Solution Manual for Basic Technical Mathematics, 11th Edition
Preview Extract
INSTRUCTORโS
SOLUTIONS MANUAL
MATTHEW G. HUDELSON
B ASIC T ECHNICAL
M ATHEMATICS
AND
B ASIC T ECHNICAL
M ATHEMATICS WITH C ALCULUS
ELEVENTH EDITION
Allyn J. Washington
Dutchess Community College
Richard S. Evans
Corning Community College
The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this
book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with,
or arising out of, the furnishing, performance, or use of these programs.
Reproduced by Pearson from electronic files supplied by the author.
Copyright ยฉ 2018, 2014, 2009 Pearson Education, Inc.
Publishing as Pearson, 330 Hudson Street, NY NY 10013
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America.
ISBN-13: 978-0-13-443589-3
ISBN-10: 0-13-443589-3
Instructor’s Solutions Manual for
Basic Technical Mathematics and
Basic Technical Mathematics with Calculus, 11th Edition
Chapter 1
Basic Algebraic Operations ………………………………………………………………………….1
Chapter 2
Geometry………………………………………………………………………………………………..104
Chapter 3
Functions and Graphs ………………………………………………………………………………171
Chapter 4
The Trigonometric Functions ……………………………………………………………………259
Chapter 5
Systems of Linear Equations; Determinants………………………………………………..346
Chapter 6
Factoring and Fractions…………………………………………………………………………….490
Chapter 7
Quadratic Equations…………………………………………………………………………………581
Chapter 8
Trigonometric Functions of Any Angle………………………………………………………666
Chapter 9
Vectors and Oblique Triangles ………………………………………………………………….723
Chapter 10
Graphs of the Trigonometric Functions………………………………………………………828
Chapter 11
Exponents and Radicals ……………………………………………………………………………919
Chapter 12
Complex Numbers …………………………………………………………………………………1001
Chapter 13
Exponential and Logarithmic Functions……………………………………………………1090
Chapter 14
Additional Types of Equations and Systems of Equations…………………………..1183
Chapter 15
Equations of Higher Degree…………………………………………………………………….1290
Chapter 16
Matrices; Systems of Linear Equations …………………………………………………….1356
Chapter 17
Inequalities……………………………………………………………………………………………1477
Chapter 18
Variation ………………………………………………………………………………………………1598
Chapter 19
Sequences and the Binomial Theorem………………………………………………………1634
Chapter 20
Additional Topics in Trigonometry ………………………………………………………….1696
Chapter 21
Plane Analytic Geometry………………………………………………………………………..1812
Chapter 22
Introduction to Statistics …………………………………………………………………………2052
Chapter 23
The Derivative ………………………………………………………………………………………2126
Chapter 24
Applications of the Derivative …………………………………………………………………2310
Chapter 25
Integration …………………………………………………………………………………………….2487
Chapter 26
Applications of Integration ……………………………………………………………………..2572
Chapter 27
Differentiation of Transcendental Functions ……………………………………………..2701
Chapter 28
Methods of Integration……………………………………………………………………………2839
Chapter 29
Partial Derivatives and Double Integrals …………………………………………………..2991
Chapter 30
Expansion of Functions in Series……………………………………………………………..3058
Chapter 31
Differential Equations…………………………………………………………………………….3181
Chapter 1
Basic Algebraic Operations
1.1 Numbers
โ7
12
and
.
1
1
1.
The numbers โ7 and 12 are integers. They are also rational numbers since they can be written as
2.
The absolute value of โ6 is 6, and the absolute value of โ7 is 7. We write these as โ6 = 6 and โ7 = 7 .
3.
โ6 < โ4 ; โ6 is to the left of โ4.
โ7 โ6 โ5 โ4 โ3 โ2 โ1 0
4.
5.
6.
The reciprocal of
1
1
2 2
3
= 1ร = .
is
3/ 2
3 3
2
๏ฆ3๏ถ
3 is an integer, rational ๏ง ๏ท , and real.
๏จ1๏ธ
โ4 is imaginary.
7
is irrational (because
3
7 is an irrational number) and real.
๏ฆ โ6 ๏ถ
โ6 is an integer, rational ๏ง ๏ท , and real.
๏จ 1 ๏ธ
7.
โ
ฯ
6
is irrational (because ฯ is an irrational number) and real.
1
is rational and real.
8
8.
โ โ6 is imaginary.
โ233
โ2.33 =
is rational and real.
100
9.
3 =3
โ3 = 3
โ
10.
ฯ
2
=
ฯ
2
โ0.857 = 0.857
2 = 2
โ
19 19
=
4
4
Copyright ยฉ 2018 Pearson Education, Inc.
1
2
11.
Chapter 1 Basic Algebraic Operations
6 5 ; 7 is to the right of 5.
3 4 5 6 7 8 9 10 11
13.
ฯ < 3.1416; ฯ (3.1415926 โฆ) is to the left of 3.1416.
(ฯ )
(3.1416)
3.141592
14.
3.1416
โ4 < 0 ; โ4 is to the left of 0.
โ6 โ5 โ4 โ3 โ2 โ1 0 1 2
15.
โ4 โ1.42; ( โ 2 = โ (1.414โฆ.) = โ1.414 โฆ), โ 2 is to the right of โ1.42.
โ1.44
17.
โ
2
3 2
3
> โ ; โ = โ0.666โฆ is to the right of โ = โ0.75 .
3
4 3
4
โ0.8
18.
โ1.43 โ1.42 โ1.41 โ1.40
โ0.7
โ0.6
โ0.5
โ0.4
โ0.6 0, then a = a .
If b > a and a > 0 , then b = b .
If b > a then b โ a > 0 , then b โ a = b โ a .
Therefore, b โ a = b โ a = b โ a .
The two sides of the expression are equivalent, one side is not less than the other.
29.
List these numbers from smallest to largest: โ1, 9, ฯ = 3.14,
โ3.1 โ โ3
-1
5
โ4 โ3 โ2 โ1 0
1
ฯ
โ8
2 3 4 5
6 7
List these numbers from smallest to largest:
โ6
โ4
โ 10
1
5
0.25
5, ฯ , โ8 , 9 .
1
= 0.20, โ 10 = โ3.16…, โ โ6 = โ6, โ 4, 0.25, โฯ = 3.14… .
5
โฯ
โ6 โ5 โ4 โ3 โ2 โ1 0 1 2
3 4 5
So, from smallest to largest, they are โ โ6 , โ 4, โ 10,
31.
9
8 9
So, from smallest to largest, they are โ3.1, โ โ3 , โ 1,
30.
5 = 2.236, โ8 = 8, โ โ3 = โ3, โ3.1 .
6 7
1
, 0.25, โฯ .
5
If a and b are positive integers and b > a , then
(a)
(b)
(c)
b โ a is a positive integer.
a โ b is a negative integer.
bโa
, the numerator and denominator are both positive, but the numerator is less than the denominator, so the
b+a
answer is a positive rational number than is less than 1.
32.
If a and b are positive integers, then
(a) a + b is a positive integer
(b) a / b is a positive rational number
(c) a ร b is a positive integer
33.
(a)
Is the absolute value of a positive or a negative integer always an integer?
x = x , so the absolute value of a positive integer is an integer.
-x = x , so the absolute value of a negative integer is an integer.
(b)
Is the reciprocal of a positive or negative integer always a rational number?
1
If x is a positive or negative integer, then the reciprocal of x is . Since both 1 and x are integers, the reciprocal
x
is a rational number.
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.1 Numbers
34.
(a)
Is the absolute value of a positive or negative rational number rational?
x = x , so if x is a positive or negative rational number, the absolute value of it is also a rational number.
(b)
Is the reciprocal of a positive or negative rational number a rational number?
5
A rational number is a number that can be expressed as a fraction where both the numerator and denominator are
integer a
integers and the denominator is not zero. So a rational number
has a reciprocal of
integer b
1
integer b
=
, which is also a rational number if integer a is not zero.
integer a integer a
integer b
35.
(a)
If x > 0 , then x is a positive number located to the right of zero on the number line.
x
โ4 โ3 โ2 โ1
(b)
0
1
2 3 4
If x < โ4 , then x is a negative number located to the left of โ4 on the number line.
x
โ6 โ5 โ4 โ3 โ2 โ1 0 1 2
36.
(a)
If x < 1 , then โ1 < x 2 , then x 2 .
x
x
โ4 โ3 โ2 โ1 0
37.
If x > 1, then
1 2
3 4
1
1
is a positive number less than 1. Or 0 < < 1 .
x
x
1
x
โ4 โ3 โ2 โ1 0
38.
3 4
1
2 3 4
If x 100V
43.
N=
a bits 1000 bytes
ร
ร n kilobytes
bytes 1 kilobyte
N = 1000 an bits
44.
x
L
y
x = length of base in m
y = the shortened length in centimetres.
100 x = length of base in cm
y + L = 100 x, all dimensions in cm
L = 100 x โ y
45.
Yes, โ20 ยฐC > โ30 ยฐC because โ30 ยฐC is found to the left of โ20 ยฐC on the number line.
โ30โ
46.
โ20โ
โ10โ
0โ
10โ
For I 12 ฮฉ .
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.2 Fundamental Operations of Algebra
1.2 Fundamental Operations of Algebra
1.
16 โ 2 ร ( โ2 ) = 16 โ ( โ4 ) = 16 + 4 = 20
2.
โ18
+ 5 โ ( โ2 )( 3) = 3 + 5 โ ( โ6 ) = 8 + 6 = 14
โ6
3.
โ12 5 โ 1 โ12 4
+
=
+
= โ2 + ( โ2 ) = โ4
8 โ 2 2(โ1)
6
โ2
4.
7 ร 6 42
=
= is undefined , not indeterminate.
0ร0 0
5.
5 + ( โ8 ) = 5 โ 8 = โ3
6.
โ4 + ( โ7 ) = โ4 โ 7 = โ11
7.
โ3 + 9 = 6 or alternatively
โ3 + 9 = + ( 9 โ 3) = + ( 6 ) = 6
8.
18 โ 21 = โ3 or alternatively
18 โ 21 = โ(21 โ 18) = โ(3) = โ3
9.
โ19 โ ( โ16 ) = โ19 + 16 = โ3
10.
โ8 โ ( โ10 ) = โ8 + 10 = 2
11.
7 ( โ4 ) = โ(7 ร 4) = โ28
12.
โ9 ( 3) = โ27
13.
โ7 ( โ5 ) = + (7 ร 5) = 35
14.
โ9
= โ3
3
15.
โ6(20 โ 10) โ6(10) โ60
=
=
= 20
โ3
โ3
โ3
16.
โ28
โ28
โ28
=
=
= โ4
โ7(5 โ 6) โ7(โ1)
7
17.
โ2 ( 4 )( โ5 ) = โ8 ( โ5 ) = 40
18.
โ3 ( โ4 )( โ6 ) =12 ( โ6 ) = โ72
Copyright ยฉ 2018 Pearson Education, Inc.
7
8
Chapter 1 Basic Algebraic Operations
19.
2 ( 2 โ 7 ) รท 10 = 2 ( โ5 ) รท 10 = โ10 รท 10 = โ1
20.
โ64
โ64
โ64
โ64
=
=
=
=8
โ2 4 โ 8 โ2 โ4 โ2(4) โ8
21.
16 รท 2(โ4) = 8(โ4) = โ32
22.
โ20 รท 5(โ4) = โ4(โ4) = 16
23.
โ9 โ 2 โ 10 = โ9 โ โ8 = โ9 โ 8 = โ17
24.
( 7 โ 7 ) รท ( 5 โ 7 ) = 0 รท ( โ2 ) = 0
25.
17 โ 7 10
= is undefined
7โ7 0
26.
(7 โ 7)(2)
0(2) 0
=
= is indeterminate
(7 โ 7)(โ1) 0(โ1) 0
27.
8 โ 3 ( โ4 ) = 8 + 12 = 20
28.
โ20 + 8 รท 4 = โ20 + 2 = โ18
29.
โ2 ( โ6 ) +
30.
| โ2 | 2
=
= โ1
โ2
โ2
31.
10 ( โ8)( โ3) รท (10 โ 50) = 10( โ8)( โ3) รท ( โ40)
8
= 12 + โ4 = 12 + 4 = 16
โ2
= โ80( โ3) รท ( โ40)
= 240 รท ( โ40)
= โ6
32.
7 โ โ5
โ1(โ2)
=
7โ5 2
= =1
2
2
33.
24
24
โ 4 ( โ9 ) =
+ (4 ร 9) = โ12 + 36 = 24
3 + (โ5)
โ2
34.
โ18 4โ | โ6 | โ18 4 โ 6
โ2
โ
=
โ
= โ6 โ
= โ6 โ 2 = โ8
โ1
โ1
โ1
3
3
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.2 Fundamental Operations of Algebra
35.
โ7 โ
โ14
2 ( 2 โ 3)
โ 3 6 โ 8 = โ7 โ
14
โ 3 โ2
2 ( โ1)
14
โ 3(2)
โ2
= โ7 โ ( โ7 ) โ 6
= โ7 โ
= โ7 + 7 โ 6
= โ6
36.
37.
โ7 ( โ3) +
โ6
โ | โ9 |= +(7 ร 3) + 2 โ 9
โ3
= 21 + 2 โ 9
= 14
3 | โ9 โ 2( โ3) | 3 | โ9 + 6 |
=
1 โ 10
โ9
3 | โ3 |
=
โ9
9
=
โ9
= โ1
38.
20 ( โ12 ) โ 40(โ15)
39.
6 ( 7 ) = ( 7 ) 6 demonstrates the commutative law of multiplication.
40.
6 + 8 = 8 + 6 demonstrates the commutative law of addition.
41.
6 ( 3 + 1) = 6 ( 3) + 6 (1) demonstrates the distributive law.
42.
4 ( 5 ร ฯ ) = (4 ร 5)ฯ demonstrates the associative law of multiplication.
43.
3 + ( 5 + 9 ) = ( 3 + 5 ) + 9 demonstrates the associative law of addition.
44.
8 ( 3 โ 2 ) = 8 ( 3) โ 8 ( 2 ) demonstrates the distributive law.
45.
( 5 ร 3) ร 9 = 5 ร (3 ร 9) demonstrates the associative law of multiplication.
46.
( 3 ร 6 ) ร 7 = 7 ร (3 ร 6) demonstrates the commutative law of multiplication.
47.
โa + ( โb ) = โa โ b , which is expression (d).
48.
b โ ( โa ) = b + a = a + b , which is expression (a).
49.
โb โ ( โ a ) = โb + a = a โ b , which is expression (b).
98 โ โ98
=
โ240 + 600 360
=
= is undefined
98 โ 98
0
Copyright ยฉ 2018 Pearson Education, Inc.
9
10
Chapter 1 Basic Algebraic Operations
50.
โa โ ( โb ) = โa + b = b โ a , which is expression (c).
51.
Since | 5 โ (โ2) |=| 5 + 2 |=| 7 |= 7 and | โ5 โ (โ2) |=| โ5 + 2 |=| โ3 |= 3 ,
| 5 โ (โ2) |>| โ5 โ (โ2) | .
52.
Since | โ3โ | โ7 ||=| โ3 โ 7 |=| โ10 |= 10 and || โ3 | โ7 |=| 3 โ 7 |=| โ4 |= 4 ,
| โ3 โ | โ7 || > || โ3 | โ 7 | .
53.
(a)
The sign of a product of an even number of negative numbers is positive. Example : โ3 ( โ6 ) = 18
(b)
The sign of a product of an odd number of negative numbers is negative.
Example: โ 5 ( โ4 )( โ2 ) = โ40
54.
Subtraction is not commutative because x โ y โ y โ x . Example: 7 โ 5 = 2 does not equal 5 โ 7 = โ2
55.
Yes, from the definition in Section 1.1, the absolute value of a positive number is the number itself, and the absolute
value of a negative number is the corresponding positive number. So for values of x where x > 0 (positive) or x = 0
(neutral) then x = x .
Example : 4 = 4 .
The claim that absolute values of negative numbers x = โ x is also true.
Example: if x is โ 6, then โ6 = โ ( โ6 ) = 6.
56.
The incorrect answer was achieved by subtracting before multiplying or dividing which violates the order of operations.
24 โ 6 รท 2 ร 3 โ 18 รท 2 ร 3 = 9 ร 3 = 27
The correct value is:
24 โ 6 รท 2 ร 3 = 24 โ 3 ร 3 = 24 โ 9 = 15
57.
(a)
(b)
58.
(a)
1
, providing that the
x
1
๏ฆ 1๏ถ
and โ xy = โ (12 ) ๏ง โ ๏ท = 1 .
number x in the denominator is not zero. So if x = 12 , then y = โ
12
๏จ 12 ๏ธ
xโ y
= 1 is true for all values of x and y, providing that x โ y to prevent division by zero.
xโ y
โ xy = 1 is true for values of x and y that are negative reciprocals of each other or y = โ
x + y = x + y is true for values where both x and y have the same sign or either are zero:
x + y = x + y , when x โฅ 0 and y โฅ 0 or when x โค 0 and y โค 0
Example:
6 + 3 = 6 + 3 = 9 and
6 + 3 = 6+3 = 9
Also,
โ6 + (โ3) = โ9 = 9
โ6 + โ3 = 6 + 3 = 9
x + y = x + y is not true however, when x and y have opposite signs
x + y โ x + y , when x > 0 and y < 0 ; or x 0 .
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.2 Fundamental Operations of Algebra
Example:
โ21 + 6 = โ15 = 15,
โ21 + 6 = 21 + 6 = 27 โ 15
4 + (โ5) = โ1 = 1,
4 + โ5 = 4 + 5 = 9 โ 1
(b)
In order for x โ y = x + y it is necessary that they have opposite signs or either to be zero.
Symbolically, x โ y = x + y when x โฅ 0 and y โค 0 ; or when x โค 0 and y โฅ 0 .
Example:
6 โ (โ3) = 6 + 3 = 9 and
6 + โ3 = 6 + 3 = 9
Example:
โ11 โ 7 = โ18 = 18
โ11 + โ7 = 11 + 7 = 18
x โ y = x + y is not true, however, when x and y have the same signs.
x โ y โ x + y , when x > 0 and y > 0; or x < 0 and y < 0 .
Example:
21 โ 6 = 15 = 15,
21 + 6 = 27 โ 15
59.
The total change in the price of the stock is โ0.68 + 0.42 + 0.06 + (โ0.11) + 0.02 = โ0.29 .
60.
The difference in altitude is โ86 โ (โ1396) = 1396 โ 86 = 1310 m
61.
The change in the meter energy reading E would be:
Echange = Eused โ Egenerated
Echange = 2.1 kW โ
h โ 1.5 kW ( 3.0 h )
Echange = 2.1 kW โ
h โ 4.5 kW โ
h
Echange = โ 2.4 kW โ
h
62.
Assuming that this batting average is for the current season only which is just starting, the number of hits is zero and
number of hits 0
the total number of at-bats is also zero giving us a batting average =
= which is indeterminate, not
at โ bats
0
0.000.
63.
The average temperature for the week is:
โ7 + (โ3) + 2 + 3 + 1 + (โ4) + (โ6)
ยฐC
Tavg =
7
โ7 โ 3 + 2 + 3 + 1 โ 4 โ 6
ยฐC
Tavg =
7
โ14
ยฐC = โ2.0 ยฐC
Tavg =
7
Copyright ยฉ 2018 Pearson Education, Inc.
11
12
Chapter 1 Basic Algebraic Operations
64.
The vertical distance from the flare gun is
d = ( 70 )( 5 ) + ( โ16 )( 25 )
d = 350 + ( โ400 )
d = 350 โ 400
d = โ50 m
The flare is 50 m below the flare gun.
65.
The sum of the voltages is
Vsum = 6V + ( โ2V ) + 8V + ( โ5V ) + 3V
Vsum = 6V โ 2V + 8V โ 5V + 3V
Vsum = 10V
66.
(a)
(b)
(c)
The change in the current for the first interval is the second reading โ the first reading
Change1 = โ2 lb/in 2 โ 7 lb/in 2 = โ9 lb/in 2 .
The change in the current for the middle intervals is the third reading โ the second reading
Change2 = โ9 lb/in 2 โ ( โ2 lb/in 2 ) = โ9 lb/in 2 + 2 lb/in 2 = โ7 lb/in 2 .
The change in the current for the last interval is the last reading โ the third reading
Change3 = โ6 lb/in 2 โ ( โ9 lb/in 2 ) = โ6 lb/in 2 + 9 lb/in 2 = 3 lb/in 2 .
67.
The oil drilled by the first well is 100 m + 200 m = 300 m which equals the depth drilled by the second well
200 m + 100 m = 300 m .
100 m + 200 m = 200 m + 100 m demonstrates the commutative law of addition.
68.
The first tank leaks 12
69.
The total time spent browsing these websites is the total time spent browsing the first site on each day + the total time
spent browsing the second site on each day
minutes
minutes
t = 7 days ร 25
+ 7 days ร 15
day
day
t = 175 min + 105 min
t = 280 min
OR
minutes
t = 7 days ร (25 + 15)
day
minutes
t = 7 days ร 40
day
t = 280 min
which illustrates the distributive law.
L
L
( 7 h ) = 84 L .The second tank leaks 7 (12h ) = 84L.
h
h
12 ร 7 = 7 ร 12 demonstrates the commutative law of multiplication.
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.3 Calculators and Approximate Numbers
70.
13
Distance = rate ร time
km
km
3h
d = 600
+ 50
h
h
km
km
d = 600
(3h ) + 50 (3h )
h
h
d = 1800 km + 150 km = 1950 km
OR
d = 600
km
km
3h
+ 50
h
h
km
3h
h
.
d = 1950 km
This illustrates the distributive law.
d = 650
1.3 Calculators and Approximate Numbers
1.
0.390 has three significant digits since the zero is after the decimal. The zero is not necessary as a placeholder and
should not be written unless it is significant.
2.
35.303 rounded off to four significant digits is 35.30.
3.
In finding the product of the approximate numbers, 2.5 ร 30.5 = 76.25 , but since 2.5 has 2 significant digits, the answer
is 76.
4.
38.3 โ 21.9(โ3.58) = 116.702 using exact numbers; if we estimate the result, 40 โ 20(โ4) = 120 .
5.
8 cylinders is exact because they can be counted. 55 km/h is approximate since it is measured.
6.
0.002 mm thick is a measurement and is therefore an approximation. $7.50 is an exact price.
7.
24 hr and 1440 min (60 min/h ร 24 h =1140 min) are both exact numbers.
8.
50 keys is exact because you can count them; 50 h of use is approximate since it is a measurement of time.
9.
Both 1 cm and 9 g are measured quantities and so they are approximate.
10.
The numbers 90 and 75 are exact counts of windows while 15 years is a measurement of time, hence it is approximate.
11.
107 has 3 significant digits; 3004 has 4 significant digits; 1040 has 3 significant digits (the final zero is a placeholder.)
12.
3600 has 2 significant digits; 730 has 2 significant digits; 2055 has 4 significant digits.
13.
6.80 has 3 significant digits since the zero indicates precision; 6.08 has 3 significant digits; 0.068 has 2 significant
digits (the zeros are placeholders.)
14.
0.8730 has 4 significant digits; 0.0075 has 2 significant digits; 0.0305 has 3 significant digits.
15.
3000 has 1 significant digit; 3000.1 has 5 significant digits; 3000.10 has 6 significant digits.
Copyright ยฉ 2018 Pearson Education, Inc.
14
Chapter 1 Basic Algebraic Operations
16.
1.00 has 3 significant digits since the zeros indicate precision; 0.01 has 1 significant digit since leading zeros are not
significant; 0.0100 has 3 significant digits, counting the trailing zeros.
17.
5000 has 1 significant digit; 5000.0 has 5 significant digits; 5000 has 4 significant digits since the bar over the final
zero indicates that it is significant.
18.
200 has 1 significant digit; 200 has 3 significant digits; 200.00 has 5 significant digits.
19.
(a)
(b)
0.010 has more decimal places (3) and is more precise.
30.8 has more significant digits (3) and is more accurate.
20.
(a)
(b)
Both 0.041 and 7.673 have the same precision as they have the same number of decimal places (3).
7.673 is more accurate because it has more significant digits (4) than 0.041, which has 2 significant digits.
21.
(a)
(b)
Both 0.1 and 78.0 have the same precision as they have the same number of decimal places.
78.0 is more accurate because it has more significant digits (3) than 0.1, which has 1 significant digit.
22.
(a)
(b)
(a)
(b)
0.004 is more precise because it has more decimal places (3).
7040 is more accurate because it has more significant digits (3) than 0.004, which has only 1 significant digit.
0.004 is more precise because it has more decimal places (3).
Both have the same accuracy as they both have 1 significant digit.
23.
24.
The precision and accuracy of โ8.914 and 8.914 are the same.
(a)
(b)
Both 50.060 and 8.914 have the same precision as they have the same number of decimal places (3).
50.060 is more accurate because it has more significant digits (5) than 8.914, which has 4 significant digits.
25.
(a)
(b)
4.936 rounded to 3 significant digits is 4.94.
4.936 rounded to 2 significant digits is 4.9.
26.
(a)
(b)
80.53 rounded to 3 significant digits is 80.5.
80.53 rounded to 2 significant digits is 81.
27.
(a)
(b)
-50.893 rounded to 3 significant digits is -50.9.
-50.893 rounded to 2 significant digits is -51.
28.
(a)
(b)
7.004 rounded to 3 significant digits is 7.00.
7.004 rounded to 2 significant digits is 7.0.
29.
(a)
(b)
5968 rounded to 3 significant digits is 5970.
5968 rounded to 2 significant digits is 6000 .
30.
(a)
(b)
30.96 rounded to 3 significant digits is 31.0.
30.96 rounded to 2 significant digits is 31.
31.
(a)
(b)
0.9449 rounded to 3 significant digits is 0.945.
0.9449 rounded to 2 significant digits is 0.94.
32.
(a)
(b)
0.9999 rounded to 3 significant digits is 1.00.
0.9999 rounded to 2 significant digits is 1.0.
33.
(a)
(b)
Estimate: 13 + 1 โ 2 = 12
Calculator: 12.78 + 1.0495 โ 1.633 = 12.1965, which is 12.20 to 0.01 precision
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.3 Calculators and Approximate Numbers
34.
(a)
(b)
Estimate: 4 ร 17 = 68
Calculator: 3.64(17.06) = 62.0984, which is 62.1 to 3 significant digits
35.
(a)
(b)
Estimate 0.7 ร 4 โ 9 = โ6
Calculator: 0.6572 ร 3.94 โ 8.651 = โ6.061632, which is โ6.06 to 3 significant digits
36.
(a)
(b)
Estimate 40 โ 26 รท 4 = 40 โ 6.5 = 34
Calculator: 41.5 โ 26.4 รท 3.7 = 34.3648649, which is 34 to 2 significant digits
37.
(a)
(b)
Estimate 9 + (1)(4) = 9 + 4 = 13
Calculator: 8.75 + (1.2)(3.84) = 13.358, which is 13 to 2 significant digits
38.
(a)
Estimate 30 โ
(b)
39.
(a)
(b)
40.
(a)
(b)
42.
20
= 30 โ 10 = 20
2
20.955
= 18.475, which is 18 to 2 significant digits
Calculator: 28 โ
2.2
9(15) 135
=
= 6, to 1 significant digit
9 + 15 24
8.75(15.32)
= 5.569173, which is 5.57 to 3 significant digits
Calculator:
8.75 + 15.32
Estimate
9(4) 36
=
= 5, to 1 significant digit
2+5 7
8.97(4.003)
= 5.296, which is 5.3 to 2 significant digits
Calculator:
2.0 + 4.78
(a) Estimate
(b)
41.
15
(a)
(b)
2(300)
= 3.0, to 2 significant digits
400
2.056(309.6)
= 2.9093279, which is 2.91 to 3 significant digits
Calculator: 4.52 โ
395.2
Estimate 4.5 โ
15
= 12, to 2 significant digits
2+2
14.9
Calculator: 8.195 +
= 12.1160526, which is 12 to 2 significant digits
1.7 + 2.1
Estimate 8 +
43.
0.9788 + 14.9 = 15.8788 since the least precise number in the question has 4 decimal places.
44.
17.311 โ 22.98 = โ5.669 since the least precise number in the question has 3 decimal places.
45.
โ3.142(65) = โ204.23 , which is -204.2 because the least accurate number has 4 significant digits.
46.
8.62 รท 1728 = 0.004988 , which is 0.00499 because the least accurate number has 3 significant digits.
47.
With a frequency listed as 2.75 MHz, the least possible frequency is 2.745 MHz, and the greatest possible frequency is
2.755 MHz. Any measurements between those limits would round to 2.75 MHz.
48.
For an engine displacement stated at 2400 cm3, the least possible displacement is 2350 cm3, and the greatest possible
displacement is 2450 cm3. Any measurements between those limits would round to 2400 cm3.
Copyright ยฉ 2018 Pearson Education, Inc.
16
Chapter 1 Basic Algebraic Operations
49.
The speed of sound is 3.25 mi รท 15 s = 0.21666… mi/s = 1144.0… ft/s . However, the least accurate measurement was
time since it has only 2 significant digits. The correct answer is 1100 ft/s.
50.
4.4 s โ 2.72 s = 1.68 s , but the answer must be given according to precision of the least precise measurement in the
question, so the correct answer is 1.7 s.
51.
(a)
(b)
2.2 + 3.8 ร 4.5 = 2.2 + (3.8 ร 4.5) = 19.3
(2.2 + 3.8) ร 4.5 = 6.0 ร 4.5 = 27
52.
(a)
(b)
6.03 รท 2.25 + 1.77 = (6.03 รท 2.25) + 1.77 = 4.45
6.03 รท (2.25 + 1.77) = 6.03 รท 4.02 = 1.5
53.
(a)
(b)
(c)
(d)
(e)
2+0 = 2
2โ0 = 2
0 โ 2 = โ2
2ร0 = 0
2 รท 0 = error; from Section 1.2, an equation that has 0 in the denominator is undefined when the numerator is not
also 0.
54.
(a)
(b)
(c)
2 รท 0.0001 = 20 000 ; 2 รท 0 = error
0.0001 รท 0.0001 = 1 ; 0 รท 0 = error
Any number divided by zero is undefined. Zero divided by zero is indeterminate.
55.
ฯ = 3.14159265…
(a) ฯ < 3.1416
(b) 22 รท 7 = 3.1428
ฯ < (22 รท 7)
56.
(a)
(b)
ฯ = 3.14159265…
57.
(a)
(b)
(c)
1 รท 3 = 0.333… It is a rational number since it is a repeating decimal.
5 รท 11 = 0.454545… It is a rational number since it is a repeating decimal.
2 รท 5 = 0.400… It is a rational number since it is a repeating decimal (0 is the repeating part).
58.
124 รท 990 = 0.12525…. the calculator may show the answer as 0.1252525253 because it has rounded up for the next 5
that doesnโt fit on the screen.
59.
32.4 MJ + 26.704 MJ + 36.23 MJ = 95.334 MJ . The answer must be to the same precision as the least precise
measurement. The answer is 95.3 MJ.
60.
We would compute 8(68.6) + 5(15.3) = 625.3 and round to three significant digits for a total weight of 625 lb. The
values 8 and 5 are exact.
61.
We would compute 12(129) + 16(298.8) = 6328.8 and round to three significant digits for a total weight of 6330 g. The
values 12 and 16 are exact.
62.
V = (15.2 ฮฉ + 5.64 ฮฉ + 101.23 ฮฉ) ร 3.55 A
V = 122.07 ฮฉ ร 3.55 A
8 รท 33 = 0.2424… = 0.24
V = 433.3485 V
V = 433 V to 3 significant digits
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.4 Exponents and Unit Conversions
63.
100(40.63 + 52.96)
= 59.1386 % = 59.14 % to 4 signficiant digits
105.30 + 52.96
64.
T=
50.45(9.80)
= 91.779 N = 92 N to 2 significant digits
1 + 100.9 รท 23
65.
(a)
(b)
Estimate 8 ร 5 โ 10 = 30, to 1 significant digit.
Calculator: 7.84 ร 4.932 โ 11.317 = 27.34988 which is 27.3 to 3 significant digits.
66.
(a)
(b)
Estimate 20 โ 50 รท 10 = 15 to 2 significant digit.
Calculator: 21.6 โ 53.14 รท 9.64 = 16.0875519 which is 16.1 to 3 significant digits.
1.4 Exponents and Unit Conversions
2
1.
(โ x 3 ) 2 = ๏ฉ๏ซ(โ1) x 3 ๏น๏ป = (โ1) 2 ( x 3 ) 2 = (1) x 6 = x 6
2.
2 x 0 = 2(1) = 2
3.
x 3 x 4 = x 3+ 4 = x 7
4.
y 2 y 7 = y 2+7 = y9
5.
2b 4 b 2 = 2b 4 + 2 = 2b 6
6.
3k 5 k = 3k 5 +1 = 3k 6
7.
m5
= m5โ 3 = m 2
m3
8.
2 x6
= โ2 x 6 โ1 = โ2 x 5
โx
9.
โn5
n5โ 9
n โ4
1
=
โ
=
โ
=โ 4
9
7
7
7n
7n
10.
3s
3
= 3s1โ 4 = 3s โ3 = 3
4
s
s
11.
(P ) = P
12.
(x ) = x
13.
( aT ) = a T
14.
( 3r ) = (3) r
2 4
8 3
2 30
2 3
2(4)
8(3)
= P8
= x 24
30
3
2(30)
2(3)
= a 30T 60
= 27r 6
Copyright ยฉ 2018 Pearson Education, Inc.
17
18
Chapter 1 Basic Algebraic Operations
15.
(2)3 8
๏ฆ2๏ถ
๏ง ๏ท = 3 = 3
b
b
๏จb๏ธ
16.
F 20
๏ฆF๏ถ
=
๏ง ๏ท
t 20
๏จ t ๏ธ
17.
๏ฆ x2 ๏ถ
x 2(4)
x8
=
=
๏ง ๏ท
(โ2) 4 16
๏จ โ2 ๏ธ
18.
(3)3 27
๏ฆ 3๏ถ
=
=
๏ง 3๏ท
n3(3) n9
๏จn ๏ธ
19.
( 8a ) = 1
20.
โv 0 = โ1
21.
โ3x 0 = โ3(1) = โ3
22.
โ(โ2)0 = โ1(1) = โ1
23.
6โ1 =
24.
โ wโ5 = โ
25.
1
= R2
R โ2
26.
1
= โt 48
โt โ48
27.
(โt 2 )7 = ๏ฉ๏ซ (โ1)(t 2 ) ๏น๏ป = (โ1)7 t 2(7) = (โ1)t14 = โt 14
28.
(โ y 3 )5 = ๏ฉ๏ซ(โ1)( y 3 ) ๏น๏ป = (โ1)5 y 3(5) = (โ1) y15 = โ y15
29.
โ
30.
2
2i 40 i โ70 = 2i 40 + ( โ70) = 2i โ30 = 30
i
31.
2v 4
2v 4
2v 4 1
=
=
=
4
4
4
(2v )
(2) (v ) 16v 4 8
3
20
4
3
0
1 1
=
61 6
1
w5
7
5
Lโ3
= โ Lโ3โ ( โ5) = โ L2
Lโ5
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.4 Exponents and Unit Conversions
32.
x 2 x3
x 2+3 x5 1
=
=
=
( x 2 )3 x 2(3) x 6 x
33.
(n 2 ) 4 n 2(4) n8
=
=
=1
(n 4 ) 2 n 4(2) n8
34.
(3t ) โ1 (3) โ1 t โ1
t
1
=
=
=
3 ( 3) t 9
3t โ1
3t โ1
35.
(ฯ 0 x 2 a โ1 ) โ1 = ฯ 0( โ1) x 2( โ1) a โ1( โ1) = ฯ 0 x โ2 a1 =
36.
(3m โ2 n 4 ) โ2 = (3) โ2 m โ2( โ2) n 4( โ2) = 3โ2 m 4 n โ8 =
37.
(โ8 g โ1 s 3 ) 2 = (โ8) 2 g โ1(2) s 3(2) =
38.
ax โ2 (โa 2 x)3 = ax โ2 (โ1)3 (a 2(3) ) x 3 = โ
39.
๏ฆ 4 x โ1 ๏ถ
(4) โ3 x โ1( โ3)
x3
=
๏ง โ1 ๏ท =
โ1( โ3)
a
64a 3
๏จ a ๏ธ
40.
๏ฆ 2b 2 ๏ถ
๏ง 5 ๏ท
๏จ y ๏ธ
41.
15n 2T 5 5n 2 โ ( โ1) 5n3
=
=
T
T
3n โ1T 6
42.
(nRT โ2 )32 n32 R 32 โ ( โ2)T โ2(32) n32 R 34T โ64
n32 R 34
n32 R 34
=
=
=
=
R โ2T 32
T 32
T 32
T 32 โ ( โ64)
T 96
43.
7 ( โ4 ) โ (โ5) 2 = โ28 โ 25 = โ53
44.
6 โ โ2 โ (โ2)(8) = 6 โ 32 โ (โ16) = 6 โ 32 + 16 = โ10
45.
โ(โ26.5) 2 โ ( โ9.85)3 = โ(702.25) โ (โ955.671625) = 253.421625
which gets rounded to 253 because 702.25 and โ955.671625 are both accurate to only 3 significant digits due to the
original numbers having only 3 significant digits.
46.
โ0.7112 โ ( โ โ0.809 ) 6 = ( โ1)(0.711) 2 โ ( โ0.809) 6 = ( โ1)(0.505521) โ (0.2803439122) = โ0.7858649122
a
x2
m4
9n8
64 s 6
g2
a(a 6 ) x3
= โa1+ 6 x 3โ 2 = โa 7 x
x2
โ3
โ2
=
(2) โ2 b 2( โ2)
b โ4
y10
= โ10 = 4
5( โ2)
y
4y
4b
5
which gets rounded to 3 significant digits: โ0.786.
Copyright ยฉ 2018 Pearson Education, Inc.
19
20
47.
48.
49.
50.
Chapter 1 Basic Algebraic Operations
3.07(โ โ1.86 )
โ5.7102
โ5.7102
=
= โ0.420956185
(โ1.86) + 1.596 11.96883216 + 1.596 13.56483216
which gets rounded to 3 significant digits: โ0.421.
4
=
15.66 2 โ (โ4.017) 4 245.2356 โ 260.379822692 โ15.144222692
=
=
= 3.941837074
โ3.84192
โ3.84192
1.044(โ3.68)
which gets rounded to 3 significant digits: 3.94.
254
254
= 2.38(3684.49) โ
3
1.17
1.601613
= 8769.0862 โ 158.5901213339
= 8610.4960786661
which gets rounded to 3 significant digits: 8610.
2.38(โ60.7) 2 โ
0.889
1.89 โ 1.092
0.889
= 19.32 +
1.89 โ 1.1881
0.889
= 19.32 +
0.7019
= 19.32 + 0.889880728
4.2(4.6) +
= 20.209880728
which gets rounded to 2 significant digits: 20 .
โ1
51.
1โ1
1
๏ฆ 1 ๏ถ
๏ง โ1 ๏ท = โ1( โ1) = , which is the reciprocal of x.
x
x
x
๏จ
๏ธ
52.
1๏ถ
๏ฆ
0
0.2 โ ๏ท
๏ฆ 0.2 โ 5 ๏ถ ๏ง
5 = ๏ฆ 0 ๏ถ = 00 โ 1 , since a 0 = 1 requires that a โ 0 .
=
๏ง
๏ท
๏ง
๏ท
๏ง
๏ท
โ2
๏จ 10
๏ธ ๏ง๏ง 1 ๏ท๏ท ๏จ 0.01 ๏ธ
๏จ 100 ๏ธ
0
53.
0
โ1
If a 3 = 5 , then
a12 = a 3(4)
a12 = ( a 3 )
a12 = ( 5 )
4
4
a12 = 625
54.
For any negative value of a , a will be negative, and a 2 will be positive, making all values of
Therefore, it is never the case for negative values of a , a โ2 x when x > 1 . Any number greater than 1 will have a square root that is smaller than itself. For
example, 2 > 2 = 1.41
x = x when x = 1 or x = 0 because the only numbers that are their own squares are 0 and 1 (i.e., 0 2 = 0 and
12 = 1 ).
x < x when 0 < x < 1 . Any number between 0 and 1 will have a square root larger than itself. For
example, 0.25 < 0.25 = 0.5
(a)
(b)
3
(a)
(b)
7
f =
3
7
2140 = 12.8865874254 ,which is rounded to 12.9
โ0.214 = โ0.59814240297 ,which is rounded to โ0.598
0.382 = 0.87155493458 ,which is rounded to 0.872
โ382 = โ2.33811675837 ,which is rounded to โ2.34
1
2ฯ LC
=
1
2(3.1416) 0.250(40.52 ร 10โ6 )
1
=
6.2832 10.0625 ร 10โ6
1
=
6.2832(0.003172144385)
1
=
0.0199312175998
= 50.172549
which is rounded to 50.2 Hz
60.
standard deviation =
= 80.5 kg
variance
2
= 8.972179222 kg
which is rounded to 8.97 kg
1.7 Addition and Subtraction of Algebraic Expressions
1.
3x + 2 y โ 5 y = 3x โ 3 y
2.
3c โ (2b โ c) = 3c โ 2b + c = โ2b + 4c
Copyright ยฉ 2018 Pearson Education, Inc.
32
Chapter 1 Basic Algebraic Operations
3.
3ax โ [( ax โ 5s ) โ 2ax ] = 3ax โ [ax โ 5s โ 2ax ]
= 3ax โ [ โ ax โ 5s ]
= 3ax + ax + 5s
= 4ax + 5s
4.
3a 2 b โ {a โ [2a 2 b โ (a + 2b)]} = 3a 2 b โ {a โ [2a 2 b โ a โ 2b]}
= 3a 2 b โ {a โ 2a 2 b + a + 2b}
= 3a 2 b โ {2a โ 2a 2 b + 2b}
= 3a 2 b โ 2a + 2a 2 b โ 2b
= 5a 2 b โ 2a โ 2b
5.
5x + 7 x โ 4 x = 8x
6.
6t โ 3t โ 4t = โt
7.
2 y โ y + 4x = y + 4x
8.
โ4C + L โ 6C = โ10C + L
9.
3t โ 4s โ 3t โ s = 0t โ 5s = โ5s
10.
โ8a โ b + 12a + b = 4a + 0b = 4a
11.
2 F โ 2T โ 2 + 3F โ T = 5F โ 3T โ 2
12.
x โ 2 y โ 3x โ y + z = โ2 x โ 3 y + z
13.
a 2 b โ a 2 b 2 โ 2a 2 b = โ a 2 b โ a 2 b 2
14.
โ xy 2 โ 3 x 2 y 2 + 2 xy 2 = xy 2 โ 3x 2 y 2
15.
2 p + ( p โ 6 โ 2 p) = 2 p โ 6 โ p = p โ 6
16.
5 + (3 โ 4n + p ) = 5 + 3 โ 4n + p = โ4n + p + 8
17.
v โ (7 โ 9 x + 2v) = v โ 7 + 9 x โ 2v = โv + 9 x โ 7
18.
1
1
1
3
1
โ2a โ (b โ a ) = โ2a โ b + a = โ a โ b
2
2
2
2
2
19.
2 โ 3 โ (4 โ 5a ) = โ1 โ 4 + 5a = 5a โ 5
20.
A + (h โ 2 A ) โ 3 A =
A + h โ 2 A โ 3 A = โ4 A + h
21.
(a โ 3) + (5 โ 6a ) = a โ 3 + 5 โ 6a = โ5a + 2
22.
(4 x โ y ) โ (โ2 x โ 4 y ) = 4 x โ y + 2 x + 4 y = 6 x + 3 y
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.7 Addition and Subtraction of Algebraic Expressions
23.
โ(t โ 2u ) + (3u โ t ) = โt + 2u + 3u โ t = โ2t + 5u
24.
โ2(6 x โ 3 y ) โ (5 y โ 4 x) = โ12 x + 6 y โ 5 y + 4 x = โ8 x + y
25.
3(2r + s ) โ (โ5s โ r ) = 6r + 3s + 5s + r = 7r + 8s
26.
3(a โ b) โ 2(a โ 2b) = 3a โ 3b โ 2a + 4b = a + b
27.
โ7(6 โ 3 j ) โ 2( j + 4) = โ42 + 21 j โ 2 j โ 8 = 19 j โ 50
28.
โ(5t + a 2 ) โ 2(3a 2 โ 2st ) = โ5t โ a 2 โ 6a 2 + 4st = โ7a 2 + 4st โ 5t
29.
โ[(4 โ 6n ) โ ( n โ 3)] = โ[4 โ 6n โ n + 3]
= โ[ โ7n + 7]
= 7n โ 7
30.
โ[( A โ B ) โ ( B โ A)] = โ[ A โ B โ B + A]
= โ[2 A โ 2 B ]
= โ2 A + 2 B
31.
2[4 โ (t 2 โ 5)] = 2[4 โ t 2 + 5]
= 2[ โ t 2 + 9]
= โ2t 2 + 18
32.
2
2
8
โ3[ โ3 โ ( โ a โ 4)] = โ3[ โ3 + a + ]
3
3
3
2
1
= โ3[ a โ ]
3
3
= โ2 a + 1
33.
โ2[ โ x โ 2a โ ( a โ x )] = โ2[โ x โ 2a โ a + x ]
= โ2[ โ3a ]
= 6a
34.
โ2[โ3( x โ 2 y ) + 4 y ] = โ2[ โ3x + 6 y + 4 y ]
= โ2[ โ3x + 10 y ]
= 6 x โ 20 y
35.
aZ โ [3 โ ( aZ + 4)] = aZ โ [3 โ aZ โ 4]
= aZ โ [ โ aZ โ 1]
= aZ + aZ + 1
= 2aZ + 1
36.
9v โ [6 โ ( โ v โ 4) + 4v ] = 9v โ [6 + v + 4 + 4v ]
= 9v โ [5v + 10]
= 9v โ 5v โ 10
= 4v โ 10
Copyright ยฉ 2018 Pearson Education, Inc.
33
34
Chapter 1 Basic Algebraic Operations
37.
5z โ {8 โ [4 โ (2 z + 1)]} = 5z โ {8 โ [4 โ 2 z โ 1]}
= 5z โ {8 โ 4 + 2 z + 1}
= 5z โ {5 + 2 z}
= 5z โ 5 โ 2 z
= 3z โ 5
38.
7 y โ { y โ [2 y โ ( x โ y )]} = 7 y โ { y โ [2 y โ x + y ]}
= 7 y โ { y โ [3 y โ x ]}
= 7 y โ { y โ 3 y + x}
= 7 y โ {โ2 y + x}
= 7y + 2y โ x
= โx + 9 y
39.
5 p โ ( q โ 2 p ) โ [3q โ ( p โ q )] = 5 p โ q + 2 p โ [3q โ p + q ]
= 5 p โ q + 2 p โ [4q โ p ]
= 7 p โ q โ 4q + p
= 8 p โ 5q
40.
โ (4 โ LC ) โ [(5 LC โ 7) โ (6 LC + 2)] = โ4 + LC โ [5 LC โ 7 โ 6 LC โ 2]
= โ4 + LC โ [ โ LC โ 9]
= โ4 + LC + LC + 9
= 2 LC + 5
41.
โ2{โ(4 โ x 2 ) โ [3 + (4 โ x 2 )]} = โ2{โ4 + x 2 โ [3 + 4 โ x 2 ]}
= โ2{โ4 + x 2 โ 3 โ 4 + x 2 }
= โ2{2 x 2 โ 11}
= โ4 x 2 + 22
42.
โ{โ[ โ( x โ 2a ) โ b] โ ( a โ x )} = โ{โ[ โ x + 2a โ b] โ a + x}
= โ{x โ 2a + b โ a + x}
= โ{โ3a + b + 2 x}
= 3a โ b โ 2 x
43.
5V 2 โ (6 โ (2V 2 + 3)) = 5V 2 โ (6 โ 2V 2 โ 3)
= 5V 2 โ ( โ2V 2 + 3)
= 5V 2 + 2V 2 โ 3
= 7V 2 โ 3
44.
โ2 F + 2((2 F โ 1) โ 5) = โ2 F + 2(2 F โ 1 โ 5)
= โ2 F + 2(2 F โ 6)
= โ2 F + 4 F โ 12
= 2 F โ 12
Copyright ยฉ 2018 Pearson Education, Inc.
Section 1.7 Addition and Subtraction of Algebraic Expressions
45.
โ (3t โ (7 + 2t โ (5t โ 6))) = โ(3t โ (7 + 2t โ 5t + 6))
= โ(3t โ ( โ3t + 13))
= โ(3t + 3t โ 13)
= โ(6t โ 13)
= โ6t + 13
46.
a 2 โ 2( x โ 5 โ (7 โ 2( a 2 โ 2 x ) โ 3x )) = a 2 โ 2( x โ 5 โ (7 โ 2a 2 + 4 x โ 3x ))
= a 2 โ 2( x โ 5 โ (7 โ 2a 2 + x ))
= a 2 โ 2( x โ 5 โ 7 + 2a 2 โ x )
= a 2 โ 2(2a 2 โ 12)
= a 2 โ 4a 2 + 24
= โ3a 2 + 24
47.
โ4[4 R โ 2.5( Z โ 2 R ) โ 1.5 ( 2 R โ Z )] = โ4[4 R โ 2.5Z + 5R โ 3R + 1.5Z ]
= โ4[6 R โ Z ]
= โ24 R + 4 Z
48.
โ3{2.1e โ 1.3[โ f โ 2(e โ 5 f )]} = โ3{2.1e โ 1.3[ โ f โ 2e + 10 f ]}
= โ3{2.1e โ 1.3[ โ2e + 9 f ]}
= โ3{2.1e + 2.6e โ 11.7 f }
= โ3{4.7e โ 11.7 f }
= โ14.1e + 35.1 f
49.
3D โ ( D โ d ) = 3D โ D + d = 2 D + d
50.
i1 โ (2 โ 3i2 ) + i2 = i1 โ 2 + 3i2 + i2 = i1 + 4i2 โ 2
51.
4
2
B+ ฮฑ +2 Bโ ฮฑ
3
3
โ
4
2
B+ ฮฑ โ Bโ ฮฑ
3
3
4
4
4
2
= B + ฮฑ + 2B โ ฮฑ โ B + ฮฑ โ B + ฮฑ
3
3
3
3
= [ 3B ] โ
6
ฮฑ
3
= 3B โ 2ฮฑ
52.
Distance = 30 km/h ร (t โ 1)h + 40 km/h ร (t + 2) h
= 30(t โ 1) km + 40(t + 2) km
= (30t โ 30 + 40t + 80) km
= (70t + 50) km
53.
Memory = x (4 terabytes) + (x + 25)(8 terabytes)
= (4 x + 8 x + 200) terabytes
= (12 x + 200) terabytes
Copyright ยฉ 2018 Pearson Education, Inc.
35
36
Chapter 1 Basic Algebraic Operations
54.
Difference = 2[(2n + 1)($30) โ (n โ 2)($20)]
= $ 2[60n + 30 โ 20n + 40]
= $ 2[40n + 70]
= $ (80n + 140)
55.
(a)
(2 x 2 โ y + 2a ) + (3 y โ x 2 โ b) = 2 x 2 โ y + 2a + 3 y โ x 2 โ b
= x 2 + 2 y + 2a โ b
(b)
(2 x 2 โ y + 2a ) โ (3 y โ x 2 โ b) = 2 x 2 โ y + 2a โ 3 y + x 2 + b
= 3 x 2 โ 4 y + 2a + b
56.
(3a 2 + b โ c 3 ) + (2c 3 โ 2b โ a 2 ) โ (4c 3 โ 4b + 3) = 3a 2 + b โ c 3 + 2c 3 โ 2b โ a 2 โ 4c 3 + 4b โ 3
= 2a 2 + 3b โ 3c 3 โ 3
57.
The final y should be added and the final 3 should be subtracted. The correct final answer is โ 2 x โ 2 y + 2.
58.
The final occurrence of 2c should be added rather than subtracted, resulting in the final answer of 7a โ 6b โ 2c.
59.
a โ b = โ( โ a + b)
= โ(b โ a )
= โ1 ร (b โ a )
= โ1 ร (b โ a )
= 1ร b โ a
= bโa
60.
( a โ b) โ c = a โ b โ c
However, a โ (b โ c ) = a โ b + c
Since they are not equivalent, subtraction is not associative.
For example, (10 โ 5) โ 2 = 5 โ 2 = 3 is not the same as 10 โ (5 โ 2) = 10 โ 3 = 7 .
1.8 Multiplication of Algebraic Expressions
1.
2 s 3 ( โ st 4 )3 (4 s 2 t ) = 2 s 3 ( โ1)3 s 3 t 12 (4 s 2 t )
= โ2 s 6 t12 (4 s 2 t )
= โ8s 8 t13
2.
โ2ax (3ax 2 โ 4 yz ) = ( โ2ax )(3ax 2 ) โ ( โ2ax )(4 yz )
= ( โ6a 2 x 3 ) โ ( โ8axyz )
= โ6a 2 x 3 + 8axyz
3.
( x โ 2)( x โ 3) = x ( x ) + x ( โ3) + ( โ2)( x ) + ( โ2)( โ3)
= x 2 โ 3x โ 2 x + 6
= x 2 โ 5x + 6
Copyright ยฉ 2018 Pearson Education, Inc.
Document Preview (41 of 3388 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Basic Technical Mathematics, 11th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Liam Anderson
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)