Preview Extract
Fluid Mechanics, 6th Ed.
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
Kundu, Cohen, and Dowling
Exercise 2.1. For three spatial dimensions, rewrite the following expressions in index notation
and evaluate or simplify them using the values or parameters given, and the definitions of ฮดij and
ฮตijk wherever possible. In b) through e), x is the position vector, with components xi.
a) b โ
c where b = (1, 4, 17) and c = (โ4, โ3, 1)
b) (u โ
โ ) x where u a vector with components ui.
c) โฯ , where ฯ = h โ
x and h is a constant vector with components hi.
d) โ ร u, where u = ฮฉ ร x and ฮฉ is a constant vector with components ฮฉi.
“1 2 3&
$
$
e) Cโฌ
โ
x , where C = #0 1 2′
$0 0 1$
%
(
Solution 2.1. a) b โ
c = bic i = 1(โ4) + 4(โ3) + 17(1) = โ4 โ12 + 17 = +1
+x .
+ % โ (
% โ (
% โ (.- 1 0
โฌ
โ
b) (u โ
โ ) x = u j
x i = -u1′ * + u2 ‘
* + u3 ‘
*0 x 2
โx j
โx1 )
โx 2 )
โx 3 )/- 0
&
&
&
,
โฌ
-,x 3 0/
) # โx &
# โx &
# โx & ,
+ u1% 1 ( + u2 % 1 ( + u3 % 1 (.
$ โx 2 ‘
$ โx 3 ‘. )u โ
1+ u โ
0 + u โ
0,
+ $ โx1 ‘
) u1 ,
2
3
# โx 2 &
# โx 2 &. + 1
+ # โx 2 &
.
+ .
= +u1%
( + u2 %
( + u3 %
(. = +u1 โ
0 + u2 โ
1+ u3 โ
0. = u jฮดij = +u2 . = ui
$ โx 2 ‘
$ โx 3 ‘.
+ $ โx1 ‘
+
.
+*u3 .#
&
#
&
# โx 3 &. *u1 โ
0 + u2 โ
0 + u3 โ
1โx 3
+ โx 3
+u1%$ โx (‘ + u2 %$ โx (‘ + u3 %$ โx (‘.
*
1
2
3 โฯ
โ
โx i
c) โฯ =
=
( hi x i ) = hi = hiฮดij = h j = h
โx j โx j
โx j
โฌ ร u = โ ร (ฮฉ ร x ) = ฮต โ (ฮต ฮฉ x ) = ฮต ฮต ฮฉ ฮด = (ฮด ฮด โ ฮด ฮด )ฮฉ ฮด = (ฮด ฮด โ ฮด ฮด )ฮฉ
d) โ
ijk
klm l m
ijk klm l jm
il jm
im jl
l jm
il jj
ij jl
l
โx j
= ( 3ฮดil โ ฮดil )ฮฉl = 2ฮดil ฮฉl = 2ฮฉl = 2ฮฉ
Here, the following identities have been used: ฮตijkฮตklm = ฮดilฮด jm โ ฮดimฮด jl , ฮดijฮด jk = ฮดik , ฮด jj = 3 , and
ฮดij ฮฉ j = ฮฉi
#1 2 3’# x1 ‘ # x1 + 2x 2 + 3x 3 ‘
โฌ
%
%% % %
%
e) C โ
x = Cij x j = $0 1 2($ x 2 ( = $โฌ x 2 + 2x 3 (
โฌ
โฌ
%0 0 1%% x % %
%
x3
&
)& 3 ) &
)
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.2. Starting from (2.1) and (2.3), prove (2.7).
Solution 2.2. The two representations for the position vector are:
x = x1e1 + x 2e 2 + x 3e 3 , or x = x1″e1″ + x 2″ e”2 + x 3” e”3 .
Develop the dot product of x with e1 from each representation,
e1 โ
x = e1 โ
( x1e1 + x 2e 2 + x 3e 3 ) = x1e1 โ
e1 + x 2e1 โ
e 2 + x 3e1 โ
e 3 = x1 โ
1+ x 2 โ
0 + x 3 โ
0 = x1 ,
and e1 โ
x = e1 โ
( x1#e1# + x #2e#2 +โฌx #3e#3 ) = x1#e1 โ
e1# + x #2e1 โ
e#2 + x #3e1 โ
e#3 = x #iC1i ,
โฌ
set these equal to find:
x1 = x “iC1i ,
โฌ
where Cij = e i โ
e#j is a 3 ร 3 matrix of direction cosines. In an entirely parallel fashion, forming
โฌ
the dot product of x with e2, and x with e2 produces:
โฌ x 2 = x “iC2i and x 3 = x “iC3i .
Thus, for any component xj, where j = 1, 2, or 3, we have:
โฌ
x j = x “iC ji ,
which is (2.7).
โฌ
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.3. For two three-dimensional vectors with Cartesian components ai and bi, prove the
Cauchy-Schwartz inequality: (aibi)2 โค (ai)2(bi)2.
Solution 2.3. Expand the left side term,
(ai bi )2 = (a1b1 + a2 b2 + a3b3 )2 = a12 b12 + a22 b22 + a32 b32 + 2a1b1a2 b2 + 2a1b1a3b3 + 2a2 b2 a3b3 ,
then expand the right side term,
(ai )2 (bi )2 = (a12 + a22 + a32 )(b12 + b22 + b32 )
= a12 b12 + a22 b22 + a32 b32 + (a12 b22 + a22 b12 ) + (a12 b32 + a32 b12 ) + (a32 b22 + a22 b32 ).
Subtract the left side term from the right side term to find:
(ai )2 (bi )2 โ (ai bi )2
= (a12 b22 โ 2a1b1a2 b2 + a22 b12 ) + (a12 b32 โ 2a1b1a3b3 + a32 b12 ) + (a32 b22 โ 2a2 b2 a3b3 + a22 b32 )
2
= (a1b2 โ a2 b1 )2 + (a1b3 โ a3b1 )2 + (a3b2 โ a2 b3 )2 = a ร b .
Thus, the difference (ai )2 (bi )2 โ (ai bi )2 is greater than zero unless a = (const.)b then the
difference is zero.
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.4. For two three-dimensional vectors with Cartesian components ai and bi, prove the
triangle inequality: a + b โฅ a + b .
Solution 2.4. To avoid square roots, square both side of the equation; this operation does not
change the equation’s meaning. The left side becomes:
2
2
2
(a + b) = a +2 a b + b ,
and the right side becomes:
2
2
2
a + b = (a + b)โ
(a + b) = a โ
a + 2a โ
b + b โ
b = a + 2a โ
b + b .
So,
2
2
( a + b ) โ a + b = 2 a b โ 2a โ
b .
Thus, to prove the triangle equality, the right side of this last equation must be greater than or
equal to zero. This requires:
a b โฅ a โ
b or using index notation: ai2 bi2 โฅ ai bi ,
which can be squared to find:
ai2 bi2 โฅ (ai bi )2 ,
and this is the Cauchy-Schwartz inequality proved in Exercise 2.3. Thus, the triangle equality is
proved.
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.5. Using Cartesian coordinates where the position vector is x = (x1, x2, x3) and the
fluid velocity is u = (u1, u2, u3), write out the three components of the vector:
(u โ
โ)u = ui โu j โx i .
(
)
Solution 2.5.
โฌ
โฌ
+ % โu (
% โu (
% โu ( /
– u1’ 1 * + u2 ‘ 1 * + u3 ‘ 1 * & โx 2 )
& โx 3 ) – & โx1 )
% โu (
% โu (
% โu (
% โ u ( – % โu (
% โu (
% โu (a) (u โ
โ )u = ui ‘ j * = u1’ j * + u2 ‘ j * + u3 ‘ j * = , u1’ 2 * + u2 ‘ 2 * + u3 ‘ 2 *0
& โx i )
& โx1 )
& โx 2 )
& โx 3 ) – & โx1 )
& โx 2 )
& โx 3 )%
(
%
(
% โu3 (- โu3
โ u3
u
+
u
+
u
‘
*
‘
*
*- 1
2
3’
& โx 2 )
& โx 3 )1
. & โx1 )
) # โu & # โu &
# โu & + u% ( + v% ( + w% ( +
$ โz ‘ +
+ $ โx ‘ $ โy ‘
+ # โv & # โv &
# โv & +
= * u% ( + v% ( + w% ( .
$ โz ‘ +
+ $ โx ‘ $ โy ‘
#
&
+ # โw &
# โw &+
โw
+ u%$ (‘ + v% ( + w%$ (‘+
โz /
$ โy ‘
, โx
(
)
The vector in this exercise, (u โ
โ )u = ui โu j โx i , is an important one in fluid mechanics. As
described in Ch. 3, it is the nonlinear advective acceleration.
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.6. Convert โ ร โฯ to indicial notation and show that it is zero in Cartesian
coordinates for any twice-differentiable scalar function ฯ.
Solution 2.6. Start with the definitions of the cross product and the gradient.
โ
โ 2ฯ
โ ร ( โฯ ) = ฮตijk
(โฯ )k = ฮตijk
โxj
โ x jโ xk
Write out the vector component by component recalling that ฮตijk = 0 if any two indices are equal.
Here the “i” index is the free index.
!
2
2
# ฮต123 โ ฯ + ฮต132 โ ฯ
โ x2โ x3
โ x3โ x2
#
#
2
2
#
โ ฯ
โ ฯ
โ 2ฯ
ฮตijk
= ” ฮต 213
+ ฮต 231
โ x jโ xk #
โ x1โ x3
โ x3โ x1
#
2
โ ฯ
โ 2ฯ
# ฮต312
+ ฮต321
โ x1โ x2
โ x2โ x1
#
$
% !
2
2
# # โ ฯ โ โ ฯ
# # โ x2โ x3 โ x3โ x2
# #
# #
โ 2ฯ
โ 2ฯ
=
โ
+
& ”
# # โ x1โ x3 โ x3โ x1
# # โ 2ฯ
โ 2ฯ
# #
โ
#
‘ #
$ โ x1โ x2 โ x2โ x1
%
#
#
#
#
&=0,
#
#
#
#
‘
where the middle equality follows from the definition of ฮตijk (2.18), and the final equality follows
โ 2ฯ
โ 2ฯ
when ฯ is twice differentiable so that
.
=
โx jโx k โx kโx j
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.7. Using indicial notation, show that a ร (b ร c) = (a โ
c)b โ (a โ
b)c. [Hint: Call d โก b
ร c. Then (a ร d)m = ฮตpqmapdq = ฮตpqmapฮตijqbicj. Using (2.19), show that (a ร d)m = (a โ
c)bm โ (a โ
b)cm.]
Solution 2.7. Using the hint and the definition of ฮตijk produces:
(a ร d)m = ฮตpqmapdq = ฮตpqmapฮตijqbicj = ฮตpqmฮตijq bicjap = โฮตijqฮตqpm bicjap.
Now use the identity (2.19) for the product of epsilons:
(a ร d)m = โ (ฮดipฮดjm โ ฮดimฮดpj) bicjap = โ bpcmap + bmcpap.
Each term in the final expression involves a sum over “p”, and this is a dot product; therefore
(a ร d)m = โ (a โ
b)cm + bm(a โ
c).
Thus, for any component m = 1, 2, or 3,
a ร (b ร c) = โ (a โ
b)c + (a โ
c)b = (a โ
c)b โ (a โ
b)c.
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.8. Show that the condition for the vectors a, b, and c to be coplanar is ฮตijkaibjck = 0.
Solution 2.8. The vector b ร c is perpendicular to b and c. Thus, a will be coplanar with b and c
if it too is perpendicular to b ร c. The condition for a to be perpendicular with b ร c is:
a โ
(b ร c) = 0.
In index notation, this is aiฮตijkbjck = 0 = ฮตijkaibjck.
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.9. Prove the following relationships: ฮดijฮดij = 3, ฮตpqrฮตpqr = 6, and ฮตpqiฮตpqj = 2ฮดij.
Solution 2.9. (i) ฮดijฮดij = ฮดii = ฮด11 + ฮด22 + ฮด33 = 1 + 1 + 1 = 3.
For the second two, the identity (2.19) is useful.
(ii) ฮตpqrฮตpqr = ฮตpqrฮตrpq = ฮดppฮดqq โ ฮดpqฮดpq = 3(3) โ ฮดpp = 9 โ 3 = 6.
(iii) ฮตpqiฮตpqj = ฮตipqฮตpqj = โ ฮตipqฮตqpj = โ (ฮดipฮดpj โ ฮดijฮดpp) = โ ฮดij + 3ฮดij = 2ฮดij.
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.10. Show that Cโ
CT = CTโ
C = ฮด, where C is the direction cosine matrix and ฮด is the
matrix of the Kronecker delta. Any matrix obeying such a relationship is called an orthogonal
matrix because it represents transformation of one set of orthogonal axes into another.
Solution 2.10. To show that Cโ
CT = CTโ
C = ฮด, where C is the direction cosine matrix and ฮด is
the matrix of the Kronecker delta. Start from (2.5) and (2.7), which are
x “j = x iCij and x j = x “iC ji ,
respectively, and change the index “i” into “m” on (2.5): x “j = x m Cmj . Substitute this into (2.7) to
find:
x j = x “iC ji = ( x m Cmi )C ji = CmiC ji x m .
โฌ
โฌ
However, we also have xj = ฮดjmxm, so
โฌ
ฮด jm x m = CmiC ji x m โ ฮด jm = CmiC ji ,
which can be written:โฌ
ฮด jm = CmiCijT = Cโ
CT,
and taking the transpose
โฌ of the thisT produces:
T
(ฮด jm ) = ฮดmj = (CmiCijT ) = CmiT Cij = CTโ
C.
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.11. Show that for a second-order tensor A, the following quantities are invariant
under the rotation of axes:
I1 = Aii , I 2 =
A11
A12
A21
A22
+
A22
A23
A32
A33
+
A11
A13
A31
A33
, and I3 = det(Aij).
[Hint: Use the result of Exercise 2.8 and the transformation rule (2.12) to show that Iสนโฒ1 = Aสนโฒii =
Aii.= I1. Then show that AijAji and AijAjkAki are also invariants. In fact, all contracted scalars of the
I 2 = 12 “# I12 โ Aij A ji $% ,
form AijAjk โ
โ
โ
Ami are invariants. Finally, verify that
I 3 = 13 “# Aij A jk Aki โ I1 Aij A ji + I 2 Aii $% . Because the right-hand sides are invariant, so are I2 and I3.]
Solution 2.11. First prove I1 is invariant by using the second order tensor transformation rule
(2.12):
” = Cim C jn Aij .
Amn
Replace Cjn by CnjT and set n = m,
” = CimCnjT Aij โ Amm
” = Cim CmjT Aij .
Amn
T
Use the result of Exercise 2.8, โฌ
ฮดij = Cim Cmj
= , to find:
” = ฮดij Aij = Aii .
I1 = Amm
โฌ
Thus, the first invariant
โฌ is does not depend on a rotation of the coordinate axes.
Now considerโฌwhether or not AmnAnm is invariant under a rotation of the coordinate axes.
Start with a double application of (2.12):
โฌ
T
” Anm
” = Cim C jn Aij C pn Cqm A pq = C jn CnpT Cim Cmq
Amn
Aij A pq .
From the result of Exercise 2.8, the factors in parentheses in the last equality are Kronecker delta
functions, so
” Anm
” = ฮด jpฮดiq Aij A pq = Aij A ji .
Amn
โฌ
Thus, the matrix contraction AmnAnm does not depend on a rotation of the coordinate axes.
The manipulations for AmnAnpApm are a straightforward extension of the prior efforts for
Aii and AijAji.
โฌ
” Anp
” A”pm = Cim C jn Aij Cqn Crp Aqr Csp Ctm Ast = C jn CnqT Crp C psT CimCmtT Aij Aqr Ast .
Amn
Again, the factors in parentheses are Kronecker delta functions, so
” Anp
” A”pm = ฮด jqฮดrsฮดit Aij Aqr Ast = Aiq Aqs Asi ,
Amn
which implies that the matrix contraction AijAjkAki does not depend on a rotation of the coordinate
โฌ axes.
Now, for the second invariant, verify the given identity, starting from the given definition
โฌ
for I2.
A
A12 A22 A23 A11 A13
I2 = 11
+
+
A21 A22 A32 A33 A31 A33
= A11 A22 โ A12 A21 + A22 A33 โ A23 A32 + A11 A33 โ A13 A31
= A11 A22 + A22 A33 + A11 A33 โ ( A12 A21 + A23 A32 + A13 A31 )
(
(
โฌ
โฌ
โฌ
โฌ
โฌ
) (
)(
)(
)(
) (
)(
)
)(
)(
(
)
= 12 A112 + 12 A222 + 12 A332 + A11 A22 + A22 A33 + A11 A33 โ A12 A21 + A23 A32 + A13 A31 + 12 A112 + 12 A222 + 12 A332
=
1
2
2
[ A11 + A22 + A33 ] โ (2A12 A21 + 2A23 A32 + 2A13 A31 + A + A + A )
1
2
2
11
2
22
2
33
)
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
= 12 I12 โ 12 ( A11 A11 + A12 A21 + A13 A31 + A12 A21 + A22 A22 + A23 A32 + A13 A31 + A23 A32 + A33 A33 )
= 12 I12 โ 12 ( Aij A ji ) = 12 (I12 โ Aij A ji )
Thus, since I2 only depends on I1 and AijAji, it is invariant under a rotation of the coordinate axes
because I1 and AijAji are invariant under a rotation of the coordinate axes.
The manipulations for the third invariant are a tedious but not remarkable. Start from the
given definition for I3, and group like terms.
โฌ
โฌ
I3 = det ( Aij ) = A11 (A22 A33 โ A23 A32 ) โ A12 (A21 A33 โ A23 A31) + A13 (A21 A32 โ A22 A31 )
= A11 A22 A33 + A12 A23 A31 + A13 A32 A21 โ ( A11 A23 A32 + A22 A13 A31 + A33 A12 A21 )
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
(a)
Now work from the given identity. The triple matrix product AijAjkAki has twenty-seven terms:
A113 + A11 A12 A21 + A11 A13 A31 + A12 A21 A11 + A12 A22 A21 + A12 A23 A31 + A13 A31 A11 + A13 A32 A21 + A13 A33 A31 +
3
โฌ A21 A11 A12 + A21 A12 A22 + A21 A13 A32 + A22 A21 A12 + A22 + A22 A23 A32 + A23 A31 A12 + A23 A32 A22 + A23 A33 A32 +
A31 A11 A13 + A31 A12 A23 + A31 A13 A33 + A32 A21 A13 + A32 A22 A23 + A32 A23 A33 + A33 A31 A13 + A33 A32 A23 + A333
These can be grouped as follows:
Aij A jk Aki = 3(A12 A23 A31 + A13 A32 A21 ) + A11(A112 + 3A12 A21 + 3A13 A31) +
2
2
(b)
A22 (3A21 A12 + A22
+ 3A23 A32 ) + A33 (3A31 A13 + 3A32 A23 + A33
)
The remaining terms of the given identity are:
โI1 Aij A ji + I2 Aii = I1(I2 โ Aij A ji ) = I1 (I2 + 2I2 โ I12 ) = 3I1I2 โ I13 ,
whereโฌthe result for I2 has been used. Evaluating the first of these two terms leads to:
3I1I2 = 3(A11 + A22 + A33 )(A11 A22 โ A12 A21 + A22 A33 โ A23 A32 + A11 A33 โ A13 A31 )
= 3(A11 + A22 + A33 )(A11 A22 + A22 A33 + A11 A33 ) โ 3(A11 + A22 + A33 )(A12 A21 + A23 A32 + A13 A31 ) .
โฌ to (b) produces:
Adding this
Aij A jk Aki + 3I1I2 = 3(A12 A23 A31 + A13 A32 A21 ) + 3(A11 + A22 + A33 )(A11 A22 + A22 A33 + A11 A33 ) +
2
2
A11 (A112 โ 3A23 A32 ) + A22 (A22
โ 3A13 A31 ) + A33 (A33
โ 3A12 A21 )
= 3(A12 A23 A31 + A13 A32 A21 โ A11 A23 A32 โ A22 A13 A31 โ A33 A12 A21 ) +
3
3
(c)
3(A11 + A22 + A33 )(A11 A22 + A22 A33 + A11 A33 ) + A113 + A22
+ A33
The last term of the given identity is:
โฌ3
3
3
2
2
2
2
2
2
I13 = Aโฌ
11 + A22 + A33 + 3(A11 A22 + A11 A33 + A22 A11 + A22 A33 + A33 A11 + A33 A22 ) + 6A11 A22 A33
3
3
= A113 + A22
+ A33
+ 3(A11 + A22 + A33 )(A11 A22 + A11 A33 + A22 A33 ) โ 3A11 A22 A33
โฌ
Subtracting this from (c) produces:
Aij A jk Aki + 3I1I2 โ I13 = 3(A12 A23 A31 + A13 A32 A21 โ A11 A23 A32 โ A22 A13 A31 โ A33 A12 A21 + A11 A22 A33 )
= 3I3 .
This verifies that the given identity for I3 is correct. Thus, since I3 only depends on I1, I2, and
AijAjkAki, it is invariant under a rotation of the coordinate axes because these quantities are
โฌ
invariant under a rotation of the coordinate axes as shown above.
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.12. If u and v are vectors, show that the products uiฯ
j obey the transformation rule
(2.12), and therefore represent a second-order tensor.
Solution 2.12. Start by applying the vector transformation rule (2.5 or 2.6) to the components of
u and v separately,
u”m = Cim ui , and v “n = C jn v j .
The product of these two equations produces:
u”m v “n = Cim C jn uiv j ,
which is the same as (2.12)
tensors.
โฌ for second order
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.13. Show that ฮดij is an isotropic tensor. That is, show that ฮดสนโฒij = ฮดij under rotation of
the coordinate system. [Hint: Use the transformation rule (2.12) and the results of Exercise 2.10.]
Solution 2.13. Apply (2.12) to ฮดij,
” = CimC jnฮดij = CimCin = CmiT Cin = ฮดmn .
ฮดmn
where the final equality follows from the result of Exercise 2.10. Thus, the Kronecker delta is
invariant under coordinate rotations.
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.14. If u and v are arbitrary vectors resolved in three-dimensional Cartesian
2
coordinates, use the definition of vector magnitude, a = a โ
a , and the Pythagorean theorem to
show that uโ
v = 0 when u and v are perpendicular.
โฌ
Solution 2.14. Consider the magnitude of the sum u + v,
2
u + v = (u1 + v1 ) 2 + (u2 + v 2 ) 2 + (u3 + v 3 ) 2
= u12 + u22 + u32 + v12 + v 22 + v 32 + 2u1v1 + 2u2v 2 + 2u3v 3
2
2
= u + v + 2u โ
v ,
which can be rewritten:
2
2
2
u + v โ u โ v = 2u โ
v .
โฌ
โฌWhen u and v are perpendicular, the Pythagorean theorem requires the left side to be zero. Thus,
u โ
v = 0.
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.15. If u and v are vectors with magnitudes u and ฯ
, use the finding of Exercise 2.14
to show that uโ
v = uฯ
cosฮธ where ฮธ is the angle between u and v.
Solution 2.15. Start with two arbitrary vectors (u and v), and view them so that the plane they
define is coincident with the page and v is horizontal. Consider two additional vectors, ฮฒv and w,
that are perpendicular (vโ
w = 0) and can be summed together to produce u: w + ฮฒv = u.
u
w
ฮธ
v
ฮฒv
Compute the dot-product of u and v:
uโ
v = (w + ฮฒv) โ
v = wโ
v + ฮฒvโ
v = ฮฒฯ
2.
where the final equality holds because vโ
w = 0. From the geometry of the figure:
ฮฒv ฮฒฯ
u
, or ฮฒ = cosฮธ .
cosฮธ โก
=
ฯ
u
u
Insert this into the final equality for uโ
v to find:
%u
(
u โ
v = ‘ cos ฮธ *ฯ
2 = uฯ
cosฮธ .
&ฯ
โฌ )
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.16. Determine the components of the vector w in three-dimensional Cartesian
coordinates when w is defined by: uโ
w = 0, vโ
w = 0, and wโ
w = u2ฯ
2sin2ฮธ, where u and v are
known vectors with components ui and ฯ
i and magnitudes u and ฯ
, respectively, and ฮธ is the
angle between u and v. Choose the sign(s) of the components of w so that w = e3 when u = e1
and v = e2.
Solution 2.16. The effort here is primarily algebraic. Write the three constraints in component
form:
uโ
w = 0, or u1w1 + u2 w 2 + u3 w 3 = 0 ,
(1)
vโ
w = 0, or ฯ
1w1 + ฯ
2 w 2 + ฯ
3 w 3 = 0 , and
(2)
The third one requires a little more effort since the angle needs to be eliminated via a dot
product:
โฌ
wโ
w = u2ฯ
2sin2ฮธ = u2ฯ
2(1 โ cos2ฮธ) = u2ฯ
2 โ (uโ
w)2 or
โฌ
w12 + w 22 + w 32 = (u12 + u22 + u32 )(ฯ
12 + ฯ
22 + ฯ
32 ) โ (u1ฯ
1 + u2ฯ
2 + u3ฯ
3 ) 2 , which leads to
(3)
w12 + w 22 + w 32 = (u1ฯ
2 โ u2ฯ
1 ) 2 + (u1ฯ
3 โ u3ฯ
1 ) 2 + (u2ฯ
3 โ u3ฯ
2 ) 2 .
Equation (1) implies:
(4)
w1 = โ(w 2 u2 + w 3 u3 ) u1
โฌ
Combine (2) and (4) to eliminate w1, and solve the resulting equation for w2:
โฌ
$ ฯ
‘
$ ฯ
‘
โฯ
1 (w 2 u2 + w 3 u3 ) u1 + ฯ
2 w 2 + ฯ
3 w 3 = 0 , or &โ 1 u2 + ฯ
2 )w 2 + & โ 1 u3 + ฯ
3 ) w 3 = 0 .
% u1
(
% u1
(
โฌ
Thus:
$ฯ
‘ $ ฯ
‘
$u ฯ
โ uฯ
‘
(5)
w 2 = +w 3 & 1 u3 โ ฯ
3 ) &โ 1 u2 + ฯ
2 ) = w 3 & 3 1 1 3 ) .
โฌ
% u1
( โฌ % u1
(
% u1ฯ
2 โ u2ฯ
1 (
Combine (4) and (5) to find:
‘
w $$ ฯ
u โ ฯ
3 u1 ‘
w 3 $ ฯ
1u3 u2 โ ฯ
3 u1u2 + ฯ
2 u1u3 โ ฯ
1u2 u3 ‘
w1 = โ 3 && 1 3
+)
) u2 + u3 ) = โ &
u1 %% ฯ
2 u1 โ ฯ
1u2 (
u1 %
ฯ
2 u1 โ ฯ
1u2
(
(
โฌ
$ u2ฯ
3 โ u3ฯ
2 ‘
w $ โฯ
u u + ฯ
2 u1u3 ‘
(6)
=โ 3& 3 1 2
) = w3&
).
u1 % ฯ
2 u1 โ ฯ
1u2 (
% u1ฯ
2 โ u2ฯ
1 (
Put
โฌ (5) and (6) into (3) and factor out w3 on the left side, then divide out the extensive common
factor that (luckily) appears on the right and as the numerator inside the big parentheses.
$โฌ
(u2ฯ
3 โ u3ฯ
2 ) 2 + (u3ฯ
1 โ u1ฯ
3 ) 2 + (u1ฯ
2 โ u2ฯ
1 ) 2 ‘
2
2
2
w &
) = (u1ฯ
2 โ u2ฯ
1 ) + (u1ฯ
3 โ u3ฯ
1 ) + (u2ฯ
3 โ u3ฯ
2 )
2
(u1ฯ
2 โ 2u$2ฯ
1 ) 1
‘
%
(
,
so
w 3 = ยฑ(u1ฯ
2 โ u2ฯ
1 ) .
w3 &
=
1
)
2
% (u1ฯ
2 โ u2ฯ
1 ) (
If u = (1,0,0), and v = (0,1,0), then using the plus sign produces w3 = +1, so w 3 = +(u1ฯ
2 โ u2ฯ
1 ) .
Cyclic permutation of the indices allows the other components of w to be determined:
w1โฌ= u2ฯ
3 โ u3ฯ
2 ,
โฌ
w 2 = u3ฯ
1 โ u1ฯ
3 ,
โฌ
w 3 = u1ฯ
2 โ u2ฯ
1 .
2
3
โฌ
โฌ
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.17. If a is a positive constant and b is a constant vector, determine the divergence and
the curl of u = ax/x3 and u = bร(x/x2) where x = x12 + x 22 + x 32 โก x i x i is the length of x.
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
โฌ
Solution 2.17. Start with the divergence calculations, and use x = x12 + x 22 + x 32 to save writing.
$
‘ $
‘
$ ax ‘ $ โ โ โ ‘ &
x1โฌ, x 2 , x 3
) = a& โ , โ , โ ) โ
$& x1, x 2 , x 3 ‘)
โ โ
& 3 ) = a& ,
,
)โ
% x ( % โx1 โx 2 โx 3 ( & [ x 2 + x 2 + x 2 ] 3 2 ) % โx1 โx 2 โx 3 ( % x 3 (
2
3
% 1
(
โฌ
# โ # x1 & โ # x 2 & โ # x 3 && # 1 3 x1
&
1 3 x2
1 3 x3
= a% % 3 ( +
2×1 ) + 3 โ
2x 2 ) + 3 โ
2x 3 )(
% 3(+
% 3 (( = a% 3 โ
5 (
5 (
5 (
‘
2x
x
2x
x
2x
$ โx1 $ x ‘ โx 2 $ x ‘ โx 3 $ x ” $ x
# 3 3( x 2 + x 2 + x 2 ) & # 3
3&
1
2
3
( = a% 3 โ 3 ( = 0 .
= a%% 3 โ
5
(
x
x ‘
$x
‘ $x
Thus, the vector field ax/x3 is divergence free even though it points away from the origin
everywhere.
% b ร x ( % โ โ โ ( % b2 x 3 โ b3 x 2 ,b3 x1 โ b1 x 3 ,b1 x 3 โ b2 x1 (
โโ
’ 2 * =’ ,
,
*โ
’
*
& x ) & โx1 โx 2 โx 3 ) &
x12 + x 22 + x 32
)
$ โ $ b x โ b x ‘ โ $ b3 x1 โ b1 x 3 ‘ โ $ b1 x 2 โ b2 x1 ”
=& & 2 3 2 3 2)+
&
)+
&
))
( โx 2 %
( โx 3 %
((
x
x2
x2
% โx1 %
# 2
&
# 2
&
# 2
&
= (b2 x 3 โ b3 x 2 )%โ 4 (2×1 )( + (b3 x1 โ b1 x 3 )% โ 4 (2x 2 )( + (b1 x 2 โ b2 x1 )%โ 4 (2x 3 )(
$ x
‘
$ x
‘
$ x
‘
4
= โ 4 (b2 x 3 x1 โ b3 x 2 x1 + b3 x1 x 2 โ b1 x 3 x 2 + b1 x 2 x 3 โ b2 x1 x 3 ) = 0 .
x
This field is divergence free, too. The curl calculations produce:
$ ax ‘ $ โ โ โ ‘ $ x1, x 2 , x 3 ‘ $ โx โ3
โx โ3 โx โ3
โx โ3
โx โ3
โx โ3 ‘
โ ร & 3 ) = a& ,
,
ร
=
a
x
โ
x
,
x
โ
x
,
x
โ
x
) &
) &
)
2
1
3
2
1
% x ( % โx1 โx 2 โx 3 ( % x 3 ( % 3 โx 2
โx 3
โx 3
โx1
โx1
โx 2 (
# 3 x3
&
3 x2
3x
3 x3
3 x2
3 x1
= a% โ
2x 2 ) +
2x 3 ),โ 15 (2x 3 ) +
2×1 ),โ
2×1 ) +
2x 2 )( = (0,0,0)
5 (
5 (
5 (
5 (
5 (
$ 2x
‘
2x
2x
2x
2x
2x
3
Thus, thus the vector field ax/x is also irrotational.
$ b ร x ‘ $ โ โ โ ‘ $ b2 x 3 โ b3 x 2 ,b3 x1 โ b1 x 3 ,b1 x 2 โ b2 x1 ‘
โ ร& 2 ) = & ,
,
) ร&
).
% x ( % โx1 โx 2 โx 3 ( %
x12 + x 22 + x 32
(
There are no obvious simplifications here. Therefore, compute the first component and obtain the
others by cyclic permutation of the indices.
$b ร x’
โ $ b1 x 2 โ b2 x1 ‘ โ $ b3 x1 โ b1 x 3 ‘
โ ร& 2 ) =
&
)โ
&
)
% x (1 โx 2 %
( โx 3 %
(
x2
x2
#
&
# โ2 &
b
โ2
b
= 12 + (b1 x 2 โ b2 x1 )% 4 (2x 2 + 12 โ (b3 x1 โ b1 x 3 )% 4 (2x 3
$x ‘
$x ‘
x
x
2
2
2
2b x โ 4b1 x 2 + 4b2 x1 x 2 + 4b3 x1 x 3 โ 4b1 x 3
2b 4 x
= 1
= โ 21 + 41 (b1 x1 + b2 x 2 + b3 x 3 )
4
x
x
x
This field is rotational. The other two components of its curl are:
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
$b ร x’
$b ร x’
2b 4 x
2b 4 x
โ ร & 2 ) = โ 22 + 42 (b1 x1 + b2 x 2 + b3 x 3 ) , โ ร & 2 ) = โ 23 + 43 (b1 x1 + b2 x 2 + b3 x 3 ) .
% x (2
% x (3
x
x
x
x
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.18. Obtain the recipe for the gradient of a scalar function in cylindrical polar
coordinates from the integral definition (2.32).
โฌ
Solution 2.18. Start from the appropriate form of (2.32),
ez
1
“z
z
โฮจ = lim โซโซ ฮจndA , where ฮจ is a scalar function of
e!
V โ0 V
A
“!
position x. Here we choose a nearly rectangular volume
“R
eR
V = (Rฮฯ)(ฮR)(ฮz) centered on the point x = (R, ฯ, z)
with sides aligned perpendicular to the coordinate
y
directions. Here the e unit vector depends on ฯ so its
!
direction is slightly different at ฯ ยฑ ฮฯ/2. For small ฮฯ,
R
x
this can be handled by keeping the linear term of a
simple Taylor series: [eฯ ]
โ
eฯ ยฑ (ฮฯ 2)(โeฯ โฯ ) = eฯ ๏ญ (ฮฯ 2)e R . Considering the drawing
ฯ
ฯ ยฑฮฯ 2
and noting that n is an outward normal, there are six contributions to ndA:
#
$
ฮR &
ฮR ‘
outside = % R +
inside = โ& R โ
(ฮฯฮze R ,
)ฮฯฮze R ,
$
%
2 ‘
2 (
โฌ
%
%
ฮฯ (
ฮฯ (
e R *,
eR * ,
close vertical side = ฮRฮz’โeฯ โ
more distant vertical side = ฮRฮz’eฯ โ
&
)
&
)
2
2
top = RฮฯฮRe z ,
โฌ
โฌand bottom = โRฮฯฮRe z .
Here all the unit vectors are evaluated at the center of the volume. Using a two term Taylor series
approximation for ฮจ on each of the six surfaces, and taking the six contributions in the same
โฌ
โฌ
order, the integral definition becomes a sum of six terms representing ฮจndA.
โฌ
โฌ
5.(
9
1 .(
1
ฮR โฮจ +(
ฮR +
ฮR โฮจ +(
ฮR +
-* R +
-e R ฮฯฮz3 โ 0* ฮจ โ
-* R โ
-e R ฮฯฮz3 +
70* ฮจ +
7
2 โR ,)
2 ,
2 โR ,)
2 ,
2 /)
2
7/)
7
7
77
.
1
.
1
(
7(
1
ฮฯ โฮจ +(
ฮฯ +
ฮฯ โฮจ +(
ฮฯ +
โฮจ = lim
โe
โ
e
ฮRฮz
+
ฮจ
+
e
โ
e
ฮRฮz
+
60* ฮจ โ
:
*
*
3
0
3
– ฯ
*
– ฯ
R
R
ฮR โ0 RฮฯฮRฮz
)
,
)
,
2
โฯ
2
2
โฯ
2
)
,
)
,
/
2
/
2
7
7
ฮฯ โ0
ฮz โ0
7.(
7
1 .(
1
+
+
70* ฮจ + ฮz โฮจ -e z RฮฯฮR3 โ 0* ฮจ โ ฮz โฮจ -e z RฮฯฮR3 + …
7
78/)
7;
2 โz ,
2 โz ,
2 /)
2
โฌ
โฌ
โฌ
Here the mean value theorem has been used and all listings of ฮจ and its derivatives above are
evaluated at the center of the volume. The largest terms inside the big {,}-brackets are
proportional to ฮฯฮRฮz. The remaining higher order terms vanish when the limit is taken.
/( ฮจ
3
( ฮจ
R โฮจ +
R โฮจ +
e R -ฮฯฮRฮz โ *โ e R โ
e R -ฮฯฮRฮz +1
1* e R +
) 2
2 โR ,
2 โR ,
1) 2
1
( eฯ โฮจ e R +
1(eฯ โฮจ e R +
1
1
โฮจ = lim
โ ฮจ-ฮฯฮRฮz + *
โ ฮจ-ฮฯฮRฮz +
0*
4
ฮR โ0 RฮฯฮRฮz ) 2 โฯ
2
2
โฯ
2
,
)
,
1
1
ฮฯ โ0
ฮz โ0
1( R โฮจ +
1
( R โฮจ +
e z -ฮฯฮRฮz โ *โ
e z -ฮฯฮRฮz + …
1*
1
) 2 โz ,
2) 2 โz ,
5
‘ฮจ
โฮจ
1 โฮจ
ฮจ
โฮจ *
โฮจ
1 โฮจ
โฮจ
โฮจ = ( e R +
eR +
eฯ โ e R +
ez + = eR
+ eฯ
+ ez
โR
R โฯ
R
โz ,
โR
R โฯ
โz
)R
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.19. Obtain the recipe for the divergence of a vector function in cylindrical polar
coordinates from the integral definition (2.32).
Solution 2.19. Start from the appropriate form of (2.32),
ez
1
“z
z
โ โ
Q = lim โซโซ n โ
QdA , where Q = (QR, Q , Qz) is a vector
V โ0 V
A
“!
function of position x. Here we choose a nearly rectangular
“R
volume V = (Rฮฯ)(ฮR)(ฮz) centered on the point x = (R, ฯ,
z) with sides aligned perpendicular to the coordinate
directions. Here the e unit vector depends on ฯ so its
!
direction is slightly different at ฯ ยฑ ฮฯ/2. Considering the x
R
drawing and noting that n is an outward normal, there are
six contributions to ndA:
#
$
ฮR &
ฮR ‘
outside = % R +
(ฮฯฮze R , inside = โ& R โ
)ฮฯฮze R , close vertical side = โฮRฮz[eฯ ]ฯ โฮฯ 2 ,
$
%
2 ‘
2 (
ฯ
โฌ
ฯ
more distant vertical side = ฮRฮz[eฯ ]
, top = RฮฯฮRe z , and bottom = โRฮฯฮRe z .
โฌ otherwise specified. Using
Here the unit vectors are evaluated
at the center of the volume unless
โฌ
โฌ
a two-term Taylor series approximation for the components of Q on each of the six surfaces, and
taking the six contributions to n โ
QdA inโฌthe same order, the integral
โฌ definition becomes:
โฌ
5.(
1
.
1 9
(
ฮR โQR +(
ฮR +
ฮR โQR +(
ฮR +
-* R +
-ฮฯฮz3 โ 0* QR โ
-* R โ
-ฮฯฮz3 +7
70* QR +
2 โR ,)
2 ,
2 โR ,)
2 ,
2 /)
2 7
7/)
77
1 .(
1
1 โฌ 77.(
ฮฯ โQฯ +
ฮฯ โQฯ +
โ โ
Q = lim
โฮRฮz
+
Q
+
ฮRฮz
+
60* Qฯ โ
:
)3 0* ฯ
3
-(
ฮR โ0 RฮฯฮRฮz
2
โฯ
2
โฯ
)
,
)
,
/
2
/
2
7
7
ฮฯ โ0
ฮz โ0
7.(
7
1 .(
1
+
+
70* Qz + ฮz โQz -RฮฯฮR3 โ 0*Qz โ ฮz โQz – RฮฯฮR3 + …
7
78/)
7;
2 โz ,
2 โz ,
2 /)
2
ฯ +ฮฯ 2
โฌ
โฌ
โฌ
Here the mean value theorem has been used and all listings of the components of Q and their
derivatives are evaluated at the center of the volume. The largest terms inside the big {,}brackets are proportional to ฮฯฮRฮz. The remaining higher order terms vanish when the limit is
taken.
0(QR R โQR +
4
( QR R โQR +
ฮ
ฯ
ฮRฮz
โ
โ
โ
ฮ
ฯ
ฮRฮz
+
2* +
2
*) 2 2 โR -,
2 โR -,
2) 2
2
(
+
(
+
2
2
1
1 โQฯ
1 โQฯ
โ โ
Q = lim
ฮฯฮRฮz + *
ฮฯฮRฮz +
1โ*โ
5
ฮR โ0 RฮฯฮRฮz
)2 โฯ ,
2 ) 2 โฯ ,
2
ฮฯ โ0
ฮz โ0
2( R โฮจ +
2
( R โฮจ +
ฮ
ฯ
ฮRฮz
โ
โ
ฮ
ฯ
ฮRฮz
+
…
2*
2
*) 2 โz -,
3) 2 โz ,
6
&Q
โQ
1 โQฯ โQz ) 1 โ
1 โQฯ โQz
โโ
Q =’ R + R +
+
+
*=
(RQR ) +
โR R โฯ
โz + R โ R
R โฯ
โz
(R
e!
eR
y
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.20. Obtain the recipe for the divergence of a vector function in spherical polar
coordinates from the integral definition (2.32).
z
Solution 2.20. Start from the appropriate
1
form of (2.32), โ โ
Q = lim โซโซ n โ
QdA ,
V โ0 V
A
#r
where Q = (Qr, Q , Q ) is a vector function
of position x. Here we choose a nearly
er
#”
rectangular
volume
V
=
(rฮ
ฮธ
)(rsin
ฮธ
ฮ
ฯ
)(ฮr)
โฌ
”
centered on the point x = (r, ฮธ, ฯ) with sides
e”
aligned perpendicular to the coordinate
directions. Here the unit vectors depend on
y
ฮธ and ฯ so directions are slightly different at
e!
rsin”
!
ฮธ ยฑ ฮฮธ/2, and ฯ ยฑ ฮฯ/2. Considering the x
#!
drawing and noting that n is an outward
normal, there are six contributions to ndA:
# ฮr & # ฮr &
$ ฮr ‘ $ ฮr ‘
outside = % r + (ฮฮธ% r + ( sin ฮธฮฯ (e r ) , inside = & r โ )ฮฮธ& r โ ) sin ฮธฮฯ (โe r ) ,
$
%
2′ $
2’
2( %
2(
bottom = [ r sin(ฮธ + ฮฮธ 2)ฮฯฮr](eฮธ )ฮธ +ฮฮธ 2 , top = [ r sin(ฮธ โ ฮฮธ 2)ฮฯฮr](โeฮธ )ฮธ โฮฮธ 2 ,
ฮธ
ฯ
close vertical side = rฮฮธฮr(โeฯ )
, and more distant vertical side = rฮฮธฮr(+eฯ )
.
ฯ โฮฯ 2
ฯ +ฮฯ 2
โฌHere the unit vectors are evaluated at the center
โฌ
of the volume unless otherwise specified. Using
a two-term Taylor series approximation โฌ
for the corresponding components of Q on each of the
โฌ
six surfaces produces:
% โฌ ฮฮธ โQฮธ (
$ โฌ ฮr โQr ‘
%
ฮr โQr (
outside: &Qr +
,
*(eฮธ )
)e r , inside: ‘Qr โ
*e r , bottom: ‘Qฮธ +
&
%
&
2 โฮธ ) ฮธ +ฮฮธ 2
2 โr (
2 โr )
&
&
ฮฮธ โQฮธ )
ฮฯ โQฯ )
top: (Qฮธ โ
+(eฮธ )ฮธ โฮฮธ 2 , close vertical side : (Qฯ โ
+(โeฯ )ฯ โฮฯ 2 , and
‘
2 โฮธ *
2 โฯ *
‘
ฮฯ โQฯ (
โฌ
โฌ %
โฌ
more distant vertical side : ‘Qฯ +
*(eฯ )ฯ +ฮฯ 2 .
2 โฯ )
&
to n โ
QdA , the integral definition becomes:
โฌ
โฌ Collecting and summing the six contributions
1
โ โ
Q = lim
ร
ฮr โ0 (rฮฮธ )(r sin ฮธฮฯ )ฮr
โฌ ฮฮฮธฯ โ0
โ0
โฌ
2
2
70*
3 0*
3;
ฮr โQr – * ฮr ฮr โQr – * ฮr 92,Qr +
/ฮฮธ, r + / sin ฮธฮฯ5 โ 2,Qr โ
/ฮฮธ, r โ / sin ฮธฮฯ5 9
2 โr . +
2.
2 โr . +
2.
91+
4 1+
49
9
9
3 0*
39
9 0*
*
*
ฮฮธ โQฮธ ฮฮธ ฮฮธ โQฮธ ฮฮธ 8+2, Qฮธ +
/r sin,ฮธ +
/ฮฯฮr5 โ 2, Qฮธ โ
/ r sin,ฮธ โ
/ฮฯฮr5<
+
+
2 โฮธ .
2 .
2 โฮธ .
2 .
4 1+
49
9 1+
9 0*
9
3 0*
3
โQ โQ 9โ2, Qฯ โ ฮฯ ฯ /rฮฮธฮr5 + 2,Qฯ + ฮฯ ฯ / rฮฮธฮr5 + …
9
2 โฯ .
2 โฯ .
9: 1+
9=
4 1+
4
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
The largest terms inside the big {,}-brackets are proportional to ฮฮธฮฯฮr. The remaining higher
order terms vanish when the limit is taken.
0* โQ
4
2,r 2 r + 2rQr /ฮฮธ sin ฮธฮฯฮr 2
.
2+ โr
2
2
2
*
1
โQ
โ โ
Q = lim
ร 1+,sin ฮธ ฮธ + cos ฮธQฮธ /rฮฮธฮฯฮr5
ฮr โ0 (rฮฮธ )(r sin ฮธฮฯ )ฮr
.
โฮธ
2 +
2
ฮฮธ โ0
ฮฯ โ0
2 *โQฯ 2
2+,
2
/rฮฮธฮฯฮr + …
3 + โฯ .
6
Cancel the common factors and take the limit, to find:
.' โQ
*
'
* 'โQ * 1
1
โQ
โโ
Q =
ร /)r 2 r + 2rQr , sin ฮธ + )sin ฮธ ฮธ + cosฮธQฮธ ,r + ) ฯ ,r2
+
(
+ ( โฯ + 3
(r)(r sin ฮธ ) 0( โr
โฮธ
โฌ
&โ
โQ )
1
โ
= 2
ร ' ( r 2Qr ) sin ฮธ + r (sin ฮธQฮธ ) + r ฯ *
r sin ฮธ ( โr
โฮธ
โฯ +
1 โ
1 โ
1 โQฯ
โฌ
= 2 ( r 2Qr ) +
(sin ฮธQฮธ ) +
r โr
r sin ฮธ โฮธ
r sin ฮธ โฯ
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.21. Use the vector integral theorems to prove that โ โ
(โ ร u) = 0 for any twicedifferentiable vector function u regardless of the coordinate system.
Solution 2.21. Start with the divergence theorem for a vector
โฌ
function Q that depends on the spatial coordinates,
โซโซโซ โ โ
QdV = โซโซ n โ
QdA
V
A
n
t1
V
nc1
nc2
t2
where the arbitrary closed volume V has surface A, and the
A1
outward normal is n. For this exercise, let Q = โ ร u so that
A2
C
โซโซโซ โ โ
(โ ร u)dV = โซโซ n โ
(โ ร u) dA .
โฌ
V
A
Now split V into two sub-volumes V1 and V2, where the surface of V1 is A1 and the surface of V2
โฌ surfaces, but A1+ A2 = A so:
is A2. Here A1 and A2 are not closed
โซโซโซ โ โ
(โ ร u)dV = โซโซ n โ
(โ ร u) dA + โซโซ n โ
(โ ร u) dA .
โฌ
V
A1
A2
where n is the same as when the surfaces were joined. However, the bounding curve C for A1 and
A2 is the same, so Stokes theorem produces:
โซโซโซ โ โ
(โ ร u) dV = โซ u โ
t1 ds + โซ u โ
t 2 ds .
โฌ
V
C
C
Here the tangent vectors t1 = nc1 ร n and t 2 = nc 2 ร n have opposite signs because nc1 and nc2, the
normals to C that are tangent to surfaces A1 and A2, respectively, have opposite sign. Thus, the
two terms on the right side of the last equation are equal and opposite, so
(i)
โซโซโซ โ โ
(โ ร u)dV = 0 .
โฌ
โฌ
V
For an arbitrary closed volume of any size, shape, or location, this can only be true if
โ โ
(โ ร u) = 0 . For example, if โ โ
(โ ร u) were nonzero at some location, then integration in
small volume centered on this location would not be zero. Such a nonzero integral is not allowed
โฌ
by (i); thus, โ โ
(โ ร u) must be zero everywhere because V is arbitrary.
โฌ
โฌ
โฌ
Fluid Mechanics, 6th Ed.
Kundu, Cohen, and Dowling
Exercise 2.22. Use Stokesโ theorem to prove that โ ร (โฯ ) = 0 for any single-valued twicedifferentiable scalar ฯ regardless of the coordinate system.
Solution 2.22. From (2.34) Stokes Theoremโฌis:
โซโซ (โ ร u) โ
ndA = โซ u โ
tds .
A
โฌ
C
Let u = โฯ , and note that โฯ โ
tds = (โฯ โs) ds = dฯ because the t vector points along the contour
C that has path increment ds. Therefore:
(ii)
(โ ร [โฯ ]) โ
ndA = โซ โฯ โ
tds = โซ dฯ = 0 ,
โฌโซโซ
A
C
C
โฌ
where the final equality
holds for integration on a closed contour of a single-valued function ฯ.
For an arbitrary surface A of any size, shape, orientation, or location, this can only be true
if โ ร ( โฯ ) = 0 . For example, if โ ร ( โฯ ) = 0 were nonzero at some location, then an area
โฌ
integration in a small region centered on this location would not be zero. Such a nonzero integral
is not allowed by (ii); thus, โ ร ( โฯ ) = 0 must be zero everywhere because A is arbitrary.
Document Preview (25 of 729 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Fluid Mechanics, 6th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
James Lee
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)