Preview Extract
16
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Chapter 2
The Time-Independent Schroฬdinger
Equation
Problem 2.1
(a)
ฮจ(x, t) = ฯ(x)eโi(E0 +iฮ)t/~ = ฯ(x)eฮt/~ eโiE0 t/~ =โ |ฮจ|2 = |ฯ|2 e2ฮt/~ .
Z โ
Z โ
2
2ฮt/~
|ฮจ(x, t)| dx = e
|ฯ|2 dx.
โโ
โโ
The second term is independent of t, so if the product is to be 1 for all time, the first term (e2ฮt/~ ) must
also be constant, and hence ฮ = 0. QED
2
2
~ d ฯ
(b) If ฯ satisfies Eq. 2.5, โ 2m
dx2 + V ฯ = Eฯ, then (taking the complex conjugate and noting that V and
2
2
โ
~ d ฯ
โ
โ
โ
E are real): โ 2m
dx2 + V ฯ = Eฯ , so ฯ also satisfies Eq. 2.5. Now, if ฯ1 and ฯ2 satisfy Eq. 2.5, so
too does any linear combination of them (ฯ3 โก c1 ฯ1 + c2 ฯ2 ):
~2
d2 ฯ1
d2 ฯ2
~2 d2 ฯ3
+ V ฯ3 = โ
c1
+ c2
โ
+ V (c1 ฯ1 + c2 ฯ2 )
2m dx2
2m
dx2
dx2
~2 d2 ฯ1
~2 d2 ฯ2
= c1 โ
+ V ฯ1 + c2 โ
+ V ฯ2
2m dx2
2m dx2
= c1 (Eฯ1 ) + c2 (Eฯ2 ) = E(c1 ฯ1 + c2 ฯ2 ) = Eฯ3 .
Thus, (ฯ + ฯ โ ) and i(ฯ โ ฯ โ ) โ both of which are real โ satisfy Eq. 2.5. Conclusion: From any complex
solution, we can always construct two real solutions (of course, if ฯ is already real, the second one will be
zero). In particular, since ฯ = 21 [(ฯ + ฯ โ ) โ i(i(ฯ โ ฯ โ ))], ฯ can be expressed as a linear combination of
two real solutions. QED
(c) If ฯ(x) satisfies Eq. 2.5, then, changing variables x โ โx and noting that d2 /d(โx)2 = d2 /dx2 ,
โ
~2 d2 ฯ(โx)
+ V (โx)ฯ(โx) = Eฯ(โx);
2m dx2
so if V (โx) = V (x) then ฯ(โx) also satisfies Eq. 2.5. It follows that ฯ+ (x) โก ฯ(x) + ฯ(โx) (which is
even: ฯ+ (โx) = ฯ+ (x)) and ฯโ (x) โก ฯ(x) โ ฯ(โx) (which is odd: ฯโ (โx) = โฯโ (x)) both satisfy Eq.
2.5. But ฯ(x) = 21 (ฯ+ (x) + ฯโ (x)), so any solution can be expressed as a linear combination of even and
odd solutions. QED
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
17
Problem 2.2
2
00
Given ddxฯ2 = 2m
~2 [V (x) โ E]ฯ, if E < Vmin , then ฯ and ฯ always have the same sign: If ฯ is positive(negative),
00
then ฯ is also positive(negative). This means that ฯ always curves away from the axis (see Figure). However,
it has got to go to zero as x โ โโ (else it would not be normalizable). At some point itโs got to depart from
zero (if it doesnโt, itโs going to be identically zero everywhere), in (say) the positive direction. At this point its
slope is positive, and increasing, so ฯ gets bigger and bigger as x increases. It canโt ever โturn overโ and head
back toward the axis, because that would require a negative second derivativeโit always has to bend away from
the axis. By the same token, if it starts out heading negative, it just runs more and more negative. In neither
case is there any way for it to come back to zero, as it must (at x โ โ) in order to be normalizable. QED
s
x
Problem 2.3
2
2
2
Equation 2.23 says ddxฯ2 = โ 2mE
= A + Bx;
~2 ฯ; Eq. 2.26 says ฯ(0) = ฯ(a) = 0. If E = 0, d ฯ/dx = 0, so ฯ(x) โ
2
2
ฯ(0) = A = 0 โ ฯ = Bx; ฯ(a) = Ba = 0 โ B = 0, so ฯ = 0. If E ~/2. X
ฯp2 = hp2 i โ hpi2 =
nฯ~
a
;
nฯ~
ฯp =
.
a
~
โด ฯx ฯp =
2
Problem 2.5
(a)
|ฮจ|2 = ฮจโ ฮจ = |A|2 (ฯ1โ + ฯ2โ )(ฯ1 + ฯ2 ) = |A|2 [ฯ1โ ฯ1 + ฯ1โ ฯ2 + ฯ2โ ฯ1 + ฯ2โ ฯ2 ].
Z
Z
โ
1 = |ฮจ|2 dx = |A|2 [|ฯ1 |2 + ฯ1โ ฯ2 + ฯ2โ ฯ1 + |ฯ2 |2 ]dx = 2|A|2 โ A = 1/ 2.
(b)
i
1 h
ฮจ(x, t) = โ ฯ1 eโiE1 t/~ + ฯ2 eโiE2 t/~
2
1
=โ
2
(but
En
= n2 ฯ)
~
r
2
2ฯ
1 โiฯt
2ฯ
ฯ
ฯ
โiฯt
โi4ฯt
โ3iฯt
x e
+ sin
x e
= โ e
sin
x + sin
x e
.
sin
a
a
a
a
a
a
ฯ
ฯ
1
2ฯ
2ฯ
sin2
x + sin
x sin
x eโ3iฯt + e3iฯt + sin2
x
a
a
a
a
a
ฯ
ฯ
1
2ฯ
2ฯ
=
sin2
x + sin2
x + 2 sin
x sin
x cos(3ฯt) .
a
a
a
a
a
|ฮจ(x, t)|2 =
(c)
Z
x|ฮจ(x, t)|2 dx
Z
ฯ
ฯ
1 a
2ฯ
2ฯ
=
x sin2
x + sin2
x + 2 sin
x sin
x cos(3ฯt) dx
a 0
a
a
a
a
hxi =
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Z a
ฯ
x sin
x dx =
a
0
”
2
19
# a
Z a
x sin 2ฯ
cos 2ฯ
a2
x2
2ฯ
2
a x
a x
=
โ
โ
=
x
sin
x
dx.
4
4ฯ/a
8(ฯ/a)2
4
a
0
0
Z a
Z
ฯ
ฯ
2ฯ
1 a
3ฯ
x sin
x cos
x sin
x dx =
x โ cos
x dx
a
a
2 0
a
a
0
a
ฯ ax
ฯ
3ฯ
1 a2
a2
ax
3ฯ
cos
=
x +
sin
x โ 2 cos
x โ
sin
x
2 ฯ2
a
ฯ
a
9ฯ
a
3ฯ
a
0
2
1
1 a
a2
a2
8a2
1
โ
.
=
cos(ฯ)
โ
cos(0)
โ
cos(3ฯ)
โ
cos(0)
=
โ
=
โ
2 ฯ2
9ฯ 2
ฯ2
9
9ฯ 2
1 a2
a2
16a2
a
32
cos(3ฯt)
=
cos(3ฯt)
.
+
โ
1
โ
a 4
4
9ฯ 2
2
9ฯ 2
โด hxi =
32 a
= 0.3603(a/2);
9ฯ 2 2
Amplitude:
angular frequency: 3ฯ =
3ฯ 2 ~
.
2ma2
(d)
hpi = m
a 32
8~
dhxi
=m
โ 2 (โ3ฯ) sin(3ฯt) =
sin(3ฯt).
dt
2
9ฯ
3a
(e) You could get either E1 = ฯ 2 ~2 /2ma2 or E2 = 2ฯ 2 ~2 /ma2 , with equal probability P1 = P2 = 1/2.
So hHi =
1
5ฯ 2 ~2
(E1 + E2 ) =
;
2
4ma2
itโs the average of E1 and E2 .
Problem 2.6
From Problem 2.5, we see that
ฮจ(x, t) =
โ1 eโiฯt
a
|ฮจ(x, t)|2 =
1
a
ฯ
ax
sin
2
sin
ฯ
ax
+ sin
+ sin2
2ฯ
a x
2ฯ
a x
โ3iฯt iฯ
e
e ;
+ 2 sin
ฯ
ax
sin
2ฯ
a x
cos(3ฯt โ ฯ) ;
32
and hence hxi = a2 1 โ 9ฯ
This amounts physically to starting the clock at a different time
2 cos(3ฯt โ ฯ) .
(i.e., shifting the t = 0 point).
If ฯ =
ฯ
a
, so ฮจ(x, 0) = A[ฯ1 (x) + iฯ2 (x)], then cos(3ฯt โ ฯ) = sin(3ฯt); hxi starts at .
2
2
a
32
If ฯ = ฯ, so ฮจ(x, 0) = A[ฯ1 (x) โ ฯ2 (x)], then cos(3ฯt โ ฯ) = โ cos(3ฯt); hxi starts at
1+ 2 .
2
9ฯ
20
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.7
^(x,0)
Aa/2
a
a/2
(a)
Z a/2
1 = A2
x2 dx + A2
Z a
(a โ x)2 dx = A2
a/2
0
x
a/2
x3
3 0
a
โ
(a โ x)3
3
a/2
โ
A a3
2 3
a3
A2 a3
=
+
=
โ A= โ .
3
8
8
12
a3
2
(b)
โ Z a/2
Z a
22 3
nฯ
nฯ
โ
x dx +
(a โ x) sin
x dx
x sin
aa a 0
a
a
a/2
โ 2
a/2
2 6
nฯ
xa
nฯ
a
= 2
sin
x โ
cos
x
a
nฯ
a
nฯ
a
0
2
a
a
a
a
nฯ
ax
nฯ
nฯ
โ
+a โ
cos
x
x โ
x
sin
cos
nฯ
a
nฯ
a
nฯ
a
a/2
a/2
โ 2
2
2
2
2 6
a
nฯ
nฯ
a
a
nฯ โ a cos
= 2
sin
โ
cos
nฯ +
cos
a
nฯ
2
2nฯ
2
nฯ
nฯ 2
2
a
nฯ
a2
a2 nฯ
+
cos
sin
+ cos nฯ โ
nฯ
2
nฯ
2nฯ
2
โ
โ
(
2
0,
n even,
2 6 a
nฯ
4 6
nฯ
โ
=
2
sin
=
sin
=
(nโ1)/2 4 6
2
2
2
(โ1)
,
(nฯ)
2
(nฯ)
2
a
(nฯ)2 n odd.
r
cn =
โ r
4 6 2 X
1
nฯ
n2 ฯ 2 ~2
So ฮจ(x, t) = 2
(โ1)(nโ1)/2 2 sin
x eโiEn t/~ , where En =
.
ฯ
a n=1,3,5,…
n
a
2ma2
(c)
P1 = |c1 |2 =
16 ยท 6
= 0.9855.
ฯ4
(d)
hHi =
X
|cn |2 En =
96 ฯ 2 ~2
ฯ 4 2ma2
1
1
1
1
+ 2 + 2 + 2 + ยทยทยท
1
3
5
7
|
{z
}
ฯ 2 /8
=
48~2 ฯ 2
6~2
=
.
2
2
ฯ ma 8
ma2
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
21
Problem 2.8
A
2
r
Z a/2
2
dx = A (a/2) = 1 โ A =
0
2
.
a
From Eq. 2.37,
r Z a/2
ฯ
ฯ
i
ฯ i a/2
2
2
2h a
2h
sin
โ cos
โ cos 0 = .
c1 = A
x dx =
x
= โ cos
a 0
a
a
ฯ
a
ฯ
2
ฯ
0
P1 = |c1 |2 = (2/ฯ)2 = 0.4053.
Problem 2.9
Hฬฮจ(x, 0) = โ
Z
~2 โ 2
~2 โ
~2
[Ax(a
โ
x)]
=
โA
(a
โ
2x)
=
A
.
2m โx2
2m โx
m
2
a
x
x3
a โ
ฮจ(x, 0) Hฬฮจ(x, 0) dx = A
x(a โ x) dx = A
m 0
m
2
3
0
3
2
3
2 3
2
a
~
a
30 ~ a
5~
= A2
โ
= 5
=
m 2
3
a m 6
ma2
โ
2~
2 Z a
2~
2
(same as Example 2.3).
Problem 2.10
(a) Using Eqs. 2.48 and 2.60,
mฯ 1/4 โ mฯ x2
1
d
+ mฯx
e 2~
โ~
dx
ฯ~
2~mฯ
i mฯ 2
mฯ 1/4 h mฯ
mฯ 1/4
mฯ 2
1
1
=โ
โ~ โ
2x + mฯx eโ 2~ x = โ
2mฯxeโ 2~ x .
2~
2~mฯ ฯ~
2~mฯ ฯ~
mฯ 1/4
mฯ 2
d
1
2mฯ โ~
+ mฯx xeโ 2~ x
(a+ )2 ฯ0 =
2~mฯ ฯ~
dx
i mฯ 2 mฯ 1/4 2mฯ
mฯ 2
1 mฯ 1/4 h
mฯ
2
โ 2~ x
2
โ~ 1 โ x
2x + mฯx e
x โ 1 eโ 2~ x .
=
=
~ ฯ~
2~
ฯ~
~
a+ ฯ0 = โ
Therefore, from Eq. 2.68,
1 mฯ 1/4
1
ฯ2 = โ (a+ )2 ฯ0 = โ
2
2 ฯ~
mฯ 2
2mฯ 2
x โ 1 eโ 2~ x .
~
22
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
(b)
s0
s1
(c) Since ฯ0 and ฯ2Rare even, whereas ฯ1 is odd,
we need to check is ฯ2โ ฯ0 dx:
Z
R
s2
ฯ0โ ฯ1 dx and
R
ฯ2โ ฯ1 dx vanish automatically. The only one
Z
mฯ 2
mฯ โ 2mฯ 2
x โ 1 eโ ~ x dx
~
2 ฯ~ โโ
r
Z โ
Z
mฯ 2
mฯ
2mฯ โ 2 โ mฯ x2
eโ ~ x dx โ
x e ~ dx
=โ
2ฯ~
~
โโ
โโ
r
r
r
2mฯ ~
mฯ
ฯ~
ฯ~
โ
= 0. X
=โ
2ฯ~
mฯ
~ 2mฯ mฯ
1
ฯ2โ ฯ0 dx = โ
r
Problem 2.11
R
(a) Note that ฯ0 is even, and ฯ1 is odd. In either case |ฯ|2 is even, so hxi = x|ฯ|2 dx = 0. Therefore
hpi = mdhxi/dt = 0. (These results hold for any stationary state of the harmonic oscillator.)
โ
2
2
From Eqs. 2.60 and 2.63, ฯ0 = ฮฑeโฮพ /2 , ฯ1 = 2ฮฑฮพeโฮพ /2 . So
n = 0:
hx2 i = ฮฑ2
Z โ
2
x2 eโฮพ dx = ฮฑ2
โโ
2
~
mฯ
3/2 Z โ
2
1
ฮพ 2 eโฮพ dฮพ = โ
ฯ
โโ
Z โ
~
mฯ
โ
ฯ
~
=
.
2
2mฯ
d2 โฮพ2 /2
e
e
dฮพ
hp i = ฯ0
ฯ0 dx = โ~ ฮฑ
dฮพ 2
โโ
โ
โฮพ2
m~ฯ
m~ฯ
ฯ โ
m~ฯ
2
โ
โ
=โ
ฮพ โ 1 e dฮพ = โ
โ ฯ =
.
2
2
ฯ โโ
ฯ
2
Z
~ d
i dx
Z โ
2 2
r
mฯ
~
โฮพ 2 /2
n = 1:
hx2 i = 2ฮฑ2
Z โ
2
x2 ฮพ 2 eโฮพ dx = 2ฮฑ2
โโ
Z โ
~
mฯ
3/2 Z โ
โโ
2
ฮพ 4 eโฮพ dฮพ = โ
โ
2~ 3 ฯ
3~
=
.
2mฯ
ฯmฯ 4
d2
โฮพ 2 /2
hp i = โ~ 2ฮฑ
ฮพe
ฮพe
dฮพ
dฮพ 2
โโ
โ
Z
2mฯ~ 3 โ
ฯ
3m~ฯ
2mฯ~ โ 4
2 โฮพ 2
โ
โ
=โ
ฮพ โ 3ฮพ e dฮพ = โ
ฯโ3
=
.
4
2
2
ฯ โโ
ฯ
2
2
2
r
mฯ
~
โฮพ 2 /2
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
(b) n = 0:
r
ฯx =
p
hx2 i โ hxi2 =
r
ฯx ฯp =
~
2mฯ
r
3~
;
2mฯ
r
p
~
; ฯp = hp2 i โ hpi2 =
2mฯ
mฯ~
~
= .
2
2
r
m~ฯ
;
2
(Right at the uncertainty limit.)X
n = 1:
ฯx =
r
ฯp =
3m~ฯ
;
2
ฯx ฯp = 3
~
~
> .X
2
2
(c)
๏ฃฑ1
๏ฃผ
๏ฃฒ 4 ~ฯ (n = 0) ๏ฃฝ
1 2
;
hp i =
hT i =
๏ฃณ3
๏ฃพ
2m
~ฯ
(n
=
1)
4
hT i + hV i = hHi =
๏ฃฑ1
๏ฃผ
๏ฃฒ 4 ~ฯ (n = 0) ๏ฃฝ
1
.
hV i = mฯ 2 hx2 i =
๏ฃณ3
๏ฃพ
2
~ฯ
(n
=
1)
4
๏ฃฑ1
๏ฃผ
๏ฃฒ 2 ~ฯ (n = 0) = E0 ๏ฃฝ
๏ฃณ3
2 ~ฯ (n = 1) = E1
, as expected.
๏ฃพ
Problem 2.12
From Eq. 2.70,
r
~
~mฯ
(a+ + aโ ), p = i
(a+ โ aโ ),
2mฯ
2
r
Z
~
hxi =
ฯnโ (a+ + aโ )ฯn dx.
2mฯ
r
x=
so
But (Eq. 2.67)
a+ ฯn =
So
โ
n + 1ฯn+1 ,
aโ ฯn =
โ
nฯnโ1 .
r
Z
Z
โ
โ
~
โ
โ
hxi =
n + 1 ฯn ฯn+1 dx + n ฯn ฯnโ1 dx = 0 (by orthogonality).
2mฯ
dhxi
~
~
hpi = m
= 0. x2 =
(a+ + aโ )2 =
a2+ + a+ aโ + aโ a+ + a2โ .
dt
2mฯ
2mฯ
Z
~
ฯnโ a2+ + a+ aโ + aโ a+ + a2โ ฯn . But
hx2 i =
2mฯ
p
โ
๏ฃฑ 2
โ
โ
a
ฯ
=
a
n
+
1ฯ
=
n
+
1
n
+
2ฯ
=
(n + 1)(n + 2)ฯn+2 .
๏ฃด
n+1
n+2
n
+
+
๏ฃด
โ โ
๏ฃฒ a a ฯ = a โnฯ
=
n
nฯ
=
nฯ
+ โ n
+
nโ1
n
n.
p
โ
โ
a
a
ฯ
=
a
n
+
1ฯ
=
n
+
1)
n
+
1ฯ
=
(n
+
๏ฃด
โ
+
n
โ
n+1
n
๏ฃด
p 1)ฯn .
โ โ
โ
๏ฃณ 2
aโ ฯn
= aโ nฯnโ1
= n n โ 1ฯnโ2
= (n โ 1)nฯnโ2 .
So
Z
Z
~
~
1 ~
2
2
hx i =
0 + n |ฯn | dx + (n + 1) |ฯn | dx + 0 =
(2n + 1) = n +
.
2mฯ
2mฯ
2 mฯ
2
23
24
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
~mฯ
~mฯ 2
(a+ โ aโ )2 = โ
a+ โ a+ aโ โ aโ a+ + a2โ โ
2
2
~mฯ
~mฯ
1
hp2 i = โ
[0 โ n โ (n + 1) + 0] =
(2n + 1) = n +
m~ฯ.
2
2
2
p2 = โ
1
1
hT i = hp /2mi =
n+
~ฯ .
2
2
r
r
p
1
~
2
2
ฯx = hx i โ hxi = n +
;
2 mฯ
2
r
p
ฯp = hp2 i โ hpi2 =
n+
1โ
m~ฯ;
2
ฯx ฯp =
n+
1
~
~โฅ .X
2
2
Problem 2.13
(a)
Z
1=
|ฮจ(x, 0)|2 dx = |A|2
Z
9|ฯ0 |2 + 12ฯ0โ ฯ1 + 12ฯ1โ ฯ0 + 16|ฯ1 |2 dx
= |A|2 (9 + 0 + 0 + 16) = 25|A|2 โ A = 1/5.
(b)
ฮจ(x, t) =
i
i
1h
1h
3ฯ0 (x)eโiE0 t/~ + 4ฯ1 (x)eโiE1 t/~ =
3ฯ0 (x)eโiฯt/2 + 4ฯ1 (x)eโ3iฯt/2 .
5
5
(Here ฯ0 and ฯ1 are given by Eqs. 2.60 and 2.63; E0 and E1 by Eq. 2.62.)
i
1 h 2
9ฯ0 + 12ฯ0 ฯ1 eiฯt/2 eโ3iฯt/2 + 12ฯ0 ฯ1 eโiฯt/2 e3iฯt/2 + 16ฯ12
25
1 2
=
9ฯ0 + 16ฯ12 + 24ฯ0 ฯ1 cos(ฯt) .
25
|ฮจ(x, t)|2 =
(With ฯ2 in place of ฯ1 the frequency would be (E2 โ E0 )/~ = [(5/2)~ฯ โ (1/2)~ฯ]/~ = 2ฯ.)
(c)
hxi =
But
R
xฯ02 dx =
R
Z
Z
Z
1
9 xฯ02 dx + 16 xฯ12 dx + 24 cos(ฯt) xฯ0 ฯ1 dx .
25
xฯ12 dx = 0 (see Problem 2.11 or 2.12), while
r
Z
xฯ0 ฯ1 dx =
r
=
mฯ
ฯ~
r
2mฯ
~
Z
xe
2 mฯ โ
2 ฯ2
ฯ
~
2
โ mฯ
2~ x
1
2
r
xe
~
mฯ
2
โ mฯ
2~ x
!3
r
dx =
r
=
2 mฯ
ฯ
~
Z โ
mฯ
โโ
~
.
2mฯ
So
24
hxi =
25
r
~
cos(ฯt);
2mฯ
d
24
hpi = m hxi = โ
dt
25
r
2
x2 eโ ~ x dx
mฯ~
sin(ฯt).
2
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
25
Ehrenfestโs theorem says dhpi/dt = โhโV /โxi. Here
r
dhpi
24 mฯ~
1
โV
=โ
ฯ cos(ฯt), V = mฯ 2 x2 โ
= mฯ 2 x,
dt
25
2
2
โx
so
r
r
~
โV
24 ~mฯ
2
2 24
โ
= โmฯ hxi = โmฯ
cos(ฯt) = โ
ฯ cos(ฯt),
โx
25 2mฯ
25
2
so Ehrenfestโs theorem holds.
(d) You could get E0 = 12 ~ฯ, with probability |c0 |2 = 9/25, or E1 = 32 ~ฯ, with probability |c1 |2 = 16/25.
Problem 2.14
r
r
r
Z
Z โ
2
mฯ โ โฮพ2
mฯ
~
e dx = 2
eโฮพ dฮพ.
ฯ0 =
e
, so P = 2
ฯ~
ฯ~ x0
ฯ~ mฯ ฮพ0
q
~
Classically allowed region extends out to: 12 mฯ 2 x20 = E0 = 12 ~ฯ, or x0 = mฯ
, so ฮพ0 = 1.
mฯ 1/4
2
P =โ
ฯ
Z โ
โฮพ 2 /2
โ
2
eโฮพ dฮพ = 2(1 โ F ( 2)) (in notation of CRC Table) = 0.157.
1
Problem 2.15
โ2(5โ1)
โ2(5โ3)
4
n = 5: j = 1 โ a3 = (1+1)(1+2)
a1 = โ 43 a1 ; j = 3 โ a5 = (3+1)(3+2)
a3 = โ 51 a3 = 15
a1 ; j = 5 โ a7 = 0. So
a1
4
4
3
5
3
5
H5 (ฮพ) = a1 ฮพ โ 3 a1 ฮพ + 15 a1 ฮพ = 15 (15ฮพ โ 20ฮพ + 4ฮพ ). By convention the coefficient of ฮพ 5 is 25 , so a1 = 15 ยท 8,
and H5 (ฮพ) = 120ฮพ โ 160ฮพ 3 + 32ฮพ 5 (which agrees with Table 2.1).
โ2(6โ0)
โ2(6โ2)
n = 6: j = 0 โ a2 = (0+1)(0+2)
a0 = โ6a0 ; j = 2 โ a4 = (2+1)(2+2)
a2 = โ 23 a2 = 4a0 ; j = 4 โ a6 =
โ2(6โ4)
2
8
8 6
2
4
6
(4+1)(4+2) a4 = โ 15 a4 = โ 15 a0 ; j = 6 โ a8 = 0. So H6 (ฮพ) = a0 โ 6a0 ฮพ + 4a0 ฮพ โ 15 ฮพ a0 . The coefficient of ฮพ
8
a0 โ a0 = โ15 ยท 8 = โ120. H6 (ฮพ) = โ120 + 720ฮพ 2 โ 480ฮพ 4 + 64ฮพ 6 .
is 26 , so 26 = โ 15
Problem 2.16
(a)
2
2
2
2
d
d
d โฮพ2
โฮพ 2
(e ) = โ2ฮพe ;
eโฮพ =
(โ2ฮพeโฮพ ) = (โ2 + 4ฮพ 2 )eโฮพ ;
dฮพ
dฮพ
dฮพ
3
2
2
d
d
โฮพ 2
2 โฮพ 2
2
e
=
(โ2 + 4ฮพ )e
= 8ฮพ + (โ2 + 4ฮพ )(โ2ฮพ) eโฮพ = (12ฮพ โ 8ฮพ 3 )eโฮพ ;
dฮพ
dฮพ
4
2
2
d
d
โฮพ 2
3 โฮพ 2
2
3
e
=
(12ฮพ โ 8ฮพ )e
= 12 โ 24ฮพ + (12ฮพ โ 8ฮพ )(โ2ฮพ) eโฮพ = (12 โ 48ฮพ 2 + 16ฮพ 4 )eโฮพ .
dฮพ
dฮพ
3
4
2
d
d
ฮพ2
โฮพ 2
3
ฮพ2
H3 (ฮพ) = โe
e
= โ12ฮพ + 8ฮพ ; H4 (ฮพ) = e
eโฮพ = 12 โ 48ฮพ 2 + 16ฮพ 4 .
dฮพ
dฮพ
26
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
(b)
H5 = 2ฮพH4 โ 8H3 = 2ฮพ(12 โ 48ฮพ 2 + 16ฮพ 4 ) โ 8(โ12ฮพ + 8ฮพ 3 ) = 120ฮพ โ 160ฮพ 3 + 32ฮพ 5 .
H6 = 2ฮพH5 โ 10H4 = 2ฮพ(120ฮพ โ 160ฮพ 3 + 32ฮพ 5 ) โ 10(12 โ 48ฮพ 2 + 16ฮพ 4 ) = โ120 + 720ฮพ 2 โ 480ฮพ 4 + 64ฮพ 6 .
(c)
dH5
= 120 โ 480ฮพ 2 + 160ฮพ 4 = 10(12 โ 48ฮพ 2 + 16ฮพ 4 ) = (2)(5)H4 . X
dฮพ
dH6
= 1440ฮพ โ 1920ฮพ 3 + 384ฮพ 5 = 12(120ฮพ โ 160ฮพ 3 + 32ฮพ 5 ) = (2)(6)H5 . X
dฮพ
(d)
2
d โz2 +2zฮพ
(e
) = (โ2z + 2ฮพ)eโz +2zฮพ ; setting z = 0, H1 (ฮพ) = 2ฮพ.
dz
d
dz
2
d
dz
3
(e
(e
โz 2 +2zฮพ
โz 2 +2zฮพ
d
โz 2 +2zฮพ
)=
(โ2z + 2ฮพ)e
dz
2 โz 2 +2zฮพ
= โ 2 + (โ2z + 2ฮพ) e
; setting z = 0, H2 (ฮพ) = โ2 + 4ฮพ 2 .
d
2 โz 2 +2zฮพ
)=
โ 2 + (โ2z + 2ฮพ) e
dz
2
2
= 2(โ2z + 2ฮพ)(โ2) + โ 2 + (โ2z + 2ฮพ) (โ2z + 2ฮพ) eโz +2zฮพ ;
setting z = 0, H3 (ฮพ) = โ8ฮพ + (โ2 + 4ฮพ 2 )(2ฮพ) = โ12ฮพ + 8ฮพ 3 .
Problem 2.17
Aeikx + Beโikx = A(cos kx + i sin kx) + B(cos kx โ i sin kx) = (A + B) cos kx + i(A โ B) sin kx
= C cos kx + D sin kx, with C = A + B; D = i(A โ B).
ikx
ikx
e + eโikx
e โ eโikx
1
1
C cos kx + D sin kx = C
+D
= (C โ iD)eikx + (C + iD)eโikx
2
2i
2
2
= Aeikx + Beโikx , with A =
1
1
(C โ iD); B = (C + iD).
2
2
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.18
~k2
Equation 2.95 says ฮจ = Aei(kxโ 2m t) , so
i
h
~k2
~k2
~k2
~k2
i~
โฮจโ
i~
โ โฮจ
J =
ฮจ
โฮจ
=
|A|2 ei(kxโ 2m t) (โik)eโi(kxโ 2m t) โ eโi(kxโ 2m t) (ik)ei(kxโ 2m t)
2m
โx
โx
2m
=
i~
~k 2
|A|2 (โ2ik) =
|A| .
2m
m
It flows in the positive (x) direction (as you would expect).
Problem 2.19
(a)
โ
X
bn inฯx/a
einฯx/a โ eโinฯx/a +
e
+ eโinฯx/a
2i
2
n=1
n=1
โ
โ
X
X
an
bn
an
bn
inฯx/a
= b0 +
+
e
+
โ
+
eโinฯx/a .
2i
2
2i
2
n=1
n=1
f (x) = b0 +
โ
X
an
Let
c0 โก b0 ; cn = 12 (โian + bn ) , for n = 1, 2, 3, . . . ; cn โก 12 (iaโn + bโn ) , for n = โ1, โ2, โ3, . . . .
Then f (x) =
โ
X
cn einฯx/a .
QED
n=โโ
(b)
Z a
f (x)e
โimฯx/a
dx =
โa
Z a
โ
X
n=โโ
Z a
ei(nโm)ฯx/a dx. But for n 6= m,
cn
โa
a
ei(nโm)ฯx/a dx =
โa
ei(nโm)ฯx/a
ei(nโm)ฯ โ eโi(nโm)ฯ
(โ1)nโm โ (โ1)nโm
=
=
= 0,
i(n โ m)ฯ/a โa
i(n โ m)ฯ/a
i(n โ m)ฯ/a
whereas for n = m,
Z a
Z a
ei(nโm)ฯx/a dx =
dx = 2a.
โa
โa
So all terms except n = m are zero, and
Z a
Z a
1
f (x)eโinฯx/a dx.
f (x)eโimฯx/a = 2acm , so cn =
2a โa
โa
(c)
f (x) =
โ
X
n=โโ
r
ฯ1
1 X
F (k)eikx = โ
F (k)eikx โk,
2a
2ฯ
QED
27
28
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
where โk โก
ฯ
is the increment in k from n to (n + 1).
a
r
F (k) =
2 1
a
ฯ 2a
Z a
f (x)e
โikx
โa
1
dx = โ
2ฯ
Z a
f (x)eโikx dx.
โa
(d) As a โ โ, k becomes a continuous variable,
1
f (x) = โ
2ฯ
Z โ
1
F (k)eikx dk; F (k) = โ
2ฯ
โโ
Z โ
f (x)eโikx dx.
โโ
Problem 2.20
(a)
Z โ
2
2
Z โ
|ฮจ(x, 0)| dx = 2|A|
1=
โโ
โ
eโ2ax dx = 2|A|2
0
โ
|A|2
eโ2ax
=
โ A = a.
โ2a 0
a
(b)
A
ฯ(k) = โ
2ฯ
Z โ
A
eโa|x| eโikx dx = โ
2ฯ
โโ
Z โ
eโa|x| (cos kx โ i sin kx)dx.
โโ
The cosine integrand is even, and the sine is odd, so the latter vanishes and
Z โ
Z โ
A
A
โax
ฯ(k) = 2 โ
e
cos kx dx = โ
eโax eikx + eโikx dx
2ฯ 0
2ฯ 0
(ikโa)x
โ
Z โ
e
A
A
eโ(ik+a)x
= โ
e(ikโa)x + eโ(ik+a)x dx = โ
+
โ(ik + a) 0
2ฯ 0
2ฯ ik โ a
r
A
โ1
1
A โik โ a + ik โ a
a
2a
= โ
+
=โ
=
.
โk 2 โ a2
2ฯ k 2 + a2
2ฯ ik โ a ik + a
2ฯ
(c)
r
Z
Z
2
~k2
1
a3 โ
1
a3/2 โ
1
i(kxโ ~k
2m t) dk =
ฮจ(x, t) = โ 2
e
ei(kxโ 2m t) dk.
2
2
2
2
2ฯ โโ k + a
ฯ โโ k + a
2ฯ
p
(d) For large a, ฮจ(x, 0) is a sharp narrow spike whereas ฯ(k) โผ
= 2/ฯa is broad and flat; position
p is welldefined but momentum is ill-defined. For small a, ฮจ(x, 0) is a broad and flat whereas ฯ(k) โผ
= ( 2a3 /ฯ)/k 2
is a sharp narrow spike; position is ill-defined but momentum is well-defined.
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
29
Problem 2.21
(a)
1 = |A|
2
Z โ
e
โ2ax2
2
r
dx = |A|
โโ
ฯ
;
2a
A=
2a
ฯ
1/4
.
(b)
Z โ
e
โ(ax2 +bx)
Z โ
dx =
e
โโ
โy 2 +(b2 /4a)
โโ
1
ฯ(k) = โ A
2ฯ
Z โ
โax2 โikx
e
e
โโ
1
1
ฮจ(x, t) = โ
2ฯ (2ฯa)1/4
1 2
1
โ dy = โ eb /4a
a
a
1
dx = โ
2ฯ
Z โ
2a
ฯ
2
1/4 r
Z โ
e
โy 2
r
dy =
โโ
ฯ b2 /4a
e
.
a
2
ฯ โk2 /4a
1
e
=
eโk /4a .
1/4
a
(2ฯa)
2
t/2m)
eโk /4a ei(kxโ~k
|
{z
} dk
โโ
1
2
eโ[( 4a +i~t/2m)k โixk]
=โ
1/4 โax2 /(1+2i~at/m)
โ
2
1
ฯ
e
1
2a
q
p
eโx /4( 4a +i~t/2m) =
.
1/4
ฯ
1
2ฯ(2ฯa)
1 + 2i~at/m
+ i~t/2m
4a
(c)
r
2
Let ฮธ โก 2~at/m. Then |ฮจ| =
2
2
2a eโax /(1+iฮธ) eโax /(1โiฮธ)
p
. The exponent is
ฯ
(1 + iฮธ)(1 โ iฮธ)
r
2
2
ax2
ax2
โ2ax2
2a eโ2ax /(1+ฮธ )
2 (1 โ iฮธ + 1 + iฮธ)
2
โ
โ
โ
= โax
=
; |ฮจ| =
.
(1 + iฮธ) (1 โ iฮธ)
(1 + iฮธ)(1 โ iฮธ)
1 + ฮธ2
ฯ
1 + ฮธ2
r
r
a
2 โ2w2 x2
2
Or, with w โก
, |ฮจ| =
we
. As t increases, the graph of |ฮจ|2 flattens out and broadens.
2
1+ฮธ
ฯ
|^| 2
|^|2
x
t=0
t>0
x
(d)
Z โ
hxi =
x|ฮจ|2 dx = 0 (odd integrand); hpi = m
โโ
r
2
hx i =
2
w
ฯ
Z โ
2 โ2w2 x2
x e
โโ
r
dx =
2
1
w
ฯ 4w2
r
dhxi
= 0.
dt
ฯ
1
=
.
2w2
4w2
2
hp i = โ~
2
Z โ
โโ
ฮจโ
โ2ฮจ
dx.
โx2
30
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
2
Write ฮจ = Beโbx , where B โก
2a
ฯ
1/4
โ
1
a
and b โก
.
1 + iฮธ
1 + iฮธ
2
โ2ฮจ
โ
โbx2
=
B
โ2bxe
= โ2bB(1 โ 2bx2 )eโbx .
2
โx
โx
โ
2
โ2ฮจ
a
a
2a
= โ2b|B|2 (1 โ 2bx2 )eโ(b+b )x ; b + bโ =
= 2w2 .
+
=
2
dโx
1 + iฮธ 1 โ iฮธ
1 + ฮธ2
r
r
r
2
2 2
2a
2
2
1
2
โโ ฮจ
โ
=
|B| =
= โ2b
w. So ฮจ
w(1 โ 2bx2 )eโ2w x .
2
2
ฯ 1+ฮธ
ฯ
โx
ฯ
ฮจโ
r
2
hp i = 2b~
2
r
= 2b~
2
2
w
ฯ
Z โ
2
w
ฯ
r
2
โโ
b
But 1 โ
=1โ
2w2
hp2 i = 2b~2
2
(1 โ 2bx2 )eโ2w x dx
ฯ
1
โ 2b 2
2
2w
4w
a
1 + iฮธ
a
= ~2 a.
2b
r
ฯ
2w2
1 + ฮธ2
2a
ฯx =
1
;
2w
2
= 2b~
=1โ
b
1โ
2w2
โ
ฯp = ~ a.
~p
~p
~
1 โ
1 + ฮธ2 =
1 + (2~at/m)2 โฅ . X
~ a=
2w
2
2
2
Closest at t = 0, at which time it is right at the uncertainty limit.
Problem 2.22
(a)
(โ2)3 โ 3(โ2)2 + 2(โ2) โ 1 = โ8 โ 12 โ 4 โ 1 = โ25.
(b)
cos(3ฯ) + 2 = โ1 + 2 = 1.
(c)
0 (x = 2 is outside the domain of integration).
.
1 + iฮธ
a
(1 โ iฮธ)
=
= , so
2
2
2b
(e)
ฯx ฯp =
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
31
Problem 2.23
If c > 0, y : โโ โ โ.
If c 0); or
f (x)ฮด(cx)dx =
R
๏ฃณ 1 R โโ
1 โ
1
โโ
c โ f (y/c)ฮด(y)dy = โ c โโ f (y/c)ฮด(y)dy = โ c f (0) (c . X
2
2
2mฮฑ ~
32
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.25
hฯbound |ฯscattering i
Z 0
โ
Z โ
2
2
mฮฑ
emฮฑx/~ Aeikx + Beโikx dx +
=
eโmฮฑx/~ F eikx + Geโikx dx
~
โโ
0
Z 0
โ
Z 0
Z โ
Z โ
mฮฑ
mฮฑ
mฮฑ
โ mฮฑ
โ mฮฑ
(
(
(
(
2 +ik )x
2 โik )x
2 +ik )x
2 โik )x
~
~
~
~
=
A
e
dx + B
e
dx + F
e
dx + G
e
dx
~
โโ
โโ
0
0
#
”
mฮฑ
mฮฑ
mฮฑ
mฮฑ
โ
0
0
โ
โ
e( ~2 โik)x
e(โ ~2 +ik)x
e(โ ~2 โik)x
mฮฑ
e( ~2 +ik)x
+ B mฮฑ
+F
+G
=
A mฮฑ
mฮฑ
mฮฑ
~
โ ~2 + ik 0
โ ~2 โ ik 0
~2 + ik โโ
~2 โ ik โโ
โ
โ
mฮฑ
A
B
F
G
mฮฑ A + G
B+F
=
+
โ
โ
=
+
mฮฑ
mฮฑ
mฮฑ
mฮฑ
~
โ mฮฑ
โ mฮฑ
~
~2 + ik
~2 โ ik
~2 + ik
~2 โ ik
~2 + ik
~2 โ ik
”
#
”
#
โ
โ
mฮฑ
mฮฑ
mฮฑ
mฮฑ
mฮฑ ~2 (A + G + B + F ) + ik(B + F โ A โ G)
~2 โ ik (A + G) + ~2 + ik (B + F )
=
=
mฮฑ 2
mฮฑ 2
~
~
+ k2
+ k2
2
2
~
~
But Equation 2.136 says (A + G + B + F ) = 2(A + B), and Equation 2.137 says ik(B + F โ A โ G) =
โ(2mฮฑ/~2 )(A + B), so
”
#
โ
2mฮฑ
mฮฑ mฮฑ
~2 2(A + B) โ ~2 (A + B)
hฯbound |ฯscattering =i
= 0. X
mฮฑ 2
~
+ k2
2
~
Problem 2.26
Z โ
1
1
Put f (x) = ฮด(x) into Eq. 2.103: F (k) = โ
ฮด(x)eโikx dx = โ .
2ฯ โโ
2ฯ
Z โ
Z โ
1
1
1
โ eikx dk =
โด f (x) = ฮด(x) = โ
eikx dk. QED
2ฯ
2ฯ โโ 2ฯ
โโ
Problem 2.27
V(x)
(a)
-a
a
x
(b) From Problem 2.1(c) the solutions are even or odd. Look first for even solutions:
๏ฃฑ โฮบx
(x > a),
๏ฃฒ Ae
ฯ(x) = B(eฮบx + eโฮบx ) (โa < x < a),
๏ฃณ ฮบx
Ae
(x a),
๏ฃฒ Ae
ฯ(x) = B(eฮบx โ eโฮบx ) (โa < x < a),
๏ฃณ
โAeฮบx
(x < โa).
Continuity at a : Aeโฮบa = B(eฮบa โ eโฮบa ), or A = B(e2ฮบa โ 1).
2mฮฑ
Discontinuity in ฯ : โฮบAe
โ B(ฮบe + ฮบe
) = โ 2 Aeโฮบa โ B(e2ฮบa + 1) = A
~
2mฮฑ
2mฮฑ
2mฮฑ
2ฮบa
2ฮบa
2ฮบa
e
+ 1 = (e
โ 1)
โ1 =e
โ 1 โ 2 + 1,
2
2
~ ฮบ
~ ฮบ
~ ฮบ
0
1=
โฮบa
โฮบa
ฮบa
2mฮฑ
โ1 ,
~2 ฮบ
2mฮฑ โ2ฮบa ~2 ฮบ
~2 ฮบ
2mฮฑ
โ2ฮบa
โ2ฮบa
โ
1
โ
e
;
=
1
โ
e
,
e
=
1
โ
, or eโz = 1 โ cz.
~2 ฮบ
~2 ฮบ
mฮฑ
mฮฑ
1
1/c
1/c
z
34
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
This time there may or may not be a solution. Both graphs have their y-intercepts at 1, but if c is too
large (ฮฑ too small), there may be no intersection (solid line), whereas if c is smaller (dashed line) there
will be. (Note that z = 0 โ ฮบ = 0 is not a solution, since ฯ is then non-normalizable.) The slope of eโz
(at z = 0) is โ1; the slope of (1 โ cz) is โc. So there is an odd solution โ c ~2 /2ma.
Conclusion:
One bound state if ฮฑ โค ~2 /2ma; two if ฮฑ > ~2 /2ma.
s
s
-a
-a
a
a
x
Even
ฮฑ=
1
~2
โc= .
ma
2
x
Odd
Even: eโz = 12 z โ 1 โ z = 2.21772,
Odd: eโz = 1 โ 12 z โ z = 1.59362.
E = โ0.615(~2 /ma2 ); E = โ0.317(~2 /ma2 ).
ฮฑ=
~2
โ c = 2. Only even: eโz = 2z โ 1 โ z = 0.738835;
4ma
E = โ0.0682(~2 /ma2 ).
(c) (i) There is one bound state (even); c is huge, so z is small, so eโz โ 1 = cz โ 1, which means z = 2/c,
or 2ฮบa = 2(2amฮฑ/~2 ) โ ฮบ = (2mฮฑ/~2 ).
E=โ
~2 ฮบ2
2mฮฑ2
= โ 2 .
2m
~
This makes sense: the two delta-functions coincide, so there is really just one delta-function, with
โstrengthโ 2ฮฑ. Putting this into Equation 2.130 we recover the answer in the box.
(ii) There are two bound states, one even and one odd; c is small, so z is huge, and eโz โ 0. For the
even case, 0 = cz โ 1 โ z = 1/c โ ฮบ = (mฮฑ/~2 ). For the odd case, 0 = 1 โ cz, which leads to the
mฮฑ2
. Any linear combination of the two
2~2
will be an eigenstate (with the same energy); the sum (properly normalized) would represent a particle
in the delta-function out at large positive x, and the difference would be a particle in the delta-function
at large negative x (the otherโdistantโdelta-function becomes irrelevant), so it makes sense that we get
two states, each with the energy of a particle in a single delta-function well.
same result: the two states are degenerate, each with energy โ
Problem 2.28
๏ฃฑ ikx
๏ฃผ
๏ฃฒ Ae + Beโikx (x < โa)
๏ฃฝ
ฯ = Ceikx + Deโikx (โa < x a)
(1) Continuity at โa : Aeโika + Beika = Ceโika + Deika โ ฮฒA + B = ฮฒC + D, where ฮฒ โก eโ2ika .
(2) Continuity at +a : Ceika + Deโika = F eika โ F = C + ฮฒD.
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
35
โika
(3) Discontinuity in ฯ 0 at โa : ik(Ceโika โ Deika ) โ ik(Aeโika โ Beika ) = โ 2mฮฑ
+ Beika )
~2 (Ae
โ ฮฒC โ D = ฮฒ(ฮณ + 1)A + B(ฮณ โ 1), where ฮณ โก i2mฮฑ/~2 k.
ika
(4) Discontinuity in ฯ 0 at +a : ikF eika โ ik(Ceika โ Deโika ) = โ 2mฮฑ
)
~2 (F e
โ C โ ฮฒD = (1 โ ฮณ)F.
To solve for C and D,
add (2) and (4) :
2C = F + (1 โ ฮณ)F โ 2C = (2 โ ฮณ)F.
subtract (2) and (4) : 2ฮฒD = F โ (1 โ ฮณ)F โ 2D = (ฮณ/ฮฒ)F.
add (1) and (3) :
2ฮฒC = ฮฒA + B + ฮฒ(ฮณ + 1)A + B(ฮณ โ 1) โ 2C = (ฮณ + 2)A + (ฮณ/ฮฒ)B.
subtract (1) and (3) : 2D = ฮฒA + B โ ฮฒ(ฮณ + 1)A โ B(ฮณ โ 1) โ 2D = โฮณฮฒA + (2 โ ฮณ)B.
Equate the two expressions for 2C : (2 โ ฮณ)F = (ฮณ + 2)A + (ฮณ/ฮฒ)B.
Equate the two expressions for 2D : (ฮณ/ฮฒ)F = โฮณฮฒA + (2 โ ฮณ)B.
Solve these for F and B, in terms of A. Multiply the first by ฮฒ(2 โ ฮณ), the second by ฮณ, and subtract:
2
ฮฒ(2 โ ฮณ)2 F = ฮฒ(4 โ ฮณ 2 )A + ฮณ(2 โ ฮณ)B ;
(ฮณ /ฮฒ)F = โฮฒฮณ 2 A + ฮณ(2 โ ฮณ)B .
4
F
=
.
โ ฮฒ(2 โ ฮณ)2 โ ฮณ 2 /ฮฒ F = ฮฒ 4 โ ฮณ 2 + ฮณ 2 A = 4ฮฒA โ
A
(2 โ ฮณ)2 โ ฮณ 2 /ฮฒ 2
Let g โก i/ฮณ =
~2 k
i
F
4g 2
; ฯ โก 4ka, so ฮณ = , ฮฒ 2 = eโiฯ . Then:
=
.
2mฮฑ
g
A
(2g โ i)2 + eiฯ
Denominator: 4g 2 โ 4ig โ 1 + cos ฯ + i sin ฯ = (4g 2 โ 1 + cos ฯ) + i(sin ฯ โ 4g).
|Denominator|2 = (4g 2 โ 1 + cos ฯ)2 + (sin ฯ โ 4g)2
= 16g 4 + 1 + cos2 ฯ โ 8g 2 โ 2 cos ฯ + 8g 2 cos ฯ + sin2 ฯ โ 8g sin ฯ + 16g 2
= 16g 4 + 8g 2 + 2 + (8g 2 โ 2) cos ฯ โ 8g sin ฯ.
T =
F
A
2
=
8g 4
(8g 4 + 4g 2 + 1) + (4g 2 โ 1) cos ฯ โ 4g sin ฯ
, where g โก
~2 k
and ฯ โก 4ka.
2mฮฑ
Problem 2.29
๏ฃฑ โฮบx
๏ฃผ
(x > a)
๏ฃฒ Fe
๏ฃฝ
In place of Eq. 2.154, we have: ฯ(x) = D sin(lx) (0 < x < a) .
๏ฃณ
๏ฃพ
โฯ(โx) (x < 0)
Continuity of ฯ : F eโฮบa = D sin(la); continuity of ฯ 0 : โF ฮบeโฮบa = Dl cos(la).
q
p
Divide: โ ฮบ = l cot(la), or โ ฮบa = la cot(la) โ z02 โ z 2 = โz cot z, or โ cot z = (z0 /z)2 โ 1.
Wide, deep well: Intersections are at ฯ, 2ฯ, 3ฯ, etc. Same as Eq. 2.160, but now for n even. This fills in the
rest of the states for the infinite square well.
Shallow, narrow well: If z0 < ฯ/2, there is no odd bound state. The corresponding condition on V0 is
V0 <
ฯ 2 ~2
โ no odd bound state.
8ma2
36
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
/
z0
2/
z
Problem 2.30
Z โ
2
2
Z a
2
2
Z โ
โ2ฮบx
cos lx dx + |F |
e
|ฯ| dx = 2 |D|
dx
0
a
a
โ
1
x
1
a sin 2la
eโ2ฮบa
= 2 |D|2
+ |F |2 โ eโ2ฮบx
+ sin 2lx
= 2 |D|2
+
+ |F |2
.
2 4l
2ฮบ
2
4l
2ฮบ
0
a
1=2
0
sin(2la) cos2 (la)
+
.
But F = Deฮบa cos la (Eq. 2.152), so 1 = |D|2 a +
2l
ฮบ
Furthermore ฮบ = l tan(la) (Eq. 2.157), so
cos la
2 sin la cos la cos3 la
1 = |D|2 a +
+
= |D|2 a +
(sin2 la + cos2 la)
2l
l sin la
l sin la
1
1
eฮบa cos la
1
= |D|2 a +
D= p
F =p
= |D|2 a +
.
,
.
l tan la
ฮบ
a + 1/ฮบ
a + 1/ฮบ
Problem 2.31
โ
Equation 2.158 โ z0 = ~a 2mV0 . We want ฮฑ = area of potential = 2aV0 held constant as a โ 0. Therefore
p
โ
ฮฑ
ฮฑ
V0 = 2a
; z0 = ~a 2m 2a
= ~1 mฮฑa โ 0. So z0 is small, and the intersection in Fig. 2.17 occurs at very small
z. Solve Eq. 2.159 for very small z, by expanding tan z:
q
p
2
(z
/z)
โ
1
=
(1/z)
z02 โ z 2 .
tan z โผ
z
=
=
0
Now (from Eqs. 2.149, 2.151
and 2.158) z02 โz 2 = ฮบ2 a2 , so z 2 = ฮบa. But z02 โz 2 = z 4 1 โ z โผ
= z0 , so ฮบa โผ
= z02 .
1
mฮฑ
1โ
โผ
But we found that z0 = ~ mฮฑa here, so ฮบa = ~2 mฮฑa, or ฮบ = ~2 . (At this point the aโs have canceled, and
we can go to the limit a โ 0.)
โ
โ2mE
mฮฑ
m2 ฮฑ2
mฮฑ2
= 2 โ โ2mE =
.
E
=
โ
(which agrees with Eq. 2.132).
~
~
~2
2~2
โ
V02
ฮฑ
2mV0 . But V0 = 2a
In Eq. 2.172, V0 E โ T โ1 โผ
sin2 2a
, so the argument of the sine is small,
= 1+ 4EV
~
0
2
V0 2a
mฮฑ2
โ1 โผ
2 m
and we can replace sin by : T = 1 + 4E ~ 2mV0 = 1 + (2aV0 ) 2~2 E . But 2aV0 = ฮฑ, so T โ1 = 1 + 2~
2E ,
in agreement with Eq. 2.144.
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
37
Problem 2.32
Multiply Eq. 2.168 by sin la, Eq. 2.169 by 1l cos la, and add:
ik
C sin2 la + D sin la cos la = F eika sin la
ika
C
=
F
e
sin
la
+
cos
la
.
C cos2 la โ D sin la cos la = ikl F eika cos la
l
Multiply Eq. 2.168 by cos la, Eq. 2.169 by 1l sin la, and subtract:
ik
C sin la cos la + D cos2 la = F eika cos la
ika
sin
la
.
D
=
F
e
cos
la
โ
C sin la cos la โ D sin2 la = ikl F eika sin la
l
Put these into Eq. 2.166:
(1) Ae
โika
+ Be
ika
ik
ik
ika
= โF e
sin la +
cos la sin la + F e
sin la cos la
cos la โ
l
l
ik
ik
2
ika
2
= Fe
cos la โ
sin la cos la โ sin la โ
sin la cos la
l
l
ik
= F eika cos(2la) โ
sin(2la) .
l
ika
Likewise, from Eq. 2.167:
ik
ik
il ika
sin la +
cos la cos la + cos la โ
sin la sin la
(2) Ae
โ Be = โ F e
k
l
l
il ika
ik
ik
2
2
= โ Fe
sin la cos la +
cos la + sin la cos la โ
sin la
k
l
l
il ika
ik
il
ika
= โ Fe
sin(2la) +
cos(2la) = F e
cos(2la) โ sin(2la) .
k
l
k
k
l
Add (1) and (2): 2Aeโika = F eika 2 cos(2la) โ i
+
sin(2la) , or:
l
k
โika
ika
eโ2ika A
F =
(confirming Eq. 2.171). Now subtract (2) from (1):
2
2
cos(2la) โ i sin(2la)
2kl (k + l )
l
k
sin(2la) 2
2Beika = F eika i
โ
sin(2la) โ B = i
(l โ k 2 )F (confirming Eq. 2.170).
k
l
2kl
T โ1 =
A
F
2
= cos(2la) โ i
sin(2la) 2
(k + l2 )
2kl
But cos2 (2la) = 1 โ sin2 (2la), so
2
โ1
T = 1 + sin (2la)
โ
2
= cos2 (2la) +
(k 2 + l2 )2
โ1
(2lk)2
|
{z
}
sin2 (2la) 2
(k + l2 )2 .
(2lk)2
=1+
(k 2 โ l2 )2
sin2 (2la).
(2kl)2
(k2 โl2 )2
1
1
4
2 2
4
[k4 +2k2 l2 +l4 โ4k2 l2 ]= (2kl)
2 [k โ2k l +l ]= (2kl)2 .
(2kl)2
p
2m(E + V0 )
2a p
2mV0
; so (2la) =
2m(E + V0 ); k 2 โ l2 = โ 2 , and
~
~
~
2m 2 2
2
V
(k 2 โ l2 )2
V
0
0
~2
.
=
=
2
(2kl)2
4E(E
+ V0 )
4 2m
E(E
+
V
)
0
~2
V02
2a p
โด T โ1 = 1 +
sin2
2m(E + V0 ) , confirming Eq. 2.172.
4E(E + V0 )
~
But k =
2mE
, l=
~
38
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.33
๏ฃฑ ikx
๏ฃผ
๏ฃฒ Ae + Beโikx (x < โa)
๏ฃฝ
ฯ = Ceฮบx + Deโฮบx (โa < x a)
E < V0 .
โ
k=
2mE
; ฮบ=
~
p
2m(V0 โ E)
.
~
(1) Continuity of ฯ at โa: Aeโika + Beika = Ceโฮบa + Deฮบa .
(2) Continuity of ฯ 0 at โa: ik(Aeโika โ Beika ) = ฮบ(Ceโฮบa โ Deฮบa ).
ฮบ ฮบa
ฮบ โฮบa
Ce
+ 1+i
De .
โ 2Aeโika = 1 โ i
k
k
(3) Continuity of ฯ at +a: Ceฮบa + Deโฮบa = F eika .
(4) Continuity of ฯ 0 at +a: ฮบ(Ceฮบa โ Deโฮบa ) = ikF eika .
ik
ik
ฮบa
ika
โฮบa
โ 2Ce = 1 +
F e ; 2De
= 1โ
F eika .
ฮบ
ฮบ
2Ae
โika
โ2ฮบa
ik
iฮบ
ik
e2ฮบa
iฮบ
ika e
1+
Fe
+ 1+
1โ
F eika
= 1โ
k
ฮบ
2
k
ฮบ
2
k
ฮบ
ฮบ
k
F eika
โ
โ
=
1+i
+ 1 eโ2ฮบa + 1 + i
+ 1 e2ฮบa
2
ฮบ k
k
ฮบ
ika
2
2
Fe
(ฮบ โ k ) 2ฮบa
=
2 eโ2ฮบa + e2ฮบa + i
e
โ eโ2ฮบa .
2
kฮบ
x
โx
ex + eโx
e โe
, cosh x โก
, so
But sinh x โก
2
2
F eika
(ฮบ2 โ k 2 )
=
2 sinh(2ฮบa)
4 cosh(2ฮบa) + i
2
kฮบ
(ฮบ2 โ k 2 )
ika
= 2F e
cosh(2ฮบa) + i
sinh(2ฮบa) .
2kฮบ
2
(ฮบ2 โ k 2 )2
sinh2 (2ฮบa). But cosh2 = 1 + sinh2 , so
(2ฮบk)2
V02
(ฮบ2 โ k 2 )2
2a p
2
2
1
+
sinh
2m(V
โ
E)
,
T โ1 = 1 + 1 +
sinh
(2ฮบa)
=
0
(2ฮบk)2
4E(V0 โ E)
~
|
{z
}
T โ1 =
A
F
= cosh2 (2ฮบa) +
F
2 2
where F =
4
4
2 2
2
2 2
4ฮบ k + k + ฮบ โ 2ฮบ k
(ฮบ + k )
=
=
(2ฮบk)2
(2ฮบk)2
2m(V0 โE)
2mE
~2 +
~2
2
2m(V0 โE)
4 2mE
~2
~2
=
V02
.
4E(V0 โ E)
(You can also get this from Eq. 2.172 by switching the sign of V0 and using sin(iฮธ) = i sinh ฮธ.)
๏ฃฑ ikx
๏ฃผ
๏ฃฝ
๏ฃฒ Ae + Beโikx (x < โa)
(โa < x a)
(In central region โ
~2 d 2 ฯ
d2 ฯ
+ V0 ฯ = Eฯ โ
= 0, so ฯ = C + Dx.)
2
2m dx
dx2
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
39
(1) Continuous ฯ at โa : Aeโika + Beika = C โ Da.
(2) Continuous ฯ at +a : F eika = C + Da.
โ (2.5) 2Da = F eika โ Aeโika โ Beika .
(3) Continuous ฯ 0 at โa : ik Aeโika โ Beika = D.
(4) Continuous ฯ 0 at +a : ikF eika = D.
โ (4.5) Aeโ2ika โ B = F.
Use (4) to eliminate D in (2.5): Aeโ2ika + B = F โ 2aikF = (1 โ 2iak)F , and add to (4.5):
2Aeโ2ika = 2F (1 โ ika), so T โ1 =
2
A
F
= 1 + (ka)2 = 1 +
2mE 2
a .
~2
(You can also get this from Eq. 2.172 by changing the sign of V0 and taking the limit E โ V0 , using sin โผ
= .)
This case is identical to the one in the book, only with V0 โ โV0 . So
E > V0 .
T
โ1
V02
=1+
sin2
4E(E โ V0 )
2a p
2m(E โ V0 ) .
~
Problem 2.34
(a)
ฯ=
Aeikx + Beโikx (x 0)
โ
where k =
p
2mE
; ฮบ=
~
2m(V0 โ E)
.
~
(1) Continuity of ฯ : A + B = F.
(2) Continuity of ฯ 0 : ik(A โ B) = โฮบF.
ik
ik
ik
โ A + B = โ (A โ B) โ A 1 +
= โB 1 โ
.
ฮบ
ฮบ
ฮบ
R=
B
A
2
=
|(1 + ik/ฮบ)|2
1 + (k/ฮบ)2
=
= 1.
2
|(1 โ ik/ฮบ)|
1 + (k/ฮบ)2
Although the wave function penetrates into the barrier, it is eventually all reflected.
(b)
ฯ=
Aeikx + Beโikx (x 0)
โ
where k =
(1) Continuity of ฯ : A + B = F.
(2) Continuity of ฯ 0 : ik(A โ B) = ilF.
2mE
; l=
~
p
2m(E โ V0 )
.
~
40
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
k
k
k
โ A + B = (A โ B); A 1 โ
= โB 1 +
.
l
l
l
2
(1 โ k/l)2
(k โ l)2
(k โ l)4
=
=
.
(1 + k/l)2
(k + l)2
(k 2 โ l2 )2
โ
p
2m
2m โ
2m
2
2
Now k โ l = 2 (E โ E + V0 ) =
V
;
k
โ
l
=
[
E
โ
E โ V0 ], so
0
~
~2
~
โ
โ
( E โ E โ V 0 )4
R=
.
V02
R=
B
A
=
(c)
vi dt
vi
vt dt
vt
From the diagram, T = Pt /Pi = |F |2 vt /|A|2 vi , where Pi is the probability of finding the incident particle in the
box corresponding to the time interval dt, and Pt is the probability of finding the transmitted particle in the
associated box to the right of the barrier.
r
โ
2
vt
E โ V0
E โ V0 F
โ
But
=
(from Eq. 2.98). So T =
. Alternatively, from Problem 2.18:
vi
E
A
E
r
2
2
~k 2
~l 2
Jt
F
E โ V0
F l
Ji =
|A| ; Jt = |F | ; T =
=
.
=
m
m
Ji
A k
A
E
For E V0 , F = A + B = A + A
T =
F
A
2
T +R=
l
=
k
2k
k+l
2
โ โ
โ
โ
l
4kl
4kl(k โ l)2
4 E E โ V0 ( E โ E โ V0 )2
=
=
=
.
k
(k + l)2
(k 2 โ l2 )2
V02
4kl
(k โ l)2
4kl + k 2 โ 2kl + l2
k 2 + 2kl + l2
(k + l)2
+
=
=
=
= 1. X
(k + l)2
(k + l)2
(k + l)2
(k + l)2
(k + l)2
Problem 2.35
(a)
ฯ(x) =
Aeikx + Beโikx (x 0)
โ
where k โก
2mE
, lโก
~
Continuity of ฯ โ A + B = F
=โ
Continuity of ฯ 0 โ ik(A โ B) = ilF
k
k
k
= โB 1 +
;
A + B = (A โ B); A 1 โ
l
l
l
B
=โ
A
p
2m(E + V0 )
.
~
1 โ k/l
1 + k/l
.
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
41
โ !2
โ
2
2
B
lโk
E + V0 โ E
โ
=
R=
= โ
A
l+k
E + V0 + E
!2 โ
p
2
2
1 + V0 /E โ 1
1+3โ1
2โ1
1
= p
= .
=
= โ
2
+
1
9
1+3+1
1 + V0 /E + 1
(b) The cliff is two-dimensional, and even if we pretend the car drops straight down, the potential as a function
of distance along the (crooked, but now one-dimensional) path is โmgx (with x the vertical coordinate),
as shown.
V(x)
x
-V0
(c) Here V0 /E = 12/4 = 3, the same as in part (a), so R = 1/9, and hence T = 8/9 = 0.8889.
Problem 2.36
Start with Eq. 2.25: ฯ(x) = A sin kx + B cos kx. This time the boundary conditions are ฯ(a) = ฯ(โa) = 0:
A sin ka + B cos ka = 0; โA sin ka + B cos ka = 0.
(
Subtract : A sin ka = 0 โ ka = jฯ or A = 0,
Add :
B cos ka = 0 โ ka = (j โ 21 )ฯ or B = 0,
(where j = 1, 2, 3, . . .).
If B = 0 (so A 6= 0), k = jฯ/a. In Rthis case let n โก 2j (so n is an evenโinteger); then k = nฯ/2a,
a
ฯ = A sin(nฯx/2a). Normalizing: 1 = |A|2 โa sin2 (nฯx/2a) dx = |A|2 a โ A = 1/ a.
If A = 0 (so B 6= 0), k = (j โ 21 )ฯ/a. In
R athis case let n โก 2j โ 1 (n is an oddโinteger); again k = nฯ/2a,
ฯ = B cos(nฯx/2a). Normalizing: 1 = |B|2 โa cos2 (nฯx/2a)dx = |B|2 a โ B = 1/ a.
2 2
2
2 2
k
n ฯ ~
In either case Eq. 2.24 yields E = ~2m
= 2m(2a)
2 (in agreement with Eq. 2.30 for a well of width 2a).
The substitution x โ (x + a)/2 takes Eq. 2.31 to
q
๏ฃฑ
2
nฯx
n/2
๏ฃด
(โ1)
sin
(n even),
r
r
๏ฃด
a
2a
๏ฃฒ
nฯx nฯ
2
nฯ (x + a)
2
sin
=
sin
+
=
q
๏ฃด
a
a
2
a
2a
2
๏ฃด
๏ฃณ(โ1)(nโ1)/2 2 cos nฯx (n odd).
a
2a
So (apart from normalization) we recover the results above. The graphs are the same as Figure 2.2, except that
some are upside down (different normalization).
cos(/x/2a)
sin(2/x/2a)
cos(3/x/2a)
42
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.37
Use the trig identity sin 3ฮธ = 3 sin ฮธ โ 4 sin3 ฮธ to write
3
sin
ฯx
a
3
= sin
4
ฯx
a
Normalize using Eq. 2.20: |A|2
1
โ sin
4
r
a 3
3ฯx
1
. So (Eq. 2.31): ฮจ(x, 0) = A
ฯ1 (x) โ ฯ3 (x) .
a
2 4
4
a 9
1
5
4
+
=
a|A|2 = 1 โ A = โ .
2 16 16
16
5a
So ฮจ(x, 0) = โ110 [3ฯ1 (x) โ ฯ3 (x)] , and hence (Eq. 2.17)
i
1 h
ฮจ(x, t) = โ
3ฯ1 (x)eโiE1 t/~ โ ฯ3 (x)eโiE3 t/~ .
10
1
E3 โ E1
9ฯ12 + ฯ32 โ 6ฯ1 ฯ3 cos
t ; so
10
~
Z a
Z a
E3 โ E1
1
3
9
2
hxi1 + hxi3 โ cos
t
hxi =
xฯ1 (x)ฯ3 (x)dx,
x|ฮจ(x, t)| dx =
10
10
5
~
0
0
|ฮจ(x, t)|2 =
where hxin = a/2 is the expectation value of x in the nth stationary state. The remaining integral is
Z
Z
ฯx
3ฯx
2ฯx
4ฯx
2 a
1 a
x sin
sin
dx =
x cos
โ cos
dx
a 0
a
a
a 0
a
a
2
2
a
a
2ฯx
xa
2ฯx
a
4ฯx
xa
4ฯx
1
= 0.
cos
+
sin
โ
cos
โ
sin
=
a
2ฯ
a
2ฯ
a
4ฯ
a
4ฯ
a
0
Evidently then,
9 a
1 a
a
hxi =
+
= .
10 2
10 2
2
Using Eq. 2.21,
2
2
hHi = |c1 | E1 + |c3 | E3 =
9
10
ฯ 2 ~2
+
2ma2
1
10
9ฯ 2 ~2
9ฯ 2 ~2
=
.
2ma2
10ma2
Problem 2.38
(a) According to Eq. 2.39, the most general solution to the time-dependent Schroฬdinger equation for the
infinite square well is
โ
X
2 2
2
ฮจ(x, t) =
cn ฯn (x)eโi(n ฯ ~/2ma )t .
n=1
2 2
2
2 2
2
2
n2 ฯ 2 ~
n2 ฯ 2 ~ 4ma2
T =
= 2ฯn2 , so eโi(n ฯ ~/2ma )(t+T ) = eโi(n ฯ ~/2ma )t eโi2ฯn , and since n2 is
2
2 ฯ~
2ma
2ma
2
an integer, eโi2ฯn = 1. Therefore ฮจ(x, t + T ) = ฮจ(x, t). QED
Now
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
43
(b) The classical revival time is the time it takes the particle to go down and back: Tc = 2a/v, with the
velocity given by
r
r
1
2E
2m
2
โ Tc = a
.
E = mv โ v =
2
m
E
(c) The two revival times are equal if
r
2m
4ma2
=a
,
ฯ~
E
E=
or
ฯ 2 ~2
E1
=
.
2
8ma
4
Problem 2.39
(a)
โ
โ
dฮจ
2 3
2 3
a
1, (0 < x < a/2)
= โ ยท
= โ 1 โ 2ฮธ x โ
.
โ1, (a/2 < x < a)
dx
2
a a
a a
(b)
โ
โ
d2 ฮจ
4 3
2 3
a
a
= โ โ 2ฮด x โ
= โ โ ฮด xโ
.
dx2
2
2
a a
a a
(c)
~2
hHi = โ
2m
โ Z
โ
4 3
2 3~2 โ a
2 ยท 3 ยท ~2
a
6~2
โ
โ ฮจ
โ โ
dx =
=
=
. X
ฮจ ฮด xโ
2
2
mยทaยทa
ma2
a a
ma a
| {z }
โ
3/a
Problem 2.40
(a) In the standard notation ฮพ โก
p
mฯ/~ x, ฮฑ โก (mฯ/ฯ~)1/4 ,
2
2
ฮจ(x, 0) = A(1 โ 2ฮพ)2 eโฮพ /2 = A(1 โ 4ฮพ + 4ฮพ 2 )eโฮพ /2 .
It can be expressed as a linear combination of the first three stationary states (Eq. 2.60 and 2.63, and
Problem 2.10):
2
ฯ0 (x) = ฮฑeโฮพ /2 ,
ฯ1 (x) =
So ฮจ(x, 0) = c0 ฯ0 + c1 ฯ1 + c2 ฯ2 = ฮฑ(c0 +
๏ฃฑ โ
๏ฃด
๏ฃฒฮฑโ2c2 = 4A
ฮฑ 2c1 = โ4A
๏ฃด
โ
๏ฃณ
ฮฑ(c0 โ c2 / 2) = A
โ
โ
2
2 ฮฑฮพeโฮพ /2 ,
2ฮพc1 +
โ
2
ฮฑ
ฯ2 (x) = โ (2ฮพ 2 โ 1)eโฮพ /2 .
2
2
2ฮพ 2 c2 โ โ12 c2 )eโฮพ /2 with (equating like powers)
โ
โ c2 = 2 2A/ฮฑ,
โ
โ c1 = โ2 2A/ฮฑ,
โ
โ c0 = (A/ฮฑ) + c2 / 2 = (1 + 2)A/ฮฑ = 3A/ฮฑ.
44
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Normalizing: 1 = |c0 |2 + |c1 |2 + |c2 |2 = (8 + 8 + 9)(A/ฮฑ)2 = 25(A/ฮฑ)2 โ A = ฮฑ/5 =
c0 =
(b) You could get
3
,
5
c1 = โ
โ
2 2
,
5
c2 =
1 mฯ 1/4
.
5 ฯ~
โ
2 2
.
5
1
9 3
8 5
8
~ฯ, probability
; ~ฯ, probability
; ~ฯ, probability
.
2
25 2
25 2
25
9
hHi =
25
1
8 3
8 5
~ฯ
73
~ฯ +
~ฯ +
~ฯ =
(9 + 24 + 40) =
~ฯ.
2
25 2
25 2
50
50
(c)
"
#
โ
โ
โ
โ
3
2 2
2 2
โiฯt/2 2 2
โ3iฯt/2 2 2
โ5iฯt/2
โiฯt/2 3
โiฯt
โ2iฯt
ฮจ(x, t) = ฯ0 e
โ
ฯ1 e
+
ฯ2 e
=e
ฯ0 โ
ฯ1 e
+
ฯ2 e
.
5
5
5
5
5
5
To change the sign of the middle term we need eโiฯT = โ1 (then eโ2iฯT = 1); evidently ฯT = ฯ, or
T = ฯ/ฯ.
Problem 2.41
Everything in Section 2.3.2 still applies, except that there is an additional boundary condition: ฯ(0) = 0. This
eliminates all the even solutions (n = 0, 2, 4, . . .), leaving only the odd solutions. So
En =
n+
1
2
~ฯ, n = 1, 3, 5, . . . .
Problem 2.42
(a) Normalization is the same as before: A =
2a 1/4
.
ฯ
(b) Equation 2.104 says
1
ฯ(k) = โ
2ฯ
2a
ฯ
1/4 Z โ
2
eโax eilx eโikx dx
[same as before, only k โ k โ l] =
โโ
1
1
ฮจ(x, t) = โ
2ฯ (2ฯa)1/4
Z โ
2
2
eโ(kโl) /4a ei(kxโ~k t/2m) dk
โโ
Let u โก k โ l, so k = u + l and dk = du:
Z โ
2
2
2
1
1
ฮจ(x, t) = โ
eโu /4a ei[ux+lxโ(~t/2m)(u +2ul+l )] du
2ฯ (2ฯa)1/4 โโ
Z โ
2
1
~t
~lt
~lt
1
1
il(xโ 2m
)
=โ
e
eโu ( 4a +i 2m )+iu(xโ m ) du.
2ฯ (2ฯa)1/4
โโ
2
1
eโ(kโl) /4a .
(2ฯa)1/4
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
45
Using the hint in Problem 2.21, the integral becomes
โ
Z โ
2
2โ
2
1
~lt 2
~t
2 a โa(xโ ~lt
1
m ) /ฮณ
q
e(xโ m ) /4( 4a +i 2m )
eโy dy =
ฯ,
e
ฮณ
~t
1
โโ
+
i
4a
2m
so
ฮจ(x, t) =
2a
ฯ
1/4
2
2
~lt
1 โa(xโ ~lt
m ) /ฮณ eil(xโ 2m ) .
e
ฮณ
The gaussian envelope (the first exponential) travels at speed ~l/m; the sinusoidal wave (the second
exponential) travels at speed ~l/2m .
(c)
r
2
|ฮจ(x, t)| =
h
i
2
1
2a 1 a(xโ ~lt
+ (ฮณ โ1 )2
m )
ฮณ2
e
.
2
ฯ |ฮณ|
The term in square brackets simplifies:
1
1
1
1
2i~t
2i~t
2
โ 2
2
+
=
[(ฮณ
)
+
ฮณ
]
=
1
โ
+
1
+
=
.
ฮณ2
(ฮณ โ )2
|ฮณ|4
|ฮณ|4
m
m
|ฮณ|4
s
p
2ia~t
2ia~t
2
1+
|ฮณ| =
1โ
= 1 + ฮธ2 ,
m
m
where (as before) ฮธ โก 2~at/m. So
r
r
2
2
2a
2 โ2w2 (xโ ~lt
1
/(1+ฮธ 2 )
2a(xโ ~lt
2
)
m
m ) .
โ
|ฮจ(x, t)| =
=
e
we
ฯ 1 + ฮธ2
ฯ
p
~l
where (as before) w โก a/(1 + ฮธ2 ). The result is the same as in Problem 2.21, except that x โ x โ m
t ,
so |ฮจ|2 has the same (flattening gaussian) shape โ only this time the center moves at constant speed
v = ~l/m.
(d)
Z โ
hxi =
x|ฮจ(x, t)|2 dx.
Let y โก x โ vt, so x = y + vt.
โโ
Z โ
=
r
(y + vt)
โโ
2 โ2w2 y2
~l
we
dy = vt =
t.
ฯ
m
(The first integral is trivially zero; the second is 1 by normalization.)
hpi = m
2
dhxi
= ~l.
dt
Z โ
hx i =
r
2
(y + vt)
โโ
2 โ2w2 y2
1
1
we
dy =
+ 0 + (vt)2 =
+
2
ฯ
4w
4w2
~lt
m
(The first integral is same as in Problem 2.21).
Z โ
2
โฮจ
2a
~lt
2
2
โโ ฮจ
= โ 2 xโ
+ il ฮจ,
hp i = โ~
ฮจ
dx;
โx2
โx
ฮณ
m
โโ
2
โ2ฮจ
2a
2a
~lt
=
โ
ฮจ
+
โ
x
โ
+
il
ฮจ = Ax2 + Bx + C ฮจ,
2
2
2
โx
ฮณ
ฮณ
m
2
.
46
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
where
Aโก
2a
Cโกโ 2 +
ฮณ
2
2a
ฮณ2
2a
ฮณ2
2
Bโกโ
,
2
~lt
m
2
+
2a
ฮณ2
2
4ial
ฮณ2
2~lt 4ial
4ial
โ 2 =โ 4 ,
m
ฮณ
ฮณ
~lt
m
1
โ l2 = โ 4 (2aฮณ 2 + l2 ).
ฮณ
Z โ
ฮจโ [Ax2 + Bx + C]ฮจ dx = โ~2 [Ahx2 i + Bhxi + C]
"
#
2 !
~2
1
~lt
~lt
= โ 4 4a2
+
โ 4ial
โ (2aฮณ 2 + l2 )
ฮณ
4w2
m
m
"
("
#
2
2 #)
2~at
4ia2 ~t
4ia~t
~at
~2
2
a+a
โ 2a โ
+ l โ1 โ
=โ 4
+4
ฮณ
m
m
m
m
hp i = โ~
2
โโ
~2
= โ 4 (โaฮณ 4 โ l2 ฮณ 4 ) = ~2 (a + l2 ).
ฮณ
ฯx2 = hx2 i โ hxi2 =
1
+
4w2
~lt
m
2
โ
~lt
m
2
=
1
1
โ ฯx =
;
4w2
2w
โ
ฯp2 = hp2 i โ hpi2 = ~2 a + ~2 l2 โ ~2 l2 = ~2 a, so ฯp = ~ a.
(e) ฯx and ฯp are same as before, so the uncertainty principle still holds.
Problem 2.43
โ
Equation 2.25 โ ฯ(x) = A sin kx + B cos kx, 0 โค x โค a, with k = 2mE/~2 .
Even solutions: ฯ(x) = ฯ(โx) = A sin(โkx) + B cos(โkx) = โA sin kx + B cos kx (โa โค x โค 0).
๏ฃฑ
๏ฃฒ ฯ continuous at 0 : B = B (no new condition).
Boundary
~2 k
ฯ 0 discontinuous (Eq. 2.128 with sign of ฮฑ switched): Ak + Ak = 2mฮฑ
2 B โ B = mฮฑ A.
~
conditions ๏ฃณ
2
2
ฯ โ 0 at x = a : A sin(ka) + ~mฮฑk A cos(ka) = 0 โ tan(ka) = โ ~mฮฑk .
~2 k
ฯ(x) = A sin kx +
cos kx (0 โค x โค a); ฯ(โx) = ฯ(x).
mฮฑ
/
tan(ka)
2/
3/
ka
-h2k
m_
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
47
From the graph, the allowed energies are slightly above
ka =
nฯ
(n = 1, 3, 5, . . .) so
2
En &
n 2 ฯ 2 ~2
(n = 1, 3, 5, . . .).
2m(2a)2
These energies are somewhat higher than the corresponding energies for the infinite square well (Eq. 2.30, with
a โ 2a). As ฮฑ โ 0, the straight line (โ~2 k/mฮฑ) gets steeper and steeper, and the intersections get closer to
nฯ/2; the energies then reduce to those of the ordinary infinite well. As ฮฑ โ โ, the straight line approaches
2 2 2
ฯ ~
horizontal, and the intersections are at nฯ (n = 1, 2, 3, . . .), so En โ n2ma
โ these are the allowed energies for
2
the infinite square well of width a. At this point the barrier is impenetrable, and we have two isolated infinite
square wells.
Odd solutions: ฯ(x) = โฯ(โx) = โA sin(โkx) โ B cos(โkx) = A sin(kx) โ B cos(kx) (โa โค x โค 0).
๏ฃฑ
๏ฃฒ ฯ continuous at 0 : B = โB โ B = 0.
ฯ 0 discontinuous: Ak โ Ak = 2mฮฑ
Boundary conditions
~2 (0) (no new condition).
๏ฃณ
ฯ(a) = 0 โ A sin(ka) = 0 โ ka = nฯ
2 (n = 2, 4, 6, . . .).
ฯ(x) = A sin(kx), (โa < x 0, in contradiction to Equation
[F]. Conclusion: ฯn (x) must have at least one node between x1 and x2 .
Problem 2.46
โ
~2 d2 ฯ
d2 ฯ
= Eฯ (where x is measured around the circumference), or
= โk 2 ฯ, with k โก
2
2m dx
dx2
โ
2mE
, so
~
ฯ(x) = Aeikx + Beโikx .
But ฯ(x + L) = ฯ(x), since x + L is the same point as x, so
Aeikx eikL + Beโikx eโikL = Aeikx + Beโikx ,
and this is true for all x. In particular, for x = 0 :
(1) AeikL + BeโikL = A + B.
And for x =
ฯ
:
2k
Aeiฯ/2 eikL + Beโiฯ/2 eโikL = Aeiฯ/2 + Beโiฯ/2 , or iAeikL โ iBeโikL = iA โ iB, so
(2) AeikL โ BeโikL = A โ B.
Add (1) and (2): 2AeikL = 2A.
Either A = 0, or else eikL = 1, in which case kL = 2nฯ (n = 0, ยฑ1, ยฑ2, . . .). But if A = 0, then BeโikL = B,
leading to the same conclusion. So for every positive n there are two solutions: ฯn+ (x) = Aei(2nฯx/L) and
RL
ฯnโ (x) = Beโi(2nฯx/L) (n = 0 is ok too, but in that case there is just one solution). Normalizing: 0 |ฯยฑ |2 dx =
โ
1 โ A = B = 1/ L. Any other solution (with the same energy) is a linear combination of these.
1
2n2 ฯ 2 ~2
ฯnยฑ (x) = โ eยฑi(2nฯx/L) ; En =
(n = 0, 1, 2, 3, . . .).
mL2
L
The theorem fails because here ฯ does not go to zero at โ; x is restricted to a finite range, and we are unable
to determine the constant K (in Problem 2.44).
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
49
Problem 2.47
(a) (i) b = 0 โ ordinary finite square well. Exponential decay outside; sinusoidal inside (cos for ฯ1 , sin for
ฯ2 ). No nodes for ฯ1 , one node for ฯ2 .
s1
s2
-a
-a
a
a
x
x
(ii) Ground state is even. Exponential decay outside, sinusoidal inside the wells, hyperbolic cosine in
barrier. First excited state is odd โ hyperbolic sine in barrier. No nodes for ฯ1 , one node for ฯ2 .
s1
s2
-(b/2+a) -b/2
-(b/2+a) -b/2
b/2 b/2+a
x
b/2 b/2+a
x
(iii) For b a, same as (ii), but wave function very small in barrier region. Essentially two isolated finite
square wells; ฯ1 and ฯ2 are degenerate (in energy); they are even and odd linear combinations of the
ground states of the two separate wells.
s1
s
2
b/2
-b/2
-(b/2+a)
b/2+a x
-(b/2+a)
-b/2
(b) From Eq. 2.160 we know that for b = 0 the energies fall slightly below
2 2
ฯ ~
h
E1 + V0 โ 2m(2a)
2 = 4
4ฯ 2 ~2
E2 + V0 โ 2m(2a)
2 = h
)
where h โก
ฯ 2 ~2
.
2ma2
For b a, the width of each (isolated) well is a, so
E1 + V0 โ E2 + V0 โ
ฯ 2 ~2
= h (again, slightly below this).
2ma2
b/2
b/2+a x
50
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
E+V0
h
E 2 +V0
E 1+V0
h/4
b
2
[Within each well, ddxฯ2 = โ 2m
~2 (V0 + E)ฯ, so the more curved the wave function, the higher the energy.]
(c) In the (even) ground state the energy is lowest in configuration (i), with b โ 0, so the electron tends to
draw the nuclei together, promoting bonding of the atoms. In the (odd) first excited state, by contrast,
the electron drives the nuclei apart.
Problem 2.48
(a) Let V0 โก 32~2 /ma2 . This is just like the odd bound states for the finite square well, since they are the
ones that go to zero at the origin. Referring to the solution to Problem 2.29, the wave function is
(
p
D sin lx,
l โก 2m(E + V0 )/~ (0 < x a),
and the boundary conditions at x = a yield
โ cot z =
with
p
(z0 /z)2 โ 1
โ
p
2m(32~2 /ma2 )
2mV0
a=
a = 8.
~
~
Referring to the figure (Problem 2.29), and noting that (5/2)ฯ = 7.85 < z0 < 3ฯ = 9.42, we see that there
are three bound states.
z0 =
(b) Let
a
x
1
1
2 a
= |D|
I1 โก
|ฯ| dx = |D|
sin lx dx = |D|
โ sin lx cos lx
โ sin la cos la ;
2 2l
2 2l
0
0
0
โ2ฮบx โ
Z โ
Z โ
e
eโ2ฮบa
I2 โก
|ฯ|2 dx = |F |2
eโ2ฮบx dx = |F |2 โ
= |F |2
.
2ฮบ
2ฮบ
a
a
a
Z a
2
2
Z a
2
2
2
But continuity at x = a โ F eโฮบa = D sin la, so I2 = |D|2 sin2ฮบla .
Normalizing:
h
i
a
1
sin2 la
1
ฮบ
1 = I1 + I2 = |D|
โ sin la cos la +
=
|D|2 ฮบa โ sin la cos la + sin2 la
2 2l
2ฮบ
2ฮบ
l
But (referring again to Problem 2.29) ฮบ/l = โ cot la, so
1
(1 + ฮบa)
=
|D|2 ฮบa + cot la sin la cos la + sin2 la = |D|2
.
2ฮบ
2ฮบ
2
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
51
So |D|2 = 2ฮบ/(1 + ฮบa), and the probability of finding the particle outside the well is
P = I2 =
2ฮบ sin2 la
sin2 la
=
.
1 + ฮบa 2ฮบ
1 + ฮบa
We can express this in terms of z โก la and z0 : ฮบa =
sin2 la = sin2 z =
p
z02 โ z 2 (page 80),
1
1
=
=
1 + (z0 /z)2 โ 1
1 + cot2 z
z
z0
2
โP =
z02 (1 +
z2
p
.
z02 โ z 2 )
So far, this ispcorrect for any bound state. In the present case z0 = 8 and z is the third solution
to โ cot z = (8/z)2 โ 1, which occurs somewhere in the interval 7.85 < z 0
v, if x โ vt 0
โ1, if z vt; โ1, if x < vt} = 2ฮธ(x โ vt) โ 1.
โx
imv
mฮฑ
= โ 2 [2ฮธ(x โ vt) โ 1] +
ฮจ.
~
~
โ2ฮจ
=
โx2
โ
mฮฑ
imv
[2ฮธ(x โ vt) โ 1] +
~2
~
2
ฮจโ
2mฮฑ โ
ฮธ(x
โ
vt)
ฮจ.
~2
โx
โ
But (from Problem 2.23(b)) โx
ฮธ(x โ vt) = ฮด(x โ vt), so
โ
~2 โ 2 ฮจ
โ ฮฑฮด(x โ vt)ฮจ
2m โx2
!
2
imv
mฮฑ
~2
+ ฮฑฮด(x โ vt) โ ฮฑฮด(x โ vt) ฮจ
= โ
โ 2 [2ฮธ(x โ vt) โ 1] +
2m
~
~
~2 m 2 ฮฑ 2
m2 v 2
mv mฮฑ
2
=โ
[2ฮธ(x
โ
vt)
โ
1]
โ
โ
2i
[2ฮธ(x
โ
vt)
โ
1]
ฮจ
{z
}
2m
~4 |
~2
~ ~2
1
2
mฮฑ
1
mvฮฑ
โฮจ
= โ 2 + mv 2 + i
[2ฮธ(x โ vt) โ 1] ฮจ = i~
(compare [F]). X
2~
2
~
โt
(b)
mฮฑ โ2mฮฑ|y|/~2
e
(y โก x โ vt).
~2
Z
2mฮฑ ~2
mฮฑ โ โ2mฮฑy/~2
Check normalization: 2 2
e
dy = 2
= 1.
~
~ 2mฮฑ
0
|ฮจ|2 =
Z โ
X
โฮจ
, which we calculated above [F].
โt
โโ
Z
imฮฑv
1
1
2
=
[2ฮธ(y) โ 1] + E + mv |ฮจ|2 dy = E + mv 2 .
~
2
2
hHi =
ฮจโ Hฮจdx.
But Hฮจ = i~
(Note that [2ฮธ(y) โ 1] is an odd function of y.) Interpretation: The wave packet is dragged along (at speed
v) with the delta-function. The total energy is the energy it would have in a stationary delta-function
(E), plus kinetic energy due to the motion ( 21 mv 2 ).
Problem 2.51
2a
ฯ
1/4
p
1 โa(x+ 1 gt2 )2 /ฮณ 2
2
e
; ฮณ = 1 + 2ia~t/m.
ฮณ
โฮจ
โฮจ0
img
1 2
mgt
1 2
=
+ ฮจ0 โ
x + gt
exp โi
x + gt
,
โt
โt
~
2
~
6
ฮจ0 =
54
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
"
1/4 (
2
#)
2 2
2
1
1 2
1
2a
1 2
2 dฮณ
1 dฮณ
+
โ 2 x + gt gt โ a x + gt
โ 3
eโa(x+ 2 gt ) /ฮณ
โ 2
ฮณ
dt
ฮณ
ฮณ
2
2
ฮณ dt
#
"
2
1
1
2agt
2a
1 dฮณ
dฮณ
x + gt2 + 3 x + gt2
ฮจ0 .
โ 2
= โ
ฮณ dt
ฮณ
2
ฮณ
2
dt
โฮจ0
=
โt
But
2a
ฯ
dฮณ
1 2ia~
ia~
=
=
, so
dt
2ฮณ
m
ฮณm
"
2 #
1 2
โฮจ0
โia~ 2agt
2ia2 ~
1 2
x + gt + 4
=
โ 2
x + gt
ฮจ0 , and hence
โt
ฮณ2m
ฮณ
2
ฮณ m
2
"
2
#
1 2
2agt
1 2
img
1 2
โฮจ
ia~
2ia2 ~
x + gt + 4
= โ 2 โ 2
x + gt
โ
x + gt
ฮจ.
โt
ฮณ m
ฮณ
2
ฮณ m
2
~
2
[F]
Meanwhile
โฮจ0
imgt
1 2
imgt
โฮจ
=
โ ฮจ0
exp โ
x + gt
โx
โx
~
~
6
โฮจ0
1 2
= โ2a x + gt /ฮณ 2 ฮจ0 , so
โx
2
โฮจ
1 2
imgt
2
= โ2a x + gt /ฮณ โ
ฮจ, and hence
โx
2
~
(
2 )
โ2ฮจ
2a
1 2
imgt โฮจ
1 2
imgt
2a
2
2
= โ 2 ฮจ + โ2a x + gt /ฮณ โ
= โ 2 + โ2a x + gt /ฮณ โ
ฮจ.
โx2
ฮณ
2
~
โx
ฮณ
2
~
~2 โ 2 ฮจ
+Vฮจ=
โ
2m โx2
(
)
2
~2
1 2
imgt
~2 a
2
โ
โ2a x + gt /ฮณ โ
+ mgx ฮจ.
mฮณ 2
2m
2
~
[F F]
So the time-dependent Schroฬdinger equation is satisfied if i~ times the square bracket in Equation [F] is equal
to the curly bracket in Equation [F F]:
a~2
2ia~gt
โ
2
ฮณ m
ฮณ2
1
x + gt2
2
2
1 2
1 2
x + gt
+ mg x
+ 2 gt
2
2
2
~2
1 2
imgt
? ~ a
2
=
โ
โ2a
x
+
gt
/ฮณ
โ
+
mgx.
mฮณ 2
2m
2
~
2a2 ~2
โ 4
ฮณ m
I have cancelled the first terms on either side, and also the mgx terms. This leaves
2ia~gt
โ
ฮณ2
1
x + gt2
2
2
1 2
mg 2 t2
x + gt
+
2
2
"
#
2
2
2
~
4a
4iamgt
m2 g 2 t2
1 2
1 2
?
=โ
x + gt
+
x + gt โ
.
2m ฮณ 4
2
~ฮณ 2
2
~2
2a2 ~2
โ 4
ฮณ m
The terms quadratic in x + 12 gt2 cancel, as do the linear terms, and so do those of zeroth order. This confirms
that ฮจ satisfies the Schroฬdinger equation.
To calculate the expectation value of x, first note that
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
r
2
2
|ฮจ| = ฮจ0 | =
r
hxi =
r
=
2a 1 โ(x+ 12 gt2 )2 ฮณ12 + (ฮณ โ1 )2
e
. But
ฯ |ฮณ|2
2a 1
ฯ |ฮณ|2
Z โ
2a 1
ฯ |ฮณ|2
r
2
xe
โ2a(x+ 21 gt2 ) /|ฮณ|4
dx =
โโ
1
โ gt2
2
Z โ
2
55
1
1
(ฮณ โ ) + ฮณ 2
2
+
=
=
, so (letting y โก x+ 12 gt2 )
2
โ
2
4
ฮณ
(ฮณ )
|ฮณ|
|ฮณ|4
2a 1
ฯ |ฮณ|2
Z โ
โโ
1 2 โ2ay2 /|ฮณ|4
y โ gt e
dy
2
4
eโ2ay /|ฮณ| dy.
โโ
1
ฯ/2a |ฮณ|2 , so hxi = โ gt2 . This is precisely the classical motion under free fallโas we should
2
have anticipated from Ehrenfestโs theorem.
The integral is
p
Problem 2.52
V(x)
(a)
x
(b)
dฯ0
= โAa sech(ax) tanh(ax);
dx
d2 ฯ0
= โAa2 โ sech(ax) tanh2 (ax) + sech(ax) sech2 (ax) .
2
dx
~2 d 2 ฯ 0
~2 a2
โ
sech2 (ax)ฯ0
2
2m dx
m
~2 a2
~2
=
Aa2 โ sech(ax) tanh2 (ax) + sech3 (ax) โ
A sech3 (ax)
2m
m
~2 a2 A
=
โ sech(ax) tanh2 (ax) + sech3 (ax) โ 2 sech3 (ax)
2m
~2 a2
=โ
A sech(ax) tanh2 (ax) + sech2 (ax) .
2m
sinh2 ฮธ
1
sinh2 ฮธ + 1
But (tanh2 ฮธ + sech2 ฮธ) =
+
=
= 1, so
2
2
cosh ฮธ cosh ฮธ
cosh2 ฮธ
Hฯ0 = โ
=โ
1 = |A|
2
~2 a2
ฯ0 . QED
2m
Z โ
Evidently E = โ
~2 a2
.
2m
โ
2
= |A|2 =โ A =
sech (ax)dx = |A|
tanh(ax)
a
a
โโ
โโ
2
2 1
r
a
.
2
56
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
s(x)
x
(c)
dฯk
A
=
(ik โ a tanh ax)ik โ a2 sech2 ax eikx .
dx
ik + a
A
d2 ฯk
=
ik (ik โ a tanh ax)ik โ a2 sech2 ax โ a2 ik sech2 ax + 2a3 sech2 ax tanh ax eikx .
dx2
ik + a
2
~2 a2
A
โ~ ik 2
~2 d2 ฯk
+
V
ฯ
=
โk โ iak tanh ax โ a2 sech2 ax +
ik sech2 ax
โ
k
2
2m dx
ik + a
2m
2m
~2 a3
~2 a2
โ
sech2 ax tanh ax โ
sech2 ax(ik โ a tanh ax) eikx
m
m
=
Aeikx ~2
ik 3 โ ak 2 tanh ax + ia2 k sech2 ax + ia2 k sech2 ax
ik + a 2m
โ2a3 sech2 ax tanh ax โ 2ia2 k sech2 ax + 2a3 sech2 ax tanh ax
~2 k 2
Aeikx ~2 2
k (ik โ a tanh ax) =
ฯk = Eฯk . QED
ik + a 2m
2m
ik โ a ikx
As x โ +โ, tanh ax โ +1, so ฯk (x) โ A
e , which represents a transmitted wave.
ik + a
=
R = 0.
ik โ a
T =
ik + a
2
=
โik โ a
โik + a
ik โ a
ik + a
= 1.
Problem 2.53
(a) (1) From Eq. 2.136: F + G = A + B.
(2) From Eq. 2.138: F โ G = (1 + 2iฮฒ)A โ (1 โ 2iฮฒ)B, where ฮฒ = mฮฑ/~2 k.
1
Subtract: 2G = โ2iฮฒA + 2(1 โ iฮฒ)B โ B =
(iฮฒA + G). Multiply (1) by (1 โ 2iฮฒ) and add:
1 โ iฮฒ
1
1
iฮฒ 1
2(1 โ iฮฒ)F โ 2iฮฒG = 2A โ F =
(A + iฮฒG). S =
.
1 โ iฮฒ
1 โ iฮฒ 1 iฮฒ
(b) For an even potential, V (โx) = V (x), scattering from the right is the same as scattering from the left, with
x โ โx, A โ G, B โ F (see Fig. 2.21): F = S11 G + S12 A, B = S21 G + S22 A. So S11 = S22 , S21 = S12 .
(Note that the delta-well S matrix in (a) has this property.) In the case of the finite square well, Eqs. 2.170
and 2.171 give
S21 =
2
eโ2ika
2
2
+l )
sin 2la
cos 2la โ i (k 2kl
;
S11 =
2
โk )
i (l 2kl
sin 2la eโ2ika
2
2
+l )
sin 2la
cos 2la โ i (k 2kl
. So
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
S=
eโ2ika
2
2
+l )
sin 2la
cos 2la โ i (k 2kl
57
!
2
โk2 )
i (l 2kl
sin 2la
1
.
2
โk2 )
1
i (l 2kl
sin 2la
Problem 2.54
(a)
B = S11 A + S12 G โ G =
1
S11
1
(B โ S11 A) = M21 A + M22 B โ M21 = โ
, M22 =
.
S12
S12
S12
S22
(S11 S22 โ S12 S21 )
S22
(B โ S11 A) = โ
A+
B = M11 A + M12 B.
S12
S12
S12
1
det S
S22
โ det(S) S22
โ M11 = โ
, M12 =
. M=
. Conversely:
โS11
1
S12
S12
S12
F = S21 A + S22 G = S21 A +
G = M21 A + M22 B โ B =
1
M21
1
(G โ M21 A) = S11 A + S12 G โ S11 = โ
; S12 =
.
M22
M22
M22
(M11 M22 โ M12 M21 )
M12
M12
(G โ M21 A) =
A+
G = S21 A + S22 G.
M22
M22
M22
1
det M
M12
โM21 1
โ S21 =
; S22 =
. S=
.
M22
M22
M22 det(M) M12
F = M11 A + M12 B = M11 A +
[It happens that the time-reversal invariance of the Schroฬdinger equation, plus conservation of probability,
โ
โ
requires M22 = M11
, M21 = M12
, and det(M) = 1, but I wonโt use this here. See Merzbacherโs Quantum
Mechanics. Similarly, for even potentials S11 = S22 , S12 = S21 (Problem 2.53).]
Rl = |S11 |2 =
M21
M22
2
, Tl = |S21 |2 =
det(M)
M22
2
, Rr = |S22 |2 =
M12
M22
2
, Tr = |S12 |2 =
1
.
|M22 |2
(b)
A
C
F
B
D
G
M2
M1
x
F
C
C
A
F
A
A
= M2
,
= M1
, so
= M2 M1
=M
, with M = M2 M1 . QED
G
D
D
B
G
B
B
(c)
ฯ(x) =
Aeikx + Beโikx (x a)
.
Continuity of ฯ :
Aeika + Beโika = F eika + Geโika
2mฮฑ
0
Discontinuity of ฯ : ik F eika โ Geโika โ ik Aeika โ Beโika = โ 2mฮฑ
Aeika + Beโika .
~2 ฯ(a) = โ ~2
58
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
(1) F e2ika + G = Ae2ika + B.
2ika
(2) F e2ika โ G = Ae2ika โ B + i 2mฮฑ
+B .
~2 k Ae
Add (1) and (2):
2F e2ika = 2Ae2ika + i
mฮฑ
2mฮฑ
mฮฑ
2ika
A + i 2 eโ2ika B = M11 A + M12 B.
Ae
+
B
โ
F
=
1
+
i
~2 k
~2 k
~ k
So M11 = (1 + iฮฒ); M12 = iฮฒeโ2ika ; ฮฒ โก
mฮฑ
.
~2 k
Subtract (2) from (1):
2G = 2B โ 2iฮฒe2ika A โ 2iฮฒB โ G = (1 โ iฮฒ)B โ iฮฒe2ika A = M21 A + M22 B.
2ika
So M21 = โiฮฒe
(1 + iฮฒ) iฮฒeโ2ika
.
โiฮฒe2ika (1 โ iฮฒ)
; M22 = (1 โ iฮฒ).
M=
(d)
M2 =
(1 + iฮฒ) iฮฒeโ2ika
(1 + iฮฒ) iฮฒe2ika
;
to
get
M
,
just
switch
the
sign
of
a:
M
=
.
1
1
โiฮฒe2ika (1 โ iฮฒ)
โiฮฒeโ2ika (1 โ iฮฒ)
M = M2 M1 =
[1 + 2iฮฒ + ฮฒ 2 (eโ4ika โ 1)] 2iฮฒ[cos 2ka โ ฮฒ sin 2ka]
.
โ2iฮฒ[cos 2ka โ ฮฒ sin 2ka] [1 โ 2iฮฒ + ฮฒ 2 (e4ika โ 1)]
T = Tl = Tr =
1
โ
|M22 |2
T โ1 = [1 + 2iฮฒ + ฮฒ 2 (eโ4ika โ 1)][1 โ 2iฮฒ + ฮฒ 2 (e4ika โ 1)]
= 1 โ 2iฮฒ + ฮฒ 2 e4ika โ ฮฒ 2 + 2iฮฒ + 4ฮฒ 2 + 2iฮฒ 3 e4ika โ 2iฮฒ 3 + ฮฒ 2 eโ4ika
โ ฮฒ 2 โ 2iฮฒ 3 eโ4ika + 2iฮฒ 3 + ฮฒ 4 (1 โ eโ4ika โ e4ika + 1)
= 1 + 2ฮฒ 2 + ฮฒ 2 (eโ4ika + e4ika ) โ 2iฮฒ 3 (eโ4ika โ e4ika ) + 2ฮฒ 4 โ ฮฒ 4 (eโ4ika + e4ika )
= 1 + 2ฮฒ 2 + 2ฮฒ 2 cos 4ka + 2iฮฒ 3 2i sin 4ka + 2ฮฒ 4 โ 2ฮฒ 4 cos 4ka
= 1 + 2ฮฒ 2 (1 + cos 4ka) โ 4ฮฒ 3 sin 4ka + 2ฮฒ 4 (1 โ cos 4ka)
= 1 + 4ฮฒ 2 cos2 2ka โ 8ฮฒ 3 sin 2ka cos 2ka โ 4ฮฒ 4 sin2 2ka
T =
1
1 + 4ฮฒ 2 (cos 2ka โ ฮฒ sin 2ka)2
Problem 2.55
Iโll just show the first two graphs, and the last two. Evidently K lies between 0.9999 and 1.0001
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
59
Problem 2.56
The correct values (in Eq. 2.73) are K = 2n + 1 (corresponding to En = (n + 12 )~ฯ). Iโll start by โguessingโ
2.9, 4.9, and 6.9, and tweaking the number until Iโve got 5 reliable significant digits. The results (see below)
are 3.0000, 5.0000, 7.0000. (The actual energies are these numbers multiplied by 12 ~ฯ.)
60
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
61
Problem 2.57
2
~
ฯ 00 = Eฯ, or, with the correct energies (Eq. 2.30) and a = 1, ฯ 00 + (nฯ)2 ฯ =
The Schroฬdinger equation says โ 2m
0. Iโll start with a โguessโ using 9 in place of ฯ 2 (that is, Iโll use 9 for the ground state, 36 for the first excited
state, 81 for the next, and finally 144). Then Iโll tweak the parameter until the graph crosses the axis right
at x = 1. The results (see below) are, to five significant digits: 9.8696, 39.478, 88.826, 157.91. (The actual
energies are these numbers multiplied by ~2 /2ma2 .)
62
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.58
(a) The total energy is simply N times the ground state energy of the infinite square well:
Ea = N
ฯ 2 ~2
.
2ma2
(b) Filling the lowest N energy levels of the infinite square well (with width N a) gives
Eb =
X
N
n=1
N
n2 ฯ 2 ~2
ฯ 2 ~2 X 2
=
n .
2m(N A)2
2mN 2 a2 n=1
The sum is N (N + 1)(2N + 1)/6, so
Eb =
N
1
1
+ +
3
2 6N
ฯ 2 ~2
.
2ma2
ฯ 2 ~2
ฯ 2 ~2
=
.
2ma2
3ma2
(c)
Ea โ Eb
โE
=
โ
N
N
N โ (N/3)
N
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
63
(d) The binding energy of hydrogen (13.6 eV) is ~2 /2ma2B , where aB = 0.529 Aฬ is the Bohr radius, so
2
โE
2 2 aB 2
2 0.529 ฯ
= ฯ
Ebinding =
(13.6) eV = 1.6 eV.
N
3
a
3
4
Problem 2.59
(a)
โ
~2 d2 ฯ
+ mgx ฯ = E ฯ
2m dx2
dฯ
dฯ dz
dฯ
=
=a ;
dx
dz dx
dz
โ
(x โฅ 0;
ฯ = 0 for x โค 0).
2
d2 ฯ dz
d2 ฯ
2d ฯ
=
a
.
=
a
dx2
dz 2 dx
dz 2
โ
z
z
~2 2 d2 ฯ
~2 2 โ 00
zโ
2m
2m
+
mg
a
ฯ
=
Eฯ
โ
โ
a a y + mg
a y = E a y โ โy 00 + 2 2 mg y = 2 2 E y.
2m dz 2
a
2m
a
~ a
a
~ a
Let
2m
1
mg = 1, or a โก
~2 a2
a
2m2 g
~2
1/3
and โก
2m
2m
E= 2
~2 a2
~
~2
2m2 g
2/3
E=
Then โy 00 + zy = y. X
DSolve@- y ”@xD + x y@xD รค s y@xD, y@xD, xD
Out[1]=
88y@xD ร AiryAi@- s + xD C@1D + AiryBi@- s + xD C@2D<<
In[2]:=
Plot@AiryAi@xD, 8x, – 15, 5<D
In[1]:=
0.4
0.2
Out[2]=
-15
-10
-5
5
-0.2
-0.4
In[3]:=
Plot@AiryBi@xD, 8x, – 15, 5<D
5
4
3
Out[3]=
2
1
-15
-10
-5
FindRoot@AiryAi@xD == 0, 8x, – 2<D
Out[4]=
8x ร – 2.33811<
In[5]:=
FindRoot@AiryAi@xD == 0, 8x, – 12.8<D
In[4]:=
5
Out[5]=
8x ร – 12.8288<
In[6]:=
NIntegrate@HAiryAi@xDL ^ 2, 8x, – 2.338107410459767`, โข<D
Out[6]=
0.491697
In[7]:=
NIntegrate@HAiryAi@xDL ^ 2, 8x, – 12.828776752865757`, โข<D
Out[7]=
1.14018
2
m~2 g 2
1/3
E.
64
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
FindRoot@AiryAi@xD == 0, 8x, – 2<D
Out[12]=
8x ร – 2.33811<
In[13]:=
FindRoot@AiryAi@xD == 0, 8x, – 12.8<D
In[12]:=
Out[13]=
8x ร – 12.8288<
In[14]:=
NIntegrate@HAiryAi@xDL ^ 2, 8x, – 2.338107410459767`, โข<D
Out[14]=
0.491697
In[15]:=
NIntegrate@HAiryAi@xDL ^ 2, 8x, – 12.828776752865757`, โข<D
Out[15]=
1.14018
In[16]:=
Pone@x_D := H0.4916966179009774`L ^ H- 1 รช 2L * AiryAi@x – 2.338107410459767`D
In[17]:=
Plot@Pone@xD, 8x, 0, 16<D
0.7
0.6
0.5
Out[17]=
0.4
0.3
0.2
0.1
5
10
15
10
15
In[18]:=
Pten@x_D := H1.1401837256117164`L ^ H- 1 รช 2L * AiryAi@x – 12.828776752865757`D
In[19]:=
Plot@Pten@xD, 8x, 0, 16<D
0.4
0.2
Out[19]=
5
-0.2
-0.4
0.1
5
10
15
Pten@x_D := H1.1401837256117164`L ^ H- 1 รช 2L * AiryAi@x – 12.828776752865757`D
Plot@Pten@xD, 8x, 0, 16<D
0.4
2
Problem 2.59 copy.nb
CHAPTER
2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
0.2
In[20]:=
65
NIntegrate@Pone@xD * Pten@xD, 8x, 0, โข<D
5 :
NIntegrate::ncvb
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 81.72352<. NIntegrate
15
obtained -9.19403 ยฅ 10-17 and 1.5861121045064646`*^-16 for the integral and error estimates. รก
-0.2
Out[20]=
10
– 9.19403 ยฅ 10-17
-0.4
(b)
NIntegrate@Pone@xD * Pten@xD, 8x, 0, โข 0.5~ X.
NIntegrate::ncvb
: x
1
p
x p
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 81.72352 0.5~ X.
10-17 and 1.5861121045064646`*^-16
forxthep integral and error estimates. รก
– 9.19403 ยฅ 10-17
(See print-out.)
NIntegrate@x HPone@xDL ^ 2, 8x, 0, โข<D
1.55874
NIntegrate@x ^ 2 HPone@xDL ^ 2, 8x, 0, โข<D
2.9156
2.9155980068599967` – H1.558738273638599`L ^ 2
Problem 2.59 copy.nb
0.697089
NIntegrate@x HPten@xDL ^ 2, 8x, 0, โข<D
8.55252
NIntegrate@x ^ 2 HPten@xDL ^ 2, 8x, 0, โข<D
87.7747
87.77467357595424` – H8.552517834822023`L ^ 2
3.8248
NIntegrate@- โฐ Pone@xD HPone '@xDL, 8x, 0, โข<D
NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 81.2858<. NIntegrate
obtained 0. + 6.07153 ยฅ 10-18 โฐ and 7.766131095614155`*^-17 for the integral and error estimates. รก
0. + 6.07153 ยฅ 10-18 โฐ
NIntegrate@- Pone@xD HPone ''@xDL, 8x, 0, โข<D
0.779369
NIntegrate@- Pten@xD HPten ''@xDL, 8x, 0, โข<D
4.27626
0.7793691368188985`
0.882819
4.276258918045443`
2.06791
0.6970889478066314` * 0.8828188584409027`
0.615403
3.8248022512288737` * 2.067911728784728`
7.90935
3
66
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
1
(Equation 1.43). Here
T v(x)
r
2
1
2
E = mv + mgx โ v =
(E โ mgx) and
2
m
(c) ฯC (x) =
1 2
E
gT = h =
โT =
2
mg
s
2E
,
mg 2
so
mg
1
mg
(2m2 g/~2 a2 )
1
a
1
ฯC (x) = p
= p
= q
= p
โ p
.
2 g/~2 a2 )
2
2
~2 a2
~2 a2
2 E(E โ mgx)
(
โ
(2m
(
โ
a)
2
(
โ 1)
2
โ mgx
4
2m
Problem 2.59 copy.nb
2m
For ฯ10 , = 12.82877 (Out[13] on page 64). The graphs are
Plot@H4 * 12.828776752865757` H12.828776752865757` – xLL ^ H- 1 รช 2L,
8x, 0, 12.5<, PlotRange ร 80, .26<D
0.25
0.20
0.15
0.10
0.05
2
4
6
8
10
12
2
4
6
8
10
12
4
6
8
10
12
Plot@HPten@xDL ^ 2, 8x, 0, 12.5<, PlotRange ร 80, .26<D
0.25
0.20
0.15
0.10
0.05
Show@%74, %75D
0.25
0.20
0.15
0.10
0.05
2
Comment: Well, they agree, in a kind of averaged sense.
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
67
Problem 2.60
(a)
q
n
kg m2
kg m4
kg m2
p
n+p+q
2 n+2q
โ(n+2q)
E0 = (~) (m) (ฮฑ) =
(kg)
=
(kg)
(m
)
(s)
=
.
s
s2
s2
So n + p + q = 1, n + 2q = 1, n + 2q = 2. The last two are incompatible. Evidently there is, on purely
dimensional grounds, no possible formula for E0 .
n
p
q
(b) Let ฯฮป (x) โก ฯ(y), where y โก ฮปx. Then
2
2
d2 ฯฮป (x)
d2 ฯ(y) 2 dy
ฮฒ
ฮฒ
2 d ฯ(y)
2
2
=
=ฮป
= ฮป โ 2 ฯ(y) + ฮบ ฯ(y) = โฮป2 2 2 ฯฮป (x) + ฮป2 ฮบ2 ฯฮป (x),
y
dx2
d
dx
dy 2
y
ฮป x
ฮฒ
d2 ฯฮป (x)
+ 2 ฯฮป (x) = (ฮปฮบ)2 ฯฮป (x) = (ฮบ0 )2 ฯฮป (x). So ฯฮป (x) is a solution to Equation 2.190, with ฮบ0 โก ฮปฮบ.
dx2
x
โ2mE
โ2mE 0
0 2
2 2
2
=
(ฮบ
)
=
ฮป
ฮบ
=
ฮป
โ E 0 = ฮป2 E.
The corresponding energy is given by
~2
~2
(c)
or
f@x_D := A
b – H1 รช 4L , k xF
x BesselKBโฐ
FullSimplifyBf ''@xD +
b
x^2
f@xD – k ^ 2 f@xD รค 0F
True
h@x_D :=
x BesselK@4 โฐ, xD
Plot@h@xD, 8x, 0, 5<D
0.004
0.003
0.002
0.001
1
2
3
4
5
0.0006
0.0008
0.0010
-0.001
-0.002
Plot@h@xD, 8x, 0, .001 0 && – 2 < ImA – 1 + 4 b E < 2F
68
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
s
So
A=ฮบ
2 sinh(ฯg)
.
ฯg
(d) From the first plot on page 67 we see that the highest zero crossing occurs at ฮบx โ 1.7; to find the exact
value, use FindRoot (see print-out below). We want this to occur at x = = 1, so ฮบ = 1.69541.
h@x_D :=
x BesselK@4 โฐ, xD
FindRoot@h@xD รค 0, 8x, 1.7<D
8x ร 1.69541 + 0. โฐ= 1, [email protected]` xD, 0D
Plot@j@xD, 8x, 0, 6<D
0.004
0.003
0.002
0.001
1
2
3
4
5
6
The parameter ฮฒ โก 2mฮฑ/~2 is dimensionless, so we may as well
eliminate ~ (in favor of ฮฒ, m, and ฮฑ) in
4
q
2
(m)r = (kg)p+q (m)4q+r (s)โ2q = kgsm
, so
the dimensional analysis. This leaves E0 = mp ฮฑq r = (kg)p kgsm
2
2
p + q = 1, 4q + r = 2, q = 1, โ p = 0, r = โ2. On dimensional grounds, therefore, the expression for E0 has
to be of the form E0 = โฮฑ/2 times some function of ฮฒ. As โ 0 (for fixed values of m and ฮฑ), E0 โ โโ,
indicating once again that there is no ground state for this system.
Problem 2.61
(a) From Equation 2.197:
N = 1 : j = 1 : โฮปฯ2 + (2ฮป)ฯ1 โ ฮปฯ0 = Eฯ1
(
j = 1 : โฮปฯ2 + (2ฮป)ฯ1 โ ฮปฯ0 = Eฯ1
N =2:
j = 2 : โฮปฯ3 + (2ฮป)ฯ2 โ ฮปฯ1 = Eฯ2
๏ฃฑ
๏ฃด
๏ฃฒj = 1 : โฮปฯ2 + (2ฮป)ฯ1 โ ฮปฯ0 = Eฯ1
N = 3 : j = 2 : โฮปฯ3 + (2ฮป)ฯ2 โ ฮปฯ1 = Eฯ2
๏ฃด
๏ฃณ
j = 3 : โฮปฯ4 + (2ฮป)ฯ3 โ ฮปฯ2 = Eฯ2
(b) Denote the eigenvalues by Eฬn :
โ
H = (2ฮป).
โ
H=
2ฮป โฮป
.
โฮป 2ฮป
๏ฃซ
โ
๏ฃถ
2ฮป โฮป 0
H = ๏ฃญโฮป 2ฮป โฮป๏ฃธ .
0 โฮป 2ฮป
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
69
8~2
n 2 ฯ 2 ~2
ฯ 2 ~2
2~2
=
.
The
exact
energies
are
E
=
,
so
E
=
; the agreement
n
1
2m(a/2)2
2ma2
2ma2
2ma2
2
is not too bad: 8 โ ฯ = 9.87.
N = 1 : Eฬ1 = 2ฮป =
N =2:
2ฮป โ Eฬ โฮป
det
โฮป 2ฮป โ Eฬ
= 0 โ (2ฮป โ Eฬ)2 โ ฮป2 = 0 โ 2ฮป โ Eฬ = ยฑฮป.
9~2
~2
=
. This is better: 9 is closer to ฯ 2 than 8 was.
2m(a/3)2
2ma2
3~2
27~2
Eฬ2 = 2ฮป + ฮป = 3ฮป =
=
. The exact answer has 4ฯ 2 = 39.5 instead of 27.
2m(a/3)2
2ma2
Eฬ1 = 2ฮป โ ฮป = ฮป =
N =3:
๏ฃซ
๏ฃถ
2ฮป โ Eฬ โฮป
0
โ
det ๏ฃญ โฮป 2ฮป โ Eฬ โฮป ๏ฃธ = 0 โ (2ฮป โ Eฬ)3 โ 2ฮป2 (2ฮป โ Eฬ) = 0 โ 2ฮป โ Eฬ = 0 or 2ฮป โ Eฬ = ยฑ 2 ฮป.
0
โฮป 2ฮป โ Eฬ
โ
โ
โ
โ
โ
16(2 โ 2)~2
(2 โ 2)~2
=
. This is better yet: 16(2 โ 2) = 9.37.
Eฬ1 = 2ฮป โ 2 ฮป = ฮป(2 โ 2) =
2m(a/4)2
2ma2
2~2
32~2
=
. Improving: the exact answer is 4ฯ 2 = 39.5 instead of 32.
Eฬ2 = 2ฮป =
2m(a/4)2
2ma2
โ
โ
โ
โ
โ
16(2 + 2)~2
(2 + 2)~2
Eฬ3 = 2ฮป + 2 ฮป = ฮป(2 + 2) =
=
; 16(2 + 2) = 54.6 โ 9ฯ 2 = 88.8.
2m(a/4)2
2ma2
(c)
h = Table@If@i == j, 2 l, 0D, 8i, 10<, 8j, 10<D
k = Table@If@i รค j + 1, – l, 0D, 8i, 10<, 8j, 10<D
m = Table@If@i รค j – 1, – l, 0D, 8i, 10<, 8j, 10<D
p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 10<, 8j, 10<D
P = MatrixForm@%D
2 l -l 0
0
0
0
0
0
0
0
-l 2 l -l 0
0
0
0
0
0
0
0 -l 2 l -l 0
0
0
0
0
0
0
0 -l 2 l -l 0
0
0
0
0
0
0
0 -l 2 l -l 0
0
0
0
0
0
0
0 -l 2 l -l 0
0
0
0
0
0
0
0 -l 2 l -l 0
0
0
0
0
0
0
0 -l 2 l -l 0
0
0
0
0
0
0
0 -l 2 l -l
0
0
0
0
0
0
0
0 -l 2 l
l=1
1
EIG = Eigenvalues@N@pDD
83.91899, 3.68251, 3.30972, 2.83083, 2.28463,
1.71537, 1.16917, 0.690279, 0.317493, 0.0810141<
70
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
2
Ten.nb
~2
=
To get the eigenvalues, multiply by ฮป =
2m(a/11)2
In[16]:=
Out[16]=
121 * EIG รช Hp ^ 2L
121
ฯ2
E1 :
848.0462, 45.147, 40.5767, 34.7056,
28.0092, 21.0302, 14.3339, 8.46272, 3.89242, 0.993221<
EVE
Thus theIn[17]:=
lowest
five= Eigenvectors@N@pDD
eigenvalues, in units of E1 , are 0.9932, 3.8924, 8.4627, 14.3339, 21.0302, as compared to
the exactOut[17]=
values
1,
4,
9,
16, 25. -Doing
the same
for N =-100:
880.120131,
0.23053,
0.322253,
0.387868, 0.422061, – 0.422061,
– 0.120131<,
8- 0.23053, 0.387868, – 0.422061,
h = 0.387868,
Table@If@i- 0.322253,
== j, 2 l, 0.23053,
0D, 8i, 100<,
8j, 100<D
0.322253, – 0.120131, – 0.120131, 0.322253, – 0.422061, 0.387868, – 0.23053<,
8- 0.322253, 0.422061, – 0.23053, – 0.120131, 0.387868, – 0.387868, 0.120131,
In[23]:=
– 0.422061,
– 0.322253, – 0.120131,
k =0.23053,
Table@If@i
รค j + 1, 0.322253<,
– l, 0D, 8i,80.387868,
100<, 8j, 100<D
0.422061, – 0.23053, – 0.23053, 0.422061, – 0.120131, – 0.322253, 0.387868<,
In[24]:= m = Table@If@i รค j – 1, – l, 0D, 8i, 100<, 8j, 100<D
80.422061, – 0.120131, – 0.387868, 0.23053, 0.322253, – 0.322253, – 0.23053,
0.387868, 0.120131, – 0.422061<, 80.422061, 0.120131, – 0.387868,
In[25]:= p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 100<, 8j, 100<D
– 0.23053, 0.322253, 0.322253, – 0.23053, – 0.387868, 0.120131, 0.422061<,
80.387868, – 0.322253, 0.120131, 0.422061, 0.23053, – 0.23053, – 0.422061,
In[26]:= l = 1
– 0.120131, 0.322253, 0.387868<, 80.322253, 0.422061, 0.23053, – 0.120131,
Out[26]= 1
– 0.387868, – 0.387868, – 0.120131, 0.23053, 0.422061, 0.322253<,
8- 0.23053, – 0.387868, – 0.422061, – 0.322253, – 0.120131, 0.120131,
= Eigenvalues@N@pDD
In[27]:= EIG0.322253,
0.422061, 0.387868, 0.23053<, 80.120131, 0.23053, 0.322253,
0.387868, 0.422061, 0.422061, 0.387868, 0.322253, 0.23053, 0.120131<<
In[28]:= 10 201 * EIG รช Hp ^ 2L
In[22]:=
ListLinePlot@EVE@@1DD,
PlotRange
ร 80.5, 0.5<D
84133.31,
4130.31, 4125.32,
4118.33,
4109.36,
4098.41, 4085.5, 4070.64, 4053.84,
4035.11, 4014.49, 3991.97, 3967.6, 3941.39, 3913.36, 3883.55, 3851.98,
3818.69,
3783.7, 3747.04, 3708.77, 3668.9, 3627.49, 3584.57, 3540.18, 3494.36,
0.4
3447.16, 3398.63, 3348.81, 3297.75, 3245.5, 3192.11, 3137.63, 3082.12,
3025.62, 2968.2, 2909.9, 2850.79, 2790.92, 2730.35, 2669.14, 2607.35, 2545.03,
0.2
2482.25,
2419.07, 2355.55, 2291.76, 2227.74, 2163.57, 2099.3, 2035.01,
1970.74, 1906.57, 1842.55, 1778.75, 1715.24, 1652.06, 1589.28, 1526.96,
1465.17, 1403.96, 1343.39, 1283.52, 1224.41, 1166.11, 1108.69, 1052.19,
Out[18]=
996.679, 942.201,
888.81,
836.559,
785.499,
735.679,
687.147, 639.95, 594.133,
2
4
6
8
10
549.742, 506.819, 465.405, 425.541, 387.265, 350.614, 315.624, 282.328,
250.76, 220.948, 192.922, 166.71, 142.336, 119.824, 99.1963, 80.4724,
-0.2
63.6704, 48.8067, 35.8956, 24.9496, 15.9794, 8.99347, 3.99871, 0.999919<
In[18]:=
Out[28]=
-0.4
This time the lowest five eigenvalues are 0.9999, 3.9987, 8.9934, 15.9794, 24.9496.
(d) Always,
ฯ0 = ฯN +1 = 0; might as wellPlotRange
set ฮป = 1 for
this 0.5<D
part.
ร 80,
In[19]:= ListLinePlot@EVE@@10DD,
0.5
N = 1 : 2ฯ1 = Eฬฯ1 , Eฬ1 = 2. Up to normalization:
0.4
0.3
Out[19]=
0.2
0.1
2
4
6
8
10
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
N =2:
2 โ1
โ1 2
ฯ1
ฯ1
= Eฬ
โ 2ฯ1 โ ฯ2 = Eฬฯ1 and โ ฯ1 + 2ฯ2 = Eฬฯ2 .
ฯ2
ฯ2
n = 1 : Eฬ1 = 1 โ 2ฯ1 โ ฯ2 = ฯ1 โ ฯ2 = ฯ1
n = 2 : Eฬ2 = 3 โ 2ฯ1 โ ฯ2 = 3ฯ1 โ ฯ2 = โฯ1
๏ฃซ
๏ฃถ๏ฃซ ๏ฃถ
๏ฃซ ๏ฃถ
2 โ1 0
ฯ1
ฯ1
N = 3 : ๏ฃญโ1 2 โ1๏ฃธ ๏ฃญฯ2 ๏ฃธ = Eฬ ๏ฃญฯ2 ๏ฃธ โ 2ฯ1 โ ฯ2 = Eฬฯ1 , โฯ1 + 2ฯ2 โ ฯ3 = Eฬฯ2 , โฯ2 + 2ฯ3 = Eฬฯ3 .
0 โ1 2
ฯ3
ฯ3
โ
โ
โ
n = 1 : Eฬ1 = 2 โ 2 โ 2ฯ1 โ ฯ2 = (2 โ 2)ฯ1 โ ฯ2 = 2ฯ1 ;
โ
โ
โฯ1 + 2ฯ2 โ ฯ3 = (2 โ 2)ฯ2 โ ฯ1 + ฯ3 = 2ฯ2 = 2ฯ1 โ ฯ3 = ฯ1
n = 2 : Eฬ2 = 2 โ 2ฯ1 โ ฯ2 = 2ฯ1 โ ฯ2 = 0; โฯ1 + 2ฯ2 โ ฯ3 = 2ฯ2 โ ฯ3 = โฯ1
โ
โ
โ
n = 3 : Eฬ3 = 2 + 2 โ 2ฯ1 โ ฯ2 = (2 + 2)ฯ1 โ ฯ2 = โ 2ฯ1 ;
โ
โ
โฯ1 + 2ฯ2 โ ฯ3 = (2 + 2)ฯ2 โ ฯ1 + ฯ3 = โ 2ฯ2 = 2ฯ1 โ ฯ3 = ฯ1
71
72
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
For N = 10 we get
EVE = Eigenvectors@N@pDD
ListLinePlot@EVE@@10DD, PlotRange ร 80, 0.5<D
0.5
0.4
0.3
0.2
0.1
2
4
6
8
10
ListLinePlot@EVE@@9DD, PlotRange ร 8- 0.5, 0.5<D
0.4
0.2
2
4
6
8
10
-0.2
-0.4
ListLinePlot@EVE@@8DD, PlotRange ร 8- 0.5, 0.5 80, 0.2 8- 0.2, 0.2 8- 0.2, 0.2<D
0.2
0.1
20
-0.1
-0.2
40
60
80
100
73
74
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.62
~2
(N + 1)2 = (N + 1)2 V0 (here N = 100);
2ma2
ฯx
ฯjโx
ฯj
j
Vj = bV0 sin
= bV0 sin
= bV0 sin
a
a
N +1
Vj
ฯj
b
vj =
sin
=
.
ฮป
(N + 1)2
N +1
ฮป=
2
(here b = 500);
2p62.nb
Factoring out ฮป, the diagonal elements of H are
In[8]:=
ListLinePlot@EVE@@98DD, PlotRange ร 8.1, 0.2<D
b
2 + vj = 2 +
sin
(N + 1)2
0.20
ฯj
N +1
500
=2+
sin
10201
ฯj
101
.
0.15
In[1]:=
Out[8]=
In[2]:=
In[3]:=
h = Table@If@i == j, 2 + H500 รช 10 201L Sin@p j รช 101D, 0D, 8i, 100<, 8j, 100<D
0.10
k = Table@If@i รค j + 1, – 1, 0D, 8i, 100<, 8j, 100<D
0.05
20
40 – 1, 0D,
60 8i, 100<,
80 8j, 100<D
100
m = Table@If@i
รค j – 1,
p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 100<, 8j, 100<D
-0.05
In[4]:=
-0.10
In[5]:=
In[9]:=
EVE = Eigenvectors@N@pDD
EIG = Eigenvalues@N@pDD
10 201 * EIG
ListLinePlot@EVE@@100DD, PlotRange ร 80, 0.2<D
Out[10]= 841 255., 41 158.1, 41 063.4, 40 968.8, 40 869.4, 40 758.8, 40 632., 40 486.7, 40 322.1,
0.20
40 138.4, 39 935.6, 39 714.1, 39 474., 39 215.7, 38 939.5, 38 645.5, 38 334.2,
38 005.7, 37 660.6, 37 299., 36 921.3, 36 528., 36 119.3, 35 695.8, 35 257.7,
34 805.6, 34 339.9, 33 860.9, 33 369.3, 32 865.4, 32 349.7, 31 822.8, 31 285.1,
0.15
30 737.3, 30 179.7, 29 613., 29 037.7, 28 454.3, 27 863.4, 27 265.6, 26 661.5,
26 051.7, 25 436.7, 24 817.1, 24 193.6, 23 566.7, 22 937., 22 305.2, 21 671.9,
21 037.6, 20 403.1, 19 768.8, 19 135.5, 18 503.7, 17 874.1, 17 247.2, 16 623.6,
16 004., 15 389., 14 779.2, 14 175.1, 13 577.3, 12 986.5, 12 403.1, 11 827.8,
Out[6]= 0.10
11 261.1, 10 703.5, 10 155.6, 9617.98, 9091.08, 8575.44, 8071.55, 7579.91,
7100.98, 6635.24, 6183.13, 5745.1, 5321.57, 4912.95, 4519.64, 4142.02, 3780.47,
3435.34, 3106.97, 2795.68, 2501.8, 2225.62, 1967.43, 1727.51, 1506.15, 1303.63,
0.05
1120.24, 956.36, 812.457, 689.191, 590.237, 499.854, 476.163, 304.8, 304.66<
In[10]:=
In[6]:=
So the lowest three energies are 304.66 V0 , 304.8 V0 , and 476.163 V0 . Notice that the ground state is almost
20
40 two separated
60
100 barrier in between them, and the particle can
degenerateโessentially
we have
wells80with a huge
be either in the left one or in the right one (or the even and odd linear combinations thereof).
In[7]:=
ListLinePlot@EVE@@99DD, PlotRange ร 8- .2, 0.2<D
0.2
0.1
Out[7]=
20
40
60
80
100
In[1]:=
In[2]:=
h = Table@If@i == j, 2 + H500 รช 10 201L Sin@p j รช 101D, 0D, 8i, 100<, 8j, 100<D
k = Table@If@i รค j + 1, – 1, 0D, 8i, 100<, 8j, 100<D
In[3]:=
m = Table@If@i รค j – 1, – 1, 0D, 8i, 100<, 8j, 100<D
In[4]:=
p = Table@h@@i, jDD + k@@i, jDD + m@@i, jDD, 8i, 100<, 8j, 100<D
In[5]:=
EVE = Eigenvectors@N@pDD
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
In[6]:=
ListLinePlot@EVE@@100DD, PlotRange ร 80, 0.2<D
0.20
0.15
Out[6]= 0.10
0.05
In[7]:=
20
40
60
80
100
20
40
60
80
100
ListLinePlot@EVE@@99DD, PlotRange ร 8- .2, 0.2<D
0.2
0.1
Out[7]=
-0.1
2
2p62.nb
-0.2
In[8]:=
ListLinePlot@EVE@@98DD, PlotRange ร 8- .1, 0.2<D
0.20
0.15
0.10
Out[8]=
0.05
20
40
60
80
100
-0.05
-0.10
Notice
that
the central barrier pushes the wave function out to the wings.
= Eigenvalues@N@pDD
In[9]:= EIG
In[10]:=
Out[10]=
10 201 * EIG
841 255., 41 158.1, 41 063.4, 40 968.8, 40 869.4, 40 758.8, 40 632., 40 486.7, 40 322.1,
40 138.4, 39 935.6, 39 714.1, 39 474., 39 215.7, 38 939.5, 38 645.5, 38 334.2,
38 005.7, 37 660.6, 37 299., 36 921.3, 36 528., 36 119.3, 35 695.8, 35 257.7,
34 805.6, 34 339.9, 33 860.9, 33 369.3, 32 865.4, 32 349.7, 31 822.8, 31 285.1,
30 737.3, 30 179.7, 29 613., 29 037.7, 28 454.3, 27 863.4, 27 265.6, 26 661.5,
26 051.7, 25 436.7, 24 817.1, 24 193.6, 23 566.7, 22 937., 22 305.2, 21 671.9,
21 037.6, 20 403.1, 19 768.8, 19 135.5, 18 503.7, 17 874.1, 17 247.2, 16 623.6,
16 004., 15 389., 14 779.2, 14 175.1, 13 577.3, 12 986.5, 12 403.1, 11 827.8,
11 261.1, 10 703.5, 10 155.6, 9617.98, 9091.08, 8575.44, 8071.55, 7579.91,
7100.98, 6635.24, 6183.13, 5745.1, 5321.57, 4912.95, 4519.64, 4142.02, 3780.47,
75
76
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
Problem 2.63
X
โ
1 โZ
1 X
ln(Z) = โ
=โ
(โEn )eโฮฒEn =
En P (n). X
โฮฒ
Z โฮฒ
Z n
n
1
(b) Geometric series: 1 + x + x2 + x3 + ยท ยท ยท =
. Here x = eโฮฒ~ฯ :
1โx
(a) โ
Z=
โ
X
1
eโฮฒ(n+ 2 )~ฯ = eโฮฒ~ฯ/2
โ
X
e(โฮฒ~ฯ)n = eโฮฒ~ฯ/2
n=0
n=0
1
. X
1 โ eโฮฒ~ฯ
(c)
ฮฒ~ฯ
ln Z = ln eโฮฒ~ฯ/2) โ ln 1 โ eโฮฒ~ฯ = โ
โ ln 1 โ eโฮฒ~ฯ ,
2
~ฯ 1 โ eโฮฒ~ฯ + 2eโฮฒ~ฯ
~ฯ 1 + eโฮฒ~ฯ
โ
~ฯ
~ฯeโฮฒ~ฯ
=
โ
โ
Eฬ
=
. X
ln Z = โ
โ
โฮฒ~ฯ
โฮฒ~ฯ
โฮฒ
2
1โe
2
1โe
2 1 โ eโฮฒ~ฯ
(d)
โ Eฬ
โ Eฬ dฮฒ
1 โ Eฬ
=
=โ
.
โT
โฮฒ dT
kB T 2 โฮฒ
1 โ eโฮฒ~ฯ โ~ฯeโฮฒ~ฯ โ 1 + eโฮฒ~ฯ ~ฯeโฮฒ~ฯ
~ฯ
โ Eฬ
~ฯ โ2~ฯeโฮฒ~ฯ
(~ฯ)2 eฮฒ~ฯ
=
=
=
โ
2
2.
โฮฒ
2
2 (1 โ eโฮฒ~ฯ )2
(1 โ eโฮฒ~ฯ )
(eฮฒ~ฯ โ 1)
1
eฮฒ~ฯ
C=3
(~ฯ)2
2.
2
kB T
(eฮฒ~ฯ โ 1)
Or, using ฮฒ = 1/kB T and ~ฯ = kB ฮธE ,
C=3
(e)
In[12]:=
1
kB T 2
2
(kB ฮธE )
eฮธE /T
2 = 3kB
eฮธE /T โ 1
ฮธE
T
2
eฮธE /T
eฮธE /T โ 1
2 . X
Plot@3 * Hx ^ H- 2LL * Exp@1 รช xD รช HExp@1 รช xD – 1L ^ 2, 8x, 0, .7<, PlotRange ร 80, 2.6<D
2.5
2.0
1.5
Out[12]=
1.0
0.5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Incidentally, comparing the graphs suggests that x = 0.7 corresponds to T = 1000 K, so ฮธE = 1000/0.7 K
= 1400 K. Then ~ฯ = (1400kB )K = (1400)(8.6 ร 10โ5 ) eV = 0.12 eV.
CHAPTER 2. THE TIME-INDEPENDENT SCHROฬDINGER EQUATION
77
Problem 2.64
(a) Plugging into the differential equation we have
โ
X
an n (n โ 1) xnโ2 โ
n=2
โ
X
an n (n โ 1) xn โ 2
n=2
โ
X
an n xn + ` (` + 1)
n=1
โ
X
an xn = 0 .
n=0
Reindexing the sums so that all the powers of x match we have
โ
X
ap+2 (p + 2) (p + 1) xp โ
p=0
โ
X
ap p (p โ 1) xp โ 2
p=2
โ
X
ap p xp + ` (` + 1)
p=1
โ
X
a p xp = 0 .
p=0
We can then combine the sums (extending the second and third sums to begin at p = 0) to get
โ
X
{(p + 2) (p + 1) ap+2 โ [p (p โ 1) + 2 p โ ` (` + 1)] ap } xp = 0 .
p=0
From this we read off the recursion relation
p (p + 1) โ ` (` + 1)
ap .
(p + 2) (p + 1)
ap+2 =
(b) For large values of p,
ap+2 โ
p
ap .
p+2
with the (approximate) solution
ap โ
C
.
p
and this gives the behavior
f (x) โ C
X1
p
xp โ log
1
1โx
which diverges at x = 1. (There will be finite corrections coming from the low values of p, but these cannot fix
the divergence.)
(c) For ` = 0 we need the even function (a1 = 0) and the recursion relation gives a2 = 0 so that
P0 (x) = a0 .
For ` = 1 we need the odd function (a0 = 0) and the recursion relation gives a3 = 0 so that
P1 (x) = a1 x .
For ` = 2 we need the even function again and the recursion relation gives a2 = โ3 a0 and a4 = 0 so that
P2 (x) = a0 1 โ 3 x2 .
For ` = 3 we need the odd function again and the recursion relation gives a3 = โ5/3 a1 and a5 = 0 so that
5 3
P3 (x) = a1 x โ x
.
3
Document Preview (62 of 451 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Introduction to Quantum Mechanics, 3rd Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Mia Garcia
0 (0 Reviews)
Best Selling
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)