธ3 + ๏ธ2 + 2 is a polynomial, so it is continuous on [โˆ’2๏€ป โˆ’1] and ๏ฆ (โˆ’2) = โˆ’10 ๏€ผ 0 ๏€ผ 1 = ๏ฆ(โˆ’1). So by the Intermediate Value Theorem there is a number ๏ฃ in (โˆ’2๏€ป โˆ’1) such that ๏ฆ (๏ฃ) = 0, that is, the equation 2๏ธ3 + ๏ธ2 + 2 = 0 has a root in (โˆ’2๏€ป โˆ’1). 2 34. ๏ฆ (๏ธ) = ๏ฅโˆ’๏ธ โˆ’ ๏ธ is continuous on R so it is continuous on [0๏€ป 1]. ๏ฆ(0) = 1 ๏€พ 0 ๏€พ 1๏€ฝ๏ฅ โˆ’ 1 = ๏ฆ (1). So by the Intermediate 2 2 Value Theorem, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ(๏ฃ) = 0. Thus, ๏ฅโˆ’๏ธ โˆ’ ๏ธ = 0๏€ป or ๏ฅโˆ’๏ธ = ๏ธ, has a root in (0๏€ป 1). INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 112 ยค NOT FOR SALE CHAPTER 2 LIMITS CASE STUDY 2a Hosts, Parasites, and Time-Travel 1. The functions ๏ฑ(๏ด) and ๏ฐ(๏ด) describing the genotype frequencies of the host and parasite are both transformations of the function cos(๏ด). Thus, they are oscillatory functions that exhibit periodic or repeating behavior. Biologically, we expect the parasite genotype will evolve to infect the host genotype that is most prevalent in the population. As this happens, the host genotypes will evolve to avoid infection. In turn, the parasite genotype frequency will evolve (for survival) towards the new prevalent host genotype frequency. This cat-and-mouse game causes a cycling of the host and parasite genotype frequencies that is described by the periodic functions ๏ฑ(๏ด) and ๏ฐ(๏ด). E.g. if the frequency of type A is high, the parasite will evolve toward a high frequency of type B. The host population will then evolve leading to a lower frequency of genotype A (to avoid infection), and in turn, the parasite population will evolve toward a lower frequency of genotype B (for survival). 2. ๏๏ฑ and ๏๏ฐ represent vertical stretch factors to the parent function cos(๏ด). They are the amplitudes of oscillation for the frequencies of genotype A and B respectively. Therefore, an increase in ๏ results in a higher maximum frequency and a lower minimum frequency over time for the respective genotype. 3. The constant ๏ฃ represents a horizontal compression factor to the parent function cos(๏ด). This gives a period of oscillation of 2๏‚ผ for both ๏ฑ(๏ด) and ๏ฐ(๏ด). Therefore, increasing ๏ฃ results in a smaller period of oscillation for both the host and parasite ๏ฃ frequencies. Biological explanation: Suppose uninfected hosts have a large reproductive advantage over infected hosts so that ๏ฃ is large. The uninfected host population will grow rapidly in size compared to the infected host population. Consequently, the parasite with the genotype capable of infecting the growing uninfected host population will also increase rapidly, since more hosts will be available to the parasite for infection. As this occurs, the uninfected hosts become infected and now the formerly infected hosts will have the reproductive advantage. Thus, the frequencies of the host and parasite genotypes will cycle rapidly back and forth. That is, the period of oscillation will be small. 4. The constants ๏ƒ๏ฐ and ๏ƒ๏ฑ affect the horizontal translation of the parent function cos(๏ด). They are the phase shifts that determine the time at which the genotype frequencies reach a maximum. 5. The constants ๏ƒ๏ฐ and ๏ƒ๏ฑ affect the horizontal position of the periodic functions ๏ฐ(๏ด) and ๏ฑ(๏ด), so the difference ๏ƒโˆ— = ๏ƒ๏ฐ โˆ’ ๏ƒ๏ฑ measures the time lag between the cycles of ๏ฑ(๏ด) and ๏ฐ(๏ด). Hence, this quantity is a measure of the length of time it takes for the frequency of the parasite genotype to “respond” to the frequency of the host genotype. 6. Consider the general form of equations 2a and 2b given by ๏ฆave (๏‚ฟ ) = 12 + ๏ cos (๏ฃ๏‚ฟ โˆ’ ๏ƒ) in the limit ๏— โ†’ 0 gives ๏ƒƒ lim ๏— โ†’0 2 sin 1 + ๏ cos (๏ฃ๏‚ฟ โˆ’ ๏ƒ) 2 ๏‚ก1 2 ๏ฃ๏— ๏ฃ๏— ๏‚ข๏€ก ๏‚ก sin 12 ๏ฃ๏— = 12 + ๏ cos (๏ฃ๏‚ฟ โˆ’ ๏ƒ) lim 1 ๏— โ†’0 2 ๏ฃ๏— ๏‚ข ๏‚ก ๏‚ข 2 sin 12 ๏ฃ๏— . Evaluating ๏ฆave (๏‚ฟ ) ๏ฃ๏— = 12 + ๏ cos (๏ฃ๏‚ฟ โˆ’ ๏ƒ) lim ๏ธโ†’0 sin (๏ธ) ๏ธ where ๏ธ = 12 ๏ฃ๏— . The last limit was investigated in Example 2.3.4 where it was shown that lim๏ธโ†’0 sin (๏ธ) ๏€ฝ๏ธ = 1. So we ๏‚ข ๏‚ก have lim ๏ฆave (๏‚ฟ ) = 12 + ๏ cos ๏ฃ๏‚ฟ โˆ’ ๏ƒ๏ฑ . This is the same form as equations (1a) and (1b). Thus, when extracting and ๏— โ†’0 mixing a very small layer of sediment (๏— โ†’ 0), the average frequency of the host and parasite genotypes are the same as the instantaneous frequencies ๏ฑ(๏‚ฟ ) and ๏ฐ(๏‚ฟ ). INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. NOT FOR SALE CASE STUDY 2a To determine the limit of ๏ฆave (๏‚ฟ ) as ๏— โ†’ โˆž๏€ป first observe that lim lim sin ๏— โ†’โˆž ๏‚ก1 ๏ฃ๏— ๏ฃ๏— 2 ๏‚ข sin ๏— โ†’โˆž ๏‚ก1 2 ๏ฃ๏— ๏ฃ๏— HOSTS, PARASITES, AND TIME-TRAVEL ๏‚ข โ‰ค lim 1 ๏— โ†’โˆž ๏ฃ๏— ยค 113 = 0 since sin ๏ธ โ‰ค 1. Also ๏‚ก ๏‚ข sin 12 ๏ฃ๏— โˆ’1 = 0 since sin ๏ธ โ‰ฅ โˆ’1. Thus, by the Squeeze Theorem we have lim = 0 so ๏— โ†’โˆž ๏ฃ๏— ๏— โ†’โˆž ๏ฃ๏— โ‰ฅ lim that lim ๏ฆave (๏‚ฟ ) = 12 . ๏— โ†’โˆž In terms of the biology, extracting and mixing an extremely small width of sediment will capture parasites and hosts from a very short period of time (nearly an instant). In contrast, extracting and mixing a very large layer of sediment will homogenize the host and parasite frequencies across a large period of time. Hence, the frequencies at different points in time can no longer be differentiated so we expect a constant average frequency of host and parasite genotypes. 7. The graph of ๏† (๏„) = 12 + ๏๏ฐ ๏๏ฑ cos ๏‚ก ๏‚ข ๏‚ท ๏‚ต ๏‚ถ๏‚ธ 4 sin2 12 ๏ฃ๏— ๏ƒโˆ— ๏ฃ ๏„โˆ’ is obtained by applying the following transformations ๏ฃ ๏ฃ2 ๏— 2 to the graph of cos(๏„): โ€ข Horizontal compression by a factor of ๏ฃ. Thus, the period is 2๏‚ผ๏€ฝ๏ฃ. ๏‚ก ๏‚ก ๏‚ข ๏‚ข 4 sin2 12 ๏ฃ๏— 4 sin2 12 ๏ฃ๏— . Thus, the amplitude is ๏ = ๏๏ฐ ๏๏ฑ . โ€ข Vertical stretch by a factor ๏๏ฐ ๏๏ฑ ๏ฃ2 ๏— 2 ๏ฃ2 ๏— 2 โ€ข Horizontal translation ๏ƒโˆ— ๏€ฝ๏ฃ units to the right if positive, or left if negative โ€ข Vertical translation 12 units up These properties are illustrated in the sketches of ๏† (๏„) below for ๏ƒโˆ— = 0, ๏ƒโˆ— small positive, and ๏ƒโˆ— small negative. We have assumed that ๏ฃ is sufficiently large, so that if ๏ƒโˆ— is close to zero, then ๏ƒโˆ— ๏€ฝ๏ฃ is also close to zero. F(D) 0.5+A F(D) รบ*0 (small) (รบ*-2ยน)/c 0 รบ*/c (รบ*-ยน)/c (รบ*+ยน)/c D 8. The experimental data in Figure 3 shows an increase in the fraction of hosts infected as the sample points move from the past to the future. The graphs from Problem 7 illustrate the variety of situations that can arise given different phase lags ๏ƒโˆ— . In the ๏‚ท โˆ— ๏‚ธ ๏ƒ โˆ’ ๏‚ผ ๏ƒโˆ— figure corresponding to ๏ƒโˆ— ๏€พ 0, observe that ๏† (๏„) is an increasing function in the interval ๏€ป . That is, the ๏ฃ ๏ฃ fraction of hosts infected increases as the sample points move from the past to the future for relatively small values of ๏ฃ๏„. This is the same pattern observed in Figure 3. Thus, we require that the phase lag ๏ƒโˆ— be small and positive in order to observe the experimental trend in Figure 3. Biological interpretation: When ๏ƒโˆ— ๏€พ 0 there is a phase or time lag between the oscillations in frequency of the host and parasite populations. In the experiment, parasites from the past had not yet evolved to infect the present hosts, so fewer hosts were infected by parasites from the past. Parasites from the future had evolved to infect hosts from the present, so a greater number of hosts were infected by parasites from the future. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved. 114 ยค NOT FOR SALE CHAPTER 2 LIMITS 9. The experimental results depicted in Figure 4 show a decrease in the fraction of infected hosts when challenged with parasites from both the past and future. Examining the figures from Problem 6, we observe that this experimental result is achievable ๏จ ๏‚ผ๏ฉ ๏จ ๏‚ผ ๏ฉ when ๏ƒโˆ— = 0. In this case, ๏† (๏„) is increasing on the interval โˆ’ ๏€ป 0 and decreasing on the interval 0๏€ป . So if we start at ๏ฃ ๏ฃ ๏„ = 0 and decrease ๏„ by a small amount (move into the past), the fraction of infected hosts will decrease. Similarly, if we start at ๏„ = 0 and increase ๏„ by a small amount (move into the future), the fraction of infected hosts will also decrease. This is the same pattern observed in Figure 4. Thus, we require that the phase lag ๏ƒโˆ— be zero in order to observe the experimental trend in Figure 4. Biological interpretation: When ๏ƒโˆ— = 0 there is no phase lag between the frequency of the host and parasite genotypes. That is, the frequency of the parasite genotype oscillates in a synchronous manner with the frequency of the host genotype. In a sense, the parasitesโ€™ genotype evolves with the host in real-time to maximize the number of infected hosts. Thus, parasites from the past will infect fewer hosts than contemporary parasites since the contemporary parasites have already evolved to infect contemporary hosts. Similarly, parasites from the future will infect fewer hosts than contemporary parasites since the future parasites have evolved to infect future hosts. INSTRUCTOR USE ONLY c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยฉ Cengage Learning. All Rights Reserved.

Document Preview (44 of 783 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in