Introduction to Quantum Mechanics, 3rd Edition Solution Manual

Preview Extract
16 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Chapter 2 The Time-Independent Schroฬˆdinger Equation Problem 2.1 (a) ฮจ(x, t) = ฯˆ(x)eโˆ’i(E0 +iฮ“)t/~ = ฯˆ(x)eฮ“t/~ eโˆ’iE0 t/~ =โ‡’ |ฮจ|2 = |ฯˆ|2 e2ฮ“t/~ . Z โˆž Z โˆž 2 2ฮ“t/~ |ฮจ(x, t)| dx = e |ฯˆ|2 dx. โˆ’โˆž โˆ’โˆž The second term is independent of t, so if the product is to be 1 for all time, the first term (e2ฮ“t/~ ) must also be constant, and hence ฮ“ = 0. QED 2 2 ~ d ฯˆ (b) If ฯˆ satisfies Eq. 2.5, โˆ’ 2m dx2 + V ฯˆ = Eฯˆ, then (taking the complex conjugate and noting that V and 2 2 โˆ— ~ d ฯˆ โˆ— โˆ— โˆ— E are real): โˆ’ 2m dx2 + V ฯˆ = Eฯˆ , so ฯˆ also satisfies Eq. 2.5. Now, if ฯˆ1 and ฯˆ2 satisfy Eq. 2.5, so too does any linear combination of them (ฯˆ3 โ‰ก c1 ฯˆ1 + c2 ฯˆ2 ): ~2 d2 ฯˆ1 d2 ฯˆ2 ~2 d2 ฯˆ3 + V ฯˆ3 = โˆ’ c1 + c2 โˆ’ + V (c1 ฯˆ1 + c2 ฯˆ2 ) 2m dx2 2m dx2 dx2 ~2 d2 ฯˆ1 ~2 d2 ฯˆ2 = c1 โˆ’ + V ฯˆ1 + c2 โˆ’ + V ฯˆ2 2m dx2 2m dx2 = c1 (Eฯˆ1 ) + c2 (Eฯˆ2 ) = E(c1 ฯˆ1 + c2 ฯˆ2 ) = Eฯˆ3 . Thus, (ฯˆ + ฯˆ โˆ— ) and i(ฯˆ โˆ’ ฯˆ โˆ— ) โ€“ both of which are real โ€“ satisfy Eq. 2.5. Conclusion: From any complex solution, we can always construct two real solutions (of course, if ฯˆ is already real, the second one will be zero). In particular, since ฯˆ = 21 [(ฯˆ + ฯˆ โˆ— ) โˆ’ i(i(ฯˆ โˆ’ ฯˆ โˆ— ))], ฯˆ can be expressed as a linear combination of two real solutions. QED (c) If ฯˆ(x) satisfies Eq. 2.5, then, changing variables x โ†’ โˆ’x and noting that d2 /d(โˆ’x)2 = d2 /dx2 , โˆ’ ~2 d2 ฯˆ(โˆ’x) + V (โˆ’x)ฯˆ(โˆ’x) = Eฯˆ(โˆ’x); 2m dx2 so if V (โˆ’x) = V (x) then ฯˆ(โˆ’x) also satisfies Eq. 2.5. It follows that ฯˆ+ (x) โ‰ก ฯˆ(x) + ฯˆ(โˆ’x) (which is even: ฯˆ+ (โˆ’x) = ฯˆ+ (x)) and ฯˆโˆ’ (x) โ‰ก ฯˆ(x) โˆ’ ฯˆ(โˆ’x) (which is odd: ฯˆโˆ’ (โˆ’x) = โˆ’ฯˆโˆ’ (x)) both satisfy Eq. 2.5. But ฯˆ(x) = 21 (ฯˆ+ (x) + ฯˆโˆ’ (x)), so any solution can be expressed as a linear combination of even and odd solutions. QED CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 17 Problem 2.2 2 00 Given ddxฯˆ2 = 2m ~2 [V (x) โˆ’ E]ฯˆ, if E < Vmin , then ฯˆ and ฯˆ always have the same sign: If ฯˆ is positive(negative), 00 then ฯˆ is also positive(negative). This means that ฯˆ always curves away from the axis (see Figure). However, it has got to go to zero as x โ†’ โˆ’โˆž (else it would not be normalizable). At some point itโ€™s got to depart from zero (if it doesnโ€™t, itโ€™s going to be identically zero everywhere), in (say) the positive direction. At this point its slope is positive, and increasing, so ฯˆ gets bigger and bigger as x increases. It canโ€™t ever โ€œturn overโ€ and head back toward the axis, because that would require a negative second derivativeโ€”it always has to bend away from the axis. By the same token, if it starts out heading negative, it just runs more and more negative. In neither case is there any way for it to come back to zero, as it must (at x โ†’ โˆž) in order to be normalizable. QED s x Problem 2.3 2 2 2 Equation 2.23 says ddxฯˆ2 = โˆ’ 2mE = A + Bx; ~2 ฯˆ; Eq. 2.26 says ฯˆ(0) = ฯˆ(a) = 0. If E = 0, d ฯˆ/dx = 0, so ฯˆ(x) โˆš 2 2 ฯˆ(0) = A = 0 โ‡’ ฯˆ = Bx; ฯˆ(a) = Ba = 0 โ‡’ B = 0, so ฯˆ = 0. If E ~/2. X ฯƒp2 = hp2 i โˆ’ hpi2 = nฯ€~ a ; nฯ€~ ฯƒp = . a ~ โˆด ฯƒx ฯƒp = 2 Problem 2.5 (a) |ฮจ|2 = ฮจโˆ— ฮจ = |A|2 (ฯˆ1โˆ— + ฯˆ2โˆ— )(ฯˆ1 + ฯˆ2 ) = |A|2 [ฯˆ1โˆ— ฯˆ1 + ฯˆ1โˆ— ฯˆ2 + ฯˆ2โˆ— ฯˆ1 + ฯˆ2โˆ— ฯˆ2 ]. Z Z โˆš 1 = |ฮจ|2 dx = |A|2 [|ฯˆ1 |2 + ฯˆ1โˆ— ฯˆ2 + ฯˆ2โˆ— ฯˆ1 + |ฯˆ2 |2 ]dx = 2|A|2 โ‡’ A = 1/ 2. (b) i 1 h ฮจ(x, t) = โˆš ฯˆ1 eโˆ’iE1 t/~ + ฯˆ2 eโˆ’iE2 t/~ 2 1 =โˆš 2 (but En = n2 ฯ‰) ~ r 2 2ฯ€ 1 โˆ’iฯ‰t 2ฯ€ ฯ€ ฯ€ โˆ’iฯ‰t โˆ’i4ฯ‰t โˆ’3iฯ‰t x e + sin x e = โˆš e sin x + sin x e . sin a a a a a a ฯ€ ฯ€ 1 2ฯ€ 2ฯ€ sin2 x + sin x sin x eโˆ’3iฯ‰t + e3iฯ‰t + sin2 x a a a a a ฯ€ ฯ€ 1 2ฯ€ 2ฯ€ = sin2 x + sin2 x + 2 sin x sin x cos(3ฯ‰t) . a a a a a |ฮจ(x, t)|2 = (c) Z x|ฮจ(x, t)|2 dx Z ฯ€ ฯ€ 1 a 2ฯ€ 2ฯ€ = x sin2 x + sin2 x + 2 sin x sin x cos(3ฯ‰t) dx a 0 a a a a hxi = CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Z a ฯ€ x sin x dx = a 0 ” 2 19 # a Z a x sin 2ฯ€ cos 2ฯ€ a2 x2 2ฯ€ 2 a x a x = โˆ’ โˆ’ = x sin x dx. 4 4ฯ€/a 8(ฯ€/a)2 4 a 0 0 Z a Z ฯ€ ฯ€ 2ฯ€ 1 a 3ฯ€ x sin x cos x sin x dx = x โˆ’ cos x dx a a 2 0 a a 0 a ฯ€ ax ฯ€ 3ฯ€ 1 a2 a2 ax 3ฯ€ cos = x + sin x โˆ’ 2 cos x โˆ’ sin x 2 ฯ€2 a ฯ€ a 9ฯ€ a 3ฯ€ a 0 2 1 1 a a2 a2 8a2 1 โˆ’ . = cos(ฯ€) โˆ’ cos(0) โˆ’ cos(3ฯ€) โˆ’ cos(0) = โˆ’ = โˆ’ 2 ฯ€2 9ฯ€ 2 ฯ€2 9 9ฯ€ 2 1 a2 a2 16a2 a 32 cos(3ฯ‰t) = cos(3ฯ‰t) . + โˆ’ 1 โˆ’ a 4 4 9ฯ€ 2 2 9ฯ€ 2 โˆด hxi = 32 a = 0.3603(a/2); 9ฯ€ 2 2 Amplitude: angular frequency: 3ฯ‰ = 3ฯ€ 2 ~ . 2ma2 (d) hpi = m a 32 8~ dhxi =m โˆ’ 2 (โˆ’3ฯ‰) sin(3ฯ‰t) = sin(3ฯ‰t). dt 2 9ฯ€ 3a (e) You could get either E1 = ฯ€ 2 ~2 /2ma2 or E2 = 2ฯ€ 2 ~2 /ma2 , with equal probability P1 = P2 = 1/2. So hHi = 1 5ฯ€ 2 ~2 (E1 + E2 ) = ; 2 4ma2 itโ€™s the average of E1 and E2 . Problem 2.6 From Problem 2.5, we see that ฮจ(x, t) = โˆš1 eโˆ’iฯ‰t a |ฮจ(x, t)|2 = 1 a ฯ€ ax sin 2 sin ฯ€ ax + sin + sin2 2ฯ€ a x 2ฯ€ a x โˆ’3iฯ‰t iฯ† e e ; + 2 sin ฯ€ ax sin 2ฯ€ a x cos(3ฯ‰t โˆ’ ฯ†) ; 32 and hence hxi = a2 1 โˆ’ 9ฯ€ This amounts physically to starting the clock at a different time 2 cos(3ฯ‰t โˆ’ ฯ†) . (i.e., shifting the t = 0 point). If ฯ† = ฯ€ a , so ฮจ(x, 0) = A[ฯˆ1 (x) + iฯˆ2 (x)], then cos(3ฯ‰t โˆ’ ฯ†) = sin(3ฯ‰t); hxi starts at . 2 2 a 32 If ฯ† = ฯ€, so ฮจ(x, 0) = A[ฯˆ1 (x) โˆ’ ฯˆ2 (x)], then cos(3ฯ‰t โˆ’ ฯ†) = โˆ’ cos(3ฯ‰t); hxi starts at 1+ 2 . 2 9ฯ€ 20 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.7 ^(x,0) Aa/2 a a/2 (a) Z a/2 1 = A2 x2 dx + A2 Z a (a โˆ’ x)2 dx = A2 a/2 0 x a/2 x3 3 0 a โˆ’ (a โˆ’ x)3 3 a/2 โˆš A a3 2 3 a3 A2 a3 = + = โ‡’ A= โˆš . 3 8 8 12 a3 2 (b) โˆš Z a/2 Z a 22 3 nฯ€ nฯ€ โˆš x dx + (a โˆ’ x) sin x dx x sin aa a 0 a a a/2 โˆš 2 a/2 2 6 nฯ€ xa nฯ€ a = 2 sin x โˆ’ cos x a nฯ€ a nฯ€ a 0 2 a a a a nฯ€ ax nฯ€ nฯ€ โˆ’ +a โˆ’ cos x x โˆ’ x sin cos nฯ€ a nฯ€ a nฯ€ a a/2 a/2 โˆš 2 2 2 2 2 6 a nฯ€ nฯ€ a a nฯ€ โˆ’ a cos = 2 sin โˆ’ cos nฯ€ + cos a nฯ€ 2 2nฯ€ 2 nฯ€ nฯ€ 2 2 a nฯ€ a2 a2 nฯ€ + cos sin + cos nฯ€ โˆ’ nฯ€ 2 nฯ€ 2nฯ€ 2 โˆš โˆš ( 2 0, n even, 2 6 a nฯ€ 4 6 nฯ€ โˆš = 2 sin = sin = (nโˆ’1)/2 4 6 2 2 2 (โˆ’1) , (nฯ€) 2 (nฯ€) 2 a (nฯ€)2 n odd. r cn = โˆš r 4 6 2 X 1 nฯ€ n2 ฯ€ 2 ~2 So ฮจ(x, t) = 2 (โˆ’1)(nโˆ’1)/2 2 sin x eโˆ’iEn t/~ , where En = . ฯ€ a n=1,3,5,… n a 2ma2 (c) P1 = |c1 |2 = 16 ยท 6 = 0.9855. ฯ€4 (d) hHi = X |cn |2 En = 96 ฯ€ 2 ~2 ฯ€ 4 2ma2 1 1 1 1 + 2 + 2 + 2 + ยทยทยท 1 3 5 7 | {z } ฯ€ 2 /8 = 48~2 ฯ€ 2 6~2 = . 2 2 ฯ€ ma 8 ma2 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 21 Problem 2.8 A 2 r Z a/2 2 dx = A (a/2) = 1 โ‡’ A = 0 2 . a From Eq. 2.37, r Z a/2 ฯ€ ฯ€ i ฯ€ i a/2 2 2 2h a 2h sin โˆ’ cos โˆ’ cos 0 = . c1 = A x dx = x = โˆ’ cos a 0 a a ฯ€ a ฯ€ 2 ฯ€ 0 P1 = |c1 |2 = (2/ฯ€)2 = 0.4053. Problem 2.9 Hฬ‚ฮจ(x, 0) = โˆ’ Z ~2 โˆ‚ 2 ~2 โˆ‚ ~2 [Ax(a โˆ’ x)] = โˆ’A (a โˆ’ 2x) = A . 2m โˆ‚x2 2m โˆ‚x m 2 a x x3 a โˆ’ ฮจ(x, 0) Hฬ‚ฮจ(x, 0) dx = A x(a โˆ’ x) dx = A m 0 m 2 3 0 3 2 3 2 3 2 a ~ a 30 ~ a 5~ = A2 โˆ’ = 5 = m 2 3 a m 6 ma2 โˆ— 2~ 2 Z a 2~ 2 (same as Example 2.3). Problem 2.10 (a) Using Eqs. 2.48 and 2.60, mฯ‰ 1/4 โˆ’ mฯ‰ x2 1 d + mฯ‰x e 2~ โˆ’~ dx ฯ€~ 2~mฯ‰ i mฯ‰ 2 mฯ‰ 1/4 h mฯ‰ mฯ‰ 1/4 mฯ‰ 2 1 1 =โˆš โˆ’~ โˆ’ 2x + mฯ‰x eโˆ’ 2~ x = โˆš 2mฯ‰xeโˆ’ 2~ x . 2~ 2~mฯ‰ ฯ€~ 2~mฯ‰ ฯ€~ mฯ‰ 1/4 mฯ‰ 2 d 1 2mฯ‰ โˆ’~ + mฯ‰x xeโˆ’ 2~ x (a+ )2 ฯˆ0 = 2~mฯ‰ ฯ€~ dx i mฯ‰ 2 mฯ‰ 1/4 2mฯ‰ mฯ‰ 2 1 mฯ‰ 1/4 h mฯ‰ 2 โˆ’ 2~ x 2 โˆ’~ 1 โˆ’ x 2x + mฯ‰x e x โˆ’ 1 eโˆ’ 2~ x . = = ~ ฯ€~ 2~ ฯ€~ ~ a+ ฯˆ0 = โˆš Therefore, from Eq. 2.68, 1 mฯ‰ 1/4 1 ฯˆ2 = โˆš (a+ )2 ฯˆ0 = โˆš 2 2 ฯ€~ mฯ‰ 2 2mฯ‰ 2 x โˆ’ 1 eโˆ’ 2~ x . ~ 22 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION (b) s0 s1 (c) Since ฯˆ0 and ฯˆ2Rare even, whereas ฯˆ1 is odd, we need to check is ฯˆ2โˆ— ฯˆ0 dx: Z R s2 ฯˆ0โˆ— ฯˆ1 dx and R ฯˆ2โˆ— ฯˆ1 dx vanish automatically. The only one Z mฯ‰ 2 mฯ‰ โˆž 2mฯ‰ 2 x โˆ’ 1 eโˆ’ ~ x dx ~ 2 ฯ€~ โˆ’โˆž r Z โˆž Z mฯ‰ 2 mฯ‰ 2mฯ‰ โˆž 2 โˆ’ mฯ‰ x2 eโˆ’ ~ x dx โˆ’ x e ~ dx =โˆ’ 2ฯ€~ ~ โˆ’โˆž โˆ’โˆž r r r 2mฯ‰ ~ mฯ‰ ฯ€~ ฯ€~ โˆ’ = 0. X =โˆ’ 2ฯ€~ mฯ‰ ~ 2mฯ‰ mฯ‰ 1 ฯˆ2โˆ— ฯˆ0 dx = โˆš r Problem 2.11 R (a) Note that ฯˆ0 is even, and ฯˆ1 is odd. In either case |ฯˆ|2 is even, so hxi = x|ฯˆ|2 dx = 0. Therefore hpi = mdhxi/dt = 0. (These results hold for any stationary state of the harmonic oscillator.) โˆš 2 2 From Eqs. 2.60 and 2.63, ฯˆ0 = ฮฑeโˆ’ฮพ /2 , ฯˆ1 = 2ฮฑฮพeโˆ’ฮพ /2 . So n = 0: hx2 i = ฮฑ2 Z โˆž 2 x2 eโˆ’ฮพ dx = ฮฑ2 โˆ’โˆž 2 ~ mฯ‰ 3/2 Z โˆž 2 1 ฮพ 2 eโˆ’ฮพ dฮพ = โˆš ฯ€ โˆ’โˆž Z โˆž ~ mฯ‰ โˆš ฯ€ ~ = . 2 2mฯ‰ d2 โˆ’ฮพ2 /2 e e dฮพ hp i = ฯˆ0 ฯˆ0 dx = โˆ’~ ฮฑ dฮพ 2 โˆ’โˆž โˆš โˆ’ฮพ2 m~ฯ‰ m~ฯ‰ ฯ€ โˆš m~ฯ‰ 2 โˆš โˆš =โˆ’ ฮพ โˆ’ 1 e dฮพ = โˆ’ โˆ’ ฯ€ = . 2 2 ฯ€ โˆ’โˆž ฯ€ 2 Z ~ d i dx Z โˆž 2 2 r mฯ‰ ~ โˆ’ฮพ 2 /2 n = 1: hx2 i = 2ฮฑ2 Z โˆž 2 x2 ฮพ 2 eโˆ’ฮพ dx = 2ฮฑ2 โˆ’โˆž Z โˆž ~ mฯ‰ 3/2 Z โˆž โˆ’โˆž 2 ฮพ 4 eโˆ’ฮพ dฮพ = โˆš โˆš 2~ 3 ฯ€ 3~ = . 2mฯ‰ ฯ€mฯ‰ 4 d2 โˆ’ฮพ 2 /2 hp i = โˆ’~ 2ฮฑ ฮพe ฮพe dฮพ dฮพ 2 โˆ’โˆž โˆš Z 2mฯ‰~ 3 โˆš ฯ€ 3m~ฯ‰ 2mฯ‰~ โˆž 4 2 โˆ’ฮพ 2 โˆš โˆš =โˆ’ ฮพ โˆ’ 3ฮพ e dฮพ = โˆ’ ฯ€โˆ’3 = . 4 2 2 ฯ€ โˆ’โˆž ฯ€ 2 2 2 r mฯ‰ ~ โˆ’ฮพ 2 /2 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION (b) n = 0: r ฯƒx = p hx2 i โˆ’ hxi2 = r ฯƒx ฯƒp = ~ 2mฯ‰ r 3~ ; 2mฯ‰ r p ~ ; ฯƒp = hp2 i โˆ’ hpi2 = 2mฯ‰ mฯ‰~ ~ = . 2 2 r m~ฯ‰ ; 2 (Right at the uncertainty limit.)X n = 1: ฯƒx = r ฯƒp = 3m~ฯ‰ ; 2 ฯƒx ฯƒp = 3 ~ ~ > .X 2 2 (c) ๏ฃฑ1 ๏ฃผ ๏ฃฒ 4 ~ฯ‰ (n = 0) ๏ฃฝ 1 2 ; hp i = hT i = ๏ฃณ3 ๏ฃพ 2m ~ฯ‰ (n = 1) 4 hT i + hV i = hHi = ๏ฃฑ1 ๏ฃผ ๏ฃฒ 4 ~ฯ‰ (n = 0) ๏ฃฝ 1 . hV i = mฯ‰ 2 hx2 i = ๏ฃณ3 ๏ฃพ 2 ~ฯ‰ (n = 1) 4 ๏ฃฑ1 ๏ฃผ ๏ฃฒ 2 ~ฯ‰ (n = 0) = E0 ๏ฃฝ ๏ฃณ3 2 ~ฯ‰ (n = 1) = E1 , as expected. ๏ฃพ Problem 2.12 From Eq. 2.70, r ~ ~mฯ‰ (a+ + aโˆ’ ), p = i (a+ โˆ’ aโˆ’ ), 2mฯ‰ 2 r Z ~ hxi = ฯˆnโˆ— (a+ + aโˆ’ )ฯˆn dx. 2mฯ‰ r x= so But (Eq. 2.67) a+ ฯˆn = So โˆš n + 1ฯˆn+1 , aโˆ’ ฯˆn = โˆš nฯˆnโˆ’1 . r Z Z โˆš โˆš ~ โˆ— โˆ— hxi = n + 1 ฯˆn ฯˆn+1 dx + n ฯˆn ฯˆnโˆ’1 dx = 0 (by orthogonality). 2mฯ‰ dhxi ~ ~ hpi = m = 0. x2 = (a+ + aโˆ’ )2 = a2+ + a+ aโˆ’ + aโˆ’ a+ + a2โˆ’ . dt 2mฯ‰ 2mฯ‰ Z ~ ฯˆnโˆ— a2+ + a+ aโˆ’ + aโˆ’ a+ + a2โˆ’ ฯˆn . But hx2 i = 2mฯ‰ p โˆš ๏ฃฑ 2 โˆš โˆš a ฯˆ = a n + 1ฯˆ = n + 1 n + 2ฯˆ = (n + 1)(n + 2)ฯˆn+2 . ๏ฃด n+1 n+2 n + + ๏ฃด โˆš โˆš ๏ฃฒ a a ฯˆ = a โˆšnฯˆ = n nฯˆ = nฯˆ + โˆ’ n + nโˆ’1 n n. p โˆš โˆš a a ฯˆ = a n + 1ฯˆ = n + 1) n + 1ฯˆ = (n + ๏ฃด โˆ’ + n โˆ’ n+1 n ๏ฃด p 1)ฯˆn . โˆš โˆš โˆš ๏ฃณ 2 aโˆ’ ฯˆn = aโˆ’ nฯˆnโˆ’1 = n n โˆ’ 1ฯˆnโˆ’2 = (n โˆ’ 1)nฯˆnโˆ’2 . So Z Z ~ ~ 1 ~ 2 2 hx i = 0 + n |ฯˆn | dx + (n + 1) |ฯˆn | dx + 0 = (2n + 1) = n + . 2mฯ‰ 2mฯ‰ 2 mฯ‰ 2 23 24 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION ~mฯ‰ ~mฯ‰ 2 (a+ โˆ’ aโˆ’ )2 = โˆ’ a+ โˆ’ a+ aโˆ’ โˆ’ aโˆ’ a+ + a2โˆ’ โ‡’ 2 2 ~mฯ‰ ~mฯ‰ 1 hp2 i = โˆ’ [0 โˆ’ n โˆ’ (n + 1) + 0] = (2n + 1) = n + m~ฯ‰. 2 2 2 p2 = โˆ’ 1 1 hT i = hp /2mi = n+ ~ฯ‰ . 2 2 r r p 1 ~ 2 2 ฯƒx = hx i โˆ’ hxi = n + ; 2 mฯ‰ 2 r p ฯƒp = hp2 i โˆ’ hpi2 = n+ 1โˆš m~ฯ‰; 2 ฯƒx ฯƒp = n+ 1 ~ ~โ‰ฅ .X 2 2 Problem 2.13 (a) Z 1= |ฮจ(x, 0)|2 dx = |A|2 Z 9|ฯˆ0 |2 + 12ฯˆ0โˆ— ฯˆ1 + 12ฯˆ1โˆ— ฯˆ0 + 16|ฯˆ1 |2 dx = |A|2 (9 + 0 + 0 + 16) = 25|A|2 โ‡’ A = 1/5. (b) ฮจ(x, t) = i i 1h 1h 3ฯˆ0 (x)eโˆ’iE0 t/~ + 4ฯˆ1 (x)eโˆ’iE1 t/~ = 3ฯˆ0 (x)eโˆ’iฯ‰t/2 + 4ฯˆ1 (x)eโˆ’3iฯ‰t/2 . 5 5 (Here ฯˆ0 and ฯˆ1 are given by Eqs. 2.60 and 2.63; E0 and E1 by Eq. 2.62.) i 1 h 2 9ฯˆ0 + 12ฯˆ0 ฯˆ1 eiฯ‰t/2 eโˆ’3iฯ‰t/2 + 12ฯˆ0 ฯˆ1 eโˆ’iฯ‰t/2 e3iฯ‰t/2 + 16ฯˆ12 25 1 2 = 9ฯˆ0 + 16ฯˆ12 + 24ฯˆ0 ฯˆ1 cos(ฯ‰t) . 25 |ฮจ(x, t)|2 = (With ฯˆ2 in place of ฯˆ1 the frequency would be (E2 โˆ’ E0 )/~ = [(5/2)~ฯ‰ โˆ’ (1/2)~ฯ‰]/~ = 2ฯ‰.) (c) hxi = But R xฯˆ02 dx = R Z Z Z 1 9 xฯˆ02 dx + 16 xฯˆ12 dx + 24 cos(ฯ‰t) xฯˆ0 ฯˆ1 dx . 25 xฯˆ12 dx = 0 (see Problem 2.11 or 2.12), while r Z xฯˆ0 ฯˆ1 dx = r = mฯ‰ ฯ€~ r 2mฯ‰ ~ Z xe 2 mฯ‰ โˆš 2 ฯ€2 ฯ€ ~ 2 โˆ’ mฯ‰ 2~ x 1 2 r xe ~ mฯ‰ 2 โˆ’ mฯ‰ 2~ x !3 r dx = r = 2 mฯ‰ ฯ€ ~ Z โˆž mฯ‰ โˆ’โˆž ~ . 2mฯ‰ So 24 hxi = 25 r ~ cos(ฯ‰t); 2mฯ‰ d 24 hpi = m hxi = โˆ’ dt 25 r 2 x2 eโˆ’ ~ x dx mฯ‰~ sin(ฯ‰t). 2 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 25 Ehrenfestโ€™s theorem says dhpi/dt = โˆ’hโˆ‚V /โˆ‚xi. Here r dhpi 24 mฯ‰~ 1 โˆ‚V =โˆ’ ฯ‰ cos(ฯ‰t), V = mฯ‰ 2 x2 โ‡’ = mฯ‰ 2 x, dt 25 2 2 โˆ‚x so r r ~ โˆ‚V 24 ~mฯ‰ 2 2 24 โˆ’ = โˆ’mฯ‰ hxi = โˆ’mฯ‰ cos(ฯ‰t) = โˆ’ ฯ‰ cos(ฯ‰t), โˆ‚x 25 2mฯ‰ 25 2 so Ehrenfestโ€™s theorem holds. (d) You could get E0 = 12 ~ฯ‰, with probability |c0 |2 = 9/25, or E1 = 32 ~ฯ‰, with probability |c1 |2 = 16/25. Problem 2.14 r r r Z Z โˆž 2 mฯ‰ โˆž โˆ’ฮพ2 mฯ‰ ~ e dx = 2 eโˆ’ฮพ dฮพ. ฯˆ0 = e , so P = 2 ฯ€~ ฯ€~ x0 ฯ€~ mฯ‰ ฮพ0 q ~ Classically allowed region extends out to: 12 mฯ‰ 2 x20 = E0 = 12 ~ฯ‰, or x0 = mฯ‰ , so ฮพ0 = 1. mฯ‰ 1/4 2 P =โˆš ฯ€ Z โˆž โˆ’ฮพ 2 /2 โˆš 2 eโˆ’ฮพ dฮพ = 2(1 โˆ’ F ( 2)) (in notation of CRC Table) = 0.157. 1 Problem 2.15 โˆ’2(5โˆ’1) โˆ’2(5โˆ’3) 4 n = 5: j = 1 โ‡’ a3 = (1+1)(1+2) a1 = โˆ’ 43 a1 ; j = 3 โ‡’ a5 = (3+1)(3+2) a3 = โˆ’ 51 a3 = 15 a1 ; j = 5 โ‡’ a7 = 0. So a1 4 4 3 5 3 5 H5 (ฮพ) = a1 ฮพ โˆ’ 3 a1 ฮพ + 15 a1 ฮพ = 15 (15ฮพ โˆ’ 20ฮพ + 4ฮพ ). By convention the coefficient of ฮพ 5 is 25 , so a1 = 15 ยท 8, and H5 (ฮพ) = 120ฮพ โˆ’ 160ฮพ 3 + 32ฮพ 5 (which agrees with Table 2.1). โˆ’2(6โˆ’0) โˆ’2(6โˆ’2) n = 6: j = 0 โ‡’ a2 = (0+1)(0+2) a0 = โˆ’6a0 ; j = 2 โ‡’ a4 = (2+1)(2+2) a2 = โˆ’ 23 a2 = 4a0 ; j = 4 โ‡’ a6 = โˆ’2(6โˆ’4) 2 8 8 6 2 4 6 (4+1)(4+2) a4 = โˆ’ 15 a4 = โˆ’ 15 a0 ; j = 6 โ‡’ a8 = 0. So H6 (ฮพ) = a0 โˆ’ 6a0 ฮพ + 4a0 ฮพ โˆ’ 15 ฮพ a0 . The coefficient of ฮพ 8 a0 โ‡’ a0 = โˆ’15 ยท 8 = โˆ’120. H6 (ฮพ) = โˆ’120 + 720ฮพ 2 โˆ’ 480ฮพ 4 + 64ฮพ 6 . is 26 , so 26 = โˆ’ 15 Problem 2.16 (a) 2 2 2 2 d d d โˆ’ฮพ2 โˆ’ฮพ 2 (e ) = โˆ’2ฮพe ; eโˆ’ฮพ = (โˆ’2ฮพeโˆ’ฮพ ) = (โˆ’2 + 4ฮพ 2 )eโˆ’ฮพ ; dฮพ dฮพ dฮพ 3 2 2 d d โˆ’ฮพ 2 2 โˆ’ฮพ 2 2 e = (โˆ’2 + 4ฮพ )e = 8ฮพ + (โˆ’2 + 4ฮพ )(โˆ’2ฮพ) eโˆ’ฮพ = (12ฮพ โˆ’ 8ฮพ 3 )eโˆ’ฮพ ; dฮพ dฮพ 4 2 2 d d โˆ’ฮพ 2 3 โˆ’ฮพ 2 2 3 e = (12ฮพ โˆ’ 8ฮพ )e = 12 โˆ’ 24ฮพ + (12ฮพ โˆ’ 8ฮพ )(โˆ’2ฮพ) eโˆ’ฮพ = (12 โˆ’ 48ฮพ 2 + 16ฮพ 4 )eโˆ’ฮพ . dฮพ dฮพ 3 4 2 d d ฮพ2 โˆ’ฮพ 2 3 ฮพ2 H3 (ฮพ) = โˆ’e e = โˆ’12ฮพ + 8ฮพ ; H4 (ฮพ) = e eโˆ’ฮพ = 12 โˆ’ 48ฮพ 2 + 16ฮพ 4 . dฮพ dฮพ 26 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION (b) H5 = 2ฮพH4 โˆ’ 8H3 = 2ฮพ(12 โˆ’ 48ฮพ 2 + 16ฮพ 4 ) โˆ’ 8(โˆ’12ฮพ + 8ฮพ 3 ) = 120ฮพ โˆ’ 160ฮพ 3 + 32ฮพ 5 . H6 = 2ฮพH5 โˆ’ 10H4 = 2ฮพ(120ฮพ โˆ’ 160ฮพ 3 + 32ฮพ 5 ) โˆ’ 10(12 โˆ’ 48ฮพ 2 + 16ฮพ 4 ) = โˆ’120 + 720ฮพ 2 โˆ’ 480ฮพ 4 + 64ฮพ 6 . (c) dH5 = 120 โˆ’ 480ฮพ 2 + 160ฮพ 4 = 10(12 โˆ’ 48ฮพ 2 + 16ฮพ 4 ) = (2)(5)H4 . X dฮพ dH6 = 1440ฮพ โˆ’ 1920ฮพ 3 + 384ฮพ 5 = 12(120ฮพ โˆ’ 160ฮพ 3 + 32ฮพ 5 ) = (2)(6)H5 . X dฮพ (d) 2 d โˆ’z2 +2zฮพ (e ) = (โˆ’2z + 2ฮพ)eโˆ’z +2zฮพ ; setting z = 0, H1 (ฮพ) = 2ฮพ. dz d dz 2 d dz 3 (e (e โˆ’z 2 +2zฮพ โˆ’z 2 +2zฮพ d โˆ’z 2 +2zฮพ )= (โˆ’2z + 2ฮพ)e dz 2 โˆ’z 2 +2zฮพ = โˆ’ 2 + (โˆ’2z + 2ฮพ) e ; setting z = 0, H2 (ฮพ) = โˆ’2 + 4ฮพ 2 . d 2 โˆ’z 2 +2zฮพ )= โˆ’ 2 + (โˆ’2z + 2ฮพ) e dz 2 2 = 2(โˆ’2z + 2ฮพ)(โˆ’2) + โˆ’ 2 + (โˆ’2z + 2ฮพ) (โˆ’2z + 2ฮพ) eโˆ’z +2zฮพ ; setting z = 0, H3 (ฮพ) = โˆ’8ฮพ + (โˆ’2 + 4ฮพ 2 )(2ฮพ) = โˆ’12ฮพ + 8ฮพ 3 . Problem 2.17 Aeikx + Beโˆ’ikx = A(cos kx + i sin kx) + B(cos kx โˆ’ i sin kx) = (A + B) cos kx + i(A โˆ’ B) sin kx = C cos kx + D sin kx, with C = A + B; D = i(A โˆ’ B). ikx ikx e + eโˆ’ikx e โˆ’ eโˆ’ikx 1 1 C cos kx + D sin kx = C +D = (C โˆ’ iD)eikx + (C + iD)eโˆ’ikx 2 2i 2 2 = Aeikx + Beโˆ’ikx , with A = 1 1 (C โˆ’ iD); B = (C + iD). 2 2 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.18 ~k2 Equation 2.95 says ฮจ = Aei(kxโˆ’ 2m t) , so i h ~k2 ~k2 ~k2 ~k2 i~ โˆ‚ฮจโˆ— i~ โˆ— โˆ‚ฮจ J = ฮจ โˆ’ฮจ = |A|2 ei(kxโˆ’ 2m t) (โˆ’ik)eโˆ’i(kxโˆ’ 2m t) โˆ’ eโˆ’i(kxโˆ’ 2m t) (ik)ei(kxโˆ’ 2m t) 2m โˆ‚x โˆ‚x 2m = i~ ~k 2 |A|2 (โˆ’2ik) = |A| . 2m m It flows in the positive (x) direction (as you would expect). Problem 2.19 (a) โˆž X bn inฯ€x/a einฯ€x/a โˆ’ eโˆ’inฯ€x/a + e + eโˆ’inฯ€x/a 2i 2 n=1 n=1 โˆž โˆž X X an bn an bn inฯ€x/a = b0 + + e + โˆ’ + eโˆ’inฯ€x/a . 2i 2 2i 2 n=1 n=1 f (x) = b0 + โˆž X an Let c0 โ‰ก b0 ; cn = 12 (โˆ’ian + bn ) , for n = 1, 2, 3, . . . ; cn โ‰ก 12 (iaโˆ’n + bโˆ’n ) , for n = โˆ’1, โˆ’2, โˆ’3, . . . . Then f (x) = โˆž X cn einฯ€x/a . QED n=โˆ’โˆž (b) Z a f (x)e โˆ’imฯ€x/a dx = โˆ’a Z a โˆž X n=โˆ’โˆž Z a ei(nโˆ’m)ฯ€x/a dx. But for n 6= m, cn โˆ’a a ei(nโˆ’m)ฯ€x/a dx = โˆ’a ei(nโˆ’m)ฯ€x/a ei(nโˆ’m)ฯ€ โˆ’ eโˆ’i(nโˆ’m)ฯ€ (โˆ’1)nโˆ’m โˆ’ (โˆ’1)nโˆ’m = = = 0, i(n โˆ’ m)ฯ€/a โˆ’a i(n โˆ’ m)ฯ€/a i(n โˆ’ m)ฯ€/a whereas for n = m, Z a Z a ei(nโˆ’m)ฯ€x/a dx = dx = 2a. โˆ’a โˆ’a So all terms except n = m are zero, and Z a Z a 1 f (x)eโˆ’inฯ€x/a dx. f (x)eโˆ’imฯ€x/a = 2acm , so cn = 2a โˆ’a โˆ’a (c) f (x) = โˆž X n=โˆ’โˆž r ฯ€1 1 X F (k)eikx = โˆš F (k)eikx โˆ†k, 2a 2ฯ€ QED 27 28 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION where โˆ†k โ‰ก ฯ€ is the increment in k from n to (n + 1). a r F (k) = 2 1 a ฯ€ 2a Z a f (x)e โˆ’ikx โˆ’a 1 dx = โˆš 2ฯ€ Z a f (x)eโˆ’ikx dx. โˆ’a (d) As a โ†’ โˆž, k becomes a continuous variable, 1 f (x) = โˆš 2ฯ€ Z โˆž 1 F (k)eikx dk; F (k) = โˆš 2ฯ€ โˆ’โˆž Z โˆž f (x)eโˆ’ikx dx. โˆ’โˆž Problem 2.20 (a) Z โˆž 2 2 Z โˆž |ฮจ(x, 0)| dx = 2|A| 1= โˆ’โˆž โˆž eโˆ’2ax dx = 2|A|2 0 โˆš |A|2 eโˆ’2ax = โ‡’ A = a. โˆ’2a 0 a (b) A ฯ†(k) = โˆš 2ฯ€ Z โˆž A eโˆ’a|x| eโˆ’ikx dx = โˆš 2ฯ€ โˆ’โˆž Z โˆž eโˆ’a|x| (cos kx โˆ’ i sin kx)dx. โˆ’โˆž The cosine integrand is even, and the sine is odd, so the latter vanishes and Z โˆž Z โˆž A A โˆ’ax ฯ†(k) = 2 โˆš e cos kx dx = โˆš eโˆ’ax eikx + eโˆ’ikx dx 2ฯ€ 0 2ฯ€ 0 (ikโˆ’a)x โˆž Z โˆž e A A eโˆ’(ik+a)x = โˆš e(ikโˆ’a)x + eโˆ’(ik+a)x dx = โˆš + โˆ’(ik + a) 0 2ฯ€ 0 2ฯ€ ik โˆ’ a r A โˆ’1 1 A โˆ’ik โˆ’ a + ik โˆ’ a a 2a = โˆš + =โˆš = . โˆ’k 2 โˆ’ a2 2ฯ€ k 2 + a2 2ฯ€ ik โˆ’ a ik + a 2ฯ€ (c) r Z Z 2 ~k2 1 a3 โˆž 1 a3/2 โˆž 1 i(kxโˆ’ ~k 2m t) dk = ฮจ(x, t) = โˆš 2 e ei(kxโˆ’ 2m t) dk. 2 2 2 2 2ฯ€ โˆ’โˆž k + a ฯ€ โˆ’โˆž k + a 2ฯ€ p (d) For large a, ฮจ(x, 0) is a sharp narrow spike whereas ฯ†(k) โˆผ = 2/ฯ€a is broad and flat; position p is welldefined but momentum is ill-defined. For small a, ฮจ(x, 0) is a broad and flat whereas ฯ†(k) โˆผ = ( 2a3 /ฯ€)/k 2 is a sharp narrow spike; position is ill-defined but momentum is well-defined. CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 29 Problem 2.21 (a) 1 = |A| 2 Z โˆž e โˆ’2ax2 2 r dx = |A| โˆ’โˆž ฯ€ ; 2a A= 2a ฯ€ 1/4 . (b) Z โˆž e โˆ’(ax2 +bx) Z โˆž dx = e โˆ’โˆž โˆ’y 2 +(b2 /4a) โˆ’โˆž 1 ฯ†(k) = โˆš A 2ฯ€ Z โˆž โˆ’ax2 โˆ’ikx e e โˆ’โˆž 1 1 ฮจ(x, t) = โˆš 2ฯ€ (2ฯ€a)1/4 1 2 1 โˆš dy = โˆš eb /4a a a 1 dx = โˆš 2ฯ€ Z โˆž 2a ฯ€ 2 1/4 r Z โˆž e โˆ’y 2 r dy = โˆ’โˆž ฯ€ b2 /4a e . a 2 ฯ€ โˆ’k2 /4a 1 e = eโˆ’k /4a . 1/4 a (2ฯ€a) 2 t/2m) eโˆ’k /4a ei(kxโˆ’~k | {z } dk โˆ’โˆž 1 2 eโˆ’[( 4a +i~t/2m)k โˆ’ixk] =โˆš 1/4 โˆ’ax2 /(1+2i~at/m) โˆš 2 1 ฯ€ e 1 2a q p eโˆ’x /4( 4a +i~t/2m) = . 1/4 ฯ€ 1 2ฯ€(2ฯ€a) 1 + 2i~at/m + i~t/2m 4a (c) r 2 Let ฮธ โ‰ก 2~at/m. Then |ฮจ| = 2 2 2a eโˆ’ax /(1+iฮธ) eโˆ’ax /(1โˆ’iฮธ) p . The exponent is ฯ€ (1 + iฮธ)(1 โˆ’ iฮธ) r 2 2 ax2 ax2 โˆ’2ax2 2a eโˆ’2ax /(1+ฮธ ) 2 (1 โˆ’ iฮธ + 1 + iฮธ) 2 โˆš โˆ’ โˆ’ = โˆ’ax = ; |ฮจ| = . (1 + iฮธ) (1 โˆ’ iฮธ) (1 + iฮธ)(1 โˆ’ iฮธ) 1 + ฮธ2 ฯ€ 1 + ฮธ2 r r a 2 โˆ’2w2 x2 2 Or, with w โ‰ก , |ฮจ| = we . As t increases, the graph of |ฮจ|2 flattens out and broadens. 2 1+ฮธ ฯ€ |^| 2 |^|2 x t=0 t>0 x (d) Z โˆž hxi = x|ฮจ|2 dx = 0 (odd integrand); hpi = m โˆ’โˆž r 2 hx i = 2 w ฯ€ Z โˆž 2 โˆ’2w2 x2 x e โˆ’โˆž r dx = 2 1 w ฯ€ 4w2 r dhxi = 0. dt ฯ€ 1 = . 2w2 4w2 2 hp i = โˆ’~ 2 Z โˆž โˆ’โˆž ฮจโˆ— โˆ‚2ฮจ dx. โˆ‚x2 30 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 2 Write ฮจ = Beโˆ’bx , where B โ‰ก 2a ฯ€ 1/4 โˆš 1 a and b โ‰ก . 1 + iฮธ 1 + iฮธ 2 โˆ‚2ฮจ โˆ‚ โˆ’bx2 = B โˆ’2bxe = โˆ’2bB(1 โˆ’ 2bx2 )eโˆ’bx . 2 โˆ‚x โˆ‚x โˆ— 2 โˆ‚2ฮจ a a 2a = โˆ’2b|B|2 (1 โˆ’ 2bx2 )eโˆ’(b+b )x ; b + bโˆ— = = 2w2 . + = 2 dโˆ‚x 1 + iฮธ 1 โˆ’ iฮธ 1 + ฮธ2 r r r 2 2 2 2a 2 2 1 2 โˆ—โˆ‚ ฮจ โˆš = |B| = = โˆ’2b w. So ฮจ w(1 โˆ’ 2bx2 )eโˆ’2w x . 2 2 ฯ€ 1+ฮธ ฯ€ โˆ‚x ฯ€ ฮจโˆ— r 2 hp i = 2b~ 2 r = 2b~ 2 2 w ฯ€ Z โˆž 2 w ฯ€ r 2 โˆ’โˆž b But 1 โˆ’ =1โˆ’ 2w2 hp2 i = 2b~2 2 (1 โˆ’ 2bx2 )eโˆ’2w x dx ฯ€ 1 โˆ’ 2b 2 2 2w 4w a 1 + iฮธ a = ~2 a. 2b r ฯ€ 2w2 1 + ฮธ2 2a ฯƒx = 1 ; 2w 2 = 2b~ =1โˆ’ b 1โˆ’ 2w2 โˆš ฯƒp = ~ a. ~p ~p ~ 1 โˆš 1 + ฮธ2 = 1 + (2~at/m)2 โ‰ฅ . X ~ a= 2w 2 2 2 Closest at t = 0, at which time it is right at the uncertainty limit. Problem 2.22 (a) (โˆ’2)3 โˆ’ 3(โˆ’2)2 + 2(โˆ’2) โˆ’ 1 = โˆ’8 โˆ’ 12 โˆ’ 4 โˆ’ 1 = โˆ’25. (b) cos(3ฯ€) + 2 = โˆ’1 + 2 = 1. (c) 0 (x = 2 is outside the domain of integration). . 1 + iฮธ a (1 โˆ’ iฮธ) = = , so 2 2 2b (e) ฯƒx ฯƒp = CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 31 Problem 2.23 If c > 0, y : โˆ’โˆž โ†’ โˆž. If c 0); or f (x)ฮด(cx)dx = R ๏ฃณ 1 R โˆ’โˆž 1 โˆž 1 โˆ’โˆž c โˆž f (y/c)ฮด(y)dy = โˆ’ c โˆ’โˆž f (y/c)ฮด(y)dy = โˆ’ c f (0) (c . X 2 2 2mฮฑ ~ 32 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.25 hฯˆbound |ฯˆscattering i Z 0 โˆš Z โˆž 2 2 mฮฑ emฮฑx/~ Aeikx + Beโˆ’ikx dx + = eโˆ’mฮฑx/~ F eikx + Geโˆ’ikx dx ~ โˆ’โˆž 0 Z 0 โˆš Z 0 Z โˆž Z โˆž mฮฑ mฮฑ mฮฑ โˆ’ mฮฑ โˆ’ mฮฑ ( ( ( ( 2 +ik )x 2 โˆ’ik )x 2 +ik )x 2 โˆ’ik )x ~ ~ ~ ~ = A e dx + B e dx + F e dx + G e dx ~ โˆ’โˆž โˆ’โˆž 0 0 # ” mฮฑ mฮฑ mฮฑ mฮฑ โˆš 0 0 โˆž โˆž e( ~2 โˆ’ik)x e(โˆ’ ~2 +ik)x e(โˆ’ ~2 โˆ’ik)x mฮฑ e( ~2 +ik)x + B mฮฑ +F +G = A mฮฑ mฮฑ mฮฑ ~ โˆ’ ~2 + ik 0 โˆ’ ~2 โˆ’ ik 0 ~2 + ik โˆ’โˆž ~2 โˆ’ ik โˆ’โˆž โˆš โˆš mฮฑ A B F G mฮฑ A + G B+F = + โˆ’ โˆ’ = + mฮฑ mฮฑ mฮฑ mฮฑ ~ โˆ’ mฮฑ โˆ’ mฮฑ ~ ~2 + ik ~2 โˆ’ ik ~2 + ik ~2 โˆ’ ik ~2 + ik ~2 โˆ’ ik ” # ” # โˆš โˆš mฮฑ mฮฑ mฮฑ mฮฑ mฮฑ ~2 (A + G + B + F ) + ik(B + F โˆ’ A โˆ’ G) ~2 โˆ’ ik (A + G) + ~2 + ik (B + F ) = = mฮฑ 2 mฮฑ 2 ~ ~ + k2 + k2 2 2 ~ ~ But Equation 2.136 says (A + G + B + F ) = 2(A + B), and Equation 2.137 says ik(B + F โˆ’ A โˆ’ G) = โˆ’(2mฮฑ/~2 )(A + B), so ” # โˆš 2mฮฑ mฮฑ mฮฑ ~2 2(A + B) โˆ’ ~2 (A + B) hฯˆbound |ฯˆscattering =i = 0. X mฮฑ 2 ~ + k2 2 ~ Problem 2.26 Z โˆž 1 1 Put f (x) = ฮด(x) into Eq. 2.103: F (k) = โˆš ฮด(x)eโˆ’ikx dx = โˆš . 2ฯ€ โˆ’โˆž 2ฯ€ Z โˆž Z โˆž 1 1 1 โˆš eikx dk = โˆด f (x) = ฮด(x) = โˆš eikx dk. QED 2ฯ€ 2ฯ€ โˆ’โˆž 2ฯ€ โˆ’โˆž Problem 2.27 V(x) (a) -a a x (b) From Problem 2.1(c) the solutions are even or odd. Look first for even solutions: ๏ฃฑ โˆ’ฮบx (x > a), ๏ฃฒ Ae ฯˆ(x) = B(eฮบx + eโˆ’ฮบx ) (โˆ’a < x < a), ๏ฃณ ฮบx Ae (x a), ๏ฃฒ Ae ฯˆ(x) = B(eฮบx โˆ’ eโˆ’ฮบx ) (โˆ’a < x < a), ๏ฃณ โˆ’Aeฮบx (x < โˆ’a). Continuity at a : Aeโˆ’ฮบa = B(eฮบa โˆ’ eโˆ’ฮบa ), or A = B(e2ฮบa โˆ’ 1). 2mฮฑ Discontinuity in ฯˆ : โˆ’ฮบAe โˆ’ B(ฮบe + ฮบe ) = โˆ’ 2 Aeโˆ’ฮบa โ‡’ B(e2ฮบa + 1) = A ~ 2mฮฑ 2mฮฑ 2mฮฑ 2ฮบa 2ฮบa 2ฮบa e + 1 = (e โˆ’ 1) โˆ’1 =e โˆ’ 1 โˆ’ 2 + 1, 2 2 ~ ฮบ ~ ฮบ ~ ฮบ 0 1= โˆ’ฮบa โˆ’ฮบa ฮบa 2mฮฑ โˆ’1 , ~2 ฮบ 2mฮฑ โˆ’2ฮบa ~2 ฮบ ~2 ฮบ 2mฮฑ โˆ’2ฮบa โˆ’2ฮบa โˆ’ 1 โˆ’ e ; = 1 โˆ’ e , e = 1 โˆ’ , or eโˆ’z = 1 โˆ’ cz. ~2 ฮบ ~2 ฮบ mฮฑ mฮฑ 1 1/c 1/c z 34 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION This time there may or may not be a solution. Both graphs have their y-intercepts at 1, but if c is too large (ฮฑ too small), there may be no intersection (solid line), whereas if c is smaller (dashed line) there will be. (Note that z = 0 โ‡’ ฮบ = 0 is not a solution, since ฯˆ is then non-normalizable.) The slope of eโˆ’z (at z = 0) is โˆ’1; the slope of (1 โˆ’ cz) is โˆ’c. So there is an odd solution โ‡” c ~2 /2ma. Conclusion: One bound state if ฮฑ โ‰ค ~2 /2ma; two if ฮฑ > ~2 /2ma. s s -a -a a a x Even ฮฑ= 1 ~2 โ‡’c= . ma 2 x Odd Even: eโˆ’z = 12 z โˆ’ 1 โ‡’ z = 2.21772, Odd: eโˆ’z = 1 โˆ’ 12 z โ‡’ z = 1.59362. E = โˆ’0.615(~2 /ma2 ); E = โˆ’0.317(~2 /ma2 ). ฮฑ= ~2 โ‡’ c = 2. Only even: eโˆ’z = 2z โˆ’ 1 โ‡’ z = 0.738835; 4ma E = โˆ’0.0682(~2 /ma2 ). (c) (i) There is one bound state (even); c is huge, so z is small, so eโˆ’z โ‰ˆ 1 = cz โˆ’ 1, which means z = 2/c, or 2ฮบa = 2(2amฮฑ/~2 ) โ‡’ ฮบ = (2mฮฑ/~2 ). E=โˆ’ ~2 ฮบ2 2mฮฑ2 = โˆ’ 2 . 2m ~ This makes sense: the two delta-functions coincide, so there is really just one delta-function, with โ€œstrengthโ€ 2ฮฑ. Putting this into Equation 2.130 we recover the answer in the box. (ii) There are two bound states, one even and one odd; c is small, so z is huge, and eโˆ’z โ‰ˆ 0. For the even case, 0 = cz โˆ’ 1 โ‡’ z = 1/c โ‡’ ฮบ = (mฮฑ/~2 ). For the odd case, 0 = 1 โˆ’ cz, which leads to the mฮฑ2 . Any linear combination of the two 2~2 will be an eigenstate (with the same energy); the sum (properly normalized) would represent a particle in the delta-function out at large positive x, and the difference would be a particle in the delta-function at large negative x (the otherโ€”distantโ€”delta-function becomes irrelevant), so it makes sense that we get two states, each with the energy of a particle in a single delta-function well. same result: the two states are degenerate, each with energy โˆ’ Problem 2.28 ๏ฃฑ ikx ๏ฃผ ๏ฃฒ Ae + Beโˆ’ikx (x < โˆ’a) ๏ฃฝ ฯˆ = Ceikx + Deโˆ’ikx (โˆ’a < x a) (1) Continuity at โˆ’a : Aeโˆ’ika + Beika = Ceโˆ’ika + Deika โ‡’ ฮฒA + B = ฮฒC + D, where ฮฒ โ‰ก eโˆ’2ika . (2) Continuity at +a : Ceika + Deโˆ’ika = F eika โ‡’ F = C + ฮฒD. CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 35 โˆ’ika (3) Discontinuity in ฯˆ 0 at โˆ’a : ik(Ceโˆ’ika โˆ’ Deika ) โˆ’ ik(Aeโˆ’ika โˆ’ Beika ) = โˆ’ 2mฮฑ + Beika ) ~2 (Ae โ‡’ ฮฒC โˆ’ D = ฮฒ(ฮณ + 1)A + B(ฮณ โˆ’ 1), where ฮณ โ‰ก i2mฮฑ/~2 k. ika (4) Discontinuity in ฯˆ 0 at +a : ikF eika โˆ’ ik(Ceika โˆ’ Deโˆ’ika ) = โˆ’ 2mฮฑ ) ~2 (F e โ‡’ C โˆ’ ฮฒD = (1 โˆ’ ฮณ)F. To solve for C and D, add (2) and (4) : 2C = F + (1 โˆ’ ฮณ)F โ‡’ 2C = (2 โˆ’ ฮณ)F. subtract (2) and (4) : 2ฮฒD = F โˆ’ (1 โˆ’ ฮณ)F โ‡’ 2D = (ฮณ/ฮฒ)F. add (1) and (3) : 2ฮฒC = ฮฒA + B + ฮฒ(ฮณ + 1)A + B(ฮณ โˆ’ 1) โ‡’ 2C = (ฮณ + 2)A + (ฮณ/ฮฒ)B. subtract (1) and (3) : 2D = ฮฒA + B โˆ’ ฮฒ(ฮณ + 1)A โˆ’ B(ฮณ โˆ’ 1) โ‡’ 2D = โˆ’ฮณฮฒA + (2 โˆ’ ฮณ)B. Equate the two expressions for 2C : (2 โˆ’ ฮณ)F = (ฮณ + 2)A + (ฮณ/ฮฒ)B. Equate the two expressions for 2D : (ฮณ/ฮฒ)F = โˆ’ฮณฮฒA + (2 โˆ’ ฮณ)B. Solve these for F and B, in terms of A. Multiply the first by ฮฒ(2 โˆ’ ฮณ), the second by ฮณ, and subtract: 2 ฮฒ(2 โˆ’ ฮณ)2 F = ฮฒ(4 โˆ’ ฮณ 2 )A + ฮณ(2 โˆ’ ฮณ)B ; (ฮณ /ฮฒ)F = โˆ’ฮฒฮณ 2 A + ฮณ(2 โˆ’ ฮณ)B . 4 F = . โ‡’ ฮฒ(2 โˆ’ ฮณ)2 โˆ’ ฮณ 2 /ฮฒ F = ฮฒ 4 โˆ’ ฮณ 2 + ฮณ 2 A = 4ฮฒA โ‡’ A (2 โˆ’ ฮณ)2 โˆ’ ฮณ 2 /ฮฒ 2 Let g โ‰ก i/ฮณ = ~2 k i F 4g 2 ; ฯ† โ‰ก 4ka, so ฮณ = , ฮฒ 2 = eโˆ’iฯ† . Then: = . 2mฮฑ g A (2g โˆ’ i)2 + eiฯ† Denominator: 4g 2 โˆ’ 4ig โˆ’ 1 + cos ฯ† + i sin ฯ† = (4g 2 โˆ’ 1 + cos ฯ†) + i(sin ฯ† โˆ’ 4g). |Denominator|2 = (4g 2 โˆ’ 1 + cos ฯ†)2 + (sin ฯ† โˆ’ 4g)2 = 16g 4 + 1 + cos2 ฯ† โˆ’ 8g 2 โˆ’ 2 cos ฯ† + 8g 2 cos ฯ† + sin2 ฯ† โˆ’ 8g sin ฯ† + 16g 2 = 16g 4 + 8g 2 + 2 + (8g 2 โˆ’ 2) cos ฯ† โˆ’ 8g sin ฯ†. T = F A 2 = 8g 4 (8g 4 + 4g 2 + 1) + (4g 2 โˆ’ 1) cos ฯ† โˆ’ 4g sin ฯ† , where g โ‰ก ~2 k and ฯ† โ‰ก 4ka. 2mฮฑ Problem 2.29 ๏ฃฑ โˆ’ฮบx ๏ฃผ (x > a) ๏ฃฒ Fe ๏ฃฝ In place of Eq. 2.154, we have: ฯˆ(x) = D sin(lx) (0 < x < a) . ๏ฃณ ๏ฃพ โˆ’ฯˆ(โˆ’x) (x < 0) Continuity of ฯˆ : F eโˆ’ฮบa = D sin(la); continuity of ฯˆ 0 : โˆ’F ฮบeโˆ’ฮบa = Dl cos(la). q p Divide: โˆ’ ฮบ = l cot(la), or โˆ’ ฮบa = la cot(la) โ‡’ z02 โˆ’ z 2 = โˆ’z cot z, or โˆ’ cot z = (z0 /z)2 โˆ’ 1. Wide, deep well: Intersections are at ฯ€, 2ฯ€, 3ฯ€, etc. Same as Eq. 2.160, but now for n even. This fills in the rest of the states for the infinite square well. Shallow, narrow well: If z0 < ฯ€/2, there is no odd bound state. The corresponding condition on V0 is V0 < ฯ€ 2 ~2 โ‡’ no odd bound state. 8ma2 36 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION / z0 2/ z Problem 2.30 Z โˆž 2 2 Z a 2 2 Z โˆž โˆ’2ฮบx cos lx dx + |F | e |ฯˆ| dx = 2 |D| dx 0 a a โˆž 1 x 1 a sin 2la eโˆ’2ฮบa = 2 |D|2 + |F |2 โˆ’ eโˆ’2ฮบx + sin 2lx = 2 |D|2 + + |F |2 . 2 4l 2ฮบ 2 4l 2ฮบ 0 a 1=2 0 sin(2la) cos2 (la) + . But F = Deฮบa cos la (Eq. 2.152), so 1 = |D|2 a + 2l ฮบ Furthermore ฮบ = l tan(la) (Eq. 2.157), so cos la 2 sin la cos la cos3 la 1 = |D|2 a + + = |D|2 a + (sin2 la + cos2 la) 2l l sin la l sin la 1 1 eฮบa cos la 1 = |D|2 a + D= p F =p = |D|2 a + . , . l tan la ฮบ a + 1/ฮบ a + 1/ฮบ Problem 2.31 โˆš Equation 2.158 โ‡’ z0 = ~a 2mV0 . We want ฮฑ = area of potential = 2aV0 held constant as a โ†’ 0. Therefore p โˆš ฮฑ ฮฑ V0 = 2a ; z0 = ~a 2m 2a = ~1 mฮฑa โ†’ 0. So z0 is small, and the intersection in Fig. 2.17 occurs at very small z. Solve Eq. 2.159 for very small z, by expanding tan z: q p 2 (z /z) โˆ’ 1 = (1/z) z02 โˆ’ z 2 . tan z โˆผ z = = 0 Now (from Eqs. 2.149, 2.151 and 2.158) z02 โˆ’z 2 = ฮบ2 a2 , so z 2 = ฮบa. But z02 โˆ’z 2 = z 4 1 โ‡’ z โˆผ = z0 , so ฮบa โˆผ = z02 . 1 mฮฑ 1โˆš โˆผ But we found that z0 = ~ mฮฑa here, so ฮบa = ~2 mฮฑa, or ฮบ = ~2 . (At this point the aโ€™s have canceled, and we can go to the limit a โ†’ 0.) โˆš โˆ’2mE mฮฑ m2 ฮฑ2 mฮฑ2 = 2 โ‡’ โˆ’2mE = . E = โˆ’ (which agrees with Eq. 2.132). ~ ~ ~2 2~2 โˆš V02 ฮฑ 2mV0 . But V0 = 2a In Eq. 2.172, V0 E โ‡’ T โˆ’1 โˆผ sin2 2a , so the argument of the sine is small, = 1+ 4EV ~ 0 2 V0 2a mฮฑ2 โˆ’1 โˆผ 2 m and we can replace sin by : T = 1 + 4E ~ 2mV0 = 1 + (2aV0 ) 2~2 E . But 2aV0 = ฮฑ, so T โˆ’1 = 1 + 2~ 2E , in agreement with Eq. 2.144. CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 37 Problem 2.32 Multiply Eq. 2.168 by sin la, Eq. 2.169 by 1l cos la, and add: ik C sin2 la + D sin la cos la = F eika sin la ika C = F e sin la + cos la . C cos2 la โˆ’ D sin la cos la = ikl F eika cos la l Multiply Eq. 2.168 by cos la, Eq. 2.169 by 1l sin la, and subtract: ik C sin la cos la + D cos2 la = F eika cos la ika sin la . D = F e cos la โˆ’ C sin la cos la โˆ’ D sin2 la = ikl F eika sin la l Put these into Eq. 2.166: (1) Ae โˆ’ika + Be ika ik ik ika = โˆ’F e sin la + cos la sin la + F e sin la cos la cos la โˆ’ l l ik ik 2 ika 2 = Fe cos la โˆ’ sin la cos la โˆ’ sin la โˆ’ sin la cos la l l ik = F eika cos(2la) โˆ’ sin(2la) . l ika Likewise, from Eq. 2.167: ik ik il ika sin la + cos la cos la + cos la โˆ’ sin la sin la (2) Ae โˆ’ Be = โˆ’ F e k l l il ika ik ik 2 2 = โˆ’ Fe sin la cos la + cos la + sin la cos la โˆ’ sin la k l l il ika ik il ika = โˆ’ Fe sin(2la) + cos(2la) = F e cos(2la) โˆ’ sin(2la) . k l k k l Add (1) and (2): 2Aeโˆ’ika = F eika 2 cos(2la) โˆ’ i + sin(2la) , or: l k โˆ’ika ika eโˆ’2ika A F = (confirming Eq. 2.171). Now subtract (2) from (1): 2 2 cos(2la) โˆ’ i sin(2la) 2kl (k + l ) l k sin(2la) 2 2Beika = F eika i โˆ’ sin(2la) โ‡’ B = i (l โˆ’ k 2 )F (confirming Eq. 2.170). k l 2kl T โˆ’1 = A F 2 = cos(2la) โˆ’ i sin(2la) 2 (k + l2 ) 2kl But cos2 (2la) = 1 โˆ’ sin2 (2la), so 2 โˆ’1 T = 1 + sin (2la) โˆš 2 = cos2 (2la) + (k 2 + l2 )2 โˆ’1 (2lk)2 | {z } sin2 (2la) 2 (k + l2 )2 . (2lk)2 =1+ (k 2 โˆ’ l2 )2 sin2 (2la). (2kl)2 (k2 โˆ’l2 )2 1 1 4 2 2 4 [k4 +2k2 l2 +l4 โˆ’4k2 l2 ]= (2kl) 2 [k โˆ’2k l +l ]= (2kl)2 . (2kl)2 p 2m(E + V0 ) 2a p 2mV0 ; so (2la) = 2m(E + V0 ); k 2 โˆ’ l2 = โˆ’ 2 , and ~ ~ ~ 2m 2 2 2 V (k 2 โˆ’ l2 )2 V 0 0 ~2 . = = 2 (2kl)2 4E(E + V0 ) 4 2m E(E + V ) 0 ~2 V02 2a p โˆด T โˆ’1 = 1 + sin2 2m(E + V0 ) , confirming Eq. 2.172. 4E(E + V0 ) ~ But k = 2mE , l= ~ 38 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.33 ๏ฃฑ ikx ๏ฃผ ๏ฃฒ Ae + Beโˆ’ikx (x < โˆ’a) ๏ฃฝ ฯˆ = Ceฮบx + Deโˆ’ฮบx (โˆ’a < x a) E < V0 . โˆš k= 2mE ; ฮบ= ~ p 2m(V0 โˆ’ E) . ~ (1) Continuity of ฯˆ at โˆ’a: Aeโˆ’ika + Beika = Ceโˆ’ฮบa + Deฮบa . (2) Continuity of ฯˆ 0 at โˆ’a: ik(Aeโˆ’ika โˆ’ Beika ) = ฮบ(Ceโˆ’ฮบa โˆ’ Deฮบa ). ฮบ ฮบa ฮบ โˆ’ฮบa Ce + 1+i De . โ‡’ 2Aeโˆ’ika = 1 โˆ’ i k k (3) Continuity of ฯˆ at +a: Ceฮบa + Deโˆ’ฮบa = F eika . (4) Continuity of ฯˆ 0 at +a: ฮบ(Ceฮบa โˆ’ Deโˆ’ฮบa ) = ikF eika . ik ik ฮบa ika โˆ’ฮบa โ‡’ 2Ce = 1 + F e ; 2De = 1โˆ’ F eika . ฮบ ฮบ 2Ae โˆ’ika โˆ’2ฮบa ik iฮบ ik e2ฮบa iฮบ ika e 1+ Fe + 1+ 1โˆ’ F eika = 1โˆ’ k ฮบ 2 k ฮบ 2 k ฮบ ฮบ k F eika โˆ’ โˆ’ = 1+i + 1 eโˆ’2ฮบa + 1 + i + 1 e2ฮบa 2 ฮบ k k ฮบ ika 2 2 Fe (ฮบ โˆ’ k ) 2ฮบa = 2 eโˆ’2ฮบa + e2ฮบa + i e โˆ’ eโˆ’2ฮบa . 2 kฮบ x โˆ’x ex + eโˆ’x e โˆ’e , cosh x โ‰ก , so But sinh x โ‰ก 2 2 F eika (ฮบ2 โˆ’ k 2 ) = 2 sinh(2ฮบa) 4 cosh(2ฮบa) + i 2 kฮบ (ฮบ2 โˆ’ k 2 ) ika = 2F e cosh(2ฮบa) + i sinh(2ฮบa) . 2kฮบ 2 (ฮบ2 โˆ’ k 2 )2 sinh2 (2ฮบa). But cosh2 = 1 + sinh2 , so (2ฮบk)2 V02 (ฮบ2 โˆ’ k 2 )2 2a p 2 2 1 + sinh 2m(V โˆ’ E) , T โˆ’1 = 1 + 1 + sinh (2ฮบa) = 0 (2ฮบk)2 4E(V0 โˆ’ E) ~ | {z } T โˆ’1 = A F = cosh2 (2ฮบa) + F 2 2 where F = 4 4 2 2 2 2 2 4ฮบ k + k + ฮบ โˆ’ 2ฮบ k (ฮบ + k ) = = (2ฮบk)2 (2ฮบk)2 2m(V0 โˆ’E) 2mE ~2 + ~2 2 2m(V0 โˆ’E) 4 2mE ~2 ~2 = V02 . 4E(V0 โˆ’ E) (You can also get this from Eq. 2.172 by switching the sign of V0 and using sin(iฮธ) = i sinh ฮธ.) ๏ฃฑ ikx ๏ฃผ ๏ฃฝ ๏ฃฒ Ae + Beโˆ’ikx (x < โˆ’a) (โˆ’a < x a) (In central region โˆ’ ~2 d 2 ฯˆ d2 ฯˆ + V0 ฯˆ = Eฯˆ โ‡’ = 0, so ฯˆ = C + Dx.) 2 2m dx dx2 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 39 (1) Continuous ฯˆ at โˆ’a : Aeโˆ’ika + Beika = C โˆ’ Da. (2) Continuous ฯˆ at +a : F eika = C + Da. โ‡’ (2.5) 2Da = F eika โˆ’ Aeโˆ’ika โˆ’ Beika . (3) Continuous ฯˆ 0 at โˆ’a : ik Aeโˆ’ika โˆ’ Beika = D. (4) Continuous ฯˆ 0 at +a : ikF eika = D. โ‡’ (4.5) Aeโˆ’2ika โˆ’ B = F. Use (4) to eliminate D in (2.5): Aeโˆ’2ika + B = F โˆ’ 2aikF = (1 โˆ’ 2iak)F , and add to (4.5): 2Aeโˆ’2ika = 2F (1 โˆ’ ika), so T โˆ’1 = 2 A F = 1 + (ka)2 = 1 + 2mE 2 a . ~2 (You can also get this from Eq. 2.172 by changing the sign of V0 and taking the limit E โ†’ V0 , using sin โˆผ = .) This case is identical to the one in the book, only with V0 โ†’ โˆ’V0 . So E > V0 . T โˆ’1 V02 =1+ sin2 4E(E โˆ’ V0 ) 2a p 2m(E โˆ’ V0 ) . ~ Problem 2.34 (a) ฯˆ= Aeikx + Beโˆ’ikx (x 0) โˆš where k = p 2mE ; ฮบ= ~ 2m(V0 โˆ’ E) . ~ (1) Continuity of ฯˆ : A + B = F. (2) Continuity of ฯˆ 0 : ik(A โˆ’ B) = โˆ’ฮบF. ik ik ik โ‡’ A + B = โˆ’ (A โˆ’ B) โ‡’ A 1 + = โˆ’B 1 โˆ’ . ฮบ ฮบ ฮบ R= B A 2 = |(1 + ik/ฮบ)|2 1 + (k/ฮบ)2 = = 1. 2 |(1 โˆ’ ik/ฮบ)| 1 + (k/ฮบ)2 Although the wave function penetrates into the barrier, it is eventually all reflected. (b) ฯˆ= Aeikx + Beโˆ’ikx (x 0) โˆš where k = (1) Continuity of ฯˆ : A + B = F. (2) Continuity of ฯˆ 0 : ik(A โˆ’ B) = ilF. 2mE ; l= ~ p 2m(E โˆ’ V0 ) . ~ 40 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION k k k โ‡’ A + B = (A โˆ’ B); A 1 โˆ’ = โˆ’B 1 + . l l l 2 (1 โˆ’ k/l)2 (k โˆ’ l)2 (k โˆ’ l)4 = = . (1 + k/l)2 (k + l)2 (k 2 โˆ’ l2 )2 โˆš p 2m 2m โˆš 2m 2 2 Now k โˆ’ l = 2 (E โˆ’ E + V0 ) = V ; k โˆ’ l = [ E โˆ’ E โˆ’ V0 ], so 0 ~ ~2 ~ โˆš โˆš ( E โˆ’ E โˆ’ V 0 )4 R= . V02 R= B A = (c) vi dt vi vt dt vt From the diagram, T = Pt /Pi = |F |2 vt /|A|2 vi , where Pi is the probability of finding the incident particle in the box corresponding to the time interval dt, and Pt is the probability of finding the transmitted particle in the associated box to the right of the barrier. r โˆš 2 vt E โˆ’ V0 E โˆ’ V0 F โˆš But = (from Eq. 2.98). So T = . Alternatively, from Problem 2.18: vi E A E r 2 2 ~k 2 ~l 2 Jt F E โˆ’ V0 F l Ji = |A| ; Jt = |F | ; T = = . = m m Ji A k A E For E V0 , F = A + B = A + A T = F A 2 T +R= l = k 2k k+l 2 โˆš โˆš โˆš โˆš l 4kl 4kl(k โˆ’ l)2 4 E E โˆ’ V0 ( E โˆ’ E โˆ’ V0 )2 = = = . k (k + l)2 (k 2 โˆ’ l2 )2 V02 4kl (k โˆ’ l)2 4kl + k 2 โˆ’ 2kl + l2 k 2 + 2kl + l2 (k + l)2 + = = = = 1. X (k + l)2 (k + l)2 (k + l)2 (k + l)2 (k + l)2 Problem 2.35 (a) ฯˆ(x) = Aeikx + Beโˆ’ikx (x 0) โˆš where k โ‰ก 2mE , lโ‰ก ~ Continuity of ฯˆ โ‡’ A + B = F =โ‡’ Continuity of ฯˆ 0 โ‡’ ik(A โˆ’ B) = ilF k k k = โˆ’B 1 + ; A + B = (A โˆ’ B); A 1 โˆ’ l l l B =โˆ’ A p 2m(E + V0 ) . ~ 1 โˆ’ k/l 1 + k/l . CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 41 โˆš !2 โˆš 2 2 B lโˆ’k E + V0 โˆ’ E โˆš = R= = โˆš A l+k E + V0 + E !2 โˆš p 2 2 1 + V0 /E โˆ’ 1 1+3โˆ’1 2โˆ’1 1 = p = . = = โˆš 2 + 1 9 1+3+1 1 + V0 /E + 1 (b) The cliff is two-dimensional, and even if we pretend the car drops straight down, the potential as a function of distance along the (crooked, but now one-dimensional) path is โˆ’mgx (with x the vertical coordinate), as shown. V(x) x -V0 (c) Here V0 /E = 12/4 = 3, the same as in part (a), so R = 1/9, and hence T = 8/9 = 0.8889. Problem 2.36 Start with Eq. 2.25: ฯˆ(x) = A sin kx + B cos kx. This time the boundary conditions are ฯˆ(a) = ฯˆ(โˆ’a) = 0: A sin ka + B cos ka = 0; โˆ’A sin ka + B cos ka = 0. ( Subtract : A sin ka = 0 โ‡’ ka = jฯ€ or A = 0, Add : B cos ka = 0 โ‡’ ka = (j โˆ’ 21 )ฯ€ or B = 0, (where j = 1, 2, 3, . . .). If B = 0 (so A 6= 0), k = jฯ€/a. In Rthis case let n โ‰ก 2j (so n is an evenโˆšinteger); then k = nฯ€/2a, a ฯˆ = A sin(nฯ€x/2a). Normalizing: 1 = |A|2 โˆ’a sin2 (nฯ€x/2a) dx = |A|2 a โ‡’ A = 1/ a. If A = 0 (so B 6= 0), k = (j โˆ’ 21 )ฯ€/a. In R athis case let n โ‰ก 2j โˆ’ 1 (n is an oddโˆšinteger); again k = nฯ€/2a, ฯˆ = B cos(nฯ€x/2a). Normalizing: 1 = |B|2 โˆ’a cos2 (nฯ€x/2a)dx = |B|2 a โ‡’ B = 1/ a. 2 2 2 2 2 k n ฯ€ ~ In either case Eq. 2.24 yields E = ~2m = 2m(2a) 2 (in agreement with Eq. 2.30 for a well of width 2a). The substitution x โ†’ (x + a)/2 takes Eq. 2.31 to q ๏ฃฑ 2 nฯ€x n/2 ๏ฃด (โˆ’1) sin (n even), r r ๏ฃด a 2a ๏ฃฒ nฯ€x nฯ€ 2 nฯ€ (x + a) 2 sin = sin + = q ๏ฃด a a 2 a 2a 2 ๏ฃด ๏ฃณ(โˆ’1)(nโˆ’1)/2 2 cos nฯ€x (n odd). a 2a So (apart from normalization) we recover the results above. The graphs are the same as Figure 2.2, except that some are upside down (different normalization). cos(/x/2a) sin(2/x/2a) cos(3/x/2a) 42 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.37 Use the trig identity sin 3ฮธ = 3 sin ฮธ โˆ’ 4 sin3 ฮธ to write 3 sin ฯ€x a 3 = sin 4 ฯ€x a Normalize using Eq. 2.20: |A|2 1 โˆ’ sin 4 r a 3 3ฯ€x 1 . So (Eq. 2.31): ฮจ(x, 0) = A ฯˆ1 (x) โˆ’ ฯˆ3 (x) . a 2 4 4 a 9 1 5 4 + = a|A|2 = 1 โ‡’ A = โˆš . 2 16 16 16 5a So ฮจ(x, 0) = โˆš110 [3ฯˆ1 (x) โˆ’ ฯˆ3 (x)] , and hence (Eq. 2.17) i 1 h ฮจ(x, t) = โˆš 3ฯˆ1 (x)eโˆ’iE1 t/~ โˆ’ ฯˆ3 (x)eโˆ’iE3 t/~ . 10 1 E3 โˆ’ E1 9ฯˆ12 + ฯˆ32 โˆ’ 6ฯˆ1 ฯˆ3 cos t ; so 10 ~ Z a Z a E3 โˆ’ E1 1 3 9 2 hxi1 + hxi3 โˆ’ cos t hxi = xฯˆ1 (x)ฯˆ3 (x)dx, x|ฮจ(x, t)| dx = 10 10 5 ~ 0 0 |ฮจ(x, t)|2 = where hxin = a/2 is the expectation value of x in the nth stationary state. The remaining integral is Z Z ฯ€x 3ฯ€x 2ฯ€x 4ฯ€x 2 a 1 a x sin sin dx = x cos โˆ’ cos dx a 0 a a a 0 a a 2 2 a a 2ฯ€x xa 2ฯ€x a 4ฯ€x xa 4ฯ€x 1 = 0. cos + sin โˆ’ cos โˆ’ sin = a 2ฯ€ a 2ฯ€ a 4ฯ€ a 4ฯ€ a 0 Evidently then, 9 a 1 a a hxi = + = . 10 2 10 2 2 Using Eq. 2.21, 2 2 hHi = |c1 | E1 + |c3 | E3 = 9 10 ฯ€ 2 ~2 + 2ma2 1 10 9ฯ€ 2 ~2 9ฯ€ 2 ~2 = . 2ma2 10ma2 Problem 2.38 (a) According to Eq. 2.39, the most general solution to the time-dependent Schroฬˆdinger equation for the infinite square well is โˆž X 2 2 2 ฮจ(x, t) = cn ฯˆn (x)eโˆ’i(n ฯ€ ~/2ma )t . n=1 2 2 2 2 2 2 2 n2 ฯ€ 2 ~ n2 ฯ€ 2 ~ 4ma2 T = = 2ฯ€n2 , so eโˆ’i(n ฯ€ ~/2ma )(t+T ) = eโˆ’i(n ฯ€ ~/2ma )t eโˆ’i2ฯ€n , and since n2 is 2 2 ฯ€~ 2ma 2ma 2 an integer, eโˆ’i2ฯ€n = 1. Therefore ฮจ(x, t + T ) = ฮจ(x, t). QED Now CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 43 (b) The classical revival time is the time it takes the particle to go down and back: Tc = 2a/v, with the velocity given by r r 1 2E 2m 2 โ‡’ Tc = a . E = mv โ‡’ v = 2 m E (c) The two revival times are equal if r 2m 4ma2 =a , ฯ€~ E E= or ฯ€ 2 ~2 E1 = . 2 8ma 4 Problem 2.39 (a) โˆš โˆš dฮจ 2 3 2 3 a 1, (0 < x < a/2) = โˆš ยท = โˆš 1 โˆ’ 2ฮธ x โˆ’ . โˆ’1, (a/2 < x < a) dx 2 a a a a (b) โˆš โˆš d2 ฮจ 4 3 2 3 a a = โˆš โˆ’ 2ฮด x โˆ’ = โˆ’ โˆš ฮด xโˆ’ . dx2 2 2 a a a a (c) ~2 hHi = โˆ’ 2m โˆš Z โˆš 4 3 2 3~2 โˆ— a 2 ยท 3 ยท ~2 a 6~2 โˆ— โˆš ฮจ โˆ’ โˆš dx = = = . X ฮจ ฮด xโˆ’ 2 2 mยทaยทa ma2 a a ma a | {z } โˆš 3/a Problem 2.40 (a) In the standard notation ฮพ โ‰ก p mฯ‰/~ x, ฮฑ โ‰ก (mฯ‰/ฯ€~)1/4 , 2 2 ฮจ(x, 0) = A(1 โˆ’ 2ฮพ)2 eโˆ’ฮพ /2 = A(1 โˆ’ 4ฮพ + 4ฮพ 2 )eโˆ’ฮพ /2 . It can be expressed as a linear combination of the first three stationary states (Eq. 2.60 and 2.63, and Problem 2.10): 2 ฯˆ0 (x) = ฮฑeโˆ’ฮพ /2 , ฯˆ1 (x) = So ฮจ(x, 0) = c0 ฯˆ0 + c1 ฯˆ1 + c2 ฯˆ2 = ฮฑ(c0 + ๏ฃฑ โˆš ๏ฃด ๏ฃฒฮฑโˆš2c2 = 4A ฮฑ 2c1 = โˆ’4A ๏ฃด โˆš ๏ฃณ ฮฑ(c0 โˆ’ c2 / 2) = A โˆš โˆš 2 2 ฮฑฮพeโˆ’ฮพ /2 , 2ฮพc1 + โˆš 2 ฮฑ ฯˆ2 (x) = โˆš (2ฮพ 2 โˆ’ 1)eโˆ’ฮพ /2 . 2 2 2ฮพ 2 c2 โˆ’ โˆš12 c2 )eโˆ’ฮพ /2 with (equating like powers) โˆš โ‡’ c2 = 2 2A/ฮฑ, โˆš โ‡’ c1 = โˆ’2 2A/ฮฑ, โˆš โ‡’ c0 = (A/ฮฑ) + c2 / 2 = (1 + 2)A/ฮฑ = 3A/ฮฑ. 44 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Normalizing: 1 = |c0 |2 + |c1 |2 + |c2 |2 = (8 + 8 + 9)(A/ฮฑ)2 = 25(A/ฮฑ)2 โ‡’ A = ฮฑ/5 = c0 = (b) You could get 3 , 5 c1 = โˆ’ โˆš 2 2 , 5 c2 = 1 mฯ‰ 1/4 . 5 ฯ€~ โˆš 2 2 . 5 1 9 3 8 5 8 ~ฯ‰, probability ; ~ฯ‰, probability ; ~ฯ‰, probability . 2 25 2 25 2 25 9 hHi = 25 1 8 3 8 5 ~ฯ‰ 73 ~ฯ‰ + ~ฯ‰ + ~ฯ‰ = (9 + 24 + 40) = ~ฯ‰. 2 25 2 25 2 50 50 (c) " # โˆš โˆš โˆš โˆš 3 2 2 2 2 โˆ’iฯ‰t/2 2 2 โˆ’3iฯ‰t/2 2 2 โˆ’5iฯ‰t/2 โˆ’iฯ‰t/2 3 โˆ’iฯ‰t โˆ’2iฯ‰t ฮจ(x, t) = ฯˆ0 e โˆ’ ฯˆ1 e + ฯˆ2 e =e ฯˆ0 โˆ’ ฯˆ1 e + ฯˆ2 e . 5 5 5 5 5 5 To change the sign of the middle term we need eโˆ’iฯ‰T = โˆ’1 (then eโˆ’2iฯ‰T = 1); evidently ฯ‰T = ฯ€, or T = ฯ€/ฯ‰. Problem 2.41 Everything in Section 2.3.2 still applies, except that there is an additional boundary condition: ฯˆ(0) = 0. This eliminates all the even solutions (n = 0, 2, 4, . . .), leaving only the odd solutions. So En = n+ 1 2 ~ฯ‰, n = 1, 3, 5, . . . . Problem 2.42 (a) Normalization is the same as before: A = 2a 1/4 . ฯ€ (b) Equation 2.104 says 1 ฯ†(k) = โˆš 2ฯ€ 2a ฯ€ 1/4 Z โˆž 2 eโˆ’ax eilx eโˆ’ikx dx [same as before, only k โ†’ k โˆ’ l] = โˆ’โˆž 1 1 ฮจ(x, t) = โˆš 2ฯ€ (2ฯ€a)1/4 Z โˆž 2 2 eโˆ’(kโˆ’l) /4a ei(kxโˆ’~k t/2m) dk โˆ’โˆž Let u โ‰ก k โˆ’ l, so k = u + l and dk = du: Z โˆž 2 2 2 1 1 ฮจ(x, t) = โˆš eโˆ’u /4a ei[ux+lxโˆ’(~t/2m)(u +2ul+l )] du 2ฯ€ (2ฯ€a)1/4 โˆ’โˆž Z โˆž 2 1 ~t ~lt ~lt 1 1 il(xโˆ’ 2m ) =โˆš e eโˆ’u ( 4a +i 2m )+iu(xโˆ’ m ) du. 2ฯ€ (2ฯ€a)1/4 โˆ’โˆž 2 1 eโˆ’(kโˆ’l) /4a . (2ฯ€a)1/4 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 45 Using the hint in Problem 2.21, the integral becomes โˆš Z โˆž 2 2โˆš 2 1 ~lt 2 ~t 2 a โˆ’a(xโˆ’ ~lt 1 m ) /ฮณ q e(xโˆ’ m ) /4( 4a +i 2m ) eโˆ’y dy = ฯ€, e ฮณ ~t 1 โˆ’โˆž + i 4a 2m so ฮจ(x, t) = 2a ฯ€ 1/4 2 2 ~lt 1 โˆ’a(xโˆ’ ~lt m ) /ฮณ eil(xโˆ’ 2m ) . e ฮณ The gaussian envelope (the first exponential) travels at speed ~l/m; the sinusoidal wave (the second exponential) travels at speed ~l/2m . (c) r 2 |ฮจ(x, t)| = h i 2 1 2a 1 a(xโˆ’ ~lt + (ฮณ โˆ—1 )2 m ) ฮณ2 e . 2 ฯ€ |ฮณ| The term in square brackets simplifies: 1 1 1 1 2i~t 2i~t 2 โˆ— 2 2 + = [(ฮณ ) + ฮณ ] = 1 โˆ’ + 1 + = . ฮณ2 (ฮณ โˆ— )2 |ฮณ|4 |ฮณ|4 m m |ฮณ|4 s p 2ia~t 2ia~t 2 1+ |ฮณ| = 1โˆ’ = 1 + ฮธ2 , m m where (as before) ฮธ โ‰ก 2~at/m. So r r 2 2 2a 2 โˆ’2w2 (xโˆ’ ~lt 1 /(1+ฮธ 2 ) 2a(xโˆ’ ~lt 2 ) m m ) . โˆš |ฮจ(x, t)| = = e we ฯ€ 1 + ฮธ2 ฯ€ p ~l where (as before) w โ‰ก a/(1 + ฮธ2 ). The result is the same as in Problem 2.21, except that x โ†’ x โˆ’ m t , so |ฮจ|2 has the same (flattening gaussian) shape โ€“ only this time the center moves at constant speed v = ~l/m. (d) Z โˆž hxi = x|ฮจ(x, t)|2 dx. Let y โ‰ก x โˆ’ vt, so x = y + vt. โˆ’โˆž Z โˆž = r (y + vt) โˆ’โˆž 2 โˆ’2w2 y2 ~l we dy = vt = t. ฯ€ m (The first integral is trivially zero; the second is 1 by normalization.) hpi = m 2 dhxi = ~l. dt Z โˆž hx i = r 2 (y + vt) โˆ’โˆž 2 โˆ’2w2 y2 1 1 we dy = + 0 + (vt)2 = + 2 ฯ€ 4w 4w2 ~lt m (The first integral is same as in Problem 2.21). Z โˆž 2 โˆ‚ฮจ 2a ~lt 2 2 โˆ—โˆ‚ ฮจ = โˆ’ 2 xโˆ’ + il ฮจ, hp i = โˆ’~ ฮจ dx; โˆ‚x2 โˆ‚x ฮณ m โˆ’โˆž 2 โˆ‚2ฮจ 2a 2a ~lt = โˆ’ ฮจ + โˆ’ x โˆ’ + il ฮจ = Ax2 + Bx + C ฮจ, 2 2 2 โˆ‚x ฮณ ฮณ m 2 . 46 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION where Aโ‰ก 2a Cโ‰กโˆ’ 2 + ฮณ 2 2a ฮณ2 2a ฮณ2 2 Bโ‰กโˆ’ , 2 ~lt m 2 + 2a ฮณ2 2 4ial ฮณ2 2~lt 4ial 4ial โˆ’ 2 =โˆ’ 4 , m ฮณ ฮณ ~lt m 1 โˆ’ l2 = โˆ’ 4 (2aฮณ 2 + l2 ). ฮณ Z โˆž ฮจโˆ— [Ax2 + Bx + C]ฮจ dx = โˆ’~2 [Ahx2 i + Bhxi + C] " # 2 ! ~2 1 ~lt ~lt = โˆ’ 4 4a2 + โˆ’ 4ial โˆ’ (2aฮณ 2 + l2 ) ฮณ 4w2 m m " (" # 2 2 #) 2~at 4ia2 ~t 4ia~t ~at ~2 2 a+a โˆ’ 2a โˆ’ + l โˆ’1 โˆ’ =โˆ’ 4 +4 ฮณ m m m m hp i = โˆ’~ 2 โˆ’โˆž ~2 = โˆ’ 4 (โˆ’aฮณ 4 โˆ’ l2 ฮณ 4 ) = ~2 (a + l2 ). ฮณ ฯƒx2 = hx2 i โˆ’ hxi2 = 1 + 4w2 ~lt m 2 โˆ’ ~lt m 2 = 1 1 โ‡’ ฯƒx = ; 4w2 2w โˆš ฯƒp2 = hp2 i โˆ’ hpi2 = ~2 a + ~2 l2 โˆ’ ~2 l2 = ~2 a, so ฯƒp = ~ a. (e) ฯƒx and ฯƒp are same as before, so the uncertainty principle still holds. Problem 2.43 โˆš Equation 2.25 โ‡’ ฯˆ(x) = A sin kx + B cos kx, 0 โ‰ค x โ‰ค a, with k = 2mE/~2 . Even solutions: ฯˆ(x) = ฯˆ(โˆ’x) = A sin(โˆ’kx) + B cos(โˆ’kx) = โˆ’A sin kx + B cos kx (โˆ’a โ‰ค x โ‰ค 0). ๏ฃฑ ๏ฃฒ ฯˆ continuous at 0 : B = B (no new condition). Boundary ~2 k ฯˆ 0 discontinuous (Eq. 2.128 with sign of ฮฑ switched): Ak + Ak = 2mฮฑ 2 B โ‡’ B = mฮฑ A. ~ conditions ๏ฃณ 2 2 ฯˆ โ†’ 0 at x = a : A sin(ka) + ~mฮฑk A cos(ka) = 0 โ‡’ tan(ka) = โˆ’ ~mฮฑk . ~2 k ฯˆ(x) = A sin kx + cos kx (0 โ‰ค x โ‰ค a); ฯˆ(โˆ’x) = ฯˆ(x). mฮฑ / tan(ka) 2/ 3/ ka -h2k m_ CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 47 From the graph, the allowed energies are slightly above ka = nฯ€ (n = 1, 3, 5, . . .) so 2 En & n 2 ฯ€ 2 ~2 (n = 1, 3, 5, . . .). 2m(2a)2 These energies are somewhat higher than the corresponding energies for the infinite square well (Eq. 2.30, with a โ†’ 2a). As ฮฑ โ†’ 0, the straight line (โˆ’~2 k/mฮฑ) gets steeper and steeper, and the intersections get closer to nฯ€/2; the energies then reduce to those of the ordinary infinite well. As ฮฑ โ†’ โˆž, the straight line approaches 2 2 2 ฯ€ ~ horizontal, and the intersections are at nฯ€ (n = 1, 2, 3, . . .), so En โ†’ n2ma โ€“ these are the allowed energies for 2 the infinite square well of width a. At this point the barrier is impenetrable, and we have two isolated infinite square wells. Odd solutions: ฯˆ(x) = โˆ’ฯˆ(โˆ’x) = โˆ’A sin(โˆ’kx) โˆ’ B cos(โˆ’kx) = A sin(kx) โˆ’ B cos(kx) (โˆ’a โ‰ค x โ‰ค 0). ๏ฃฑ ๏ฃฒ ฯˆ continuous at 0 : B = โˆ’B โ‡’ B = 0. ฯˆ 0 discontinuous: Ak โˆ’ Ak = 2mฮฑ Boundary conditions ~2 (0) (no new condition). ๏ฃณ ฯˆ(a) = 0 โ‡’ A sin(ka) = 0 โ‡’ ka = nฯ€ 2 (n = 2, 4, 6, . . .). ฯˆ(x) = A sin(kx), (โˆ’a < x 0, in contradiction to Equation [F]. Conclusion: ฯˆn (x) must have at least one node between x1 and x2 . Problem 2.46 โˆ’ ~2 d2 ฯˆ d2 ฯˆ = Eฯˆ (where x is measured around the circumference), or = โˆ’k 2 ฯˆ, with k โ‰ก 2 2m dx dx2 โˆš 2mE , so ~ ฯˆ(x) = Aeikx + Beโˆ’ikx . But ฯˆ(x + L) = ฯˆ(x), since x + L is the same point as x, so Aeikx eikL + Beโˆ’ikx eโˆ’ikL = Aeikx + Beโˆ’ikx , and this is true for all x. In particular, for x = 0 : (1) AeikL + Beโˆ’ikL = A + B. And for x = ฯ€ : 2k Aeiฯ€/2 eikL + Beโˆ’iฯ€/2 eโˆ’ikL = Aeiฯ€/2 + Beโˆ’iฯ€/2 , or iAeikL โˆ’ iBeโˆ’ikL = iA โˆ’ iB, so (2) AeikL โˆ’ Beโˆ’ikL = A โˆ’ B. Add (1) and (2): 2AeikL = 2A. Either A = 0, or else eikL = 1, in which case kL = 2nฯ€ (n = 0, ยฑ1, ยฑ2, . . .). But if A = 0, then Beโˆ’ikL = B, leading to the same conclusion. So for every positive n there are two solutions: ฯˆn+ (x) = Aei(2nฯ€x/L) and RL ฯˆnโˆ’ (x) = Beโˆ’i(2nฯ€x/L) (n = 0 is ok too, but in that case there is just one solution). Normalizing: 0 |ฯˆยฑ |2 dx = โˆš 1 โ‡’ A = B = 1/ L. Any other solution (with the same energy) is a linear combination of these. 1 2n2 ฯ€ 2 ~2 ฯˆnยฑ (x) = โˆš eยฑi(2nฯ€x/L) ; En = (n = 0, 1, 2, 3, . . .). mL2 L The theorem fails because here ฯˆ does not go to zero at โˆž; x is restricted to a finite range, and we are unable to determine the constant K (in Problem 2.44). CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 49 Problem 2.47 (a) (i) b = 0 โ‡’ ordinary finite square well. Exponential decay outside; sinusoidal inside (cos for ฯˆ1 , sin for ฯˆ2 ). No nodes for ฯˆ1 , one node for ฯˆ2 . s1 s2 -a -a a a x x (ii) Ground state is even. Exponential decay outside, sinusoidal inside the wells, hyperbolic cosine in barrier. First excited state is odd โ€“ hyperbolic sine in barrier. No nodes for ฯˆ1 , one node for ฯˆ2 . s1 s2 -(b/2+a) -b/2 -(b/2+a) -b/2 b/2 b/2+a x b/2 b/2+a x (iii) For b a, same as (ii), but wave function very small in barrier region. Essentially two isolated finite square wells; ฯˆ1 and ฯˆ2 are degenerate (in energy); they are even and odd linear combinations of the ground states of the two separate wells. s1 s 2 b/2 -b/2 -(b/2+a) b/2+a x -(b/2+a) -b/2 (b) From Eq. 2.160 we know that for b = 0 the energies fall slightly below 2 2 ฯ€ ~ h E1 + V0 โ‰ˆ 2m(2a) 2 = 4 4ฯ€ 2 ~2 E2 + V0 โ‰ˆ 2m(2a) 2 = h ) where h โ‰ก ฯ€ 2 ~2 . 2ma2 For b a, the width of each (isolated) well is a, so E1 + V0 โ‰ˆ E2 + V0 โ‰ˆ ฯ€ 2 ~2 = h (again, slightly below this). 2ma2 b/2 b/2+a x 50 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION E+V0 h E 2 +V0 E 1+V0 h/4 b 2 [Within each well, ddxฯˆ2 = โˆ’ 2m ~2 (V0 + E)ฯˆ, so the more curved the wave function, the higher the energy.] (c) In the (even) ground state the energy is lowest in configuration (i), with b โ†’ 0, so the electron tends to draw the nuclei together, promoting bonding of the atoms. In the (odd) first excited state, by contrast, the electron drives the nuclei apart. Problem 2.48 (a) Let V0 โ‰ก 32~2 /ma2 . This is just like the odd bound states for the finite square well, since they are the ones that go to zero at the origin. Referring to the solution to Problem 2.29, the wave function is ( p D sin lx, l โ‰ก 2m(E + V0 )/~ (0 < x a), and the boundary conditions at x = a yield โˆ’ cot z = with p (z0 /z)2 โˆ’ 1 โˆš p 2m(32~2 /ma2 ) 2mV0 a= a = 8. ~ ~ Referring to the figure (Problem 2.29), and noting that (5/2)ฯ€ = 7.85 < z0 < 3ฯ€ = 9.42, we see that there are three bound states. z0 = (b) Let a x 1 1 2 a = |D| I1 โ‰ก |ฯˆ| dx = |D| sin lx dx = |D| โˆ’ sin lx cos lx โˆ’ sin la cos la ; 2 2l 2 2l 0 0 0 โˆ’2ฮบx โˆž Z โˆž Z โˆž e eโˆ’2ฮบa I2 โ‰ก |ฯˆ|2 dx = |F |2 eโˆ’2ฮบx dx = |F |2 โˆ’ = |F |2 . 2ฮบ 2ฮบ a a a Z a 2 2 Z a 2 2 2 But continuity at x = a โ‡’ F eโˆ’ฮบa = D sin la, so I2 = |D|2 sin2ฮบla . Normalizing: h i a 1 sin2 la 1 ฮบ 1 = I1 + I2 = |D| โˆ’ sin la cos la + = |D|2 ฮบa โˆ’ sin la cos la + sin2 la 2 2l 2ฮบ 2ฮบ l But (referring again to Problem 2.29) ฮบ/l = โˆ’ cot la, so 1 (1 + ฮบa) = |D|2 ฮบa + cot la sin la cos la + sin2 la = |D|2 . 2ฮบ 2ฮบ 2 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 51 So |D|2 = 2ฮบ/(1 + ฮบa), and the probability of finding the particle outside the well is P = I2 = 2ฮบ sin2 la sin2 la = . 1 + ฮบa 2ฮบ 1 + ฮบa We can express this in terms of z โ‰ก la and z0 : ฮบa = sin2 la = sin2 z = p z02 โˆ’ z 2 (page 80), 1 1 = = 1 + (z0 /z)2 โˆ’ 1 1 + cot2 z z z0 2 โ‡’P = z02 (1 + z2 p . z02 โˆ’ z 2 ) So far, this ispcorrect for any bound state. In the present case z0 = 8 and z is the third solution to โˆ’ cot z = (8/z)2 โˆ’ 1, which occurs somewhere in the interval 7.85 < z 0 v, if x โˆ’ vt 0 โˆ’1, if z vt; โˆ’1, if x < vt} = 2ฮธ(x โˆ’ vt) โˆ’ 1. โˆ‚x imv mฮฑ = โˆ’ 2 [2ฮธ(x โˆ’ vt) โˆ’ 1] + ฮจ. ~ ~ โˆ‚2ฮจ = โˆ‚x2 โˆ’ mฮฑ imv [2ฮธ(x โˆ’ vt) โˆ’ 1] + ~2 ~ 2 ฮจโˆ’ 2mฮฑ โˆ‚ ฮธ(x โˆ’ vt) ฮจ. ~2 โˆ‚x โˆ‚ But (from Problem 2.23(b)) โˆ‚x ฮธ(x โˆ’ vt) = ฮด(x โˆ’ vt), so โˆ’ ~2 โˆ‚ 2 ฮจ โˆ’ ฮฑฮด(x โˆ’ vt)ฮจ 2m โˆ‚x2 ! 2 imv mฮฑ ~2 + ฮฑฮด(x โˆ’ vt) โˆ’ ฮฑฮด(x โˆ’ vt) ฮจ = โˆ’ โˆ’ 2 [2ฮธ(x โˆ’ vt) โˆ’ 1] + 2m ~ ~ ~2 m 2 ฮฑ 2 m2 v 2 mv mฮฑ 2 =โˆ’ [2ฮธ(x โˆ’ vt) โˆ’ 1] โˆ’ โˆ’ 2i [2ฮธ(x โˆ’ vt) โˆ’ 1] ฮจ {z } 2m ~4 | ~2 ~ ~2 1 2 mฮฑ 1 mvฮฑ โˆ‚ฮจ = โˆ’ 2 + mv 2 + i [2ฮธ(x โˆ’ vt) โˆ’ 1] ฮจ = i~ (compare [F]). X 2~ 2 ~ โˆ‚t (b) mฮฑ โˆ’2mฮฑ|y|/~2 e (y โ‰ก x โˆ’ vt). ~2 Z 2mฮฑ ~2 mฮฑ โˆž โˆ’2mฮฑy/~2 Check normalization: 2 2 e dy = 2 = 1. ~ ~ 2mฮฑ 0 |ฮจ|2 = Z โˆž X โˆ‚ฮจ , which we calculated above [F]. โˆ‚t โˆ’โˆž Z imฮฑv 1 1 2 = [2ฮธ(y) โˆ’ 1] + E + mv |ฮจ|2 dy = E + mv 2 . ~ 2 2 hHi = ฮจโˆ— Hฮจdx. But Hฮจ = i~ (Note that [2ฮธ(y) โˆ’ 1] is an odd function of y.) Interpretation: The wave packet is dragged along (at speed v) with the delta-function. The total energy is the energy it would have in a stationary delta-function (E), plus kinetic energy due to the motion ( 21 mv 2 ). Problem 2.51 2a ฯ€ 1/4 p 1 โˆ’a(x+ 1 gt2 )2 /ฮณ 2 2 e ; ฮณ = 1 + 2ia~t/m. ฮณ โˆ‚ฮจ โˆ‚ฮจ0 img 1 2 mgt 1 2 = + ฮจ0 โˆ’ x + gt exp โˆ’i x + gt , โˆ‚t โˆ‚t ~ 2 ~ 6 ฮจ0 = 54 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION " 1/4 ( 2 #) 2 2 2 1 1 2 1 2a 1 2 2 dฮณ 1 dฮณ + โˆ’ 2 x + gt gt โˆ’ a x + gt โˆ’ 3 eโˆ’a(x+ 2 gt ) /ฮณ โˆ’ 2 ฮณ dt ฮณ ฮณ 2 2 ฮณ dt # " 2 1 1 2agt 2a 1 dฮณ dฮณ x + gt2 + 3 x + gt2 ฮจ0 . โˆ’ 2 = โˆ’ ฮณ dt ฮณ 2 ฮณ 2 dt โˆ‚ฮจ0 = โˆ‚t But 2a ฯ€ dฮณ 1 2ia~ ia~ = = , so dt 2ฮณ m ฮณm " 2 # 1 2 โˆ‚ฮจ0 โˆ’ia~ 2agt 2ia2 ~ 1 2 x + gt + 4 = โˆ’ 2 x + gt ฮจ0 , and hence โˆ‚t ฮณ2m ฮณ 2 ฮณ m 2 " 2 # 1 2 2agt 1 2 img 1 2 โˆ‚ฮจ ia~ 2ia2 ~ x + gt + 4 = โˆ’ 2 โˆ’ 2 x + gt โˆ’ x + gt ฮจ. โˆ‚t ฮณ m ฮณ 2 ฮณ m 2 ~ 2 [F] Meanwhile โˆ‚ฮจ0 imgt 1 2 imgt โˆ‚ฮจ = โˆ’ ฮจ0 exp โˆ’ x + gt โˆ‚x โˆ‚x ~ ~ 6 โˆ‚ฮจ0 1 2 = โˆ’2a x + gt /ฮณ 2 ฮจ0 , so โˆ‚x 2 โˆ‚ฮจ 1 2 imgt 2 = โˆ’2a x + gt /ฮณ โˆ’ ฮจ, and hence โˆ‚x 2 ~ ( 2 ) โˆ‚2ฮจ 2a 1 2 imgt โˆ‚ฮจ 1 2 imgt 2a 2 2 = โˆ’ 2 ฮจ + โˆ’2a x + gt /ฮณ โˆ’ = โˆ’ 2 + โˆ’2a x + gt /ฮณ โˆ’ ฮจ. โˆ‚x2 ฮณ 2 ~ โˆ‚x ฮณ 2 ~ ~2 โˆ‚ 2 ฮจ +Vฮจ= โˆ’ 2m โˆ‚x2 ( ) 2 ~2 1 2 imgt ~2 a 2 โˆ’ โˆ’2a x + gt /ฮณ โˆ’ + mgx ฮจ. mฮณ 2 2m 2 ~ [F F] So the time-dependent Schroฬˆdinger equation is satisfied if i~ times the square bracket in Equation [F] is equal to the curly bracket in Equation [F F]: a~2 2ia~gt โˆ’ 2 ฮณ m ฮณ2 1 x + gt2 2 2 1 2 1 2 x + gt + mg x + 2 gt 2 2 2 ~2 1 2 imgt ? ~ a 2 = โˆ’ โˆ’2a x + gt /ฮณ โˆ’ + mgx. mฮณ 2 2m 2 ~ 2a2 ~2 โˆ’ 4 ฮณ m I have cancelled the first terms on either side, and also the mgx terms. This leaves 2ia~gt โˆ’ ฮณ2 1 x + gt2 2 2 1 2 mg 2 t2 x + gt + 2 2 " # 2 2 2 ~ 4a 4iamgt m2 g 2 t2 1 2 1 2 ? =โˆ’ x + gt + x + gt โˆ’ . 2m ฮณ 4 2 ~ฮณ 2 2 ~2 2a2 ~2 โˆ’ 4 ฮณ m The terms quadratic in x + 12 gt2 cancel, as do the linear terms, and so do those of zeroth order. This confirms that ฮจ satisfies the Schroฬˆdinger equation. To calculate the expectation value of x, first note that CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION r 2 2 |ฮจ| = ฮจ0 | = r hxi = r = 2a 1 โˆ’(x+ 12 gt2 )2 ฮณ12 + (ฮณ โˆ—1 )2 e . But ฯ€ |ฮณ|2 2a 1 ฯ€ |ฮณ|2 Z โˆž 2a 1 ฯ€ |ฮณ|2 r 2 xe โˆ’2a(x+ 21 gt2 ) /|ฮณ|4 dx = โˆ’โˆž 1 โˆ’ gt2 2 Z โˆž 2 55 1 1 (ฮณ โˆ— ) + ฮณ 2 2 + = = , so (letting y โ‰ก x+ 12 gt2 ) 2 โˆ— 2 4 ฮณ (ฮณ ) |ฮณ| |ฮณ|4 2a 1 ฯ€ |ฮณ|2 Z โˆž โˆ’โˆž 1 2 โˆ’2ay2 /|ฮณ|4 y โˆ’ gt e dy 2 4 eโˆ’2ay /|ฮณ| dy. โˆ’โˆž 1 ฯ€/2a |ฮณ|2 , so hxi = โˆ’ gt2 . This is precisely the classical motion under free fallโ€”as we should 2 have anticipated from Ehrenfestโ€™s theorem. The integral is p Problem 2.52 V(x) (a) x (b) dฯˆ0 = โˆ’Aa sech(ax) tanh(ax); dx d2 ฯˆ0 = โˆ’Aa2 โˆ’ sech(ax) tanh2 (ax) + sech(ax) sech2 (ax) . 2 dx ~2 d 2 ฯˆ 0 ~2 a2 โˆ’ sech2 (ax)ฯˆ0 2 2m dx m ~2 a2 ~2 = Aa2 โˆ’ sech(ax) tanh2 (ax) + sech3 (ax) โˆ’ A sech3 (ax) 2m m ~2 a2 A = โˆ’ sech(ax) tanh2 (ax) + sech3 (ax) โˆ’ 2 sech3 (ax) 2m ~2 a2 =โˆ’ A sech(ax) tanh2 (ax) + sech2 (ax) . 2m sinh2 ฮธ 1 sinh2 ฮธ + 1 But (tanh2 ฮธ + sech2 ฮธ) = + = = 1, so 2 2 cosh ฮธ cosh ฮธ cosh2 ฮธ Hฯˆ0 = โˆ’ =โˆ’ 1 = |A| 2 ~2 a2 ฯˆ0 . QED 2m Z โˆž Evidently E = โˆ’ ~2 a2 . 2m โˆž 2 = |A|2 =โ‡’ A = sech (ax)dx = |A| tanh(ax) a a โˆ’โˆž โˆ’โˆž 2 2 1 r a . 2 56 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION s(x) x (c) dฯˆk A = (ik โˆ’ a tanh ax)ik โˆ’ a2 sech2 ax eikx . dx ik + a A d2 ฯˆk = ik (ik โˆ’ a tanh ax)ik โˆ’ a2 sech2 ax โˆ’ a2 ik sech2 ax + 2a3 sech2 ax tanh ax eikx . dx2 ik + a 2 ~2 a2 A โˆ’~ ik 2 ~2 d2 ฯˆk + V ฯˆ = โˆ’k โˆ’ iak tanh ax โˆ’ a2 sech2 ax + ik sech2 ax โˆ’ k 2 2m dx ik + a 2m 2m ~2 a3 ~2 a2 โˆ’ sech2 ax tanh ax โˆ’ sech2 ax(ik โˆ’ a tanh ax) eikx m m = Aeikx ~2 ik 3 โˆ’ ak 2 tanh ax + ia2 k sech2 ax + ia2 k sech2 ax ik + a 2m โˆ’2a3 sech2 ax tanh ax โˆ’ 2ia2 k sech2 ax + 2a3 sech2 ax tanh ax ~2 k 2 Aeikx ~2 2 k (ik โˆ’ a tanh ax) = ฯˆk = Eฯˆk . QED ik + a 2m 2m ik โˆ’ a ikx As x โ†’ +โˆž, tanh ax โ†’ +1, so ฯˆk (x) โ†’ A e , which represents a transmitted wave. ik + a = R = 0. ik โˆ’ a T = ik + a 2 = โˆ’ik โˆ’ a โˆ’ik + a ik โˆ’ a ik + a = 1. Problem 2.53 (a) (1) From Eq. 2.136: F + G = A + B. (2) From Eq. 2.138: F โˆ’ G = (1 + 2iฮฒ)A โˆ’ (1 โˆ’ 2iฮฒ)B, where ฮฒ = mฮฑ/~2 k. 1 Subtract: 2G = โˆ’2iฮฒA + 2(1 โˆ’ iฮฒ)B โ‡’ B = (iฮฒA + G). Multiply (1) by (1 โˆ’ 2iฮฒ) and add: 1 โˆ’ iฮฒ 1 1 iฮฒ 1 2(1 โˆ’ iฮฒ)F โˆ’ 2iฮฒG = 2A โ‡’ F = (A + iฮฒG). S = . 1 โˆ’ iฮฒ 1 โˆ’ iฮฒ 1 iฮฒ (b) For an even potential, V (โˆ’x) = V (x), scattering from the right is the same as scattering from the left, with x โ†” โˆ’x, A โ†” G, B โ†” F (see Fig. 2.21): F = S11 G + S12 A, B = S21 G + S22 A. So S11 = S22 , S21 = S12 . (Note that the delta-well S matrix in (a) has this property.) In the case of the finite square well, Eqs. 2.170 and 2.171 give S21 = 2 eโˆ’2ika 2 2 +l ) sin 2la cos 2la โˆ’ i (k 2kl ; S11 = 2 โˆ’k ) i (l 2kl sin 2la eโˆ’2ika 2 2 +l ) sin 2la cos 2la โˆ’ i (k 2kl . So CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION S= eโˆ’2ika 2 2 +l ) sin 2la cos 2la โˆ’ i (k 2kl 57 ! 2 โˆ’k2 ) i (l 2kl sin 2la 1 . 2 โˆ’k2 ) 1 i (l 2kl sin 2la Problem 2.54 (a) B = S11 A + S12 G โ‡’ G = 1 S11 1 (B โˆ’ S11 A) = M21 A + M22 B โ‡’ M21 = โˆ’ , M22 = . S12 S12 S12 S22 (S11 S22 โˆ’ S12 S21 ) S22 (B โˆ’ S11 A) = โˆ’ A+ B = M11 A + M12 B. S12 S12 S12 1 det S S22 โˆ’ det(S) S22 โ‡’ M11 = โˆ’ , M12 = . M= . Conversely: โˆ’S11 1 S12 S12 S12 F = S21 A + S22 G = S21 A + G = M21 A + M22 B โ‡’ B = 1 M21 1 (G โˆ’ M21 A) = S11 A + S12 G โ‡’ S11 = โˆ’ ; S12 = . M22 M22 M22 (M11 M22 โˆ’ M12 M21 ) M12 M12 (G โˆ’ M21 A) = A+ G = S21 A + S22 G. M22 M22 M22 1 det M M12 โˆ’M21 1 โ‡’ S21 = ; S22 = . S= . M22 M22 M22 det(M) M12 F = M11 A + M12 B = M11 A + [It happens that the time-reversal invariance of the Schroฬˆdinger equation, plus conservation of probability, โˆ— โˆ— requires M22 = M11 , M21 = M12 , and det(M) = 1, but I wonโ€™t use this here. See Merzbacherโ€™s Quantum Mechanics. Similarly, for even potentials S11 = S22 , S12 = S21 (Problem 2.53).] Rl = |S11 |2 = M21 M22 2 , Tl = |S21 |2 = det(M) M22 2 , Rr = |S22 |2 = M12 M22 2 , Tr = |S12 |2 = 1 . |M22 |2 (b) A C F B D G M2 M1 x F C C A F A A = M2 , = M1 , so = M2 M1 =M , with M = M2 M1 . QED G D D B G B B (c) ฯˆ(x) = Aeikx + Beโˆ’ikx (x a) . Continuity of ฯˆ : Aeika + Beโˆ’ika = F eika + Geโˆ’ika 2mฮฑ 0 Discontinuity of ฯˆ : ik F eika โˆ’ Geโˆ’ika โˆ’ ik Aeika โˆ’ Beโˆ’ika = โˆ’ 2mฮฑ Aeika + Beโˆ’ika . ~2 ฯˆ(a) = โˆ’ ~2 58 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION (1) F e2ika + G = Ae2ika + B. 2ika (2) F e2ika โˆ’ G = Ae2ika โˆ’ B + i 2mฮฑ +B . ~2 k Ae Add (1) and (2): 2F e2ika = 2Ae2ika + i mฮฑ 2mฮฑ mฮฑ 2ika A + i 2 eโˆ’2ika B = M11 A + M12 B. Ae + B โ‡’ F = 1 + i ~2 k ~2 k ~ k So M11 = (1 + iฮฒ); M12 = iฮฒeโˆ’2ika ; ฮฒ โ‰ก mฮฑ . ~2 k Subtract (2) from (1): 2G = 2B โˆ’ 2iฮฒe2ika A โˆ’ 2iฮฒB โ‡’ G = (1 โˆ’ iฮฒ)B โˆ’ iฮฒe2ika A = M21 A + M22 B. 2ika So M21 = โˆ’iฮฒe (1 + iฮฒ) iฮฒeโˆ’2ika . โˆ’iฮฒe2ika (1 โˆ’ iฮฒ) ; M22 = (1 โˆ’ iฮฒ). M= (d) M2 = (1 + iฮฒ) iฮฒeโˆ’2ika (1 + iฮฒ) iฮฒe2ika ; to get M , just switch the sign of a: M = . 1 1 โˆ’iฮฒe2ika (1 โˆ’ iฮฒ) โˆ’iฮฒeโˆ’2ika (1 โˆ’ iฮฒ) M = M2 M1 = [1 + 2iฮฒ + ฮฒ 2 (eโˆ’4ika โˆ’ 1)] 2iฮฒ[cos 2ka โˆ’ ฮฒ sin 2ka] . โˆ’2iฮฒ[cos 2ka โˆ’ ฮฒ sin 2ka] [1 โˆ’ 2iฮฒ + ฮฒ 2 (e4ika โˆ’ 1)] T = Tl = Tr = 1 โ‡’ |M22 |2 T โˆ’1 = [1 + 2iฮฒ + ฮฒ 2 (eโˆ’4ika โˆ’ 1)][1 โˆ’ 2iฮฒ + ฮฒ 2 (e4ika โˆ’ 1)] = 1 โˆ’ 2iฮฒ + ฮฒ 2 e4ika โˆ’ ฮฒ 2 + 2iฮฒ + 4ฮฒ 2 + 2iฮฒ 3 e4ika โˆ’ 2iฮฒ 3 + ฮฒ 2 eโˆ’4ika โˆ’ ฮฒ 2 โˆ’ 2iฮฒ 3 eโˆ’4ika + 2iฮฒ 3 + ฮฒ 4 (1 โˆ’ eโˆ’4ika โˆ’ e4ika + 1) = 1 + 2ฮฒ 2 + ฮฒ 2 (eโˆ’4ika + e4ika ) โˆ’ 2iฮฒ 3 (eโˆ’4ika โˆ’ e4ika ) + 2ฮฒ 4 โˆ’ ฮฒ 4 (eโˆ’4ika + e4ika ) = 1 + 2ฮฒ 2 + 2ฮฒ 2 cos 4ka + 2iฮฒ 3 2i sin 4ka + 2ฮฒ 4 โˆ’ 2ฮฒ 4 cos 4ka = 1 + 2ฮฒ 2 (1 + cos 4ka) โˆ’ 4ฮฒ 3 sin 4ka + 2ฮฒ 4 (1 โˆ’ cos 4ka) = 1 + 4ฮฒ 2 cos2 2ka โˆ’ 8ฮฒ 3 sin 2ka cos 2ka โˆ’ 4ฮฒ 4 sin2 2ka T = 1 1 + 4ฮฒ 2 (cos 2ka โˆ’ ฮฒ sin 2ka)2 Problem 2.55 Iโ€™ll just show the first two graphs, and the last two. Evidently K lies between 0.9999 and 1.0001 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 59 Problem 2.56 The correct values (in Eq. 2.73) are K = 2n + 1 (corresponding to En = (n + 12 )~ฯ‰). Iโ€™ll start by โ€œguessingโ€ 2.9, 4.9, and 6.9, and tweaking the number until Iโ€™ve got 5 reliable significant digits. The results (see below) are 3.0000, 5.0000, 7.0000. (The actual energies are these numbers multiplied by 12 ~ฯ‰.) 60 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 61 Problem 2.57 2 ~ ฯˆ 00 = Eฯˆ, or, with the correct energies (Eq. 2.30) and a = 1, ฯˆ 00 + (nฯ€)2 ฯˆ = The Schroฬˆdinger equation says โˆ’ 2m 0. Iโ€™ll start with a โ€œguessโ€ using 9 in place of ฯ€ 2 (that is, Iโ€™ll use 9 for the ground state, 36 for the first excited state, 81 for the next, and finally 144). Then Iโ€™ll tweak the parameter until the graph crosses the axis right at x = 1. The results (see below) are, to five significant digits: 9.8696, 39.478, 88.826, 157.91. (The actual energies are these numbers multiplied by ~2 /2ma2 .) 62 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.58 (a) The total energy is simply N times the ground state energy of the infinite square well: Ea = N ฯ€ 2 ~2 . 2ma2 (b) Filling the lowest N energy levels of the infinite square well (with width N a) gives Eb = X N n=1 N n2 ฯ€ 2 ~2 ฯ€ 2 ~2 X 2 = n . 2m(N A)2 2mN 2 a2 n=1 The sum is N (N + 1)(2N + 1)/6, so Eb = N 1 1 + + 3 2 6N ฯ€ 2 ~2 . 2ma2 ฯ€ 2 ~2 ฯ€ 2 ~2 = . 2ma2 3ma2 (c) Ea โˆ’ Eb โˆ†E = โ‰ˆ N N N โˆ’ (N/3) N CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 63 (d) The binding energy of hydrogen (13.6 eV) is ~2 /2ma2B , where aB = 0.529 AฬŠ is the Bohr radius, so 2 โˆ†E 2 2 aB 2 2 0.529 ฯ€ = ฯ€ Ebinding = (13.6) eV = 1.6 eV. N 3 a 3 4 Problem 2.59 (a) โˆ’ ~2 d2 ฯˆ + mgx ฯˆ = E ฯˆ 2m dx2 dฯˆ dฯˆ dz dฯˆ = =a ; dx dz dx dz โˆ’ (x โ‰ฅ 0; ฯˆ = 0 for x โ‰ค 0). 2 d2 ฯˆ dz d2 ฯˆ 2d ฯˆ = a . = a dx2 dz 2 dx dz 2 โˆš z z ~2 2 d2 ฯˆ ~2 2 โˆš 00 zโˆš 2m 2m + mg a ฯˆ = Eฯˆ โ‡’ โˆ’ a a y + mg a y = E a y โ‡’ โˆ’y 00 + 2 2 mg y = 2 2 E y. 2m dz 2 a 2m a ~ a a ~ a Let 2m 1 mg = 1, or a โ‰ก ~2 a2 a 2m2 g ~2 1/3 and โ‰ก 2m 2m E= 2 ~2 a2 ~ ~2 2m2 g 2/3 E= Then โˆ’y 00 + zy = y. X DSolve@- y ”@xD + x y@xD รค s y@xD, y@xD, xD Out[1]= 88y@xD ร† AiryAi@- s + xD C@1D + AiryBi@- s + xD C@2D<< In[2]:= Plot@AiryAi@xD, 8x, – 15, 5<D In[1]:= 0.4 0.2 Out[2]= -15 -10 -5 5 -0.2 -0.4 In[3]:= Plot@AiryBi@xD, 8x, – 15, 5<D 5 4 3 Out[3]= 2 1 -15 -10 -5 FindRoot@AiryAi@xD == 0, 8x, – 2<D Out[4]= 8x ร† – 2.33811< In[5]:= FindRoot@AiryAi@xD == 0, 8x, – 12.8<D In[4]:= 5 Out[5]= 8x ร† – 12.8288< In[6]:= NIntegrate@HAiryAi@xDL ^ 2, 8x, – 2.338107410459767`, โ€ข<D Out[6]= 0.491697 In[7]:= NIntegrate@HAiryAi@xDL ^ 2, 8x, – 12.828776752865757`, โ€ข<D Out[7]= 1.14018 2 m~2 g 2 1/3 E. 64 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION FindRoot@AiryAi@xD == 0, 8x, – 2<D Out[12]= 8x ร† – 2.33811< In[13]:= FindRoot@AiryAi@xD == 0, 8x, – 12.8<D In[12]:= Out[13]= 8x ร† – 12.8288< In[14]:= NIntegrate@HAiryAi@xDL ^ 2, 8x, – 2.338107410459767`, โ€ข<D Out[14]= 0.491697 In[15]:= NIntegrate@HAiryAi@xDL ^ 2, 8x, – 12.828776752865757`, โ€ข<D Out[15]= 1.14018 In[16]:= Pone@x_D := H0.4916966179009774`L ^ H- 1 รช 2L * AiryAi@x – 2.338107410459767`D In[17]:= Plot@Pone@xD, 8x, 0, 16<D 0.7 0.6 0.5 Out[17]= 0.4 0.3 0.2 0.1 5 10 15 10 15 In[18]:= Pten@x_D := H1.1401837256117164`L ^ H- 1 รช 2L * AiryAi@x – 12.828776752865757`D In[19]:= Plot@Pten@xD, 8x, 0, 16<D 0.4 0.2 Out[19]= 5 -0.2 -0.4 0.1 5 10 15 Pten@x_D := H1.1401837256117164`L ^ H- 1 รช 2L * AiryAi@x – 12.828776752865757`D Plot@Pten@xD, 8x, 0, 16<D 0.4 2 Problem 2.59 copy.nb CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 0.2 In[20]:= 65 NIntegrate@Pone@xD * Pten@xD, 8x, 0, โ€ข<D 5 : NIntegrate::ncvb NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 81.72352<. NIntegrate 15 obtained -9.19403 ยฅ 10-17 and 1.5861121045064646`*^-16 for the integral and error estimates. รก -0.2 Out[20]= 10 – 9.19403 ยฅ 10-17 -0.4 (b) NIntegrate@Pone@xD * Pten@xD, 8x, 0, โ€ข 0.5~ X. NIntegrate::ncvb : x 1 p x p NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 81.72352 0.5~ X. 10-17 and 1.5861121045064646`*^-16 forxthep integral and error estimates. รก – 9.19403 ยฅ 10-17 (See print-out.) NIntegrate@x HPone@xDL ^ 2, 8x, 0, โ€ข<D 1.55874 NIntegrate@x ^ 2 HPone@xDL ^ 2, 8x, 0, โ€ข<D 2.9156 2.9155980068599967` – H1.558738273638599`L ^ 2 Problem 2.59 copy.nb 0.697089 NIntegrate@x HPten@xDL ^ 2, 8x, 0, โ€ข<D 8.55252 NIntegrate@x ^ 2 HPten@xDL ^ 2, 8x, 0, โ€ข<D 87.7747 87.77467357595424` – H8.552517834822023`L ^ 2 3.8248 NIntegrate@- โ€ฐ Pone@xD HPone '@xDL, 8x, 0, โ€ข<D NIntegrate::ncvb : NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 81.2858<. NIntegrate obtained 0. + 6.07153 ยฅ 10-18 โ€ฐ and 7.766131095614155`*^-17 for the integral and error estimates. รก 0. + 6.07153 ยฅ 10-18 โ€ฐ NIntegrate@- Pone@xD HPone ''@xDL, 8x, 0, โ€ข<D 0.779369 NIntegrate@- Pten@xD HPten ''@xDL, 8x, 0, โ€ข<D 4.27626 0.7793691368188985` 0.882819 4.276258918045443` 2.06791 0.6970889478066314` * 0.8828188584409027` 0.615403 3.8248022512288737` * 2.067911728784728` 7.90935 3 66 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 1 (Equation 1.43). Here T v(x) r 2 1 2 E = mv + mgx โ‡’ v = (E โˆ’ mgx) and 2 m (c) ฯC (x) = 1 2 E gT = h = โ‡’T = 2 mg s 2E , mg 2 so mg 1 mg (2m2 g/~2 a2 ) 1 a 1 ฯC (x) = p = p = q = p โ†’ p . 2 g/~2 a2 ) 2 2 ~2 a2 ~2 a2 2 E(E โˆ’ mgx) ( โˆ’ (2m ( โˆ’ a) 2 ( โˆ’ 1) 2 โˆ’ mgx 4 2m Problem 2.59 copy.nb 2m For ฯˆ10 , = 12.82877 (Out[13] on page 64). The graphs are Plot@H4 * 12.828776752865757` H12.828776752865757` – xLL ^ H- 1 รช 2L, 8x, 0, 12.5<, PlotRange ร† 80, .26<D 0.25 0.20 0.15 0.10 0.05 2 4 6 8 10 12 2 4 6 8 10 12 4 6 8 10 12 Plot@HPten@xDL ^ 2, 8x, 0, 12.5<, PlotRange ร† 80, .26<D 0.25 0.20 0.15 0.10 0.05 Show@%74, %75D 0.25 0.20 0.15 0.10 0.05 2 Comment: Well, they agree, in a kind of averaged sense. CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 67 Problem 2.60 (a) q n kg m2 kg m4 kg m2 p n+p+q 2 n+2q โˆ’(n+2q) E0 = (~) (m) (ฮฑ) = (kg) = (kg) (m ) (s) = . s s2 s2 So n + p + q = 1, n + 2q = 1, n + 2q = 2. The last two are incompatible. Evidently there is, on purely dimensional grounds, no possible formula for E0 . n p q (b) Let ฯˆฮป (x) โ‰ก ฯˆ(y), where y โ‰ก ฮปx. Then 2 2 d2 ฯˆฮป (x) d2 ฯˆ(y) 2 dy ฮฒ ฮฒ 2 d ฯˆ(y) 2 2 = =ฮป = ฮป โˆ’ 2 ฯˆ(y) + ฮบ ฯˆ(y) = โˆ’ฮป2 2 2 ฯˆฮป (x) + ฮป2 ฮบ2 ฯˆฮป (x), y dx2 d dx dy 2 y ฮป x ฮฒ d2 ฯˆฮป (x) + 2 ฯˆฮป (x) = (ฮปฮบ)2 ฯˆฮป (x) = (ฮบ0 )2 ฯˆฮป (x). So ฯˆฮป (x) is a solution to Equation 2.190, with ฮบ0 โ‰ก ฮปฮบ. dx2 x โˆ’2mE โˆ’2mE 0 0 2 2 2 2 = (ฮบ ) = ฮป ฮบ = ฮป โ‡’ E 0 = ฮป2 E. The corresponding energy is given by ~2 ~2 (c) or f@x_D := A b – H1 รช 4L , k xF x BesselKBโ€ฐ FullSimplifyBf ''@xD + b x^2 f@xD – k ^ 2 f@xD รค 0F True h@x_D := x BesselK@4 โ€ฐ, xD Plot@h@xD, 8x, 0, 5<D 0.004 0.003 0.002 0.001 1 2 3 4 5 0.0006 0.0008 0.0010 -0.001 -0.002 Plot@h@xD, 8x, 0, .001 0 && – 2 < ImA – 1 + 4 b E < 2F 68 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION s So A=ฮบ 2 sinh(ฯ€g) . ฯ€g (d) From the first plot on page 67 we see that the highest zero crossing occurs at ฮบx โ‰ˆ 1.7; to find the exact value, use FindRoot (see print-out below). We want this to occur at x = = 1, so ฮบ = 1.69541. h@x_D := x BesselK@4 โ€ฐ, xD FindRoot@h@xD รค 0, 8x, 1.7<D 8x ร† 1.69541 + 0. โ€ฐ= 1, [email protected]` xD, 0D Plot@j@xD, 8x, 0, 6<D 0.004 0.003 0.002 0.001 1 2 3 4 5 6 The parameter ฮฒ โ‰ก 2mฮฑ/~2 is dimensionless, so we may as well eliminate ~ (in favor of ฮฒ, m, and ฮฑ) in 4 q 2 (m)r = (kg)p+q (m)4q+r (s)โˆ’2q = kgsm , so the dimensional analysis. This leaves E0 = mp ฮฑq r = (kg)p kgsm 2 2 p + q = 1, 4q + r = 2, q = 1, โ‡’ p = 0, r = โˆ’2. On dimensional grounds, therefore, the expression for E0 has to be of the form E0 = โˆ’ฮฑ/2 times some function of ฮฒ. As โ†’ 0 (for fixed values of m and ฮฑ), E0 โ†’ โˆ’โˆž, indicating once again that there is no ground state for this system. Problem 2.61 (a) From Equation 2.197: N = 1 : j = 1 : โˆ’ฮปฯˆ2 + (2ฮป)ฯˆ1 โˆ’ ฮปฯˆ0 = Eฯˆ1 ( j = 1 : โˆ’ฮปฯˆ2 + (2ฮป)ฯˆ1 โˆ’ ฮปฯˆ0 = Eฯˆ1 N =2: j = 2 : โˆ’ฮปฯˆ3 + (2ฮป)ฯˆ2 โˆ’ ฮปฯˆ1 = Eฯˆ2 ๏ฃฑ ๏ฃด ๏ฃฒj = 1 : โˆ’ฮปฯˆ2 + (2ฮป)ฯˆ1 โˆ’ ฮปฯˆ0 = Eฯˆ1 N = 3 : j = 2 : โˆ’ฮปฯˆ3 + (2ฮป)ฯˆ2 โˆ’ ฮปฯˆ1 = Eฯˆ2 ๏ฃด ๏ฃณ j = 3 : โˆ’ฮปฯˆ4 + (2ฮป)ฯˆ3 โˆ’ ฮปฯˆ2 = Eฯˆ2 (b) Denote the eigenvalues by Eฬƒn : โ‡’ H = (2ฮป). โ‡’ H= 2ฮป โˆ’ฮป . โˆ’ฮป 2ฮป ๏ฃซ โ‡’ ๏ฃถ 2ฮป โˆ’ฮป 0 H = ๏ฃญโˆ’ฮป 2ฮป โˆ’ฮป๏ฃธ . 0 โˆ’ฮป 2ฮป CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 69 8~2 n 2 ฯ€ 2 ~2 ฯ€ 2 ~2 2~2 = . The exact energies are E = , so E = ; the agreement n 1 2m(a/2)2 2ma2 2ma2 2ma2 2 is not too bad: 8 โ‰ˆ ฯ€ = 9.87. N = 1 : Eฬƒ1 = 2ฮป = N =2: 2ฮป โˆ’ Eฬƒ โˆ’ฮป det โˆ’ฮป 2ฮป โˆ’ Eฬƒ = 0 โ‡’ (2ฮป โˆ’ Eฬƒ)2 โˆ’ ฮป2 = 0 โ‡’ 2ฮป โˆ’ Eฬƒ = ยฑฮป. 9~2 ~2 = . This is better: 9 is closer to ฯ€ 2 than 8 was. 2m(a/3)2 2ma2 3~2 27~2 Eฬƒ2 = 2ฮป + ฮป = 3ฮป = = . The exact answer has 4ฯ€ 2 = 39.5 instead of 27. 2m(a/3)2 2ma2 Eฬƒ1 = 2ฮป โˆ’ ฮป = ฮป = N =3: ๏ฃซ ๏ฃถ 2ฮป โˆ’ Eฬƒ โˆ’ฮป 0 โˆš det ๏ฃญ โˆ’ฮป 2ฮป โˆ’ Eฬƒ โˆ’ฮป ๏ฃธ = 0 โ‡’ (2ฮป โˆ’ Eฬƒ)3 โˆ’ 2ฮป2 (2ฮป โˆ’ Eฬƒ) = 0 โ‡’ 2ฮป โˆ’ Eฬƒ = 0 or 2ฮป โˆ’ Eฬƒ = ยฑ 2 ฮป. 0 โˆ’ฮป 2ฮป โˆ’ Eฬƒ โˆš โˆš โˆš โˆš โˆš 16(2 โˆ’ 2)~2 (2 โˆ’ 2)~2 = . This is better yet: 16(2 โˆ’ 2) = 9.37. Eฬƒ1 = 2ฮป โˆ’ 2 ฮป = ฮป(2 โˆ’ 2) = 2m(a/4)2 2ma2 2~2 32~2 = . Improving: the exact answer is 4ฯ€ 2 = 39.5 instead of 32. Eฬƒ2 = 2ฮป = 2m(a/4)2 2ma2 โˆš โˆš โˆš โˆš โˆš 16(2 + 2)~2 (2 + 2)~2 Eฬƒ3 = 2ฮป + 2 ฮป = ฮป(2 + 2) = = ; 16(2 + 2) = 54.6 โ‰ˆ 9ฯ€ 2 = 88.8. 2m(a/4)2 2ma2 (c) h = Table@If@i == j, 2 l, 0D, 8i, 10<, 8j, 10<D k = Table@If@i รค j + 1, – l, 0D, 8i, 10<, 8j, 10<D m = Table@If@i รค j – 1, – l, 0D, 8i, 10<, 8j, 10<D p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 10<, 8j, 10<D P = MatrixForm@%D 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l -l 0 0 0 0 0 0 0 0 -l 2 l l=1 1 EIG = Eigenvalues@N@pDD 83.91899, 3.68251, 3.30972, 2.83083, 2.28463, 1.71537, 1.16917, 0.690279, 0.317493, 0.0810141< 70 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 2 Ten.nb ~2 = To get the eigenvalues, multiply by ฮป = 2m(a/11)2 In[16]:= Out[16]= 121 * EIG รช Hp ^ 2L 121 ฯ€2 E1 : 848.0462, 45.147, 40.5767, 34.7056, 28.0092, 21.0302, 14.3339, 8.46272, 3.89242, 0.993221< EVE Thus theIn[17]:= lowest five= Eigenvectors@N@pDD eigenvalues, in units of E1 , are 0.9932, 3.8924, 8.4627, 14.3339, 21.0302, as compared to the exactOut[17]= values 1, 4, 9, 16, 25. -Doing the same for N =-100: 880.120131, 0.23053, 0.322253, 0.387868, 0.422061, – 0.422061, – 0.120131<, 8- 0.23053, 0.387868, – 0.422061, h = 0.387868, Table@If@i- 0.322253, == j, 2 l, 0.23053, 0D, 8i, 100<, 8j, 100<D 0.322253, – 0.120131, – 0.120131, 0.322253, – 0.422061, 0.387868, – 0.23053<, 8- 0.322253, 0.422061, – 0.23053, – 0.120131, 0.387868, – 0.387868, 0.120131, In[23]:= – 0.422061, – 0.322253, – 0.120131, k =0.23053, Table@If@i รค j + 1, 0.322253<, – l, 0D, 8i,80.387868, 100<, 8j, 100<D 0.422061, – 0.23053, – 0.23053, 0.422061, – 0.120131, – 0.322253, 0.387868<, In[24]:= m = Table@If@i รค j – 1, – l, 0D, 8i, 100<, 8j, 100<D 80.422061, – 0.120131, – 0.387868, 0.23053, 0.322253, – 0.322253, – 0.23053, 0.387868, 0.120131, – 0.422061<, 80.422061, 0.120131, – 0.387868, In[25]:= p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 100<, 8j, 100<D – 0.23053, 0.322253, 0.322253, – 0.23053, – 0.387868, 0.120131, 0.422061<, 80.387868, – 0.322253, 0.120131, 0.422061, 0.23053, – 0.23053, – 0.422061, In[26]:= l = 1 – 0.120131, 0.322253, 0.387868<, 80.322253, 0.422061, 0.23053, – 0.120131, Out[26]= 1 – 0.387868, – 0.387868, – 0.120131, 0.23053, 0.422061, 0.322253<, 8- 0.23053, – 0.387868, – 0.422061, – 0.322253, – 0.120131, 0.120131, = Eigenvalues@N@pDD In[27]:= EIG0.322253, 0.422061, 0.387868, 0.23053<, 80.120131, 0.23053, 0.322253, 0.387868, 0.422061, 0.422061, 0.387868, 0.322253, 0.23053, 0.120131<< In[28]:= 10 201 * EIG รช Hp ^ 2L In[22]:= ListLinePlot@EVE@@1DD, PlotRange ร† 80.5, 0.5<D 84133.31, 4130.31, 4125.32, 4118.33, 4109.36, 4098.41, 4085.5, 4070.64, 4053.84, 4035.11, 4014.49, 3991.97, 3967.6, 3941.39, 3913.36, 3883.55, 3851.98, 3818.69, 3783.7, 3747.04, 3708.77, 3668.9, 3627.49, 3584.57, 3540.18, 3494.36, 0.4 3447.16, 3398.63, 3348.81, 3297.75, 3245.5, 3192.11, 3137.63, 3082.12, 3025.62, 2968.2, 2909.9, 2850.79, 2790.92, 2730.35, 2669.14, 2607.35, 2545.03, 0.2 2482.25, 2419.07, 2355.55, 2291.76, 2227.74, 2163.57, 2099.3, 2035.01, 1970.74, 1906.57, 1842.55, 1778.75, 1715.24, 1652.06, 1589.28, 1526.96, 1465.17, 1403.96, 1343.39, 1283.52, 1224.41, 1166.11, 1108.69, 1052.19, Out[18]= 996.679, 942.201, 888.81, 836.559, 785.499, 735.679, 687.147, 639.95, 594.133, 2 4 6 8 10 549.742, 506.819, 465.405, 425.541, 387.265, 350.614, 315.624, 282.328, 250.76, 220.948, 192.922, 166.71, 142.336, 119.824, 99.1963, 80.4724, -0.2 63.6704, 48.8067, 35.8956, 24.9496, 15.9794, 8.99347, 3.99871, 0.999919< In[18]:= Out[28]= -0.4 This time the lowest five eigenvalues are 0.9999, 3.9987, 8.9934, 15.9794, 24.9496. (d) Always, ฯˆ0 = ฯˆN +1 = 0; might as wellPlotRange set ฮป = 1 for this 0.5<D part. ร† 80, In[19]:= ListLinePlot@EVE@@10DD, 0.5 N = 1 : 2ฯˆ1 = Eฬƒฯˆ1 , Eฬƒ1 = 2. Up to normalization: 0.4 0.3 Out[19]= 0.2 0.1 2 4 6 8 10 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION N =2: 2 โˆ’1 โˆ’1 2 ฯˆ1 ฯˆ1 = Eฬƒ โ‡’ 2ฯˆ1 โˆ’ ฯˆ2 = Eฬƒฯˆ1 and โˆ’ ฯˆ1 + 2ฯˆ2 = Eฬƒฯˆ2 . ฯˆ2 ฯˆ2 n = 1 : Eฬƒ1 = 1 โ‡’ 2ฯˆ1 โˆ’ ฯˆ2 = ฯˆ1 โ‡’ ฯˆ2 = ฯˆ1 n = 2 : Eฬƒ2 = 3 โ‡’ 2ฯˆ1 โˆ’ ฯˆ2 = 3ฯˆ1 โ‡’ ฯˆ2 = โˆ’ฯˆ1 ๏ฃซ ๏ฃถ๏ฃซ ๏ฃถ ๏ฃซ ๏ฃถ 2 โˆ’1 0 ฯˆ1 ฯˆ1 N = 3 : ๏ฃญโˆ’1 2 โˆ’1๏ฃธ ๏ฃญฯˆ2 ๏ฃธ = Eฬƒ ๏ฃญฯˆ2 ๏ฃธ โ‡’ 2ฯˆ1 โˆ’ ฯˆ2 = Eฬƒฯˆ1 , โˆ’ฯˆ1 + 2ฯˆ2 โˆ’ ฯˆ3 = Eฬƒฯˆ2 , โˆ’ฯˆ2 + 2ฯˆ3 = Eฬƒฯˆ3 . 0 โˆ’1 2 ฯˆ3 ฯˆ3 โˆš โˆš โˆš n = 1 : Eฬƒ1 = 2 โˆ’ 2 โ‡’ 2ฯˆ1 โˆ’ ฯˆ2 = (2 โˆ’ 2)ฯˆ1 โ‡’ ฯˆ2 = 2ฯˆ1 ; โˆš โˆš โˆ’ฯˆ1 + 2ฯˆ2 โˆ’ ฯˆ3 = (2 โˆ’ 2)ฯˆ2 โ‡’ ฯˆ1 + ฯˆ3 = 2ฯˆ2 = 2ฯˆ1 โ‡’ ฯˆ3 = ฯˆ1 n = 2 : Eฬƒ2 = 2 โ‡’ 2ฯˆ1 โˆ’ ฯˆ2 = 2ฯˆ1 โ‡’ ฯˆ2 = 0; โˆ’ฯˆ1 + 2ฯˆ2 โˆ’ ฯˆ3 = 2ฯˆ2 โ‡’ ฯˆ3 = โˆ’ฯˆ1 โˆš โˆš โˆš n = 3 : Eฬƒ3 = 2 + 2 โ‡’ 2ฯˆ1 โˆ’ ฯˆ2 = (2 + 2)ฯˆ1 โ‡’ ฯˆ2 = โˆ’ 2ฯˆ1 ; โˆš โˆš โˆ’ฯˆ1 + 2ฯˆ2 โˆ’ ฯˆ3 = (2 + 2)ฯˆ2 โ‡’ ฯˆ1 + ฯˆ3 = โˆ’ 2ฯˆ2 = 2ฯˆ1 โ‡’ ฯˆ3 = ฯˆ1 71 72 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION For N = 10 we get EVE = Eigenvectors@N@pDD ListLinePlot@EVE@@10DD, PlotRange ร˜ 80, 0.5<D 0.5 0.4 0.3 0.2 0.1 2 4 6 8 10 ListLinePlot@EVE@@9DD, PlotRange ร˜ 8- 0.5, 0.5<D 0.4 0.2 2 4 6 8 10 -0.2 -0.4 ListLinePlot@EVE@@8DD, PlotRange ร˜ 8- 0.5, 0.5 80, 0.2 8- 0.2, 0.2 8- 0.2, 0.2<D 0.2 0.1 20 -0.1 -0.2 40 60 80 100 73 74 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.62 ~2 (N + 1)2 = (N + 1)2 V0 (here N = 100); 2ma2 ฯ€x ฯ€jโˆ†x ฯ€j j Vj = bV0 sin = bV0 sin = bV0 sin a a N +1 Vj ฯ€j b vj = sin = . ฮป (N + 1)2 N +1 ฮป= 2 (here b = 500); 2p62.nb Factoring out ฮป, the diagonal elements of H are In[8]:= ListLinePlot@EVE@@98DD, PlotRange ร† 8.1, 0.2<D b 2 + vj = 2 + sin (N + 1)2 0.20 ฯ€j N +1 500 =2+ sin 10201 ฯ€j 101 . 0.15 In[1]:= Out[8]= In[2]:= In[3]:= h = Table@If@i == j, 2 + H500 รช 10 201L Sin@p j รช 101D, 0D, 8i, 100<, 8j, 100<D 0.10 k = Table@If@i รค j + 1, – 1, 0D, 8i, 100<, 8j, 100<D 0.05 20 40 – 1, 0D, 60 8i, 100<, 80 8j, 100<D 100 m = Table@If@i รค j – 1, p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 100<, 8j, 100<D -0.05 In[4]:= -0.10 In[5]:= In[9]:= EVE = Eigenvectors@N@pDD EIG = Eigenvalues@N@pDD 10 201 * EIG ListLinePlot@EVE@@100DD, PlotRange ร† 80, 0.2<D Out[10]= 841 255., 41 158.1, 41 063.4, 40 968.8, 40 869.4, 40 758.8, 40 632., 40 486.7, 40 322.1, 0.20 40 138.4, 39 935.6, 39 714.1, 39 474., 39 215.7, 38 939.5, 38 645.5, 38 334.2, 38 005.7, 37 660.6, 37 299., 36 921.3, 36 528., 36 119.3, 35 695.8, 35 257.7, 34 805.6, 34 339.9, 33 860.9, 33 369.3, 32 865.4, 32 349.7, 31 822.8, 31 285.1, 0.15 30 737.3, 30 179.7, 29 613., 29 037.7, 28 454.3, 27 863.4, 27 265.6, 26 661.5, 26 051.7, 25 436.7, 24 817.1, 24 193.6, 23 566.7, 22 937., 22 305.2, 21 671.9, 21 037.6, 20 403.1, 19 768.8, 19 135.5, 18 503.7, 17 874.1, 17 247.2, 16 623.6, 16 004., 15 389., 14 779.2, 14 175.1, 13 577.3, 12 986.5, 12 403.1, 11 827.8, Out[6]= 0.10 11 261.1, 10 703.5, 10 155.6, 9617.98, 9091.08, 8575.44, 8071.55, 7579.91, 7100.98, 6635.24, 6183.13, 5745.1, 5321.57, 4912.95, 4519.64, 4142.02, 3780.47, 3435.34, 3106.97, 2795.68, 2501.8, 2225.62, 1967.43, 1727.51, 1506.15, 1303.63, 0.05 1120.24, 956.36, 812.457, 689.191, 590.237, 499.854, 476.163, 304.8, 304.66< In[10]:= In[6]:= So the lowest three energies are 304.66 V0 , 304.8 V0 , and 476.163 V0 . Notice that the ground state is almost 20 40 two separated 60 100 barrier in between them, and the particle can degenerateโ€”essentially we have wells80with a huge be either in the left one or in the right one (or the even and odd linear combinations thereof). In[7]:= ListLinePlot@EVE@@99DD, PlotRange ร† 8- .2, 0.2<D 0.2 0.1 Out[7]= 20 40 60 80 100 In[1]:= In[2]:= h = Table@If@i == j, 2 + H500 รช 10 201L Sin@p j รช 101D, 0D, 8i, 100<, 8j, 100<D k = Table@If@i รค j + 1, – 1, 0D, 8i, 100<, 8j, 100<D In[3]:= m = Table@If@i รค j – 1, – 1, 0D, 8i, 100<, 8j, 100<D In[4]:= p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 100<, 8j, 100<D In[5]:= EVE = Eigenvectors@N@pDD CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION In[6]:= ListLinePlot@EVE@@100DD, PlotRange ร† 80, 0.2<D 0.20 0.15 Out[6]= 0.10 0.05 In[7]:= 20 40 60 80 100 20 40 60 80 100 ListLinePlot@EVE@@99DD, PlotRange ร† 8- .2, 0.2<D 0.2 0.1 Out[7]= -0.1 2 2p62.nb -0.2 In[8]:= ListLinePlot@EVE@@98DD, PlotRange ร† 8- .1, 0.2<D 0.20 0.15 0.10 Out[8]= 0.05 20 40 60 80 100 -0.05 -0.10 Notice that the central barrier pushes the wave function out to the wings. = Eigenvalues@N@pDD In[9]:= EIG In[10]:= Out[10]= 10 201 * EIG 841 255., 41 158.1, 41 063.4, 40 968.8, 40 869.4, 40 758.8, 40 632., 40 486.7, 40 322.1, 40 138.4, 39 935.6, 39 714.1, 39 474., 39 215.7, 38 939.5, 38 645.5, 38 334.2, 38 005.7, 37 660.6, 37 299., 36 921.3, 36 528., 36 119.3, 35 695.8, 35 257.7, 34 805.6, 34 339.9, 33 860.9, 33 369.3, 32 865.4, 32 349.7, 31 822.8, 31 285.1, 30 737.3, 30 179.7, 29 613., 29 037.7, 28 454.3, 27 863.4, 27 265.6, 26 661.5, 26 051.7, 25 436.7, 24 817.1, 24 193.6, 23 566.7, 22 937., 22 305.2, 21 671.9, 21 037.6, 20 403.1, 19 768.8, 19 135.5, 18 503.7, 17 874.1, 17 247.2, 16 623.6, 16 004., 15 389., 14 779.2, 14 175.1, 13 577.3, 12 986.5, 12 403.1, 11 827.8, 11 261.1, 10 703.5, 10 155.6, 9617.98, 9091.08, 8575.44, 8071.55, 7579.91, 7100.98, 6635.24, 6183.13, 5745.1, 5321.57, 4912.95, 4519.64, 4142.02, 3780.47, 75 76 CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION Problem 2.63 X โˆ‚ 1 โˆ‚Z 1 X ln(Z) = โˆ’ =โˆ’ (โˆ’En )eโˆ’ฮฒEn = En P (n). X โˆ‚ฮฒ Z โˆ‚ฮฒ Z n n 1 (b) Geometric series: 1 + x + x2 + x3 + ยท ยท ยท = . Here x = eโˆ’ฮฒ~ฯ‰ : 1โˆ’x (a) โˆ’ Z= โˆž X 1 eโˆ’ฮฒ(n+ 2 )~ฯ‰ = eโˆ’ฮฒ~ฯ‰/2 โˆž X e(โˆ’ฮฒ~ฯ‰)n = eโˆ’ฮฒ~ฯ‰/2 n=0 n=0 1 . X 1 โˆ’ eโˆ’ฮฒ~ฯ‰ (c) ฮฒ~ฯ‰ ln Z = ln eโˆ’ฮฒ~ฯ‰/2) โˆ’ ln 1 โˆ’ eโˆ’ฮฒ~ฯ‰ = โˆ’ โˆ’ ln 1 โˆ’ eโˆ’ฮฒ~ฯ‰ , 2 ~ฯ‰ 1 โˆ’ eโˆ’ฮฒ~ฯ‰ + 2eโˆ’ฮฒ~ฯ‰ ~ฯ‰ 1 + eโˆ’ฮฒ~ฯ‰ โˆ‚ ~ฯ‰ ~ฯ‰eโˆ’ฮฒ~ฯ‰ = โˆ’ โ‡’ Eฬ„ = . X ln Z = โˆ’ โˆ’ โˆ’ฮฒ~ฯ‰ โˆ’ฮฒ~ฯ‰ โˆ‚ฮฒ 2 1โˆ’e 2 1โˆ’e 2 1 โˆ’ eโˆ’ฮฒ~ฯ‰ (d) โˆ‚ Eฬ„ โˆ‚ Eฬ„ dฮฒ 1 โˆ‚ Eฬ„ = =โˆ’ . โˆ‚T โˆ‚ฮฒ dT kB T 2 โˆ‚ฮฒ 1 โˆ’ eโˆ’ฮฒ~ฯ‰ โˆ’~ฯ‰eโˆ’ฮฒ~ฯ‰ โˆ’ 1 + eโˆ’ฮฒ~ฯ‰ ~ฯ‰eโˆ’ฮฒ~ฯ‰ ~ฯ‰ โˆ‚ Eฬ„ ~ฯ‰ โˆ’2~ฯ‰eโˆ’ฮฒ~ฯ‰ (~ฯ‰)2 eฮฒ~ฯ‰ = = = โˆ’ 2 2. โˆ‚ฮฒ 2 2 (1 โˆ’ eโˆ’ฮฒ~ฯ‰ )2 (1 โˆ’ eโˆ’ฮฒ~ฯ‰ ) (eฮฒ~ฯ‰ โˆ’ 1) 1 eฮฒ~ฯ‰ C=3 (~ฯ‰)2 2. 2 kB T (eฮฒ~ฯ‰ โˆ’ 1) Or, using ฮฒ = 1/kB T and ~ฯ‰ = kB ฮธE , C=3 (e) In[12]:= 1 kB T 2 2 (kB ฮธE ) eฮธE /T 2 = 3kB eฮธE /T โˆ’ 1 ฮธE T 2 eฮธE /T eฮธE /T โˆ’ 1 2 . X Plot@3 * Hx ^ H- 2LL * Exp@1 รช xD รช HExp@1 รช xD – 1L ^ 2, 8x, 0, .7<, PlotRange ร† 80, 2.6<D 2.5 2.0 1.5 Out[12]= 1.0 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Incidentally, comparing the graphs suggests that x = 0.7 corresponds to T = 1000 K, so ฮธE = 1000/0.7 K = 1400 K. Then ~ฯ‰ = (1400kB )K = (1400)(8.6 ร— 10โˆ’5 ) eV = 0.12 eV. CHAPTER 2. THE TIME-INDEPENDENT SCHROฬˆDINGER EQUATION 77 Problem 2.64 (a) Plugging into the differential equation we have โˆž X an n (n โˆ’ 1) xnโˆ’2 โˆ’ n=2 โˆž X an n (n โˆ’ 1) xn โˆ’ 2 n=2 โˆž X an n xn + ` (` + 1) n=1 โˆž X an xn = 0 . n=0 Reindexing the sums so that all the powers of x match we have โˆž X ap+2 (p + 2) (p + 1) xp โˆ’ p=0 โˆž X ap p (p โˆ’ 1) xp โˆ’ 2 p=2 โˆž X ap p xp + ` (` + 1) p=1 โˆž X a p xp = 0 . p=0 We can then combine the sums (extending the second and third sums to begin at p = 0) to get โˆž X {(p + 2) (p + 1) ap+2 โˆ’ [p (p โˆ’ 1) + 2 p โˆ’ ` (` + 1)] ap } xp = 0 . p=0 From this we read off the recursion relation p (p + 1) โˆ’ ` (` + 1) ap . (p + 2) (p + 1) ap+2 = (b) For large values of p, ap+2 โ‰ˆ p ap . p+2 with the (approximate) solution ap โ‰ˆ C . p and this gives the behavior f (x) โ‰ˆ C X1 p xp โ‰ˆ log 1 1โˆ’x which diverges at x = 1. (There will be finite corrections coming from the low values of p, but these cannot fix the divergence.) (c) For ` = 0 we need the even function (a1 = 0) and the recursion relation gives a2 = 0 so that P0 (x) = a0 . For ` = 1 we need the odd function (a0 = 0) and the recursion relation gives a3 = 0 so that P1 (x) = a1 x . For ` = 2 we need the even function again and the recursion relation gives a2 = โˆ’3 a0 and a4 = 0 so that P2 (x) = a0 1 โˆ’ 3 x2 . For ` = 3 we need the odd function again and the recursion relation gives a3 = โˆ’5/3 a1 and a5 = 0 so that 5 3 P3 (x) = a1 x โˆ’ x . 3

Document Preview (62 of 451 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in