Fluid Mechanics, 6th Edition Solution Manual

Preview Extract
Fluid Mechanics, 6th Ed. โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ Kundu, Cohen, and Dowling Exercise 2.1. For three spatial dimensions, rewrite the following expressions in index notation and evaluate or simplify them using the values or parameters given, and the definitions of ฮดij and ฮตijk wherever possible. In b) through e), x is the position vector, with components xi. a) b โ‹… c where b = (1, 4, 17) and c = (โ€“4, โ€“3, 1) b) (u โ‹… โˆ‡ ) x where u a vector with components ui. c) โˆ‡ฯ† , where ฯ† = h โ‹… x and h is a constant vector with components hi. d) โˆ‡ ร— u, where u = ฮฉ ร— x and ฮฉ is a constant vector with components ฮฉi. “1 2 3& $ $ e) Cโ‚ฌ โ‹… x , where C = #0 1 2′ $0 0 1$ % ( Solution 2.1. a) b โ‹… c = bic i = 1(โˆ’4) + 4(โˆ’3) + 17(1) = โˆ’4 โˆ’12 + 17 = +1 +x . + % โˆ‚ ( % โˆ‚ ( % โˆ‚ (.- 1 0 โ‚ฌ โˆ‚ b) (u โ‹… โˆ‡ ) x = u j x i = -u1′ * + u2 ‘ * + u3 ‘ *0 x 2 โˆ‚x j โˆ‚x1 ) โˆ‚x 2 ) โˆ‚x 3 )/- 0 & & & , โ‚ฌ -,x 3 0/ ) # โˆ‚x & # โˆ‚x & # โˆ‚x & , + u1% 1 ( + u2 % 1 ( + u3 % 1 (. $ โˆ‚x 2 ‘ $ โˆ‚x 3 ‘. )u โ‹…1+ u โ‹… 0 + u โ‹… 0, + $ โˆ‚x1 ‘ ) u1 , 2 3 # โˆ‚x 2 & # โˆ‚x 2 &. + 1 + # โˆ‚x 2 & . + . = +u1% ( + u2 % ( + u3 % (. = +u1 โ‹… 0 + u2 โ‹…1+ u3 โ‹… 0. = u jฮดij = +u2 . = ui $ โˆ‚x 2 ‘ $ โˆ‚x 3 ‘. + $ โˆ‚x1 ‘ + . +*u3 .# & # & # โˆ‚x 3 &. *u1 โ‹… 0 + u2 โ‹… 0 + u3 โ‹…1โˆ‚x 3 + โˆ‚x 3 +u1%$ โˆ‚x (‘ + u2 %$ โˆ‚x (‘ + u3 %$ โˆ‚x (‘. * 1 2 3 โˆ‚ฯ† โˆ‚ โˆ‚x i c) โˆ‡ฯ† = = ( hi x i ) = hi = hiฮดij = h j = h โˆ‚x j โˆ‚x j โˆ‚x j โ‚ฌ ร— u = โˆ‡ ร— (ฮฉ ร— x ) = ฮต โˆ‚ (ฮต ฮฉ x ) = ฮต ฮต ฮฉ ฮด = (ฮด ฮด โˆ’ ฮด ฮด )ฮฉ ฮด = (ฮด ฮด โˆ’ ฮด ฮด )ฮฉ d) โˆ‡ ijk klm l m ijk klm l jm il jm im jl l jm il jj ij jl l โˆ‚x j = ( 3ฮดil โˆ’ ฮดil )ฮฉl = 2ฮดil ฮฉl = 2ฮฉl = 2ฮฉ Here, the following identities have been used: ฮตijkฮตklm = ฮดilฮด jm โˆ’ ฮดimฮด jl , ฮดijฮด jk = ฮดik , ฮด jj = 3 , and ฮดij ฮฉ j = ฮฉi #1 2 3’# x1 ‘ # x1 + 2x 2 + 3x 3 ‘ โ‚ฌ % %% % % % e) C โ‹… x = Cij x j = $0 1 2($ x 2 ( = $โ‚ฌ x 2 + 2x 3 ( โ‚ฌ โ‚ฌ %0 0 1%% x % % % x3 & )& 3 ) & ) Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.2. Starting from (2.1) and (2.3), prove (2.7). Solution 2.2. The two representations for the position vector are: x = x1e1 + x 2e 2 + x 3e 3 , or x = x1″e1″ + x 2″ e”2 + x 3” e”3 . Develop the dot product of x with e1 from each representation, e1 โ‹… x = e1 โ‹… ( x1e1 + x 2e 2 + x 3e 3 ) = x1e1 โ‹… e1 + x 2e1 โ‹… e 2 + x 3e1 โ‹… e 3 = x1 โ‹…1+ x 2 โ‹… 0 + x 3 โ‹… 0 = x1 , and e1 โ‹… x = e1 โ‹… ( x1#e1# + x #2e#2 +โ‚ฌx #3e#3 ) = x1#e1 โ‹… e1# + x #2e1 โ‹… e#2 + x #3e1 โ‹… e#3 = x #iC1i , โ‚ฌ set these equal to find: x1 = x “iC1i , โ‚ฌ where Cij = e i โ‹… e#j is a 3 ร— 3 matrix of direction cosines. In an entirely parallel fashion, forming โ‚ฌ the dot product of x with e2, and x with e2 produces: โ‚ฌ x 2 = x “iC2i and x 3 = x “iC3i . Thus, for any component xj, where j = 1, 2, or 3, we have: โ‚ฌ x j = x “iC ji , which is (2.7). โ‚ฌ โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.3. For two three-dimensional vectors with Cartesian components ai and bi, prove the Cauchy-Schwartz inequality: (aibi)2 โ‰ค (ai)2(bi)2. Solution 2.3. Expand the left side term, (ai bi )2 = (a1b1 + a2 b2 + a3b3 )2 = a12 b12 + a22 b22 + a32 b32 + 2a1b1a2 b2 + 2a1b1a3b3 + 2a2 b2 a3b3 , then expand the right side term, (ai )2 (bi )2 = (a12 + a22 + a32 )(b12 + b22 + b32 ) = a12 b12 + a22 b22 + a32 b32 + (a12 b22 + a22 b12 ) + (a12 b32 + a32 b12 ) + (a32 b22 + a22 b32 ). Subtract the left side term from the right side term to find: (ai )2 (bi )2 โˆ’ (ai bi )2 = (a12 b22 โˆ’ 2a1b1a2 b2 + a22 b12 ) + (a12 b32 โˆ’ 2a1b1a3b3 + a32 b12 ) + (a32 b22 โˆ’ 2a2 b2 a3b3 + a22 b32 ) 2 = (a1b2 โˆ’ a2 b1 )2 + (a1b3 โˆ’ a3b1 )2 + (a3b2 โˆ’ a2 b3 )2 = a ร— b . Thus, the difference (ai )2 (bi )2 โˆ’ (ai bi )2 is greater than zero unless a = (const.)b then the difference is zero. Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.4. For two three-dimensional vectors with Cartesian components ai and bi, prove the triangle inequality: a + b โ‰ฅ a + b . Solution 2.4. To avoid square roots, square both side of the equation; this operation does not change the equation’s meaning. The left side becomes: 2 2 2 (a + b) = a +2 a b + b , and the right side becomes: 2 2 2 a + b = (a + b)โ‹… (a + b) = a โ‹… a + 2a โ‹… b + b โ‹… b = a + 2a โ‹… b + b . So, 2 2 ( a + b ) โˆ’ a + b = 2 a b โˆ’ 2a โ‹… b . Thus, to prove the triangle equality, the right side of this last equation must be greater than or equal to zero. This requires: a b โ‰ฅ a โ‹… b or using index notation: ai2 bi2 โ‰ฅ ai bi , which can be squared to find: ai2 bi2 โ‰ฅ (ai bi )2 , and this is the Cauchy-Schwartz inequality proved in Exercise 2.3. Thus, the triangle equality is proved. Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.5. Using Cartesian coordinates where the position vector is x = (x1, x2, x3) and the fluid velocity is u = (u1, u2, u3), write out the three components of the vector: (u โ‹… โˆ‡)u = ui โˆ‚u j โˆ‚x i . ( ) Solution 2.5. โ‚ฌ โ‚ฌ + % โˆ‚u ( % โˆ‚u ( % โˆ‚u ( / – u1’ 1 * + u2 ‘ 1 * + u3 ‘ 1 * & โˆ‚x 2 ) & โˆ‚x 3 ) – & โˆ‚x1 ) % โˆ‚u ( % โˆ‚u ( % โˆ‚u ( % โˆ‚ u ( – % โˆ‚u ( % โˆ‚u ( % โˆ‚u (a) (u โ‹… โˆ‡ )u = ui ‘ j * = u1’ j * + u2 ‘ j * + u3 ‘ j * = , u1’ 2 * + u2 ‘ 2 * + u3 ‘ 2 *0 & โˆ‚x i ) & โˆ‚x1 ) & โˆ‚x 2 ) & โˆ‚x 3 ) – & โˆ‚x1 ) & โˆ‚x 2 ) & โˆ‚x 3 )% ( % ( % โˆ‚u3 (- โˆ‚u3 โˆ‚ u3 u + u + u ‘ * ‘ * *- 1 2 3’ & โˆ‚x 2 ) & โˆ‚x 3 )1 . & โˆ‚x1 ) ) # โˆ‚u & # โˆ‚u & # โˆ‚u & + u% ( + v% ( + w% ( + $ โˆ‚z ‘ + + $ โˆ‚x ‘ $ โˆ‚y ‘ + # โˆ‚v & # โˆ‚v & # โˆ‚v & + = * u% ( + v% ( + w% ( . $ โˆ‚z ‘ + + $ โˆ‚x ‘ $ โˆ‚y ‘ # & + # โˆ‚w & # โˆ‚w &+ โˆ‚w + u%$ (‘ + v% ( + w%$ (‘+ โˆ‚z / $ โˆ‚y ‘ , โˆ‚x ( ) The vector in this exercise, (u โ‹… โˆ‡ )u = ui โˆ‚u j โˆ‚x i , is an important one in fluid mechanics. As described in Ch. 3, it is the nonlinear advective acceleration. โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.6. Convert โˆ‡ ร— โˆ‡ฯ to indicial notation and show that it is zero in Cartesian coordinates for any twice-differentiable scalar function ฯ. Solution 2.6. Start with the definitions of the cross product and the gradient. โˆ‚ โˆ‚ 2ฯ โˆ‡ ร— ( โˆ‡ฯ ) = ฮตijk (โˆ‡ฯ )k = ฮตijk โˆ‚xj โˆ‚ x jโˆ‚ xk Write out the vector component by component recalling that ฮตijk = 0 if any two indices are equal. Here the “i” index is the free index. ! 2 2 # ฮต123 โˆ‚ ฯ + ฮต132 โˆ‚ ฯ โˆ‚ x2โˆ‚ x3 โˆ‚ x3โˆ‚ x2 # # 2 2 # โˆ‚ ฯ โˆ‚ ฯ โˆ‚ 2ฯ ฮตijk = ” ฮต 213 + ฮต 231 โˆ‚ x jโˆ‚ xk # โˆ‚ x1โˆ‚ x3 โˆ‚ x3โˆ‚ x1 # 2 โˆ‚ ฯ โˆ‚ 2ฯ # ฮต312 + ฮต321 โˆ‚ x1โˆ‚ x2 โˆ‚ x2โˆ‚ x1 # $ % ! 2 2 # # โˆ‚ ฯ โ€“ โˆ‚ ฯ # # โˆ‚ x2โˆ‚ x3 โˆ‚ x3โˆ‚ x2 # # # # โˆ‚ 2ฯ โˆ‚ 2ฯ = โ€“ + & ” # # โˆ‚ x1โˆ‚ x3 โˆ‚ x3โˆ‚ x1 # # โˆ‚ 2ฯ โˆ‚ 2ฯ # # โˆ’ # ‘ # $ โˆ‚ x1โˆ‚ x2 โˆ‚ x2โˆ‚ x1 % # # # # &=0, # # # # ‘ where the middle equality follows from the definition of ฮตijk (2.18), and the final equality follows โˆ‚ 2ฯ โˆ‚ 2ฯ when ฯ is twice differentiable so that . = โˆ‚x jโˆ‚x k โˆ‚x kโˆ‚x j โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.7. Using indicial notation, show that a ร— (b ร— c) = (a โ‹… c)b โˆ’ (a โ‹… b)c. [Hint: Call d โ‰ก b ร— c. Then (a ร— d)m = ฮตpqmapdq = ฮตpqmapฮตijqbicj. Using (2.19), show that (a ร— d)m = (a โ‹… c)bm โˆ’ (a โ‹… b)cm.] Solution 2.7. Using the hint and the definition of ฮตijk produces: (a ร— d)m = ฮตpqmapdq = ฮตpqmapฮตijqbicj = ฮตpqmฮตijq bicjap = โ€“ฮตijqฮตqpm bicjap. Now use the identity (2.19) for the product of epsilons: (a ร— d)m = โ€“ (ฮดipฮดjm โ€“ ฮดimฮดpj) bicjap = โ€“ bpcmap + bmcpap. Each term in the final expression involves a sum over “p”, and this is a dot product; therefore (a ร— d)m = โ€“ (a โ‹… b)cm + bm(a โ‹… c). Thus, for any component m = 1, 2, or 3, a ร— (b ร— c) = โˆ’ (a โ‹… b)c + (a โ‹… c)b = (a โ‹… c)b โˆ’ (a โ‹… b)c. Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.8. Show that the condition for the vectors a, b, and c to be coplanar is ฮตijkaibjck = 0. Solution 2.8. The vector b ร— c is perpendicular to b and c. Thus, a will be coplanar with b and c if it too is perpendicular to b ร— c. The condition for a to be perpendicular with b ร— c is: a โ‹… (b ร— c) = 0. In index notation, this is aiฮตijkbjck = 0 = ฮตijkaibjck. Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.9. Prove the following relationships: ฮดijฮดij = 3, ฮตpqrฮตpqr = 6, and ฮตpqiฮตpqj = 2ฮดij. Solution 2.9. (i) ฮดijฮดij = ฮดii = ฮด11 + ฮด22 + ฮด33 = 1 + 1 + 1 = 3. For the second two, the identity (2.19) is useful. (ii) ฮตpqrฮตpqr = ฮตpqrฮตrpq = ฮดppฮดqq โ€“ ฮดpqฮดpq = 3(3) โ€“ ฮดpp = 9 โ€“ 3 = 6. (iii) ฮตpqiฮตpqj = ฮตipqฮตpqj = โ€“ ฮตipqฮตqpj = โ€“ (ฮดipฮดpj โ€“ ฮดijฮดpp) = โ€“ ฮดij + 3ฮดij = 2ฮดij. Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.10. Show that Cโ‹…CT = CTโ‹…C = ฮด, where C is the direction cosine matrix and ฮด is the matrix of the Kronecker delta. Any matrix obeying such a relationship is called an orthogonal matrix because it represents transformation of one set of orthogonal axes into another. Solution 2.10. To show that Cโ‹…CT = CTโ‹…C = ฮด, where C is the direction cosine matrix and ฮด is the matrix of the Kronecker delta. Start from (2.5) and (2.7), which are x “j = x iCij and x j = x “iC ji , respectively, and change the index “i” into “m” on (2.5): x “j = x m Cmj . Substitute this into (2.7) to find: x j = x “iC ji = ( x m Cmi )C ji = CmiC ji x m . โ‚ฌ โ‚ฌ However, we also have xj = ฮดjmxm, so โ‚ฌ ฮด jm x m = CmiC ji x m โ†’ ฮด jm = CmiC ji , which can be written:โ‚ฌ ฮด jm = CmiCijT = Cโ‹…CT, and taking the transpose โ‚ฌ of the thisT produces: T (ฮด jm ) = ฮดmj = (CmiCijT ) = CmiT Cij = CTโ‹…C. โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.11. Show that for a second-order tensor A, the following quantities are invariant under the rotation of axes: I1 = Aii , I 2 = A11 A12 A21 A22 + A22 A23 A32 A33 + A11 A13 A31 A33 , and I3 = det(Aij). [Hint: Use the result of Exercise 2.8 and the transformation rule (2.12) to show that Iสนโ€ฒ1 = Aสนโ€ฒii = Aii.= I1. Then show that AijAji and AijAjkAki are also invariants. In fact, all contracted scalars of the I 2 = 12 “# I12 โˆ’ Aij A ji $% , form AijAjk โ‹…โ‹…โ‹… Ami are invariants. Finally, verify that I 3 = 13 “# Aij A jk Aki โˆ’ I1 Aij A ji + I 2 Aii $% . Because the right-hand sides are invariant, so are I2 and I3.] Solution 2.11. First prove I1 is invariant by using the second order tensor transformation rule (2.12): ” = Cim C jn Aij . Amn Replace Cjn by CnjT and set n = m, ” = CimCnjT Aij โ†’ Amm ” = Cim CmjT Aij . Amn T Use the result of Exercise 2.8, โ‚ฌ ฮดij = Cim Cmj = , to find: ” = ฮดij Aij = Aii . I1 = Amm โ‚ฌ Thus, the first invariant โ‚ฌ is does not depend on a rotation of the coordinate axes. Now considerโ‚ฌwhether or not AmnAnm is invariant under a rotation of the coordinate axes. Start with a double application of (2.12): โ‚ฌ T ” Anm ” = Cim C jn Aij C pn Cqm A pq = C jn CnpT Cim Cmq Amn Aij A pq . From the result of Exercise 2.8, the factors in parentheses in the last equality are Kronecker delta functions, so ” Anm ” = ฮด jpฮดiq Aij A pq = Aij A ji . Amn โ‚ฌ Thus, the matrix contraction AmnAnm does not depend on a rotation of the coordinate axes. The manipulations for AmnAnpApm are a straightforward extension of the prior efforts for Aii and AijAji. โ‚ฌ ” Anp ” A”pm = Cim C jn Aij Cqn Crp Aqr Csp Ctm Ast = C jn CnqT Crp C psT CimCmtT Aij Aqr Ast . Amn Again, the factors in parentheses are Kronecker delta functions, so ” Anp ” A”pm = ฮด jqฮดrsฮดit Aij Aqr Ast = Aiq Aqs Asi , Amn which implies that the matrix contraction AijAjkAki does not depend on a rotation of the coordinate โ‚ฌ axes. Now, for the second invariant, verify the given identity, starting from the given definition โ‚ฌ for I2. A A12 A22 A23 A11 A13 I2 = 11 + + A21 A22 A32 A33 A31 A33 = A11 A22 โˆ’ A12 A21 + A22 A33 โˆ’ A23 A32 + A11 A33 โˆ’ A13 A31 = A11 A22 + A22 A33 + A11 A33 โˆ’ ( A12 A21 + A23 A32 + A13 A31 ) ( ( โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ ) ( )( )( )( ) ( )( ) )( )( ( ) = 12 A112 + 12 A222 + 12 A332 + A11 A22 + A22 A33 + A11 A33 โˆ’ A12 A21 + A23 A32 + A13 A31 + 12 A112 + 12 A222 + 12 A332 = 1 2 2 [ A11 + A22 + A33 ] โˆ’ (2A12 A21 + 2A23 A32 + 2A13 A31 + A + A + A ) 1 2 2 11 2 22 2 33 ) Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling = 12 I12 โˆ’ 12 ( A11 A11 + A12 A21 + A13 A31 + A12 A21 + A22 A22 + A23 A32 + A13 A31 + A23 A32 + A33 A33 ) = 12 I12 โˆ’ 12 ( Aij A ji ) = 12 (I12 โˆ’ Aij A ji ) Thus, since I2 only depends on I1 and AijAji, it is invariant under a rotation of the coordinate axes because I1 and AijAji are invariant under a rotation of the coordinate axes. The manipulations for the third invariant are a tedious but not remarkable. Start from the given definition for I3, and group like terms. โ‚ฌ โ‚ฌ I3 = det ( Aij ) = A11 (A22 A33 โˆ’ A23 A32 ) โˆ’ A12 (A21 A33 โˆ’ A23 A31) + A13 (A21 A32 โˆ’ A22 A31 ) = A11 A22 A33 + A12 A23 A31 + A13 A32 A21 โˆ’ ( A11 A23 A32 + A22 A13 A31 + A33 A12 A21 ) โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ (a) Now work from the given identity. The triple matrix product AijAjkAki has twenty-seven terms: A113 + A11 A12 A21 + A11 A13 A31 + A12 A21 A11 + A12 A22 A21 + A12 A23 A31 + A13 A31 A11 + A13 A32 A21 + A13 A33 A31 + 3 โ‚ฌ A21 A11 A12 + A21 A12 A22 + A21 A13 A32 + A22 A21 A12 + A22 + A22 A23 A32 + A23 A31 A12 + A23 A32 A22 + A23 A33 A32 + A31 A11 A13 + A31 A12 A23 + A31 A13 A33 + A32 A21 A13 + A32 A22 A23 + A32 A23 A33 + A33 A31 A13 + A33 A32 A23 + A333 These can be grouped as follows: Aij A jk Aki = 3(A12 A23 A31 + A13 A32 A21 ) + A11(A112 + 3A12 A21 + 3A13 A31) + 2 2 (b) A22 (3A21 A12 + A22 + 3A23 A32 ) + A33 (3A31 A13 + 3A32 A23 + A33 ) The remaining terms of the given identity are: โˆ’I1 Aij A ji + I2 Aii = I1(I2 โ€“ Aij A ji ) = I1 (I2 + 2I2 โˆ’ I12 ) = 3I1I2 โ€“ I13 , whereโ‚ฌthe result for I2 has been used. Evaluating the first of these two terms leads to: 3I1I2 = 3(A11 + A22 + A33 )(A11 A22 โˆ’ A12 A21 + A22 A33 โˆ’ A23 A32 + A11 A33 โˆ’ A13 A31 ) = 3(A11 + A22 + A33 )(A11 A22 + A22 A33 + A11 A33 ) โˆ’ 3(A11 + A22 + A33 )(A12 A21 + A23 A32 + A13 A31 ) . โ‚ฌ to (b) produces: Adding this Aij A jk Aki + 3I1I2 = 3(A12 A23 A31 + A13 A32 A21 ) + 3(A11 + A22 + A33 )(A11 A22 + A22 A33 + A11 A33 ) + 2 2 A11 (A112 โˆ’ 3A23 A32 ) + A22 (A22 โˆ’ 3A13 A31 ) + A33 (A33 โˆ’ 3A12 A21 ) = 3(A12 A23 A31 + A13 A32 A21 โˆ’ A11 A23 A32 โˆ’ A22 A13 A31 โˆ’ A33 A12 A21 ) + 3 3 (c) 3(A11 + A22 + A33 )(A11 A22 + A22 A33 + A11 A33 ) + A113 + A22 + A33 The last term of the given identity is: โ‚ฌ3 3 3 2 2 2 2 2 2 I13 = Aโ‚ฌ 11 + A22 + A33 + 3(A11 A22 + A11 A33 + A22 A11 + A22 A33 + A33 A11 + A33 A22 ) + 6A11 A22 A33 3 3 = A113 + A22 + A33 + 3(A11 + A22 + A33 )(A11 A22 + A11 A33 + A22 A33 ) โ€“ 3A11 A22 A33 โ‚ฌ Subtracting this from (c) produces: Aij A jk Aki + 3I1I2 โˆ’ I13 = 3(A12 A23 A31 + A13 A32 A21 โˆ’ A11 A23 A32 โˆ’ A22 A13 A31 โˆ’ A33 A12 A21 + A11 A22 A33 ) = 3I3 . This verifies that the given identity for I3 is correct. Thus, since I3 only depends on I1, I2, and AijAjkAki, it is invariant under a rotation of the coordinate axes because these quantities are โ‚ฌ invariant under a rotation of the coordinate axes as shown above. โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.12. If u and v are vectors, show that the products uiฯ…j obey the transformation rule (2.12), and therefore represent a second-order tensor. Solution 2.12. Start by applying the vector transformation rule (2.5 or 2.6) to the components of u and v separately, u”m = Cim ui , and v “n = C jn v j . The product of these two equations produces: u”m v “n = Cim C jn uiv j , which is the same as (2.12) tensors. โ‚ฌ for second order โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.13. Show that ฮดij is an isotropic tensor. That is, show that ฮดสนโ€ฒij = ฮดij under rotation of the coordinate system. [Hint: Use the transformation rule (2.12) and the results of Exercise 2.10.] Solution 2.13. Apply (2.12) to ฮดij, ” = CimC jnฮดij = CimCin = CmiT Cin = ฮดmn . ฮดmn where the final equality follows from the result of Exercise 2.10. Thus, the Kronecker delta is invariant under coordinate rotations. โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.14. If u and v are arbitrary vectors resolved in three-dimensional Cartesian 2 coordinates, use the definition of vector magnitude, a = a โ‹… a , and the Pythagorean theorem to show that uโ‹…v = 0 when u and v are perpendicular. โ‚ฌ Solution 2.14. Consider the magnitude of the sum u + v, 2 u + v = (u1 + v1 ) 2 + (u2 + v 2 ) 2 + (u3 + v 3 ) 2 = u12 + u22 + u32 + v12 + v 22 + v 32 + 2u1v1 + 2u2v 2 + 2u3v 3 2 2 = u + v + 2u โ‹… v , which can be rewritten: 2 2 2 u + v โˆ’ u โˆ’ v = 2u โ‹… v . โ‚ฌ โ‚ฌWhen u and v are perpendicular, the Pythagorean theorem requires the left side to be zero. Thus, u โ‹… v = 0. โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.15. If u and v are vectors with magnitudes u and ฯ…, use the finding of Exercise 2.14 to show that uโ‹…v = uฯ…cosฮธ where ฮธ is the angle between u and v. Solution 2.15. Start with two arbitrary vectors (u and v), and view them so that the plane they define is coincident with the page and v is horizontal. Consider two additional vectors, ฮฒv and w, that are perpendicular (vโ‹…w = 0) and can be summed together to produce u: w + ฮฒv = u. u w ฮธ v ฮฒv Compute the dot-product of u and v: uโ‹…v = (w + ฮฒv) โ‹…v = wโ‹…v + ฮฒvโ‹…v = ฮฒฯ…2. where the final equality holds because vโ‹…w = 0. From the geometry of the figure: ฮฒv ฮฒฯ… u , or ฮฒ = cosฮธ . cosฮธ โ‰ก = ฯ… u u Insert this into the final equality for uโ‹…v to find: %u ( u โ‹… v = ‘ cos ฮธ *ฯ… 2 = uฯ… cosฮธ . &ฯ… โ‚ฌ ) โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.16. Determine the components of the vector w in three-dimensional Cartesian coordinates when w is defined by: uโ‹…w = 0, vโ‹…w = 0, and wโ‹…w = u2ฯ…2sin2ฮธ, where u and v are known vectors with components ui and ฯ…i and magnitudes u and ฯ…, respectively, and ฮธ is the angle between u and v. Choose the sign(s) of the components of w so that w = e3 when u = e1 and v = e2. Solution 2.16. The effort here is primarily algebraic. Write the three constraints in component form: uโ‹…w = 0, or u1w1 + u2 w 2 + u3 w 3 = 0 , (1) vโ‹…w = 0, or ฯ…1w1 + ฯ… 2 w 2 + ฯ… 3 w 3 = 0 , and (2) The third one requires a little more effort since the angle needs to be eliminated via a dot product: โ‚ฌ wโ‹…w = u2ฯ…2sin2ฮธ = u2ฯ…2(1 โ€“ cos2ฮธ) = u2ฯ…2 โ€“ (uโ‹…w)2 or โ‚ฌ w12 + w 22 + w 32 = (u12 + u22 + u32 )(ฯ…12 + ฯ… 22 + ฯ… 32 ) โˆ’ (u1ฯ…1 + u2ฯ… 2 + u3ฯ… 3 ) 2 , which leads to (3) w12 + w 22 + w 32 = (u1ฯ… 2 โˆ’ u2ฯ…1 ) 2 + (u1ฯ… 3 โˆ’ u3ฯ…1 ) 2 + (u2ฯ… 3 โˆ’ u3ฯ… 2 ) 2 . Equation (1) implies: (4) w1 = โˆ’(w 2 u2 + w 3 u3 ) u1 โ‚ฌ Combine (2) and (4) to eliminate w1, and solve the resulting equation for w2: โ‚ฌ $ ฯ… ‘ $ ฯ… ‘ โˆ’ฯ…1 (w 2 u2 + w 3 u3 ) u1 + ฯ… 2 w 2 + ฯ… 3 w 3 = 0 , or &โˆ’ 1 u2 + ฯ… 2 )w 2 + & โˆ’ 1 u3 + ฯ… 3 ) w 3 = 0 . % u1 ( % u1 ( โ‚ฌ Thus: $ฯ… ‘ $ ฯ… ‘ $u ฯ… โˆ’ uฯ… ‘ (5) w 2 = +w 3 & 1 u3 โˆ’ ฯ… 3 ) &โˆ’ 1 u2 + ฯ… 2 ) = w 3 & 3 1 1 3 ) . โ‚ฌ % u1 ( โ‚ฌ % u1 ( % u1ฯ… 2 โˆ’ u2ฯ…1 ( Combine (4) and (5) to find: ‘ w $$ ฯ… u โˆ’ ฯ… 3 u1 ‘ w 3 $ ฯ…1u3 u2 โˆ’ ฯ… 3 u1u2 + ฯ… 2 u1u3 โˆ’ ฯ…1u2 u3 ‘ w1 = โˆ’ 3 && 1 3 +) ) u2 + u3 ) = โˆ’ & u1 %% ฯ… 2 u1 โˆ’ ฯ…1u2 ( u1 % ฯ… 2 u1 โˆ’ ฯ…1u2 ( ( โ‚ฌ $ u2ฯ… 3 โˆ’ u3ฯ… 2 ‘ w $ โˆ’ฯ… u u + ฯ… 2 u1u3 ‘ (6) =โˆ’ 3& 3 1 2 ) = w3& ). u1 % ฯ… 2 u1 โˆ’ ฯ…1u2 ( % u1ฯ… 2 โˆ’ u2ฯ…1 ( Put โ‚ฌ (5) and (6) into (3) and factor out w3 on the left side, then divide out the extensive common factor that (luckily) appears on the right and as the numerator inside the big parentheses. $โ‚ฌ (u2ฯ… 3 โˆ’ u3ฯ… 2 ) 2 + (u3ฯ…1 โˆ’ u1ฯ… 3 ) 2 + (u1ฯ… 2 โˆ’ u2ฯ…1 ) 2 ‘ 2 2 2 w & ) = (u1ฯ… 2 โˆ’ u2ฯ…1 ) + (u1ฯ… 3 โˆ’ u3ฯ…1 ) + (u2ฯ… 3 โˆ’ u3ฯ… 2 ) 2 (u1ฯ… 2 โˆ’ 2u$2ฯ…1 ) 1 ‘ % ( , so w 3 = ยฑ(u1ฯ… 2 โˆ’ u2ฯ…1 ) . w3 & = 1 ) 2 % (u1ฯ… 2 โˆ’ u2ฯ…1 ) ( If u = (1,0,0), and v = (0,1,0), then using the plus sign produces w3 = +1, so w 3 = +(u1ฯ… 2 โˆ’ u2ฯ…1 ) . Cyclic permutation of the indices allows the other components of w to be determined: w1โ‚ฌ= u2ฯ… 3 โˆ’ u3ฯ… 2 , โ‚ฌ w 2 = u3ฯ…1 โˆ’ u1ฯ… 3 , โ‚ฌ w 3 = u1ฯ… 2 โˆ’ u2ฯ…1 . 2 3 โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.17. If a is a positive constant and b is a constant vector, determine the divergence and the curl of u = ax/x3 and u = bร—(x/x2) where x = x12 + x 22 + x 32 โ‰ก x i x i is the length of x. โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ โ‚ฌ Solution 2.17. Start with the divergence calculations, and use x = x12 + x 22 + x 32 to save writing. $ ‘ $ ‘ $ ax ‘ $ โˆ‚ โˆ‚ โˆ‚ ‘ & x1โ‚ฌ, x 2 , x 3 ) = a& โˆ‚ , โˆ‚ , โˆ‚ ) โ‹… $& x1, x 2 , x 3 ‘) โˆ‡ โ‹… & 3 ) = a& , , )โ‹… % x ( % โˆ‚x1 โˆ‚x 2 โˆ‚x 3 ( & [ x 2 + x 2 + x 2 ] 3 2 ) % โˆ‚x1 โˆ‚x 2 โˆ‚x 3 ( % x 3 ( 2 3 % 1 ( โ‚ฌ # โˆ‚ # x1 & โˆ‚ # x 2 & โˆ‚ # x 3 && # 1 3 x1 & 1 3 x2 1 3 x3 = a% % 3 ( + 2×1 ) + 3 โˆ’ 2x 2 ) + 3 โˆ’ 2x 3 )( % 3(+ % 3 (( = a% 3 โˆ’ 5 ( 5 ( 5 ( ‘ 2x x 2x x 2x $ โˆ‚x1 $ x ‘ โˆ‚x 2 $ x ‘ โˆ‚x 3 $ x ” $ x # 3 3( x 2 + x 2 + x 2 ) & # 3 3& 1 2 3 ( = a% 3 โˆ’ 3 ( = 0 . = a%% 3 โˆ’ 5 ( x x ‘ $x ‘ $x Thus, the vector field ax/x3 is divergence free even though it points away from the origin everywhere. % b ร— x ( % โˆ‚ โˆ‚ โˆ‚ ( % b2 x 3 โˆ’ b3 x 2 ,b3 x1 โˆ’ b1 x 3 ,b1 x 3 โˆ’ b2 x1 ( โˆ‡โ‹…’ 2 * =’ , , *โ‹…’ * & x ) & โˆ‚x1 โˆ‚x 2 โˆ‚x 3 ) & x12 + x 22 + x 32 ) $ โˆ‚ $ b x โˆ’ b x ‘ โˆ‚ $ b3 x1 โˆ’ b1 x 3 ‘ โˆ‚ $ b1 x 2 โˆ’ b2 x1 ” =& & 2 3 2 3 2)+ & )+ & )) ( โˆ‚x 2 % ( โˆ‚x 3 % (( x x2 x2 % โˆ‚x1 % # 2 & # 2 & # 2 & = (b2 x 3 โˆ’ b3 x 2 )%โˆ’ 4 (2×1 )( + (b3 x1 โˆ’ b1 x 3 )% โˆ’ 4 (2x 2 )( + (b1 x 2 โˆ’ b2 x1 )%โˆ’ 4 (2x 3 )( $ x ‘ $ x ‘ $ x ‘ 4 = โˆ’ 4 (b2 x 3 x1 โˆ’ b3 x 2 x1 + b3 x1 x 2 โˆ’ b1 x 3 x 2 + b1 x 2 x 3 โˆ’ b2 x1 x 3 ) = 0 . x This field is divergence free, too. The curl calculations produce: $ ax ‘ $ โˆ‚ โˆ‚ โˆ‚ ‘ $ x1, x 2 , x 3 ‘ $ โˆ‚x โˆ’3 โˆ‚x โˆ’3 โˆ‚x โˆ’3 โˆ‚x โˆ’3 โˆ‚x โˆ’3 โˆ‚x โˆ’3 ‘ โˆ‡ ร— & 3 ) = a& , , ร— = a x โˆ’ x , x โˆ’ x , x โˆ’ x ) & ) & ) 2 1 3 2 1 % x ( % โˆ‚x1 โˆ‚x 2 โˆ‚x 3 ( % x 3 ( % 3 โˆ‚x 2 โˆ‚x 3 โˆ‚x 3 โˆ‚x1 โˆ‚x1 โˆ‚x 2 ( # 3 x3 & 3 x2 3x 3 x3 3 x2 3 x1 = a% โˆ’ 2x 2 ) + 2x 3 ),โˆ’ 15 (2x 3 ) + 2×1 ),โˆ’ 2×1 ) + 2x 2 )( = (0,0,0) 5 ( 5 ( 5 ( 5 ( 5 ( $ 2x ‘ 2x 2x 2x 2x 2x 3 Thus, thus the vector field ax/x is also irrotational. $ b ร— x ‘ $ โˆ‚ โˆ‚ โˆ‚ ‘ $ b2 x 3 โˆ’ b3 x 2 ,b3 x1 โˆ’ b1 x 3 ,b1 x 2 โˆ’ b2 x1 ‘ โˆ‡ ร—& 2 ) = & , , ) ร—& ). % x ( % โˆ‚x1 โˆ‚x 2 โˆ‚x 3 ( % x12 + x 22 + x 32 ( There are no obvious simplifications here. Therefore, compute the first component and obtain the others by cyclic permutation of the indices. $b ร— x’ โˆ‚ $ b1 x 2 โˆ’ b2 x1 ‘ โˆ‚ $ b3 x1 โˆ’ b1 x 3 ‘ โˆ‡ ร—& 2 ) = & )โˆ’ & ) % x (1 โˆ‚x 2 % ( โˆ‚x 3 % ( x2 x2 # & # โˆ’2 & b โˆ’2 b = 12 + (b1 x 2 โˆ’ b2 x1 )% 4 (2x 2 + 12 โˆ’ (b3 x1 โˆ’ b1 x 3 )% 4 (2x 3 $x ‘ $x ‘ x x 2 2 2 2b x โˆ’ 4b1 x 2 + 4b2 x1 x 2 + 4b3 x1 x 3 โˆ’ 4b1 x 3 2b 4 x = 1 = โˆ’ 21 + 41 (b1 x1 + b2 x 2 + b3 x 3 ) 4 x x x This field is rotational. The other two components of its curl are: โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling $b ร— x’ $b ร— x’ 2b 4 x 2b 4 x โˆ‡ ร— & 2 ) = โˆ’ 22 + 42 (b1 x1 + b2 x 2 + b3 x 3 ) , โˆ‡ ร— & 2 ) = โˆ’ 23 + 43 (b1 x1 + b2 x 2 + b3 x 3 ) . % x (2 % x (3 x x x x โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.18. Obtain the recipe for the gradient of a scalar function in cylindrical polar coordinates from the integral definition (2.32). โ‚ฌ Solution 2.18. Start from the appropriate form of (2.32), ez 1 “z z โˆ‡ฮจ = lim โˆซโˆซ ฮจndA , where ฮจ is a scalar function of e! V โ†’0 V A “! position x. Here we choose a nearly rectangular volume “R eR V = (Rฮ”ฯ•)(ฮ”R)(ฮ”z) centered on the point x = (R, ฯ•, z) with sides aligned perpendicular to the coordinate y directions. Here the e unit vector depends on ฯ• so its ! direction is slightly different at ฯ• ยฑ ฮ”ฯ•/2. For small ฮ”ฯ•, R x this can be handled by keeping the linear term of a simple Taylor series: [eฯ• ] โ‰… eฯ• ยฑ (ฮ”ฯ• 2)(โˆ‚eฯ• โˆ‚ฯ• ) = eฯ• ๏ญ (ฮ”ฯ• 2)e R . Considering the drawing ฯ• ฯ• ยฑฮ”ฯ• 2 and noting that n is an outward normal, there are six contributions to ndA: # $ ฮ”R & ฮ”R ‘ outside = % R + inside = โˆ’& R โˆ’ (ฮ”ฯ•ฮ”ze R , )ฮ”ฯ•ฮ”ze R , $ % 2 ‘ 2 ( โ‚ฌ % % ฮ”ฯ• ( ฮ”ฯ• ( e R *, eR * , close vertical side = ฮ”Rฮ”z’โˆ’eฯ• โˆ’ more distant vertical side = ฮ”Rฮ”z’eฯ• โˆ’ & ) & ) 2 2 top = Rฮ”ฯ•ฮ”Re z , โ‚ฌ โ‚ฌand bottom = โˆ’Rฮ”ฯ•ฮ”Re z . Here all the unit vectors are evaluated at the center of the volume. Using a two term Taylor series approximation for ฮจ on each of the six surfaces, and taking the six contributions in the same โ‚ฌ โ‚ฌ order, the integral definition becomes a sum of six terms representing ฮจndA. โ‚ฌ โ‚ฌ 5.( 9 1 .( 1 ฮ”R โˆ‚ฮจ +( ฮ”R + ฮ”R โˆ‚ฮจ +( ฮ”R + -* R + -e R ฮ”ฯ•ฮ”z3 โˆ’ 0* ฮจ โˆ’ -* R โˆ’ -e R ฮ”ฯ•ฮ”z3 + 70* ฮจ + 7 2 โˆ‚R ,) 2 , 2 โˆ‚R ,) 2 , 2 /) 2 7/) 7 7 77 . 1 . 1 ( 7( 1 ฮ”ฯ• โˆ‚ฮจ +( ฮ”ฯ• + ฮ”ฯ• โˆ‚ฮจ +( ฮ”ฯ• + โˆ‡ฮจ = lim โˆ’e โˆ’ e ฮ”Rฮ”z + ฮจ + e โˆ’ e ฮ”Rฮ”z + 60* ฮจ โˆ’ : * * 3 0 3 – ฯ• * – ฯ• R R ฮ”R โ†’0 Rฮ”ฯ•ฮ”Rฮ”z ) , ) , 2 โˆ‚ฯ• 2 2 โˆ‚ฯ• 2 ) , ) , / 2 / 2 7 7 ฮ”ฯ• โ†’0 ฮ”z โ†’0 7.( 7 1 .( 1 + + 70* ฮจ + ฮ”z โˆ‚ฮจ -e z Rฮ”ฯ•ฮ”R3 โˆ’ 0* ฮจ โˆ’ ฮ”z โˆ‚ฮจ -e z Rฮ”ฯ•ฮ”R3 + … 7 78/) 7; 2 โˆ‚z , 2 โˆ‚z , 2 /) 2 โ‚ฌ โ‚ฌ โ‚ฌ Here the mean value theorem has been used and all listings of ฮจ and its derivatives above are evaluated at the center of the volume. The largest terms inside the big {,}-brackets are proportional to ฮ”ฯ•ฮ”Rฮ”z. The remaining higher order terms vanish when the limit is taken. /( ฮจ 3 ( ฮจ R โˆ‚ฮจ + R โˆ‚ฮจ + e R -ฮ”ฯ•ฮ”Rฮ”z โˆ’ *โˆ’ e R โˆ’ e R -ฮ”ฯ•ฮ”Rฮ”z +1 1* e R + ) 2 2 โˆ‚R , 2 โˆ‚R , 1) 2 1 ( eฯ• โˆ‚ฮจ e R + 1(eฯ• โˆ‚ฮจ e R + 1 1 โˆ‡ฮจ = lim โˆ’ ฮจ-ฮ”ฯ•ฮ”Rฮ”z + * โˆ’ ฮจ-ฮ”ฯ•ฮ”Rฮ”z + 0* 4 ฮ”R โ†’0 Rฮ”ฯ•ฮ”Rฮ”z ) 2 โˆ‚ฯ• 2 2 โˆ‚ฯ• 2 , ) , 1 1 ฮ”ฯ• โ†’0 ฮ”z โ†’0 1( R โˆ‚ฮจ + 1 ( R โˆ‚ฮจ + e z -ฮ”ฯ•ฮ”Rฮ”z โˆ’ *โˆ’ e z -ฮ”ฯ•ฮ”Rฮ”z + … 1* 1 ) 2 โˆ‚z , 2) 2 โˆ‚z , 5 ‘ฮจ โˆ‚ฮจ 1 โˆ‚ฮจ ฮจ โˆ‚ฮจ * โˆ‚ฮจ 1 โˆ‚ฮจ โˆ‚ฮจ โˆ‡ฮจ = ( e R + eR + eฯ• โˆ’ e R + ez + = eR + eฯ• + ez โˆ‚R R โˆ‚ฯ• R โˆ‚z , โˆ‚R R โˆ‚ฯ• โˆ‚z )R Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.19. Obtain the recipe for the divergence of a vector function in cylindrical polar coordinates from the integral definition (2.32). Solution 2.19. Start from the appropriate form of (2.32), ez 1 “z z โˆ‡ โ‹… Q = lim โˆซโˆซ n โ‹… QdA , where Q = (QR, Q , Qz) is a vector V โ†’0 V A “! function of position x. Here we choose a nearly rectangular “R volume V = (Rฮ”ฯ•)(ฮ”R)(ฮ”z) centered on the point x = (R, ฯ•, z) with sides aligned perpendicular to the coordinate directions. Here the e unit vector depends on ฯ• so its ! direction is slightly different at ฯ• ยฑ ฮ”ฯ•/2. Considering the x R drawing and noting that n is an outward normal, there are six contributions to ndA: # $ ฮ”R & ฮ”R ‘ outside = % R + (ฮ”ฯ•ฮ”ze R , inside = โˆ’& R โˆ’ )ฮ”ฯ•ฮ”ze R , close vertical side = โˆ’ฮ”Rฮ”z[eฯ• ]ฯ• โˆ’ฮ”ฯ• 2 , $ % 2 ‘ 2 ( ฯ• โ‚ฌ ฯ• more distant vertical side = ฮ”Rฮ”z[eฯ• ] , top = Rฮ”ฯ•ฮ”Re z , and bottom = โˆ’Rฮ”ฯ•ฮ”Re z . โ‚ฌ otherwise specified. Using Here the unit vectors are evaluated at the center of the volume unless โ‚ฌ โ‚ฌ a two-term Taylor series approximation for the components of Q on each of the six surfaces, and taking the six contributions to n โ‹… QdA inโ‚ฌthe same order, the integral โ‚ฌ definition becomes: โ‚ฌ 5.( 1 . 1 9 ( ฮ”R โˆ‚QR +( ฮ”R + ฮ”R โˆ‚QR +( ฮ”R + -* R + -ฮ”ฯ•ฮ”z3 โˆ’ 0* QR โˆ’ -* R โˆ’ -ฮ”ฯ•ฮ”z3 +7 70* QR + 2 โˆ‚R ,) 2 , 2 โˆ‚R ,) 2 , 2 /) 2 7 7/) 77 1 .( 1 1 โ‚ฌ 77.( ฮ”ฯ• โˆ‚Qฯ• + ฮ”ฯ• โˆ‚Qฯ• + โˆ‡ โ‹… Q = lim โˆ’ฮ”Rฮ”z + Q + ฮ”Rฮ”z + 60* Qฯ• โˆ’ : )3 0* ฯ• 3 -( ฮ”R โ†’0 Rฮ”ฯ•ฮ”Rฮ”z 2 โˆ‚ฯ• 2 โˆ‚ฯ• ) , ) , / 2 / 2 7 7 ฮ”ฯ• โ†’0 ฮ”z โ†’0 7.( 7 1 .( 1 + + 70* Qz + ฮ”z โˆ‚Qz -Rฮ”ฯ•ฮ”R3 โˆ’ 0*Qz โˆ’ ฮ”z โˆ‚Qz – Rฮ”ฯ•ฮ”R3 + … 7 78/) 7; 2 โˆ‚z , 2 โˆ‚z , 2 /) 2 ฯ• +ฮ”ฯ• 2 โ‚ฌ โ‚ฌ โ‚ฌ Here the mean value theorem has been used and all listings of the components of Q and their derivatives are evaluated at the center of the volume. The largest terms inside the big {,}brackets are proportional to ฮ”ฯ•ฮ”Rฮ”z. The remaining higher order terms vanish when the limit is taken. 0(QR R โˆ‚QR + 4 ( QR R โˆ‚QR + ฮ” ฯ• ฮ”Rฮ”z โˆ’ โˆ’ โˆ’ ฮ” ฯ• ฮ”Rฮ”z + 2* + 2 *) 2 2 โˆ‚R -, 2 โˆ‚R -, 2) 2 2 ( + ( + 2 2 1 1 โˆ‚Qฯ• 1 โˆ‚Qฯ• โˆ‡ โ‹… Q = lim ฮ”ฯ•ฮ”Rฮ”z + * ฮ”ฯ•ฮ”Rฮ”z + 1โˆ’*โˆ’ 5 ฮ”R โ†’0 Rฮ”ฯ•ฮ”Rฮ”z )2 โˆ‚ฯ• , 2 ) 2 โˆ‚ฯ• , 2 ฮ”ฯ• โ†’0 ฮ”z โ†’0 2( R โˆ‚ฮจ + 2 ( R โˆ‚ฮจ + ฮ” ฯ• ฮ”Rฮ”z โˆ’ โˆ’ ฮ” ฯ• ฮ”Rฮ”z + … 2* 2 *) 2 โˆ‚z -, 3) 2 โˆ‚z , 6 &Q โˆ‚Q 1 โˆ‚Qฯ• โˆ‚Qz ) 1 โˆ‚ 1 โˆ‚Qฯ• โˆ‚Qz โˆ‡โ‹…Q =’ R + R + + + *= (RQR ) + โˆ‚R R โˆ‚ฯ• โˆ‚z + R โˆ‚ R R โˆ‚ฯ• โˆ‚z (R e! eR y Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.20. Obtain the recipe for the divergence of a vector function in spherical polar coordinates from the integral definition (2.32). z Solution 2.20. Start from the appropriate 1 form of (2.32), โˆ‡ โ‹… Q = lim โˆซโˆซ n โ‹… QdA , V โ†’0 V A #r where Q = (Qr, Q , Q ) is a vector function of position x. Here we choose a nearly er #” rectangular volume V = (rฮ” ฮธ )(rsin ฮธ ฮ” ฯ• )(ฮ”r) โ‚ฌ ” centered on the point x = (r, ฮธ, ฯ•) with sides e” aligned perpendicular to the coordinate directions. Here the unit vectors depend on y ฮธ and ฯ• so directions are slightly different at e! rsin” ! ฮธ ยฑ ฮ”ฮธ/2, and ฯ• ยฑ ฮ”ฯ•/2. Considering the x #! drawing and noting that n is an outward normal, there are six contributions to ndA: # ฮ”r & # ฮ”r & $ ฮ”r ‘ $ ฮ”r ‘ outside = % r + (ฮ”ฮธ% r + ( sin ฮธฮ”ฯ• (e r ) , inside = & r โˆ’ )ฮ”ฮธ& r โˆ’ ) sin ฮธฮ”ฯ• (โˆ’e r ) , $ % 2′ $ 2’ 2( % 2( bottom = [ r sin(ฮธ + ฮ”ฮธ 2)ฮ”ฯ•ฮ”r](eฮธ )ฮธ +ฮ”ฮธ 2 , top = [ r sin(ฮธ โˆ’ ฮ”ฮธ 2)ฮ”ฯ•ฮ”r](โˆ’eฮธ )ฮธ โˆ’ฮ”ฮธ 2 , ฮธ ฯ• close vertical side = rฮ”ฮธฮ”r(โˆ’eฯ• ) , and more distant vertical side = rฮ”ฮธฮ”r(+eฯ• ) . ฯ• โˆ’ฮ”ฯ• 2 ฯ• +ฮ”ฯ• 2 โ‚ฌHere the unit vectors are evaluated at the center โ‚ฌ of the volume unless otherwise specified. Using a two-term Taylor series approximation โ‚ฌ for the corresponding components of Q on each of the โ‚ฌ six surfaces produces: % โ‚ฌ ฮ”ฮธ โˆ‚Qฮธ ( $ โ‚ฌ ฮ”r โˆ‚Qr ‘ % ฮ”r โˆ‚Qr ( outside: &Qr + , *(eฮธ ) )e r , inside: ‘Qr โˆ’ *e r , bottom: ‘Qฮธ + & % & 2 โˆ‚ฮธ ) ฮธ +ฮ”ฮธ 2 2 โˆ‚r ( 2 โˆ‚r ) & & ฮ”ฮธ โˆ‚Qฮธ ) ฮ”ฯ• โˆ‚Qฯ• ) top: (Qฮธ โˆ’ +(eฮธ )ฮธ โˆ’ฮ”ฮธ 2 , close vertical side : (Qฯ• โˆ’ +(โˆ’eฯ• )ฯ• โˆ’ฮ”ฯ• 2 , and ‘ 2 โˆ‚ฮธ * 2 โˆ‚ฯ• * ‘ ฮ”ฯ• โˆ‚Qฯ• ( โ‚ฌ โ‚ฌ % โ‚ฌ more distant vertical side : ‘Qฯ• + *(eฯ• )ฯ• +ฮ”ฯ• 2 . 2 โˆ‚ฯ• ) & to n โ‹… QdA , the integral definition becomes: โ‚ฌ โ‚ฌ Collecting and summing the six contributions 1 โˆ‡ โ‹… Q = lim ร— ฮ”r โ†’0 (rฮ”ฮธ )(r sin ฮธฮ”ฯ• )ฮ”r โ‚ฌ ฮ”ฮ”ฮธฯ• โ†’0 โ†’0 โ‚ฌ 2 2 70* 3 0* 3; ฮ”r โˆ‚Qr – * ฮ”r ฮ”r โˆ‚Qr – * ฮ”r 92,Qr + /ฮ”ฮธ, r + / sin ฮธฮ”ฯ•5 โˆ’ 2,Qr โˆ’ /ฮ”ฮธ, r โˆ’ / sin ฮธฮ”ฯ•5 9 2 โˆ‚r . + 2. 2 โˆ‚r . + 2. 91+ 4 1+ 49 9 9 3 0* 39 9 0* * * ฮ”ฮธ โˆ‚Qฮธ ฮ”ฮธ ฮ”ฮธ โˆ‚Qฮธ ฮ”ฮธ 8+2, Qฮธ + /r sin,ฮธ + /ฮ”ฯ•ฮ”r5 โˆ’ 2, Qฮธ โˆ’ / r sin,ฮธ โˆ’ /ฮ”ฯ•ฮ”r5< + + 2 โˆ‚ฮธ . 2 . 2 โˆ‚ฮธ . 2 . 4 1+ 49 9 1+ 9 0* 9 3 0* 3 โˆ‚Q โˆ‚Q 9โˆ’2, Qฯ• โˆ’ ฮ”ฯ• ฯ• /rฮ”ฮธฮ”r5 + 2,Qฯ• + ฮ”ฯ• ฯ• / rฮ”ฮธฮ”r5 + … 9 2 โˆ‚ฯ• . 2 โˆ‚ฯ• . 9: 1+ 9= 4 1+ 4 โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling The largest terms inside the big {,}-brackets are proportional to ฮ”ฮธฮ”ฯ•ฮ”r. The remaining higher order terms vanish when the limit is taken. 0* โˆ‚Q 4 2,r 2 r + 2rQr /ฮ”ฮธ sin ฮธฮ”ฯ•ฮ”r 2 . 2+ โˆ‚r 2 2 2 * 1 โˆ‚Q โˆ‡ โ‹… Q = lim ร— 1+,sin ฮธ ฮธ + cos ฮธQฮธ /rฮ”ฮธฮ”ฯ•ฮ”r5 ฮ”r โ†’0 (rฮ”ฮธ )(r sin ฮธฮ”ฯ• )ฮ”r . โˆ‚ฮธ 2 + 2 ฮ”ฮธ โ†’0 ฮ”ฯ• โ†’0 2 *โˆ‚Qฯ• 2 2+, 2 /rฮ”ฮธฮ”ฯ•ฮ”r + … 3 + โˆ‚ฯ• . 6 Cancel the common factors and take the limit, to find: .' โˆ‚Q * ' * 'โˆ‚Q * 1 1 โˆ‚Q โˆ‡โ‹…Q = ร— /)r 2 r + 2rQr , sin ฮธ + )sin ฮธ ฮธ + cosฮธQฮธ ,r + ) ฯ• ,r2 + ( + ( โˆ‚ฯ• + 3 (r)(r sin ฮธ ) 0( โˆ‚r โˆ‚ฮธ โ‚ฌ &โˆ‚ โˆ‚Q ) 1 โˆ‚ = 2 ร— ' ( r 2Qr ) sin ฮธ + r (sin ฮธQฮธ ) + r ฯ• * r sin ฮธ ( โˆ‚r โˆ‚ฮธ โˆ‚ฯ• + 1 โˆ‚ 1 โˆ‚ 1 โˆ‚Qฯ• โ‚ฌ = 2 ( r 2Qr ) + (sin ฮธQฮธ ) + r โˆ‚r r sin ฮธ โˆ‚ฮธ r sin ฮธ โˆ‚ฯ• โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.21. Use the vector integral theorems to prove that โˆ‡ โ‹… (โˆ‡ ร— u) = 0 for any twicedifferentiable vector function u regardless of the coordinate system. Solution 2.21. Start with the divergence theorem for a vector โ‚ฌ function Q that depends on the spatial coordinates, โˆซโˆซโˆซ โˆ‡ โ‹… QdV = โˆซโˆซ n โ‹… QdA V A n t1 V nc1 nc2 t2 where the arbitrary closed volume V has surface A, and the A1 outward normal is n. For this exercise, let Q = โˆ‡ ร— u so that A2 C โˆซโˆซโˆซ โˆ‡ โ‹… (โˆ‡ ร— u)dV = โˆซโˆซ n โ‹… (โˆ‡ ร— u) dA . โ‚ฌ V A Now split V into two sub-volumes V1 and V2, where the surface of V1 is A1 and the surface of V2 โ‚ฌ surfaces, but A1+ A2 = A so: is A2. Here A1 and A2 are not closed โˆซโˆซโˆซ โˆ‡ โ‹… (โˆ‡ ร— u)dV = โˆซโˆซ n โ‹… (โˆ‡ ร— u) dA + โˆซโˆซ n โ‹… (โˆ‡ ร— u) dA . โ‚ฌ V A1 A2 where n is the same as when the surfaces were joined. However, the bounding curve C for A1 and A2 is the same, so Stokes theorem produces: โˆซโˆซโˆซ โˆ‡ โ‹… (โˆ‡ ร— u) dV = โˆซ u โ‹… t1 ds + โˆซ u โ‹… t 2 ds . โ‚ฌ V C C Here the tangent vectors t1 = nc1 ร— n and t 2 = nc 2 ร— n have opposite signs because nc1 and nc2, the normals to C that are tangent to surfaces A1 and A2, respectively, have opposite sign. Thus, the two terms on the right side of the last equation are equal and opposite, so (i) โˆซโˆซโˆซ โˆ‡ โ‹… (โˆ‡ ร— u)dV = 0 . โ‚ฌ โ‚ฌ V For an arbitrary closed volume of any size, shape, or location, this can only be true if โˆ‡ โ‹… (โˆ‡ ร— u) = 0 . For example, if โˆ‡ โ‹… (โˆ‡ ร— u) were nonzero at some location, then integration in small volume centered on this location would not be zero. Such a nonzero integral is not allowed โ‚ฌ by (i); thus, โˆ‡ โ‹… (โˆ‡ ร— u) must be zero everywhere because V is arbitrary. โ‚ฌ โ‚ฌ โ‚ฌ Fluid Mechanics, 6th Ed. Kundu, Cohen, and Dowling Exercise 2.22. Use Stokesโ€™ theorem to prove that โˆ‡ ร— (โˆ‡ฯ† ) = 0 for any single-valued twicedifferentiable scalar ฯ† regardless of the coordinate system. Solution 2.22. From (2.34) Stokes Theoremโ‚ฌis: โˆซโˆซ (โˆ‡ ร— u) โ‹… ndA = โˆซ u โ‹… tds . A โ‚ฌ C Let u = โˆ‡ฯ† , and note that โˆ‡ฯ† โ‹… tds = (โˆ‚ฯ† โˆ‚s) ds = dฯ† because the t vector points along the contour C that has path increment ds. Therefore: (ii) (โˆ‡ ร— [โˆ‡ฯ† ]) โ‹… ndA = โˆซ โˆ‡ฯ† โ‹… tds = โˆซ dฯ† = 0 , โ‚ฌโˆซโˆซ A C C โ‚ฌ where the final equality holds for integration on a closed contour of a single-valued function ฯ†. For an arbitrary surface A of any size, shape, orientation, or location, this can only be true if โˆ‡ ร— ( โˆ‡ฯ† ) = 0 . For example, if โˆ‡ ร— ( โˆ‡ฯ† ) = 0 were nonzero at some location, then an area โ‚ฌ integration in a small region centered on this location would not be zero. Such a nonzero integral is not allowed by (ii); thus, โˆ‡ ร— ( โˆ‡ฯ† ) = 0 must be zero everywhere because A is arbitrary.

Document Preview (25 of 729 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in