Preview Extract
NOT FOR SALE
C H A P T E R 2
Functions and Their Graphs
Section 2.1
Linear Equations in Two Variables ……………………………………………165
Section 2.2
Functions…………………………………………………………………………………178
Section 2.3
Analyzing Graphs of Functions …………………………………………………186
Section 2.4
A Library of Parent Functions …………………………………………………..197
Section 2.5
Transformations of Functions ……………………………………………………201
Section 2.6
Combinations of Functions: Composite Functions………………………212
Section 2.7
Inverse Functions……………………………………………………………………..221
Review Exercises …………………………………………………………………………………………234
Problem Solving …………………………………………………………………………………………243
Practice Test ……………………………………………………………………………………………….248
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
C H A P T E R 2
Functions and Their Graphs
Section 2.1 Linear Equations in Two Variables
14. The line appears to go through (0, 7) and (7, 0).
1. linear
2. slope
Slope =
3. point-slope
y2 โ y1
0 โ7
=
= โ1
x2 โ x1
7 โ0
15. y = 5 x + 3
4. parallel
Slope: m = 5
5. perpendicular
y-intercept: (0, 3)
6. rate or rate of change
7. linear extrapolation
8. general
9. (a) m = 23 . Because the slope is positive, the line rises.
Matches L2 .
(b) m is undefined. The line is vertical. Matches L3.
(c) m = โ2. The line falls. Matches L1.
10. (a) m = 0. The line is horizontal. Matches L2 .
(b)
16. Slope: m = โ1
y -intercept: (0, โ10)
m = โ 34 . Because the slope is negative, the line
falls. Matches L1.
(c) m = 1. Because the slope is positive, the line rises.
Matches L3 .
11.
17. y = โ 12 x + 4
Slope: m = โ 12
y-intercept: (0, 4)
12.
13. Two points on the line: (0, 0) and ( 4, 6)
y2 โ y1
6
3
=
=
x2 โ x1
4
2
INSTRUCTOR USE ONLY
Slope
p =
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
165
166
NOT FOR SALE
Chapter 2
Functions
ctions and Their Graphs
18. Slope: m = 3
2
y -intercept: (0, 6)
22. 3 y + 5 = 0
3 y = โ5
y = โ 53
Slope: m = 0
(
y-intercept: 0, โ 53
)
19. y โ 3 = 0
y = 3, horizontal line
Slope: m = 0
y-intercept: (0, 3)
23. 7 x โ 6 y = 30
โ 6 y = โ 7 x + 30
y = 76 x โ 5
Slope: m = 76
y -intercept: ( 0, โ 5)
20. x + 5 = 0
x = โ5
Slope: undefined (vertical line)
No y-intercept
24. 2 x + 3 y = 9
3 y = โ2 x + 9
y = โ 23 x + 3
Slope: m = โ 23
21. 5 x โ 2 = 0
y-intercept: (0, 3)
x = 52 , vertical line
Slope: undefined
No y-intercept
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
Linear Equations in Tw
Two Variables
T
25. m =
0โ9
โ9
3
=
= โ
6โ0
6
2
29. m =
26. m =
8
2
โ8 โ 0
=
=
0 โ 12
12
3
30. m =
27. m =
6 โ ( โ2)
1 โ ( โ3)
=
8
= 2
4
31. m =
โ7 โ ( โ7)
8โ5
=
167
0
= 0
3
โ5 โ 1
= 3
โ 4 โ ( โ2)
4 โ ( โ1)
โ6 โ ( โ6)
=
5
0
m is undefined.
28. m =
โ4 โ 4
= โ4
4โ2
32. m =
0 โ ( โ10)
โ4 โ 0
= โ
5
2
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
168
Chapter 2
33. m =
NOT FOR SALE
Functions
ctions and Their Graphs
41. Point: ( โ1, โ 6), Slope: m = โ 12
1.6 โ 3.1
โ1.5
=
= 0.15
โ5.2 โ 4.8
โ10
Because m = โ 12 , y decreases by 1 unit for every two
unit increase in x. Three additional points are (1, โ 7),
(3, โ 8), and (โ13, 0).
42. Point: (7, โ 2), Slope: m = 12
Because m = 12 , y increases by 1 unit for every two
โ
34. m =
unit increase in x. Three additional points are (9, โ1),
1 ยง 4ยท
โ ยจโ ยธ
1
3 ยฉ 3ยน
= โ
3 11
7
โ โ
2
2
(11, 0), and (13, 1).
43. Point: (0, โ 2); m = 3
y + 2 = 3( x โ 0)
y = 3x โ 2
35. Point: ( 2, 1), Slope: m = 0
Because m = 0, y does not change. Three points are
(0, 1), (3, 1), and (โ1, 1).
44. Point: (0, 10); m = โ1
36. Point: (3, โ 2), Slope: m = 0
Because m = 0, y does not change. Three other points
are ( โ 4, โ 2), (0, โ 2), and (5, โ 2).
y โ 10 = โ1( x โ 0)
y โ 10 = โ x
y = โ x + 10
37. Point: ( โ 8, 1), Slope is undefined.
Because m is undefined, x does not change. Three points
are ( โ 8, 0), ( โ 8, 2), and ( โ8, 3).
38. Point: (1, 5), Slope is undefined.
Because m is undefined, x does not change. Three other
points are (1, โ 3), (1, 1), and (1, 7).
45. Point: ( โ3, 6); m = โ2
39. Point: ( โ 5, 4), Slope: m = 2
Because m = 2 = 12 , y increases by 2 for every one
unit increase in x. Three additional points are ( โ 4, 6),
y โ 6 = โ2( x + 3)
y = โ2 x
(โ3, 8), and (โ2, 10).
40. Point: (0, โ 9), Slope: m = โ2
Because m = โ2, y decreases by 2 for every one unit
increase in x. Three other points are ( โ 2, โ 5),
INSTRUCTOR USE ONLY
(1, โ11), and (3, โ15).
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.1
Linear Equations in Two
Tw
T
Variables
46. Point: (0, 0); m = 4
50. Point: ( โ2, โ 5); m = 34
y โ 0 = 4( x โ 0)
y + 5 = 34 ( x + 2)
y = 4x
169
4 y + 20 = 3x + 6
4 y = 3x โ 14
y = 34 x โ 72
51. Point: (6, โ1); m is undefined.
Because the slope is undefined, the line is a vertical line.
x = 6
47. Point: ( 4, 0); m = โ 13
y โ 0 = โ 13 ( x โ 4)
y = โ 13 x + 43
52. Point: ( โ10, 4); m is undefined.
Because the slope is undefined, the line is a vertical line.
x = โ10
48. Point: (8, 2); m = 14
y โ 2 = 14 ( x โ 8)
y โ 2 = 14 x โ 2
y = 14 x
( )
53. Point: 4, 52 ; m = 0
y โ 52 = 0( x โ 4)
y โ 52 = 0
y = 52
49. Point: ( 2, โ 3); m = โ
1
2
1
( x โ 2)
2
1
y +3 = โ x +1
2
1
y = โ x โ 2
2
y โ ( โ3) = โ
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
170
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
58. ( โ1, 4), (6, 4)
54. Point: ( โ5.1, 1.8); m = 5
y โ 1.8 = 5( x โ ( โ5.1))
y โ 4 =
y = 5 x + 27.3
4โ 4
( x + 1)
6 โ ( โ1)
y โ 4 = 0( x + 1)
y โ 4 = 0
y = 4
ยง 1ยท ยง1 5ยท
59. ยจ 2, ยธ, ยจ , ยธ
ยฉ 2ยน ยฉ 2 4ยน
5 1
โ
1
2 ( x โ 2)
y โ
= 4
1
2
โ 2
2
1
1
y = โ ( x โ 2) +
2
2
1
3
y = โ x +
2
2
55. (5, โ1), ( โ5, 5)
5+1
( x โ 5)
โ5 โ 5
3
y = โ ( x โ 5) โ 1
5
3
y = โ x + 2
5
y +1 =
2ยท
ยง
60. (1, 1), ยจ 6, โ ยธ
3ยน
ยฉ
2
โ1
y โ1 = 3
( x โ 1)
6 โ1
1
y โ 1 = โ ( x โ 1)
3
1
1
y โ1 = โ x +
3
3
1
4
y = โ x +
3
3
56. ( 4, 3), ( โ4, โ 4)
โ
โ4 โ 3
( x โ 4)
โ4 โ 4
7
y โ 3 = ( x โ 4)
8
7
7
y โ3 = x โ
8
2
7
1
y = x โ
8
2
y โ3 =
61. (1, 0.6), ( โ2, โ 0.6)
57. ( โ8, 1), ( โ8, 7)
Because both points have x = โ8, the slope is
undefined, and the line is vertical.
x = โ8
โ0.6 โ 0.6
( x โ 1)
โ2 โ 1
y = 0.4( x โ 1) + 0.6
y โ 0.6 =
y = 0.4 x + 0.2
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
62. ( โ8, 0.6), ( 2, โ 2.4)
y โ 0.6 =
m1 = 12
L2 : y = โ 12 x + 1
3
y โ 0.6 = โ ( x + 8)
10
10 y โ 6 = โ3( x + 8)
m2 = โ 12
The lines are neither parallel nor perpendicular.
10 y โ 6 = โ3 x โ 24
68. L1 : y = โ 54 x โ 5
10 y = โ3 x โ 18
3
9
x โ
10
5
or
y = โ0.3x โ 1.8
m2 = 54
The lines are perpendicular.
โ1 โ ( โ1)
y +1 =
( x โ 2)
1
โ 2
3
y +1= 0
69. L1 : (0, โ1), (5, 9)
m1 =
y = โ1
9+1
= 2
5โ0
L2 : (0, 3), ( 4, 1)
The line is horizontal.
m2 =
ยง7
ยท ยง7 ยท
64. ยจ , โ 8ยธ, ยจ , 1ยธ
ยฉ3
ยน ยฉ3 ยน
1โ3
1
= โ
4โ0
2
The lines are perpendicular.
1 โ ( โ8)
9
and is undefined.
=
7
7
0
โ
3
3
7
x =
3
The line is vertical.
m1 = โ 54
L2 : y = 54 x + 1
ยง1
ยท
63. ( 2, โ1), ยจ , โ1ยธ
ยฉ3
ยน
m =
171
67. L1 : y = 12 x โ 3
โ2.4 โ 0.6
( x + 8)
2 โ ( โ8)
y = โ
Linear Equations in Two
Tw
T
Variables
70. L1 : ( โ2, โ1), (1, 5)
m1 =
5 โ ( โ1)
6
=
= 2
1 โ ( โ2)
3
L2 : (1, 3), (5, โ 5)
m2 =
โ5 โ 3
โ8
=
= โ2
5 โ1
4
The lines are neither parallel nor perpendicular.
71. L1 : (3, 6), ( โ6, 0)
m1 =
65. L1 : y = 13 x โ 2
m1 = 13
L2 : y = 13 x + 3
0โ6
2
=
โ6 โ 3
3
ยง 7ยท
L2 : (0, โ1), ยจ 5, ยธ
ยฉ 3ยน
7
+1
2
m2 = 3
=
5โ0
3
The lines are parallel.
m2 = 13
The lines are parallel.
66. L1 : y = 4 x โ 1
m1 = 4
L2 : y = 4 x + 7
m2 = 4
INSTRUCTOR USE ONLY
The lines are parallel.
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
172
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
72. L1 : ( 4, 8), ( โ 4, 2)
76. 5 x + 3 y = 0
3 y = โ5 x
2โ8
3
โ6
=
=
4
โ4 โ 4
โ8
m1 =
1ยท
ยง
L2 : (3, โ 5), ยจ โ1, ยธ
3ยน
ยฉ
1
16
โ ( โ5)
4
3
m2 =
= 3 = โ
3
โ1 โ 3
โ4
y = โ 53 x
Slope: m = โ 53
( )
(a) m = โ 53 , 78 , 34
(
The lines are perpendicular.
(2, 1), m = 2
24 y = โ 40 x + 53
y = โ 53 x + 53
24
( )
(b) m = 53 , 87 , 43
y โ 1 = 2( x โ 2)
(
y โ 34 = 53 x โ 78
y = 2x โ 3
40 y = 24 x + 9
9
y = 53 x + 40
= โ 12 x + 2
77. y + 3 = 0
74. x + y = 7
y = โ3
y = โx + 7
Slope: m = โ1
Slope: m = 0
(a) m = โ1, ( โ3, 2)
(a)
y โ 2 = โ1( x + 3)
y โ 2 = โx โ 3
(b) m = 1, ( โ3, 2)
y โ 2 = 1( x + 3)
y = x +5
(b) ( โ1, 0), m is undefined.
x = โ1
78. x โ 4 = 0
x = 4
Slope: m is undefined.
(a)
75. 3x + 4 y = 7
y = โ 34 x + 74
Slope: m = โ 34
(โ1, 0), m = 0
y = 0
y = โx โ 1
(
)
40 y โ 30 = 24 x โ 21
y โ 1 = โ 12 ( x โ 2)
(a)
(
)
40 y โ 30 = 24 x โ 78
(b) ( 2, 1), m = โ 12
y
)
24 y โ 18 = โ 40 x + 35
= 2 x โ 32
Slope: m = 2
(a)
(
24 y โ 18 = โ 40 x โ 78
73. 4 x โ 2 y = 3
y
)
y โ 34 = โ 53 x โ 78
(3, โ 2), m is undefined.
x = 3
(b) (3, โ 2), m = 0
y = โ2
)
โ 23 , 78 , m = โ 34
( ( ))
y โ 78 = โ 34 x โ โ 23
y = โ 34 x + 83
(b)
(โ 23 , 78 ), m = 43
( ( ))
y โ 78 = 43 x โ โ 23
y = 43 x + 127
72
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
79. x โ y = 4
y = x โ 4
x
y
+
=1
2 3 โ2
(2.5, 6.8), m = 1
3x
y
โ
=1
2
2
3x โ y โ 2 = 0
y โ 6.8 = 1( x โ 2.5)
y = x + 4.3
(b) ( 2.5, 6.8), m = โ1
y โ 6.8 = ( โ1)( x โ 2.5)
y = โ x + 9.3
2 y = โ6 x + 9
y = โ3x + 92
Slope: m = โ3
(โ3.9, โ1.4), m = โ3
x
y
+
= 1, c โ 0
c
c
x + y = c
3 = c
x + y = 3
x + y โ3 = 0
86. ( d , 0), (0, d ), ( โ3, 4)
y + 1.4 = โ3 x โ 11.7
x
y
+
=1
d
d
x + y = d
y = โ3x โ 13.1
โ3 + 4 = d
y โ ( โ1.4) = โ3( x โ ( โ3.9))
(b) ( โ3.9, โ1.4), m = 13
y โ ( โ1.4) = 13 ( x โ ( โ3.9))
y + 1.4 = 13 x + 1.3
y = 13 x โ 0.1
x
y
81.
+
=1
2
3
3x + 2 y โ 6 = 0
82. ( โ3, 0), (0, 4)
x
y
+
=1
โ3
4
x
y
(โ12) + (โ12) = ( โ12) โ
1
โ3
4
4 x โ 3 y + 12 = 0
83.
85.
1+ 2 = c
80. 6 x + 2 y = 9
(a)
173
ยง2 ยท
84. ยจ , 0 ยธ, (0, โ 2)
ยฉ3 ยน
Slope: m = 1
(a)
Linear Equations in Two
Tw
T
Variables
1= d
x + y =1
x + y โ1 = 0
87. (a) m = 135. The sales are increasing 135 units per
year.
(b) m = 0. There is no change in sales during the year.
(c) m = โ 40. The sales are decreasing 40 units per
year.
88. (a) greatest increase = largest slope
(9, 36.54), (10, 65.23)
m1 =
So, the sales increased the greatest between the years
2009 and 2010.
least increase = smallest slope
(8, 32.48), (9, 36.54)
x
y
+
=1
โ1 6
โ2 3
3
6 x + y = โ1
2
12 x + 3 y + 2 = 0
65.23 โ 36.54
= 28.69
10 โ 9
m2 =
36.54 โ 32.48
= 4.06
9 โ8
So, the sales increased the least between the years
2008 and 2009.
(b) ( 4, 8.28), (10, 65.23)
m =
65.23 โ 8.28
56.95
=
โ 9.49
10 โ 4
6
The slope of the line is about 9.49.
INSTRUCTOR USE ONLY
(c) The sales increased $9.49 billion each year between
the
he years 2004 and 2010.
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
174
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
6
89. y = 100
x
6
y = 100
(200) = 12 feet
90. (a) and (b)
x
300
600
900
1200
1500
1800
2100
y
โ25
โ50
โ75
โ100
โ125
โ150
โ175
(c) m =
โ50 โ ( โ25)
600 โ 300
=
1
โ25
= โ
300
12
1
( x โ 600)
12
1
y + 50 = โ x + 50
12
1
y = โ x
12
y โ ( โ50) = โ
1
, for every change in the horizontal measurement of 12 feet, the vertical
12
measurement decreases by 1 foot.
(d) Because m = โ
(e)
1
โ 0.083 = 8.3% grade
12
91. (10, 2540), m = โ125
95. Using the points (0, 875) and (5, 0), where the first
coordinate represents the year t and the second
coordinate represents the value V, you have
V โ 2540 = โ125(t โ 10)
V โ 2540 = โ125t + 1250
V = โ125t + 3790, 5 โค t โค 10
92. (10, 156), m = 4.50
96. Using the points (0, 24,000) and (10, 2000), where the
V โ 156 = 4.50(t โ 10)
V โ 156 = 4.50t โ 45
V = 4.5t + 111, 5 โค t โค 10
93. The C-intercept measures the fixed costs of
manufacturing when zero bags are produced.
The slope measures the cost to produce one laptop bag.
94. W = 0.07 S + 2500
0 โ 875
= โ175
5โ0
V = โ175t + 875, 0 โค t โค 5.
m =
first coordinate represents the year t and the second
coordinate represents the value V, you have
m =
2,000 โ 24,000
โ 22,000
=
= โ 2200.
10 โ 0
10
Since the point (0, 24,000) is the
V -intercept, b = 24,000, the equation is
V = โ 2200t + 24,000, 0 โค t โค 10.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
97. Using the points (0, 32) and (100, 212), where the first
coordinate represents a temperature in degrees Celsius
and the second coordinate represents a temperature in
degrees Fahrenheit, you have
m =
Linear Equations in Two
Tw
T
Variables
The equipment must be used 1750 hours to yield a
profit of 0 dollars.
100. (a)
212 โ 32
180
9
=
= .
100 โ 0
100
5
10 m
Since the point (0, 32) is the F- intercept, b = 32, the
x
15 m
9
equation is F = C + 32.
5
x
(b) y = 2(15 + 2 x) + 2(10 + 2 x) = 8 x + 50
98. (a) Using the points (1, 970) and (3, 1270), you have
m =
175
(c)
1270 โ 970
300
=
= 150.
3โ1
2
Using the point-slope form with m = 150 and the
point (1, 970), you have
(d) Because m = 8, each 1-meter increase in x will
increase y by 8 meters.
y โ y1 = m(t โ t1 )
y โ 970 = 150(t โ 1)
101. False. The slope with the greatest magnitude corresponds
to the steepest line.
y โ 970 = 150t โ 150
y = 150t + 820.
(b) The slope is m = 150. The slope tells you the
amount of increase in the weight of average male
childโs brain each year.
(c) Let t = 2:
y = 150( 2) + 820
y = 300 + 820
y = 1120
The average brain weight at age 2 is 1120 grams.
102. False. The lines are not parallel.
(โ8, 2) and (โ1, 4): m1 =
4โ 2
2
=
โ1 โ ( โ8)
7
(0, โ 4) and (โ7, 7): m2 =
7 โ ( โ4)
11
=
โ7 โ 0
โ7
103. Find the slope of the line segments between the points
A and B, and B and C.
(d) Answers will vary.
(e) Answers will vary. Sample Answer: No. The brain
stops growing after reaching a certain age.
99. (a) Total Cost = cost for
cost
fuel and
+ for
maintainance
purchase
+ cost
operator
C = 9.5t + 11.5t + 42,000
C = 21.0t + 42,000
m AB =
7 โ5
2
1
=
=
3 โ ( โ1)
4
2
mBC =
โ4
3โ7
=
= โ2
5โ3
2
(b) Revenue = Rate per hour โ
Hours
R = 45t
(c) P = R โ C
P = 45t โ ( 21t + 42,000)
P = 24t โ 42,000
(d) Let P = 0, and solve for t.
0 = 24t โ 42,000
42,000 = 24t
1750 = t
Since the slopes are negative reciprocals, the line
segments are perpendicular and therefore intersect to
form a right angle. So, the triangle is a right triangle.
104. On a vertical line, all the points have the same x-value,
y โ y1
, you would have
so when you evaluate m = 2
x2 โ x1
a zero in the denominator, and division by zero is
undefined.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
176
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
105. No. The slope cannot be determined without knowing the scale on the y-axis. The slopes will be the same if
the scale on the y-axis of (a) is 2 12 and the scale on the y-axis of (b) is 1. Then the slope of both is 54 .
106. d1 =
( x2 โ x1 )2 + ( y2 โ y1 )2
( x2 โ x1 )2 + ( y2 โ y1 )2
d2 =
=
(1 โ 0)2 + ( m1 โ 0)2
=
(1 โ 0)2 + ( m2 โ 0)2
=
1 + (m 1 )
=
1 + (m 2 )
2
2
Using the Pythagorean Theorem:
(d1 ) + (d 2 )
2
2
2
= (distance between (1, m1 ), and (1, m2 ))
2
ยง 1 + m 2ยท + ยง 1 + m 2ยท = ยง
( 1) ยธ ยจ
( 2) ยธ ยจ
ยจ
ยฉ
ยน
ยฉ
ยน
ยฉ
(1 โ 1) + (m2 โ m1 ) ยทยธ
2
2
2
( m 1 ) + (m 2 ) + 2 = (m 2 ) โ 2m1m2 + (m 1 )
2
2
2
ยน
1 + ( m 1 ) + 1 + ( m 2 ) = ( m2 โ m1 )
2
2
2
2
2
2 = โ2m1m2
โ
1
= m1
m2
107. No, the slopes of two perpendicular lines have opposite
signs. (Assume that neither line is vertical or horizontal.)
108. Because โ4 > 52 , the steeper line is the one with a
slope of โ 4. The slope with the greatest magnitude
corresponds to the steepest line.
109. The line y = 4 x rises most quickly.
110. (a) Matches graph (ii).
The slope is โ20, which represents the decrease in
the amount of the loan each week. The y-intercept is
(0, 200), which represents the original amount of the
loan.
(b) Matches graph (iii).
The slope is 2, which represents the increase in the
hourly wage for each unit produced. The y-intercept
is (0, 12.5), which represents the hourly rate if the
employee produces no units.
(c) Matches graph (i).
The slope is 0.32, which represents the increase in
travel cost for each mile driven. The y-intercept is
(0, 32), which represents the fixed cost of $30 per
The line y = โ4 x falls most quickly.
day for meals. This amount does not depend on the
number of miles driven.
(d) Matches graph (iv).
The slope is โ100, which represents the amount by
which the computer depreciates each year. The yintercept is (0, 750), which represents the original
purchase price.
The greater the magnitude of the slope (the absolute
value of the slope), the faster the line rises or falls.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.1
Linear Equations in T
Two
Tw Variables
177
111. Set the distance between ( 4, โ1) and ( x, y ) equal to the distance between ( โ2, 3) and ( x, y ).
( x โ 4) + ยฌยช y โ (โ1)ยผยบ
2
2
2
ยฌยช x โ ( โ2)ยผยบ + ( y โ 3)
=
2
( x โ 4)2 + ( y + 1)2 = ( x + 2)2 + ( y โ 3)2
x 2 โ 8 x + 16 + y 2 + 2 y + 1 = x 2 + 4 x + 4 + y 2 โ 6 y + 9
โ8 x + 2 y + 17 = 4 x โ 6 y + 13
0 = 12 x โ 8 y โ 4
0 = 4(3 x โ 2 y โ 1)
0 = 3x โ 2 y โ 1
This line is the perpendicular bisector of the line segment connecting ( 4, โ1) and ( โ2, 3).
112. Set the distance between (6, 5) and ( x, y ) equal to the distance between (1, โ 8) and ( x, y ).
( x โ 1)2 + ( y โ (โ8))
( x โ 6)2 + ( y โ 5)2 =
( x โ 6) + ( y โ 5)
2
= ( x โ 1) + ( y + 8)
2
2
2
2
x 2 โ 12 x + 36 + y 2 โ 10 y + 25 = x 2 โ 2 x + 1 + y 2 + 16 y + 64
x 2 + y 2 โ 12 x โ 10 y + 61 = x 2 + y 2 โ 2 x + 16 y + 65
โ12 x โ 10 y + 61 = โ2 x + 16 y + 65
โ10 x โ 26 y โ 4 = 0
โ2(5 x + 13 y + 2) = 0
5 x + 13 y + 2 = 0
( )
113. Set the distance between 3, 52 and ( x, y ) equal to the distance between ( โ7, 1) and ( x, y ).
( x โ 3) + ( y โ 52 )
2
2
( x โ 3)2 + ( y โ 52 )
2
2
ยชยฌ x โ ( โ7)ยผยบ + ( y โ 1)
=
= ( x + 7) + ( y โ 1)
2
2
2
x 2 โ 6 x + 9 + y 2 โ 5 y + 25
= x 2 + 14 x + 49 + y 2 โ 2 y + 1
4
โ6 x โ 5 y + 61
= 14 x โ 2 y + 50
4
โ24 x โ 20 y + 61 = 56 x โ 8 y + 200
80 x + 12 y + 139 = 0
( )
This line is the perpendicular bisector of the line segment connecting 3, 52 and ( โ7, 1).
(
)
114. Set the distance between โ 12 , โ 4 and ( x, y ) equal to the distance between
( x โ (โ )) + ( y โ (โ4)) = ( x โ ) + ( y โ )
1
2
2
2
7
2
2
( x + 12 ) + ( y + 4) = ( x โ 72 ) + ( y โ 54 )
2
2
2
5
4
( 72 , 54 ) and ( x, y).
2
2
25
x 2 + x + 14 + y 2 + 8 y + 16 = x 2 โ 7 x + 49
+ y 2 โ 52 y + 16
4
x 2 + y 2 + x + 8 y + 65
= x 2 + y 2 โ 7 x โ 52 y + 221
4
16
x + 8 y + 65
= โ7 x โ 52 y + 221
4
16
39
8 x + 21
y + 16
= 0
2
128 x + 168 y + 39 = 0
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
178
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
Section 2.2 Functions
1. domain; range; function
16. y =
x +5
Yes, y is a function of x.
2. independent; dependent
17. y = 4 โ x
3. implied domain
Yes, y is a function of x.
4. difference quotient
5. Yes, the relationship is a function. Each domain value is
matched with exactly one range value.
6. No, the relationship is not a function. The domain value
of โ1 is matched with two output values.
18.
y = 4โ x ย y = 4โ x
or
y = โ( 4 โ x )
No, y is not a function of x.
19. y = โ75
y = โ75 + 0 x
or
Yes, y is a function of x.
7. No, it does not represent a function. The input values of
10 and 7 are each matched with two output values.
8. Yes, the table does represent a function. Each input value
is matched with exactly one output value.
9. (a) Each element of A is matched with exactly one
element of B, so it does represent a function.
20. x โ 1 = 0
x =1
No, this is not a function of x.
21. f ( x) = 2 x โ 3
(a) f (1) = 2(1) โ 3 = โ1
(b) The element 1 in A is matched with two elements,
โ2 and 1 of B, so it does not represent a function.
(b) f ( โ3) = 2( โ3) โ 3 = โ9
(c) Each element of A is matched with exactly one
element of B, so it does represent a function.
(c) f ( x โ 1) = 2( x โ 1) โ 3 = 2 x โ 5
(d) The element 2 in A is not matched with an element
of B, so the relation does not represent a function.
10. (a) The element c in A is matched with two elements,
2 and 3 of B, so it is not a function.
(b) Each element of A is matched with exactly one
element of B, so it does represent a function.
(c) This is not a function from A to B (it represents a
function from B to A instead).
(d) Each element of A is matched with exactly one
element of B, so it does represent a function.
3
( )
ฯ r3
(c) V ( 2r ) = 43 ฯ ( 2r ) = 43 ฯ 8r 3 = 32
3
3
23. g (t ) = 4t 2 โ 3t + 5
(a) g ( 2) = 4( 2) โ 3( 2) + 5
2
(c) g (t ) โ g ( 2) = 4t 2 โ 3t + 5 โ 15
= 4t 2 โ 3t โ 10
)
24. h(t ) = t 2 โ 2t
Yes, y is a function of x.
(a) h( 2) = 22 โ 2( 2) = 0
14. ( x โ 2) + y 2 = 4
2
(b) h(1.5) = (1.5) โ 2(1.5) = โ0.75
2
4 โ ( x โ 2)
No, y is not a function of x.
15. y =
( ) = 34ฯ ( 278 ) = 92ฯ
= 4t 2 โ 19t + 27
Yes, y is a function of x.
y = ยฑ
()
(b) V 32 = 34 ฯ 32
2
12. x 2 + y = 4 ย y = 4 โ x 2
(
3
(b) g (t โ 2) = 4(t โ 2) โ 3(t โ 2) + 5
No, y is not a function of x.
13. 2 x + 3 y = 4 ย y =
(a) V (3) = 43 ฯ (3) = 43 ฯ ( 27) = 36ฯ
= 15
11. x 2 + y 2 = 4 ย y = ยฑ 4 โ x 2
1 4 โ 2x
3
22. V ( r ) = 43 ฯ r 3
2
(c) h( x + 2) = ( x + 2) โ 2( x + 2) = x 2 + 2 x
2
16 โ x 2
INSTRUCTOR USE ONLY
Yes, y is a function of x.
x.
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.2
2.
25. f ( y ) = 3 โ
4 =1
(a) f ( โ1) = 2( โ1) + 1 = โ1
(b) f (0.25) = 3 โ
0.25 = 2.5
(c) f ( 4 x 2 ) = 3 โ
4 x2 = 3 โ 2 x
26. f ( x ) =
(c) f ( 2) = 2( 2) + 2 = 6
ยญ4 โ 5 x, x โค โ2
ยฐ
โ2 2
ยฏ
(โ8) + 8 + 2 = 2
(b) f (1) =
(1) + 8 + 2 = 5
(c) f ( x โ 8) =
27. q( x) =
(b) f (0) = 2(0) + 2 = 2
x +8 + 2
(a) f ( โ8) =
( x โ 8) + 8 + 2 =
x + 2
1
x2 โ 9
(a) q(0) =
1
1
= โ
0 โ9
9
2
f ( โ2) = ( โ2) โ 3 = 1
2
1
( y + 3) โ 9
2
=
f ( โ1) = ( โ1) โ 3 = โ2
2
1
y2 + 6 y
2t 2 + 3
t2
(b) q(0) =
(b) f ( 4) = ( 4) + 1 = 17
33. f ( x) = x 2 โ 3
2
(c) q( y + 3) =
(a) q( 2) =
(a) f ( โ3) = 4 โ 5( โ3) = 19
(c) f ( โ1) = 0
1
(b) q(3) = 2
is undefined.
3 โ9
28. q(t ) =
f (0) = (0) โ 3 = โ3
2
f (1) = (1) โ 3 = โ2
2
f ( 2) = ( 2) โ 3 = 1
2
2( 2) + 3
2
( 2)2
=
8+3
11
=
4
4
2(0) + 3
x
โ2
โ1
0
1
2
f ( x)
1
โ2
โ3
โ2
1
2
34. h(t ) = 12 t + 3
( 0) 2
Division by zero is undefined.
h( โ5) = 12 โ5 + 3 = 1
2( โ x) + 3
h( โ4) = 12 โ4 + 3 = 12
(c) q( โ x) =
29. f ( x) =
2
( โ x)2
=
2×2 + 3
x2
h( โ1) = 12 โ1 + 3 = 1
x
(b) f ( โ2) =
h( โ3) = 12 โ3 + 3 = 0
h( โ2) = 12 โ2 + 3 = 12
x
(a) f ( 2) =
179
ยญ2 x + 1, x < 0
31. f ( x) = ยฎ
ยฏ2 x + 2, x โฅ 0
y
(a) f ( 4) = 3 โ
Functions
2
=1
t
โ2
h(t )
2
โ2
(c) f ( x โ 1) =
= โ1
โ5
โ4
1
1
2
โ3
โ2
โ1
0
1
2
1
ยญโ1, if x 1
ยฏ1,
x โ1
30. f ( x) = x + 4
(a) f ( 2) = 2 + 4 = 6
(b) f ( โ2) = โ2 + 4 = 6
(c) f ( x 2 ) = x 2 + 4 = x 2 + 4
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
180
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
35. f ( x) = ยญยฐโ 12 x + 4, x โค 0
ยฎ
2
ยฐฬ( x โ 2) , x > 0
41. x 2 โ 9 = 0
x2 = 9
x = ยฑ3
f ( โ2) = โ 12 ( โ2) + 4 = 5
f ( โ1) = โ 12 ( โ1) + 4 = 4 12 = 92
x 2 โ 8 x + 15 = 0
f (0) = โ 12 (0) + 4 = 4
( x โ 5)( x โ 3) = 0
f (1) = (1 โ 2) = 1
2
x โ5 = 0 ย x = 5
f ( 2) = ( 2 โ 2) = 0
2
x
f ( x)
x โ3 = 0 ย x = 3
โ2
โ1
0
1
2
5
9
2
4
1
0
x( x 2 โ 1) = 0
x( x + 1)( x โ 1) = 0
x = 0, x = โ1, or x = 1
f ( x) = x3 โ x 2 โ 4 x + 4
44.
f (1) = 9 โ (1) = 8
2
x3 โ x 2 โ 4 x + 4 = 0
f ( 2) = 9 โ ( 2) = 5
2
x 2 ( x โ 1) โ 4( x โ 1) = 0
f (3) = (3) โ 3 = 0
( x โ 1)( x 2 โ 4) = 0
f ( 4) = ( 4) โ 3 = 1
x โ1 = 0 ย x =1
f (5) = (5) โ 3 = 2
x 2 โ 4 = 0 ย x = ยฑ2
x
1
2
3
4
5
f ( x)
8
5
0
1
2
f ( x ) = g ( x)
45.
x2 = x + 2
x2 โ x โ 2 = 0
37. 15 โ 3 x = 0
3 x = 15
( x โ 2)( x + 1) = 0
x = 5
x โ 2 = 0 x +1 = 0
x = 2
f ( x) = 5 x + 1
5x + 1 = 0
2
x + 2x + 1 = 7 x โ 5
x2 โ 5x + 6 = 0
3x โ 4
= 0
39.
5
3x โ 4 = 0
( x โ 3)( x โ 2) = 0
x โ3 = 0 x โ 2 = 0
x = 3
4
x =
3
12 โ x 2
f ( x) =
5
12 โ x 2
= 0
5
x 2 = 12
x = ยฑ 12 = ยฑ2 3
x = โ1
f ( x ) = g ( x)
46.
x = โ 15
40.
x3 โ x = 0
43.
36. f ( x) = ยฐยญ9 โ x 2 , x โ6 or
(โ6, โ).
Domain: y โ 10 โฅ 0
y โฅ 10
The domain is all real numbers y such that y โฅ 10.
54. f (t ) = 3 t + 4
Because f (t ) is a cube root, the domain is all real
numbers t.
s โ1
s โ 4
59. f ( x) =
x โ 4
x
The domain is all real numbers x such that x > 0 or
(0, โ).
60. f ( x) =
x + 2
x โ 10
x โ 10 > 0
x > 10
The domain is all real numbers x such that x > 10.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
182
Chapter 2
61. (a)
NOT FOR SALE
Functions
ctions and Their Graphs
63. A = s 2 and P = 4s ย
Height, x
Volume, V
1
484
2
800
P2
ยงPยท
A = ยจ ยธ =
16
ยฉ4ยน
3
972
64. A = ฯ r 2 , C = 2ฯ r
4
1024
5
980
6
864
P
= s
4
2
r =
C
2ฯ
2
C2
ยงC ยท
A = ฯยจ ยธ =
4ฯ
ยฉ 2ฯ ยน
The volume is maximum when x = 4 and
V = 1024 cubic centimeters.
(b)
1 2
y = โ 10
x + 3x + 6
65.
1
y(30) = โ 10
(30) + 3(30) + 6 = 6 feet
2
If the child holds a glove at a height of 5 feet, then the
ball will be over the child’s head because it will be at a
height of 6 feet.
66. (a) V = l โ
w โ
h = x โ
y โ
x = x 2 y where
4 x + y = 108. So, y = 108 โ 4 x and
V = x 2 (108 โ 4 x) = 108 x 2 โ 4 x3.
Domain: 0 < x < 27
V is a function of x.
(c) V = x( 24 โ 2 x)
(b)
2
Domain: 0 < x 100
= (90 โ 0.15 x + 15) x โ 60 x
= (105 โ 0.15 x) x โ 60 x
= 105 x โ 0.15 x 2 โ 60 x
= 45 x โ 0.15 x 2 , x > 100
1โ y
0 โ1
=
x โ 2
2 โ0
1โ y
โ1
=
x โ 2
2
2
y =
+1
x โ 2
x
y =
x โ 2
So, A =
1 ยง x ยท
x2
xยจ
.
ยธ =
2 ยฉ x โ 2ยน
2( x โ 2)
The domain of A includes x-values such that
x 2 ยชยฌ2( x โ 2)ยผยบ > 0. By solving this inequality, the
INSTRUCTOR USE ONLY
omain is x > 2.
domain
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.2
2.
68. A = l โ
w = ( 2 x) y = 2 xy
Functions
183
69. For 2004 through 2007, use
p(t ) = 4.57t + 27.3.
But y = 36 โ x 2 , so A = 2 x 36 โ x 2 . The
domain is 0 < x 1
as it is possible to find the square root of 0. However,
1 cannot be included in the domain of g ( x) as it causes
f (8) = 82 3 + 1 = 5
f ( x) โ f (8)
x โ1
The value 1 may be included in the domain of f ( x)
f ( x) = x 2 3 + 1
84.
93. f ( x) =
x2 3 + 1 โ 5
x2 3 โ 4
=
,x โ 8
x โ8
x โ8
85. By plotting the points, we have a parabola, so
g ( x) = cx 2 . Because ( โ4, โ 32) is on the graph, you
have โ32 = c( โ4) ย c = โ2. So, g ( x) = โ2 x 2 .
2
86. By plotting the data, you can see that they represent a
( )
line, or f ( x) = cx. Because (0, 0) and 1, 14 are on
the line, the slope is 14 . So, f ( x) = 14 x.
87. Because the function is undefined at 0, we have
r ( x) = c x. Because ( โ4, โ 8) is on the graph, you
a zero to occur in the denominator which results in the
function being undefined.
94. Because f ( x) is a function of an even root, the radicand
cannot be negative. g ( x) is an odd root, therefore the
radicand can be any real number. So, the domain of g is
all real numbers x and the domain of f is all real numbers
x such that x โฅ 2.
95. No; x is the independent variable, f is the name of the
function.
96. (a) The height h is function of t because for each value
of t there is a corresponding value of h for
0 โค t โค 2.6.
have โ8 = c โ4 ย c = 32. So, r ( x) = 32 x.
(b) Using the graph when t = 0.5, h โ 20 feet and
88. By plotting the data, you can see that they represent
(c) The domain of h is approximately 0 โค t โค 2.6.
h( x ) = c
x . Because
โ4 = 2 and
โ1 = 1,
and the corresponding y-values are 6 and 3, c = 3 and
h( x ) = 3
x.
89. False. The equation y 2 = x 2 + 4 is a relation between
x and y. However, y = ยฑ
a function.
x 2 + 4 does not represent
90. True. A function is a relation by definition.
91. False. The range is [โ1, โ).
92. True. The set represents a function. Each x-value is
mapped to exactly one y-value.
when t = 1.25, h โ 28 feet.
(d) No, the time t is not a function of the height h
because some values of h correspond to more than
one value of t.
97. (a) Yes. The amount that you pay in sales tax will
increase as the price of the item purchased increases.
(b) No. The length of time that you study the night
before an exam does not necessarily determine your
score on the exam.
98. (a) No. During the course of a year, for example, your
salary may remain constant while your savings
account balance may vary. That is, there may be two
or more outputs (savings account balances) for one
input (salary).
(b) Yes. The greater the height from which the ball is
dropped, the greater the speed with which the ball
will strike the ground.
Section 2.3 Analyzing Graphs of Functions
1. Vertical Line Test
7. Domain: ( โโ, โ); Range: [โ4, โ)
2. zeros
(a) f ( โ2) = 0
3. decreasing
(b) f ( โ1) = โ1
4. maximum
(c) f 12 = 0
5. average rate of change; secant
(d) f (1) = โ 2
()
6. odd
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
8. Domain: ( โโ, โ); Range: ( โโ, โ)
Analyzing Graphs of Functions
f ( x) = 3 x 2 + 22 x โ 16
16.
(a) f ( โ1) = 4
3x 2 + 22 x โ 16 = 0
(3x โ 2)( x + 8) = 0
(b) f ( 2) = 4
3x โ 2 = 0 ย x = 23
(c) f (0) = 2
x + 8 = 0 ย x = โ8
(d) f (1) = 0
17.
9. Domain: ( โโ, โ); Range: ( โ2, โ)
f ( x) =
x
9×2 โ 4
x
= 0
9×2 โ 4
x = 0
(a) f ( 2) = 0
(b) f (1) = 1
(c) f (3) = 2
x 2 โ 9 x + 14
= 0
4x
( x โ 7)( x โ 2) = 0
10. Domain: ( โโ, โ); Range: ( โ โ, 1]
(a) f ( โ2) = โ3
x โ7 = 0 ย x = 7
(b) f (1) = 0
x โ 2 = 0 ย x = 2
(c) f (0) = 1
19.
(d) f ( 2) = โ3
f ( x) = 12 x3 โ x
1 x3 โ x = 0
2
x 3 โ 2 x = 2(0)
11. y = 14 x3
x ( x 2 โ 2) = 0
A vertical line intersects the graph at most once, so y is a
function of x.
12. x โ y 2 = 1 ย y = ยฑ
x = 0 or
x2 โ 2 = 0
x2 = 2
x โ1
x = ยฑ 2
y is not a function of x. Some vertical lines intersect the
graph twice.
x3 โ 4 x 2 โ 9 x + 36 = 0
A vertical line intersects the graph more than once, so y
is not a function of x.
x 2 ( x โ 4) โ 9( x โ 4) = 0
( x โ 4)( x 2 โ 9) = 0
14. x 2 = 2 xy โ 1
x โ 4 = 0 ย x = 4
A vertical line intersects the graph at most once, so y is a
function of x.
f ( x) = 2 x 2 โ 7 x โ 30
x = โ 52
f ( x) = 4 x3 โ 24 x 2 โ x + 6
21.
4 x 2 ( x โ 6) โ 1( x โ 6) = 0
(2 x + 5)( x โ 6) = 0
or
x 2 โ 9 = 0 ย x = ยฑ3
4 x3 โ 24 x 2 โ x + 6 = 0
2 x 2 โ 7 x โ 30 = 0
2x + 5 = 0
f ( x) = x3 โ 4 x 2 โ 9 x + 36
20.
2
13. x + y = 25
15.
x 2 โ 9 x + 14
4x
f ( x) =
18.
(d) f ( โ1) = 3
2
187
x โ6 = 0
x = 6
( x โ 6)(4 x 2 โ 1) = 0
( x โ 6)(2 x + 1)(2 x โ 1) = 0
x โ 6 = 0 or 2 x + 1 = 0
or 2 x โ 1 = 0
x = โ 12
x = 12
x = 6
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
188
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
f ( x) = 9 x 4 โ 25 x 2
22.
27. (a)
9 x 4 โ 25 x 2 = 0
x 2 (9 x 2 โ 25) = 0
x2 = 0 ย x = 0
9 x 2 โ 25 = 0 ย x = ยฑ 53
f ( x) =
23.
2x โ 1
Zero: x = โ 11
2
(b)
f ( x) =
2 x + 11
2x โ 1 = 0
2 x + 11 = 0
2x = 1
2 x + 11 = 0
x = โ 11
2
2x = 1
x = 12
f ( x) =
24.
28. (a)
3x + 2
3x + 2 = 0
3x + 2 = 0
โ 23 = x
Zero: x = 26
f ( x) =
(b)
25. (a)
3x โ 14 โ 8
3 x โ 14 โ 8 = 0
3 x โ 14 = 8
3 x โ 14 = 64
x = 26
5
Zero: x = โ
3
(b)
29. (a)
f ( x) = 3 + 5x
3 + 5x = 0
3x + 5 = 0
x = โ 53
26. (a)
Zero: x =
(b)
f ( x) =
1
3
3x โ 1
x โ6
3x โ 1
= 0
x โ6
3x โ 1 = 0
Zeros: x = 0, x = 7
(b)
x =
1
3
f ( x ) = x( x โ 7)
x( x โ 7) = 0
x = 0
x โ7 = 0 ย x = 7
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
30. (a)
Analyzing Graphs of Functions
189
ยญ2 x + 1, x โค โ1
38. f ( x) = ยฎ 2
ยฏx โ 2, x > โ1
The function is decreasing on ( โ1, 0) and increasing on
(โโ, โ1) and (0, โ).
Zeros: x = ยฑ2.1213
39. f ( x) = 3
2 x2 โ 9
f ( x) =
3โ x
(b)
(a)
2 x2 โ 9
= 0
3โ x
2 x2 โ 9 = 0 ย x = ยฑ
31. f ( x) =
3 2
= ยฑ2.1213
2
3
x
2
Constant on ( โโ, โ)
(b)
The function is increasing on ( โโ, โ).
32. f ( x) = x 2 โ 4 x
The function is decreasing on ( โโ, 2) and increasing on
(2, โ).
x
โ2
โ1
0
1
2
f ( x)
3
3
3
3
3
40. g ( x) = x
(a)
33. f ( x) = x3 โ 3 x 2 + 2
The function is increasing on ( โโ, 0) and ( 2, โ) and
decreasing on (0, 2).
34. f ( x) =
Increasing on ( โโ, โ)
(b)
x2 โ 1
The function is decreasing on ( โโ, โ1) and increasing
on (1, โ).
x
โ2
โ1
0
1
2
g ( x)
โ2
โ1
0
1
2
41. g ( s ) =
35. f ( x) = x + 1 + x โ 1
The function is increasing on (1, โ).
s2
4
(a)
The function is constant on ( โ1, 1).
The function is decreasing on ( โโ, โ1).
36. The function is decreasing on ( โ2, โ1) and ( โ1, 0) and
increasing on ( โโ, โ 2) and (0, โ).
ยญx + 3, x โค 0
ยฐ
37. f ( x) = ยฎ3,
0 2
ยฏ
Decreasing on ( โโ, 0); Increasing on (0, โ)
(b)
s
โ4
โ2
0
2
4
g ( s)
4
1
0
1
4
The function is increasing on ( โโ, 0) and ( 2, โ).
The function is constant on (0, 2).
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
190
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
42. f ( x) = 3x 4 โ 6 x 2
46. f ( x) = x 2 3
(a)
(a)
Increasing on ( โ1, 0), (1, โ); Decreasing on
(โโ, โ1), (0, 1)
(b)
Decreasing on ( โ โ, 0); Increasing on (0, โ)
(b)
x
โ2
โ1
0
1
2
f ( x)
24
โ3
0
โ3
24
x
โ2
โ1
0
1
2
f ( x)
1.59
1
0
1
1.59
47. f ( x) = 3x 2 โ 2 x โ 5
43. f ( x) =
1โ x
(a)
Relative minimum:
Decreasing on ( โโ, 1)
(b)
x
โ3
f ( x)
2
44. f ( x) = x
โ2
โ1
3
2
0
1
1
0
( 13 , โ 163 ) or (0.33, โ 5.33)
48. f ( x) = โ x 2 + 3 x โ 2
x +3
(a)
Relative maximum: (1.5, 0.25)
49. f ( x) = โ2 x 2 + 9 x
Increasing on ( โ2, โ); Decreasing on ( โ3, โ 2)
(b)
x
โ3
โ2
โ1
0
1
f ( x)
0
โ2
โ1.414
0
2
45. f ( x) = x
Relative maximum: ( 2.25, 10.125)
32
50. f ( x) = x( x โ 2)( x + 3)
(a)
Increasing on (0, โ)
(b)
x
0
1
2
Relative minimum: (1.12, โ 4.06)
3
4
Relative maximum: ( โ1.79, 8.21)
INSTRUCTOR
NST
TRUC
USE ONLY
f ( x)
0
1
2.8
5.2
8
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
51. f ( x) = x3 โ 3 x 2 โ x + 1
Analyzing Graphs of Functions
191
56. f ( x) = 4 x + 2
f ( x) โฅ 0 on ยชยฌโ 12 , โ
)
4x + 2 โฅ 0
4 x โฅ โ2
x โฅ โ 12
Relative maximum: ( โ0.15, 1.08)
Relative minimum: ( 2.15, โ 5.08)
52. h( x) = x3 โ 6 x 2 + 15
ยชโ 1 , โ
ยฌ 2
)
57. f ( x) = 9 โ x 2
f ( x) โฅ 0 on [โ3, 3]
Relative minimum: ( 4, โ17)
Relative maximum: (0, 15)
53. h( x) = ( x โ 1)
x
58. f ( x) = x 2 โ 4 x
f ( x) โฅ 0 on ( โโ, 0] and [4, โ)
x2 โ 4 x โฅ 0
x ( x โ 4) โฅ 0
Relative minimum: (0.33, โ 0.38)
(โโ, 0], [4, โ)
54. g ( x) = x 4 โ x
59. f ( x) =
Relative maximum: ( 2.67, 3.08)
55. f ( x) = 4 โ x
f ( x) โฅ 0 on ( โโ, 4]
x โ1
f ( x) โฅ 0 on [1, โ)
x โ1 โฅ 0
x โ1 โฅ 0
x โฅ1
[1, โ)
60. f ( x ) = โ(1 + x )
f ( x) is never greater
than 0. ( f ( x) < 0 for all x.)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
192
NOT FOR SALE
Chapter 2
Functions
ctions and Their Graphs
61. f ( x) = โ2 x + 15
f (3) โ f (0)
3โ0
=
67. s0 = 6, v0 = 64
(a) s = โ16t 2 + 64t + 6
9 โ 15
= โ2
3
(b)
The average rate of change from x1 = 0 to x2 = 3 is
โ2.
62. f ( x) = x 2 โ 2 x + 8
f (5) โ f (1)
5โ1
=
23 โ 7
16
=
= 4
4
4
The average rate of change from x1 = 1 to x2 = 5 is 4.
3โ1
=
s(3) โ s(0)
3โ0
=
54 โ 6
= 16
3
(d) The slope of the secant line is positive.
(e) s(0) = 6, m = 16
63. f ( x ) = x3 โ 3 x 2 โ x
f (3) โ f (1)
(c)
โ3 โ ( โ3)
2
Secant line: y โ 6 = 16(t โ 0)
= 0
y = 16t + 6
The average rate of change from x1 = 1 to x2 = 3 is 0.
(f )
64. f ( x ) = โ x 3 + 6 x 2 + x
f (6) โ f (1)
6โ6
0
=
= 0
6 โ1
5
5
The average rate of change from x1 = 1 to x2 = 6 is 0.
=
65. (a)
68. (a) s = โ16t 2 + 72t + 6.5
(b)
(b) To find the average rate of change of the amount the
U.S. Department of Energy spent for research and
development from 2005 to 2010, find the average
rate of change from (5, f (5)) to (10, f (10)).
f (10) โ f (5)
10 โ 5
=
10,925 โ 8501.25
= 484.75
5
The amount the U.S. Department of Energy spent for
research and development increased by about
$484.75 million each year from 2005 to 2010.
66. Average rate of change =
=
s(t2 ) โ s(t1 )
(c) The average rate of change from t = 0 to t = 4:
s ( 4) โ s ( 0)
4 โ0
second
=
38.5 โ 6.5
32
=
= 8 feet per
4
4
(d) The slope of the secant line through (0, s(0)) and
(4, s(4)) is positive.
(e) The equation of the secant line:
m = 8, y = 8t + 6.5
(f )
t2 โ t1
s(9) โ s(0)
9โ0
540 โ 0
=
9 โ0
= 60 feet per second.
As the time traveled increases, the distance increases
rapidly, causing the average speed to increase with each
time increment. From t = 0 to t = 4, the average
speed is less than from t = 4 to t = 9. Therefore, the
overall average from t = 0 to t = 9 falls below the
average found in part (b).
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.3
69. v0 = 120, s0 = 0
71.
Analyzing Graphs of Functions
193
f ( x) = x6 โ 2 x 2 + 3
f ( โ x) = ( โ x) โ 2( โ x) + 3
6
(a) s = โ16t 2 + 120t
(b)
2
= x6 โ 2 x 2 + 3
= f ( x)
The function is even. y-axis symmetry.
(c) The average rate of change from t = 3 to t = 5:
s(5) โ s(3)
5โ3
second
=
72.
g ( โ x) = ( โ x) โ 5( โ x)
3
200 โ 216
16
= โ
= โ 8 feet per
2
2
= โ x3 + 5 x
= โ g ( x)
The function is odd. Origin symmetry.
(d) The slope of the secant line through (3, s(3)) and
(5, s(5)) is negative.
73.
h( x ) = x
x +5
h( โ x ) = ( โ x ) โ x + 5
(e) The equation of the secant line: m = โ 8
Using (5, s(5)) = (5, 200) we have
= โx 5 โ x
โ h( x )
y โ 200 = โ 8(t โ 5)
โ โ h( x )
y = โ 8t + 240.
(f )
g ( x) = x3 โ 5 x
The function is neither odd nor even. No symmetry.
270
74.
0
f ( x) = x 1 โ x 2
f ( โ x ) = โ x 1 โ ( โ x)
8
2
= โ x 1 โ x2
0
= โ f ( x)
2
70. (a) s = โ16t + 80
(b)
The function is odd. Origin symmetry.
75. f ( s) = 4 s 3 2
= 4( โ s )
โ f ( s)
(c) The average rate of change from t = 1 to t = 2:
s( 2) โ s(1)
2 โ1
per second
โ โ f ( s)
16 โ 64
48
=
= โ
= โ48 feet
1
1
The function is neither odd nor even. No symmetry.
76.
(d) The slope of the secant line through (1, s(1)) and
(2, s(2)) is negative.
32
g ( s ) = 4s 2 3
g ( โ s ) = 4( โ s )
23
= 4s 2 3
(e) The equation of the secant line: m = โ48
Using (1, s(1)) = (1, 64) we have
= g ( s)
The function is even. y-axis symmetry.
y โ 64 = โ48(t โ 1)
y = โ48t + 112.
(f )
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
194
Chapter 2
Functions
ctions and Their Graphs
80. h( x) = x 2 โ 4
77.
The graph of f ( x) = โ9 is symmetric to the y-axis,
which implies f ( x) is even.
The graph displays y-axis symmetry, which implies
h( x) is even.
f ( โ x) = โ9
h( โ x ) = ( โ x ) โ 4 = x 2 โ 4 = h( x )
2
= f ( x)
The function is even.
The function is even.
81. f ( x ) =
78. f ( x) = 5 โ 3 x
The graph displays no symmetry, which implies f ( x) is
1โ x
neither odd nor even.
The graph displays no symmetry, which implies
f ( x) is neither odd nor even.
f ( โ x ) = 5 โ 3( โ x)
f ( โ x) =
= 5 + 3x
=
โ f ( x)
1 โ ( โ x)
1+ x
โ f ( x)
โ โ f ( x)
โ โ f ( x)
The function is neither even nor odd.
79. f ( x) = โ x โ 5
The function is neither even nor odd.
82. g (t ) = 3 t โ 1
The graph displays no symmetry, which implies f ( x) is
neither odd nor even.
The graph displays no symmetry, which implies
g (t ) is neither odd nor even.
f ( x ) = โ ( โ x) โ 5
g ( โt ) = 3 ( โt ) โ 1
= โ โx โ 5
= 3 โt โ 1
โ f ( x)
โ g (t )
โ โ f ( x)
โ โ g (t )
INSTRUCTOR USE ONLY
The function is neither even nor odd.
odd
The function is neither even nor odd.
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.3
83. h = top โ bottom
Analyzing Graphs of Functions
195
(c) When x = 4, the resulting figure is a square.
= 3 โ (4 x โ x )
2
By
= 3 โ 4x + x2
84. h = top โ bottom
= (4 x โ x 2 ) โ 2 x
= 2x โ x2
85. L = right โ left
By the Pythagorean Theorem,
42 + 42 = s 2 ย s = 32 = 4 2 meters.
= 2 โ 3 2y
86. L = right โ left
89. (a) For the average salaries of college professors, a scale
of $10,000 would be appropriate.
2
=
โ0
y
=
(b) For the population of the United States, use a scale
of 10,000,000.
2
y
87. L = โ0.294 x 2 + 97.744 x โ 664.875, 20 โค x โค 90
(a)
(c) For the percent of the civilian workforce that is
unemployed, use a scale of 1%.
90. (a)
70
0
24
0
(b) L = 2000 when x โ 29.9645 โ 30 watts.
88.
(b) The model is an excellent fit.
(c) The temperature is increasing from 6 A.M. until noon
( x = 0 to x = 6). Then it decreases until 2 A.M.
( x = 6 to x = 20). Then the temperature increases
until 6 A.M. ( x = 20 to x = 24).
(d) The maximum temperature according to the model is
about 63.93ยฐF. According to the data, it is 64ยฐF. The
minimum temperature according to the model is
about 33.98ยฐF. According to the data, it is 34ยฐF.
()
(a) A = (8)(8) โ 4 12 ( x)( x) = 64 โ 2 x 2
Domain: 0 โค x โค 4
(e) Answers may vary. Temperatures will depend upon
the weather patterns, which usually change from day
to day.
(b)
Range: 32 โค A โค 64
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
196
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
91. (a) y = x
(b)
y = x2
(c) y = x3
(d) y = x 4
(e)
y = x5
(f ) y = x 6
All the graphs pass through the origin. The graphs of the odd powers of x are symmetric with respect to the origin and the
graphs of the even powers are symmetric with respect to the y-axis. As the powers increase, the graphs become flatter in the
interval โ1 < x โ4
= โ7ced5 12 fhg + 6 = โ7(5) + 6 = โ29
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
200
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
ยฐยญ 4 + x , x 2
ยฐฬ
(
)
41. s( x) = 2 14 x โ cde 14 xfgh
(a)
(b) Domain: ( โโ, โ) ; Range: [0, 2)
(
)
42. k ( x) = 4 12 x โ ced 12 xfhg
2
(a)
(b) Domain: ( โโ, โ) ; Range: [0, 4)
43. (a) W (30) = 14(30) = 420
W ( 40) = 14( 40) = 560
ยญยฐx 2 + 5,
x โค1
38. f ( x) = ยฎ 2
ยฐฬโ x + 4 x + 3, x > 1
W ( 45) = 21( 45 โ 40) + 560 = 665
W (50) = 21(50 โ 40) + 560 = 770
0 45
44. (a)
ยญ4 โ x 2 , x < โ2
ยฐ
39. h( x) = ยฎ3 + x, โ2 โค x < 0
ยฐx 2 + 1, x โฅ 0
ยฏ
The domain of f ( x) = โ1.97 x + 26.3 is
6 < x โค 12. One way to see this is to notice
that this is the equation of a line with negative
slope, so the function values are decreasing
as x increases, which matches the data for the
corresponding part of the table. The domain of
f ( x ) = 0.505 x 2 โ 1.47 x + 6.3 is then
1 โค x โค 6.
ยญ2 x + 1, x โค โ1
ยฐ
40. k ( x) = ยฎ2 x 2 โ 1, โ1 1
ยฏ
(b)
f (5) = 0.505(5) โ 1.47(5) + 6.3
2
= 0.505( 25) โ 7.35 + 6.3 = 11.575
f (11) = โ1.97(11) + 26.3 = 4.63
These values represent the revenue in thousands of
dollars for the months of May and November,
respectively.
(c) These values are quite close to the actual data values.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
45. Answers will vary. Sample answer:
Interval
Input
Pipe
Drain Pipe 1
Drain Pipe 2
[0, 5]
Open
Closed
Closed
[5, 10]
Open
Open
Closed
[10, 20]
Closed
Closed
Closed
[20, 30]
Closed
Closed
Open
[30, 40]
Open
Open
Open
[40, 45]
Open
Closed
Open
[45, 50]
Open
Open
Open
[50, 60]
Open
Open
Closed
Transformations of Functions
201
47. For the first two hours the slope is 1. For the next six
hours, the slope is 2. For the final hour, the slope is 12 .
ยญt ,
0 โค t โค 2
ยฐ
f (t ) = ยฎ2t โ 2, 2 < t โค 8
ยฐ 1 t + 10, 8 < t โค 9
ยฏ2
To find f (t ) = 2t โ 2, use m = 2 and ( 2, 2).
46. (a) Cost = Flat fee + fee per pound
y โ 2 = 2(t โ 2) ย y = 2t โ 2
C ( x) = 26.10 + 4.35a xb
To find f (t ) = 12 t + 10, use m = 12 and (8, 14).
(b)
y โ 14 = 12 (t โ 8) ย y = 12 t + 10
Total accumulation = 14.5 inches
48. f ( x) = x 2
f ( x) = x3
(a) Domain: ( โโ, โ)
(a) Domain: ( โโ, โ)
Range: [0, โ)
Range: ( โโ, โ)
(b) x-intercept: (0, 0)
(b) x-intercept: (0, 0)
y-intercept: (0, 0)
y-intercept: (0, 0)
(c) Increasing: (0, โ)
(c) Increasing: ( โโ, โ)
Decreasing: ( โโ, 0)
(d) Odd; the graph has origin symmetry.
(d) Even; the graph has y-axis symmetry.
49. False. A piecewise-defined function is a function that
is defined by two or more equations over a specified
domain. That domain may or may not include x- and
y-intercepts.
50. False. The vertical line x = 2 has an x-intercept at
the point ( 2, 0) but does not have a y-intercept. The
horizontal line y = 3 has a y-intercept at the point
(0, 3) but does not have an x-intercept.
Section 2.5 Transformations of Functions
1. rigid
3. vertical stretch; vertical shrink
2. โ f ( x); f ( โ x)
4. (a) iv
(b) ii
(c) iii
INSTRUCTOR USE ONLY
(d)
d) i
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
202
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
5. (a) f ( x) = x + c
Vertical shifts
c = โ1: f ( x) = x โ 1
1 unit down
c = 1: f ( x) = x + 1
1 unit up
c = 3: f ( x) = x + 3
3 units up
(b) f ( x) = x โ c
Horizontal shifts
c = โ1: f ( x) = x + 1
1 unit left
c = 1: f ( x) = x โ 1
1 unit right
c = 3: f ( x) = x โ 3
3 units right
6. (a) f ( x ) =
x + c
Vertical shifts
c = โ3: f ( x ) =
x โ3
3 units down
c = โ1: f ( x) =
x โ1
1 unit down
c = 1: f ( x ) =
x +1
1 unit up
c = 3: f ( x) =
x +3
3 units up
(b) f ( x ) =
x โc
Horizontal shifts
c = โ3: f ( x ) =
x+3
3 units left
c = โ1: f ( x) =
x +1
1 unit left
c = 1: f ( x ) =
x โ1
1 unit right
c = 3: f ( x) =
x โ3
3 units right
7. (a) f ( x) = a xb + c
Vertical shifts
c = โ2: f ( x) = a xb โ 2
2 units down
c = 0: f ( x) = a xb
Parent function
c = 2: f ( x) = a xb + 2
2 units up
(b) f ( x) = a x + cb
Horizontal shifts
c = โ2: f ( x) = a x โ 2b
2 units right
c = 0: f ( x) = a xb
Parent function
c = 2: f ( x) = a x + 2b
2 units left
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
ยญยฐx 2 + c,
x < 0
8. (a) f ( x) = ยฎ 2
ยฐฬโ x + c, x โฅ 0
(b)
ยญยฐ( x + c)2 ,
x < 0
f ( x) = ยฎ
2
ยฐฬโ( x + c) , x โฅ 0
y = f ( โ x)
(b)
y = f ( x) + 4
9. (a)
Reflection in the y-axis
(d) y = โ f ( x โ 4)
Reflection in the x-axis and
a horizontal shift 4 units to
the right
Transformations of Functions
(e)
y = f ( x) โ 3
Vertical shift 3 units
downward
y = 2 f ( x)
(c)
Vertical shift 4 units
upward
203
Vertical stretch (each y-value
is multiplied by 2)
y = โ f ( x) โ 1
(f )
Reflection in the x-axis and a
vertical shift 1 unit downward
(g) y = f ( 2 x)
Horizontal shrink
(each x-value is divided by 2)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
204
NOT FOR SALE
Chapter 2
Functions
ctions and Their Graphs
10. (a) y = f ( x โ 5)
(b)
y = โ f ( x) + 3
Horizontal shift 5 units
Reflection in the x-axis and a
to the right
vertical shift 3 units upward
(d) y = โ f ( x + 1)
(e)
Reflection in the x-axis and a
horizontal shift 1 unit to the left
y = 13 f ( x)
(c)
Vertical shrink
(each y-value is multiplied by 13 )
y = f ( โ x)
y = f ( x) โ 10
(f )
Reflection in the y-axis
Vertical shift 10 units downward
( )
(g) y = f 13 x
Horizontal stretch
(each x-value is multiplied by 3)
13. Parent function: f ( x) = x
11. Parent function: f ( x) = x 2
(a) Vertical shift 1 unit downward
g ( x) = x โ 1
2
(b) Reflection in the x-axis, horizontal shift 1 unit to the
left, and a vertical shift 1 unit upward
g ( x) = โ( x + 1) + 1
2
12. Parent function: f ( x ) = x
(a) Reflected in the x-axis and shifted upward 1 unit
g ( x) = โ x3 + 1 = 1 โ x3
(b) Shifted to the left 3 units and down 1 unit
3
g ( x) = โ x + 3
(b) Horizontal shift 2 units to the right and a vertical
shift 4 units downward
g ( x) = x โ 2 โ 4
3
g ( x) = โ ( x + 3) โ 1
(a) Reflection in the x-axis and a horizontal shift 3 units
to the left
14. Parent function: f ( x ) =
x
(a) Shifted downward 7 units and to the left 1 unit
g ( x) =
x +1 โ7
(d) Reflected about the x- and y-axis and shifted to the
right 3 units and downward 4 units
INSTRUCTOR USE ONLY
g ( x) = โ
โx + 3 โ 4
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
15. Parent function: f ( x ) = x 3
22. g ( x) = ( x โ 8)
Horizontal shift 2 units to the right
y = ( x โ 2)
Transformations of Functions
3
205
2
(a) Parent function: f ( x ) = y = x 2
(b) Horizontal shift of 8 units to the right
(c)
16. Parent function: y = x
Vertical shrink
y = 12 x
17. Parent function: f ( x) = x 2
Reflection in the x-axis
y = โ x2
(d) g ( x) = f ( x โ 8)
18. Parent function: y = a xb
Vertical shift
23. g ( x) = x 3 + 7
y = a xb + 4
19. Parent function: f ( x ) =
(a) Parent function: f ( x ) = x 3
x
(b) Vertical shift 7 units upward
Reflection in the x-axis and a vertical shift 1 unit upward
y = โ
(c)
x +1
20. Parent function: y = x
Horizontal shift
y = x + 2
21. g ( x) = 12 โ x 2
(d) g ( x) = f ( x) + 7
(a) Parent function: f ( x) = x 2
(b) Reflection in the x-axis and a vertical shift 12 units
upward
(c)
24. g ( x) = โ x3 โ 1
(a) Parent function: f ( x ) = x 3
(b) Reflection in the x-axis, vertical shift of 1 unit
downward
(c)
(d) g ( x) = 12 โ f ( x)
(d) g ( x) = โ f ( x) โ 1
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
206
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
25. g ( x) = 23 x 2 + 4
28. g ( x) = โ 14 ( x + 2) โ 2
2
(a) Parent function: f ( x) = x 2
(a) Parent function: f ( x) = x 2
(b) Vertical shrink of two-thirds, and a vertical shift 4
units upward
(b) Horizontal shift 2 units to the left, vertical shrink,
reflection in the x-axis, vertical shift 2 units
downward
(c)
(c)
(d) g ( x) = 23 f ( x) + 4
26. g ( x) = 2( x โ 7)
(d) g ( x) = โ 14 f ( x + 2) โ 2
2
29. g ( x) =
(a) Parent function: f ( x) = x 2
(b) Vertical stretch of 2 and a horizontal shift 7 units to
the right of f ( x) = x 2
3x
(a) Parent function: f ( x ) =
(b) Horizontal shrink by 13
(c)
(c)
(d) g ( x) = 2 f ( x โ 7)
(d) g ( x) = f (3x)
27. g ( x) = 2 โ ( x + 5)
2
30. g ( x) =
1x
4
(a) Parent function: f ( x) = x 2
(a) Parent function: f ( x) =
(b) Reflection in the x-axis, horizontal shift 5 units to the
left, and a vertical shift 2 units upward
(b) Horizontal stretch of 4
(c)
(d) g ( x) = 2 โ f ( x + 5)
x
x
(c)
( )
(d) g ( x) = f 14 x
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.5
Transformations of Functions
34. g ( x) = โ 12 ( x + 1)
31. g ( x) = ( x โ 1) + 2
3
207
3
(a) Parent function: f ( x) = x3
(a) Parent function: f ( x) = x3
(b) Horizontal shift 1 unit to the right and a vertical shift
2 units upward
(b) Horizontal shift one unit to the right, vertical shrink
(each y-value is multiplied by 12 ), reflection in the
(c)
x-axis.
(c)
(d) g ( x) = f ( x โ 1) + 2
(d) g ( x) = โ 12 f ( x + 1)
32. g ( x) = ( x + 3) โ 10
3
(a) Parent function: f ( x) = x3
35. g ( x) = โ x โ 2
(b) Horizontal shift of 3 units to the left, vertical shift of
10 units downward
(a) Parent function: f ( x) = x
(c)
(b) Reflection in the x-axis, vertical shift 2 units
downward
(c)
(d) g ( x) = f ( x + 3) โ 10
(d) g ( x) = โ f ( x) โ 2
33. g ( x) = 3( x โ 2)
3
36. g ( x) = 6 โ x + 5
(a) Parent function: f ( x) = x3
(b) Horizontal shift 2 units to the right, vertical stretch
(each y-value is multiplied by 3)
(c)
(a) Parent function: f ( x) = x
(b) Reflection in the x-axis, horizontal shift of 5 units to
the left, vertical shift of 6 units upward
(c)
(d) g ( x) = 3 f ( x โ 2)
(d) g ( x) = 6 โ f ( x + 5)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
208
Chapter 2
Functions
ctions and Their Graphs
37. g ( x) = โ x + 4 + 8
40. g ( x) = 12 x โ 2 โ 3
(a) Parent function: f ( x) = x
(a) Parent function: f ( x) = x
(b) Reflection in the x-axis, horizontal shift 4 units to
the left, and a vertical shift 8 units upward
(b) Horizontal shift 2 units to the right, vertical shrink,
vertical shift 3 units downward
(c)
(c)
(d) g ( x) = โ f ( x + 4) + 8
(d) g ( x) = 12 f ( x โ 2) โ 3
38. g ( x) = โ x + 3 + 9
41. g ( x) = 3 โ a xb
(a) Parent function: f ( x) = x
(a) Parent function: f ( x) = a xb
(b) Reflection in the y-axis, horizontal shift of 3 units to
the right, vertical shift of 9 units upward
(b) Reflection in the x-axis and a vertical shift 3 units
upward
(c)
(c)
(d) g ( x) = f ( โ ( x โ 3)) + 9
(d) g ( x) = 3 โ f ( x)
39. g ( x) = โ 2 x โ 1 โ 4
42. g ( x) = 2a x + 5b
(a) Parent function: f ( x) = x
(a) Parent function: f ( x) = a xb
(b) Horizontal shift one unit to the right, vertical stretch,
reflection in the x-axis, vertical shift four units
downward
(b) Horizontal shift of 5 units to the left, vertical stretch
(each y-value is multiplied by 2)
(c)
(d) g ( x) = โ2 f ( x โ 1) โ 4
(c)
(d) g ( x) = 2 f ( x + 5)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
43. g ( x) =
x โ9
(a) Parent function: f ( x) =
Section 2.5
Transformations of Functions
46. g ( x) =
3x + 1
(a) Parent function: f ( x) =
x
(b) Horizontal shift 9 units to the right
(c)
209
x
(
)
(b) Horizontal shrink each x-value is multiplied by 13 ,
vertical shift of 1 unit upward
(c)
(d) g ( x) = f ( x โ 9)
44. g ( x) =
(d) g ( x) = f (3x) + 1
x + 4 +8
(a) Parent function: f ( x) =
47. g ( x) = ( x โ 3) โ 7
2
x
(b) Horizontal shift of 4 units to the left, vertical shift of
8 units upward
(c)
48. g ( x) = โ ( x + 2) + 9
2
49. f ( x) = x3 moved 13 units to the right
g ( x) = ( x โ 13)
3
50. f ( x) = x3 moved 6 units to the left, 6 units downward,
and reflected in the y-axis (in that order)
g ( x) = ( โ x + 6) โ 6
3
(d) g ( x) = f ( x + 4) + 8
45. g ( x) =
51. g ( x) = โ x + 12
7 โ x โ 2 or g ( x) =
(a) Parent function: f ( x) =
โ ( x โ 7) โ 2
x
53. f ( x) =
(b) Reflection in the y-axis, horizontal shift 7 units to the
right, and a vertical shift 2 units downward
(c)
52. g ( x) = x + 4 โ 8
x moved 6 units to the left and reflected in
both the x- and y-axes
g ( x) = โ
โx + 6
54. f ( x) =
x moved 9 units downward and reflected in
both the x-axis and the y-axis
g ( x) = โ
( โ x โ 9)
55. f ( x) = x 2
(d) g ( x) = f (7 โ x) โ 2
(a) Reflection in the x-axis and a vertical stretch (each
y-value is multiplied by 3)
g ( x) = โ 3 x 2
(b) Vertical shift 3 units upward and a vertical stretch
(each y-value is multiplied by 4)
g ( x) = 4 x 2 + 3
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
210
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
56. f ( x) = x3
63. Parent function: f ( x) =
(
(a) Vertical shrink each y -value is multiplied by 14
)
g ( x) = 14 x3
(b) Reflection in the x-axis and a vertical stretch
(each y -value is multiplied by 2)
g ( x) = โ 2 x
3
(a) Reflection in the x-axis and a vertical shrink
each y -value is multiplied by 12
)
g ( x) = โ 12 x
(b) Vertical stretch (each y-value is multiplied by 3) and
a vertical shift 3 units downward
g ( x) = 3 x โ 3
58. f ( x) =
(each y-value is multiplied by 12 )
g ( x) = 12
โx
64. Parent function: f ( x) = x
g ( x) = โ 2 x โ 2
65. Parent function: f ( x) = x3
Reflection in the x-axis, horizontal shift 2 units to the
right and a vertical shift 2 units upward
g ( x) = โ ( x โ 2) + 2
3
66. Parent function: f ( x) = x
x
(a) Vertical stretch (each y-value is multiplied by 8)
g ( x) = 8
Reflection in the y-axis, vertical shrink
Reflection in the x-axis, vertical shift of 2 units
downward, vertical stretch (each y-value is multiplied
by 2)
57. f ( x) = x
(
x
x
Horizontal shift of 4 units to the left and a vertical shift
of 2 units downward
g ( x) = x + 4 โ 2
(b) Reflection in the x-axis and a vertical shrink
(each y-value is multiplied by 14 )
g ( x) = โ 14
x
Reflection in the x-axis and a vertical shift 3 units
downward
x
g ( x) = โ
59. Parent function: f ( x) = x3
Vertical stretch (each y-value is multiplied by 2)
g ( x) = 2 x
67. Parent function: f ( x) =
3
x โ3
68. Parent function: f ( x) = x 2
Horizontal shift of 2 units to the right and a vertical shift
of 4 units upward
60. Parent function: f ( x) = x
g ( x) = ( x โ 2) + 4
2
Vertical stretch (each y-value is multiplied by 6)
g ( x) = 6 x
69. (a)
61. Parent function: f ( x) = x 2
Reflection in the x-axis, vertical shrink
(each y-value is multiplied by 12 )
(b)
g ( x) = โ 12 x 2
2
ยง x ยท
ยง x ยท
ยง x ยท
H ยจ ยธ = 0.002ยจ ยธ + 0.005ยจ ยธ โ 0.029
1.6
1.6
ยฉ ยน
ยฉ ยน
ยฉ 1.6 ยน
62. Parent function: y = a xb
Horizontal stretch (each x-value is multiplied by 2)
g ( x) = cde 12 xfgh
H ( x) = 0.002 x 2 + 0.005 x โ 0.029
ยง x2 ยท
ยง x ยท
= 0.002ยจ
ยธ + 0.005ยจ ยธ โ 0.029
2.56
ยฉ 1.6 ยน
ยฉ
ยน
= 0.00078125 x 2 + 0.003125 x โ 0.029
ยง x ยท
The graph of H ยจ ยธ is a horizontal stretch of the
ยฉ 1.6 ยน
graph of H ( x).
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.5
70. (a) The graph of N ( x) = โ 0.068( x โ 13.68) + 119 is
2
a reflection in the x-axis, a vertical shrink of a factor
of 0.068, a horizontal shift of 13.68 units to the right
and a vertical shift of 119 units upward of the graph
f ( x) = x 2 .
Transformations of Functions
211
76. (a) Answers will vary. Sample Answer: To graph
f ( x) = 3x 2 โ 4 x + 1 use the point-plotting method
since it is not written in a form that is easily
identified by a sequence of translations of the parent
function y = x 2 .
(b) Answers will vary. Sample Answer: To graph
f ( x) = 2( x โ 1) โ 6 use the method of translating
2
the parent function y = x 2 since it is written in a
form such that a sequence of translations is easily
identified.
(b) The average rate of change from t = 3 to t = 10 is
given by the following.
N (10) โ N (3)
118.079 โ 111.244
โ
10 โ 3
7
6.835
=
7
โ 0.976
77. (a)
(b)
Each year, the number of households in the United
States increases by an average of 976,000
households.
(c) Let t = 18:
N (18) = โ 0.068(18 โ 13.68) + 119
2
(c)
โ 117.7
In 2018, the number of households in the United
States will be about 117.7 million households.
Answers will vary. Sample answer: No, because the
number of households has been increasing on
average.
71. False. y = f ( โ x) is a reflection in the y-axis.
72. False. y = โ f ( x) is a reflection in the x-axis.
73. True. Because x = โ x , the graphs of
f ( x) = x + 6 and f ( x) = โ x + 6 are identical.
74. False. The point ( โ 2, โ 61) lies on the transformation.
75. y = f ( x + 2) โ 1
78. (a) Increasing on the interval ( โ 2, 1) and decreasing on
the intervals ( โ โ, โ 2) and (1, โ)
(b) Increasing on the interval ( โ1, 2) and decreasing on
the intervals ( โ โ, โ1) and ( 2, โ)
(c) Increasing on the intervals ( โ โ, โ1) and ( 2, โ) and
decreasing on the interval ( โ1, 2)
(d) Increasing on the interval (0, 3) and decreasing on
the intervals ( โ โ, 0) and (3, โ)
(e) Increasing on the intervals ( โ โ, 1) and ( 4, โ) and
Horizontal shift 2 units to the left and a vertical shift
1 unit downward
(0, 1) โ (0 โ 2, 1 โ 1) = (โ 2, 0)
(1, 2) โ (1 โ 2, 2 โ 1) = (โ1, 1)
(2, 3) โ (2 โ 2, 3 โ 1) = (0, 2)
decreasing on the interval (1, 4)
79. (a) The profits were only 34 as large as expected:
g (t ) = 34 f (t )
(b) The profits were $10,000 greater than predicted:
g (t ) = f (t ) + 10,000
(c) There was a two-year delay: g (t ) = f (t โ 2)
INSTRUCTOR USE ONLY
80. No. g ( x) = โ x 4 โ 2. Yes. h( x) = โ ( x โ 3)
4
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
212
NOT FOR SALE
Chapter 2
Functions
ctions and Their Graphs
Section 2.6 Combinations of Functions: Composite Functions
1. addition; subtraction; multiplication; division
2. composition
3.
(a)
x
0
1
2
3
f
2
3
1
2
g
โ1
0
1
2
0
3
3
2
2
f + g
6. f ( x) = 2 x โ 5, g ( x) = 2 โ x
1
( f + g )( x) = 2 x โ 5 + 2 โ x = x โ 3
(b) ( f โ g )( x) = 2 x โ 5 โ ( 2 โ x)
= 2x โ 5 โ 2 + x
= 3x โ 7
(c)
( fg )( x) = (2 x โ 5)(2 โ x)
= 4 x โ 2 x 2 โ 10 + 5 x
= โ2 x 2 + 9 x โ 10
ยงfยท
2x โ 5
(d) ยจ ยธ( x) =
2 โ x
ยฉgยน
Domain: all real numbers x except x = 2
7. f ( x ) = x 2 , g ( x) = 4 x โ 5
(a)
4.
( f + g )( x) = f ( x) + g ( x)
= x 2 + ( 4 x โ 5)
x
โ2
0
1
2
4
= x2 + 4 x โ 5
f
2
0
1
2
4
(b) ( f โ g )( x) = f ( x) โ g ( x)
g
4
2
1
0
2
f + g
6
2
2
2
6
= x 2 โ ( 4 x โ 5)
= x2 โ 4x + 5
(c)
( fg )( x) = f ( x) โ
g ( x)
= x 2 ( 4 x โ 5)
= 4 x3 โ 5 x 2
f ( x)
ยงfยท
(d) ยจ ยธ( x) =
g ( x)
ยฉgยน
=
Domain: all real numbers x except x =
5. f ( x) = x + 2, g ( x) = x โ 2
(a)
x2
4x โ 5
5
4
( f + g )( x) = f ( x) + g ( x)
= ( x + 2) + ( x โ 2)
= 2x
(b) ( f โ g )( x) = f ( x) โ g ( x)
= ( x + 2) โ ( x โ 2)
= 4
(c)
( fg )( x) = f ( x) โ
g ( x)
= ( x + 2)( x โ 2)
= x2 โ 4
f ( x)
x + 2
ยงfยท
(d) ยจ ยธ( x) =
=
x
g
x
x โ 2
(
)
ยฉ ยน
INSTRUCTOR USE ONLY
Domain: all real numbers x except
xcept x = 2
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section
on 2.6
8. f ( x) = 3x + 1, g ( x) = 5 x โ 4
(a)
11. f ( x) =
( f + g )( x) = f ( x) + g ( x)
= 8x โ 3
(b) ( f โ g )( x) = f ( x) โ g ( x)
= 3 x + 1 โ (5 x โ 4)
( fg )( x) = f ( x) โ
g ( x)
= (3x + 1)(5 x โ 4)
(b) ( f โ g )( x) = f ( x) โ g ( x) =
1
1
x โ1
โ 2 =
x
x
x2
12. f ( x) =
Domain: all real numbers x except x =
4
5
( f + g )( x) = f ( x) + g ( x) = x 2 + 6 +
(b) ( f โ g )( x) = f ( x) โ g ( x) = x + 6 โ
( fg )( x) = f ( x) โ
g ( x) = ( x 2 + 6) 1 โ x
( x 2 + 6) 1 โ x
f ( x)
ยงfยท
x2 + 6
(d) ยจ ยธ( x) =
=
=
g ( x)
1โ x
1โ x
ยฉgยน
Domain: x 6, g ( x) contributes most to the magnitude.
x
, g ( x) =
2
x
( f + g )( x) = +
2
28. f ( x) =
x
x
= (52 + 1)(5 โ 4) + ( 42 + 1)
= 26 โ
1 + 17
= 43
25. f ( x) = 12 x, g ( x) = x โ 1
( f + g )( x) = 32 x โ 1
g ( x) contributes most to the magnitude of the sum for
0 โค x โค 2. f ( x) contributes most to the magnitude of
the sum for x > 6.
29. f ( x) = 3x + 2, g ( x) = โ
( f + g ) x = 3x โ
x +5
x +5 + 2
For 0 โค x โค 2, f ( x) contributes most to the
magnitude.
For x > 6, f ( x) contributes most to the magnitude.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section
on 2.6
30. f ( x) = x 2 โ 12 , g ( x) = โ3x 2 โ 1
( f + g )( x) = โ2 x 2 โ 32
1
x
34. f ( x) = x3 , g ( x) =
(a)
For 0 โค x โค 2, g ( x) contributes most to the magnitude.
1
ยฉ xยน
( f D g )( x) = f ( g ( x)) = f ( x โ 1) = ( x โ 1)2
(b) ( g D f )( x) = g ( f ( x)) = g ( x 2 ) = x 2 โ 1
(c)
( g D g )( x) = g ( g ( x)) = g ( x โ 1) = x โ 2
1
= 20 โ 3x
(b) ( g D f )( x) = g ( f ( x))
Domain: all real numbers x
( f D g )( x) = f ( g ( x)) = f ( x 2 ) =
= g
2
Domain: all real numbers x
g ( x) = x3 + 1
Domain: all real numbers x
(a)
( f D g )( x) = f ( g ( x))
= f ( x3 + 1)
= 3 x3 + 1 โ 5
( g D g )( x) = g ( g ( x)) = g (5 โ x) = x
= 3 x3 โ 4
Domain: all real numbers x
33. f ( x) = 3 x โ 1, g ( x) = x3 + 1
(b) ( g D f )( x) = g ( f ( x))
( f D g )( x) = f ( g ( x))
(
= f ( x3 + 1)
= g 3 x โ5
= 3 ( x3 + 1) โ 1
=
(
37. f ( x) = x 2 + 1
)
g ( x) =
( x โ 1) + 1
3
3
( x โ 5) + 1
3
Domain: all real numbers x
= g 3 x โ1
=
)
3
= x โ5+1= x โ 4
= 3 x3 = x
= ( x โ 1) + 1 = x
(c)
( x + 4) = ( x + 4) = x + 4
36. f ( x) = 3 x โ 5
= โ3 x
(b) ( g D f )( x) = g ( f ( x))
x2 + 4
(b) ( g D f )( x) = g ( f ( x))
= g (3 x + 5) = 5 โ (3x + 5)
(a)
Domain: x โฅ โ4
x + 4
Domain: x โฅ โ 4
( f D g )( x) = f ( g ( x))
= f (5 โ x) = 3(5 โ x) + 5
(c)
1
x3
Domain: all real numbers x
32. f ( x) = 3 x + 5, g ( x) = 5 โ x
(a)
1
x3
ยฉ xยน
35. f ( x) =
(a)
1
ยฉ xยน
( g D g )( x) = g ( g ( x)) = g ยงยจ ยทยธ = x
g ( x) = x 2
31. f ( x) = x 2 , g ( x) = x โ 1
(a)
(c)
3
( f D g )( x) = f ( g ( x)) = f ยงยจ ยทยธ = ยงยจ ยทยธ =
(b) ( g D f )( x) = g ( f ( x)) = g ( x3 ) =
For x > 6, g ( x) contributes most to the magnitude.
215
Combinations of Functions: Composite
Compos
Composi Functions
( g D g )( x) = g ( g ( x))
(a)
Domain: all real numbers x
Domain: x โฅ 0
x
( f D g )( x) = f ( g ( x))
( x)
= ( x) + 1
= f
2
= g ( x3 + 1)
= x +1
= ( x3 + 1) + 1
3
= x9 + 3 x 6 + 3×3 + 2
Domain: x โฅ 0
(b) ( g D f )( x) = g ( f ( x)) = g ( x 2 + 1) =
x2 + 1
INSTRUCTOR USE ONLY
Domain: all real numbers x
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
216
Chapter 2
Functions
ctions and Their Graphs
38. f ( x) = x 2 3
Domain: all real numbers x
g ( x) = x 6
Domain: all real numbers x
(a)
( f D g )( x) = f ( g ( x)) = f ( x6 ) = ( x 6 )
39. f ( x) = x
g ( x) = x + 6
23
(a)
= x4
Domain: all real numbers x
( f D g )( x) = f ( g ( x)) = f ( x + 6) = x + 6
Domain: all real numbers x
Domain: all real numbers x
(b) ( g D f )( x ) = g ( f ( x)) = g ( x ) = x + 6
(b) ( g D f )( x) = g ( f ( x)) = g ( x 2 3 ) = ( x 2 3 ) = x 4
6
Domain: all real numbers x
Domain: all real numbers x
40. f ( x) = x โ 4
Domain: all real numbers x
g ( x) = 3 โ x
Domain: all real numbers x
(a)
Domain: all real numbers x
( f D g )( x) = f ( g ( x)) = f (3 โ x) = (3 โ x) โ 4 = โ x โ 1
Domain: all real numbers x
(b) ( g D f )( x) = g ( f ( x)) = g ( x โ 4 ) = 3 โ ( x โ 4 ) = 3 โ x โ 4
Domain: all real numbers x
41. f ( x ) =
1
x
g ( x) = x + 3
(a)
Domain: all real numbers x except x = 0
Domain: all real numbers x
( f D g )( x) = f ( g ( x)) = f ( x + 3) =
1
x +3
Domain: all real numbers x except x = โ3
1
ยง1ยท
+3
(b) ( g D f )( x) = g ( f ( x)) = g ยจ ยธ =
x
ยฉ xยน
Domain: all real numbers x except x = 0
42. f ( x ) =
3
x2 โ 1
g ( x) = x + 1
(a)
Domain: all real numbers x except x = ยฑ1
Domain: all real numbers x
( f D g )( x) = f ( g ( x)) = f ( x + 1) =
3
( x + 1) โ 1
2
=
3
3
= 2
x2 + 2 x + 1 โ 1
x + 2x
Domain: all real numbers x except x = 0 and x = โ 2
3
3 + x2 โ 1
x2 + 2
ยง 3 ยท
+1=
= 2
(b) ( g D f )( x) = g ( f ( x)) = g ยจ 2
ยธ = 2
2
x โ1
x โ1
x โ1
ยฉ x โ 1ยน
Domain: all real numbers x except x = ยฑ1
43. (a)
( f + g )(3) = f (3) + g (3) = 2 + 1 = 3
f ( 2)
ยงfยท
0
(b) ยจ ยธ( 2) =
=
= 0
g ( 2)
2
ยฉgยน
44. (a)
45. (a)
( f D g )(2) = f ( g (2)) = f (2) = 0
(b) ( g D f )( 2) = g ( f ( 2)) = g (0) = 4
( f โ g )(1) = f (1) โ g (1) = 2 โ 3 = โ1
(b) ( fg )( 4) = f ( 4) โ
g ( 4) = 4 โ
0 = 0
46. (a)
( f D g )(1) = f ( g (1)) = f (3) = 2
(b) ( g D f )(3) = g ( f (3)) = g ( 2) = 2
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section
on 2.6
47. h( x) = ( 2 x 2 + 1)
2
then ( f D g )( x) = h( x).
(5 x + 2) 2
One possibility: Let g ( x) = 5 x + 2 and f ( x ) =
4
,
x2
then ( f D g )( x) = h( x).
3
One possibility: Let g ( x) = 1 โ x and f ( x ) = x 3 ,
then ( f D g )( x) = h( x).
One possibility: Let f ( x ) =
โ x2 + 3
4 โ x2
53. h( x) =
One possibility: Let f ( x ) =
49. h( x) = 3 x 2 โ 4
3
x and g ( x) = x โ 4,
then ( f D g )( x) = h( x).
x +3
and g ( x) = โ x 2 ,
4 + x
2
then ( f D g )( x) = h( x).
50. h( x) =
217
4
52. h( x) =
One possibility: Let f ( x) = x 2 and g ( x) = 2 x + 1,
48. h( x) = (1 โ x)
Combinations of Functions: Composite
Compos
Composi Functions
54. h( x) =
27 x 3 + 6 x
10 โ 27 x 3
One possibility: Let g ( x) = x3 and
9โ x
One possibility: Let g ( x) = 9 โ x and f ( x ) =
x,
then ( f D g )( x) = h( x).
f ( x) =
27 x + 6 3 x
, then ( f D g )( x) = h( x).
10 โ 27 x
1 x2
55. (a) T ( x) = R( x) + B( x) = 34 x + 15
1
51. h( x) =
x + 2
(b)
One possibility: Let f ( x) = 1 x and g ( x) = x + 2,
then ( f D g )( x) = h( x).
(c) B( x); As x increases, B( x) increases at a faster
rate.
56. (a) c(t ) =
b (t ) โ d (t )
p (t )
ร 100
(b) c(5) represents the percent change in the population
due to births and deaths in the year 2005.
57. (a) p(t ) = d (t ) + c(t )
(b) p(5) represents the number of dogs and cats in 2005.
(c) h(t ) =
p (t )
n (t )
=
d (t ) + c ( t )
n (t )
h(t ) represents the number of dogs and cats at time t compared to the population at time t or the number of dogs
and cats per capita.
58. (a) T is a function of t since for each time t there corresponds one and only one temperature T.
(b) T ( 4) โ 60ยฐ; T (15) โ 72ยฐ
(c) H (t ) = T (t โ 1); All the temperature changes would be one hour later.
(d) H (t ) = T (t ) โ 1; The temperature would be decreased by one degree.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
218
NOT FOR SALE
Chapter 2
Functions
ctions and Their Graphs
(e) The points at the endpoints of the individual functions that form each โpieceโ appear to be
(0, 60), (6, 60), (7, 72), (20, 72), ( 21, 60), and (24, 60). Note that the value t = 24 is
chosen for the last ordered pair because that is when the day ends and the cycle starts over.
From t = 0 to t = 6: This is the constant function T (t ) = 60.
From t = 6 to t = 7: Use the points (6, 60) and (7, 72).
72 โ 60
= 12
7 โ6
y โ 60 = 12( x โ 6) ย y = 12 x โ 12, or
m =
T (t ) = 12t โ 12
From t = 7 to t = 20: This is the constant function T (t ) = 72.
From t = 20 to t = 21: Use the points ( 20, 72) and ( 21, 60).
72 โ 60
= โ12
20 โ 21
y โ 60 = โ12( x โ 21) ย y = โ12 x + 312, or T (t ) = โ12t + 312
m =
From t = 21 to t = 24: This is the constant function T (t ) = 60.
ยญ60,
ยฐ
ยฐ12t โ 12,
ยฐ
A piecewise-defined function is T (t ) = ยฎ72,
ยฐโ
ยฐ 12t + 312,
ยฐยฏ60,
59. (a) r ( x ) =
6 < t < 7
7 โค t โค 20
20 < t < 21
21 โค t โค 24
61. (a) f ( g ( x)) = f (0.03 x) = 0.03x โ 500,000
x
2
(b) g ( f ( x)) = g ( x โ 500,000) = 0.03( x โ 500,000)
(b) A( r ) = ฯ r 2
(c)
0 โค t โค 6
( A D r )( x) = A(r ( x)) = Aยงยจ ยทยธ = ฯ ยงยจ ยทยธ
x
ยฉ 2ยน
x
ยฉ 2ยน
g ( f ( x)) represents your bonus of 3% of an amount
2
( A D r )( x) represents the area of the circular base of
the tank on the square foundation with side length x.
over $500,000.
62. (a) R( p ) = p โ 2000 the cost of the car after the
factory rebate.
(b) S ( p ) = 0.9 p the cost of the car with the dealership
60. (a) N (T (t )) = N (3t + 2)
= 10(3t + 2) โ 20(3t + 2) + 600
discount.
2
= 10(9t 2 + 12t + 4) โ 60t โ 40 + 600
= 90t 2 + 60t + 600
= 30(3t 2 + 2t + 20), 0 โค t โค 6
This represents the number of bacteria in the food as
a function of time.
(b) Use t = 0.5.
(
)
N (T (0.5)) = 30 3(0.5) + 2(0.5) + 20 = 652.5
2
After half an hour, there will be about 653 bacteria.
(c) 30(3t 2 + 2t + 20) = 1500
3t 2 + 2t + 20 = 50
3t 2 + 2t โ 30 = 0
By the Quadratic Formula, t โ โ3.513 or 2.846.
(c)
( R D S )( p) = R(0.9 p) = 0.9 p โ 2000
( S D R)( p) = S ( p โ 2000)
= 0.9( p โ 2000) = 0.9 p โ 1800
( R D S )( p) represents the factory rebate after the
dealership discount.
( S D R)( p) represents the dealership discount after
the factory rebate.
(d) ( R D S )( p) = ( R D S )( 20,500)
= 0.9( 20,500) โ 2000 = $16,450
( S D R)( p) = ( S D R)(20,500)
= 0.9( 20,500) โ 1800 = $16,650
( R D S )(20,500) yields the lower cost because
10% of the price of the car is more than $2000.
INSTRUCTOR USE ONLY
Choosing the positive value for t, you have t โ 2.846
hours.
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section
on 2.6
Combinations of Functions: Composite
Compos
Composi Functions
219
63. Let O = oldest sibling, M = middle sibling, Y = youngest sibling.
Then the ages of each sibling can be found using the equations:
O = 2M
M = 12 Y + 6
(
)
(a) O( M (Y )) = 2 12 (Y ) + 6 = 12 + Y ; Answers will vary.
(b) Oldest sibling is 16: O = 16
Middle sibling: O = 2M
16 = 2 M
M = 8 years old
Youngest sibling: M = 12 Y + 6
8 = 12 Y + 6
2 = 12 Y
Y = 4 years old
( )
64. (a) Y ( M (O )) = 2 12 O โ 12 = O โ 12; Answers will vary.
(b) Youngest sibling is 2 โ Y = 2
Middle sibling: M = 12 Y + 6
M = 12 ( 2) + 6
M = 7 years old
Oldest sibling: O = 2M
O = 2(7)
O = 14 years old
65. False. ( f D g )( x) = 6 x + 1 and ( g D f )( x) = 6 x + 6
66. True. The range of g must be a subset of the domain of f
for ( f D g )( x) to be defined.
68. (a) f ( p ): matches L 2 ; For example, an original price of
p = $15.00 corresponds to a sale price of S = $7.50.
(b) g ( p ): matches L1; For example an original price of
p = $20.00 corresponds to a sale price of
S = $15.00.
67. Let f ( x) and g ( x) be two odd functions and define
h( x) = f ( x) g ( x). Then
(c)
h( โ x ) = f ( โ x ) g ( โ x )
= ยชโ
ยบยชโ g ( x)ยผยบ
ยฌ f ( x)ยผยฌ
because f and g are odd
= f ( x) g ( x)
So, h( x) is even.
Let f ( x) and g ( x) be two even functions and define
h( x) = f ( x) g ( x). Then
So, h( x) is even.
(d) ( f D g ) ( p) matches L 3 ; This function represents
69. Let f ( x) be an odd function, g ( x) be an even function,
and define h( x) = f ( x) g ( x). Then
h( โ x ) = f ( โ x ) g ( โ x )
h( โ x ) = f ( โ x ) g ( โ x )
= h( x).
applying a 50% discount to the original price p,
then subtracting a $5 discount.
subtracting a $5 discount from the original price p,
then applying a 50% discount.
= h( x).
= f ( x) g ( x )
( g D f ) ( p): matches L 4 ; This function represents
because f and g are even
= ยชโ
ยฌ f ( x)ยผยบ g ( x)
because f is odd and g is even
= โ f ( x ) g ( x)
= โ h( x).
So, h is odd and the product of an odd function and an
even
ven function is odd.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
220
Chapter 2
Functions
ctions and Their Graphs
1
ยช f ( x) + f ( โ x)ยผยบ
2ยฌ
70. (a) g ( x) =
(c)
To determine if g ( x) is even, show g ( โ x) = g ( x).
1
ยช f ( โ x) + f ( โ ( โ x))ยบยผ
2ยฌ
1
= ยชยฌ f ( โ x) + f ( x)ยบยผ
2
1
= ยชยฌ f ( x) + f ( โ x)ยบยผ
2
g ( โ x) =
= g ( x) 9
1
ยช f ( x) โ f ( โ x)ยผยบ
2ยฌ
h( x ) =
To determine if h( x) is odd show h( โ x) = โ h( x).
1
ยช f ( โ x) โ f ( โ ( โ x))ยบ
ยผ
2ยฌ
1
= ยชยฌ f ( โ x) โ f ( x)ยบยผ
2
1
= โ ยชยฌ f ( x) โ f ( โ x)ยผยบ
2
h( โ x ) =
= โ h( x ) 9
(b) Let f ( x) = a function
f ( x) = x 2 โ 2 x + 1
f ( x ) = g ( x ) + h( x )
1
ยช f ( x) + f ( โ x)ยผยบ
2ยฌ
1
2
= ยช x 2 โ 2 x + 1 + ( โ x) โ 2( โ x) + 1ยบ
ยผ
2ยฌ
1 2
2
= ยชยฌ x โ 2 x + 1 + x + 2 x + 1ยบยผ
2
1
= ยชยฌ2 x 2 + 2ยบยผ = x 2 + 1
2
1
h( x) = ยฌยช f ( x) โ f ( โ x)ยผยบ
2
1ยช 2
2
= ยซ x โ 2 x + 1 โ ( โ x) โ 2( โ x) + 1 ยบยป
ยผ
2ยฌ
1 2
2
= ยชยฌ x โ 2 x + 1 โ x โ 2 x โ 1ยบยผ
2
1
= [โ 4 x] = โ2 x
2
g ( x) =
(
f ( x) = ( x 2 + 1) + ( โ 2 x)
1
x +1
k ( x ) = g ( x ) + h( x )
k ( x) =
Using the result from part (a) g ( x) is an even
1
ยชk ( x) + k ( โ x)ยผยบ
2ยฌ
1ยช 1
1 ยบ
= ยซ
+
2 ยฌ x + 1 โ x + 1ยปยผ
function and h( x) is an odd function.
=
1 ยช1 โ x + x + 1ยบ
2 ยซยฌ ( x + 1)(1 โ x) ยปยผ
1
1
ยช f ( x) + f ( โ x)ยผยบ + ยฌยช f ( x) โ f ( โ x)ยผยบ
2ยฌ
2
1
1
1
1
= f ( x ) + f ( โ x) + f ( x) โ f ( โ x)
2
2
2
2
=
1ยช
2
ยบ
2 ยซยฌ ( x + 1)(1 โ x) ยปยผ
= f ( x) 9
=
f ( x) = even function + odd function.
g ( x) =
f ( x ) = g ( x ) + h( x )
=
)
=
1
( x + 1)(1 โ x)
โ1
( x + 1)( x โ 1)
1
ยชk ( x) โ k ( โ x)ยบยผ
2ยฌ
1ยช 1
1 ยบ
= ยซ
โ
2 ยฌ x + 1 1 โ x ยปยผ
1 ยช1 โ x โ ( x + 1) ยบ
= ยซ
ยป
2 ยซยฌ ( x + 1)(1 โ x) ยปยผ
ยบ
โ 2x
1ยช
= ยซ
ยป
2 ยฌยซ ( x + 1)(1 โ x) ยผยป
โx
=
( x + 1)(1 โ x)
h( x ) =
=
x
( x + 1)( x โ 1)
ยง
ยท ยง
ยท
โ1
x
+
k ( x) = ยจ
ยจ ( x + 1)( x โ 1) ยธยธ ยจยจ ( x + 1)( x โ 1) ยธยธ
ยฉ
ยน ยฉ
ยน
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.7
Inver
Inverse Functions
9. f ( x) = 3x + 1
Section 2.7 Inverse Functions
f โ1 ( x) =
1. inverse
x โ1
3
ยง x โ 1ยท
ยง x โ 1ยท
f ( f โ1 ( x)) = f ยจ
ยธ = 3ยจ
ยธ +1 = x
ยฉ 3 ยน
ยฉ 3 ยน
2. f โ1
3. range; domain
f โ1 ( f ( x)) = f โ1 (3 x + 1) =
4. y = x
10. f ( x) =
5. one-to-one
f โ1 ( x) = 5 x + 1
7. f ( x) = 6 x
f ( f โ1 ( x)) = f (5 x + 1) =
x
1
= x
6
6
ยง xยท
ยง xยท
โ1
f ( f ( x)) = f ยจ ยธ = 6ยจ ยธ = x
ยฉ6ยน
ยฉ6ยน
f โ1 ( x) =
f โ1 ( f ( x)) = f โ1 (6 x) =
3
5x + 1 โ 1
5x
=
= x
5
5
ยง x โ 1ยท
ยง x โ 1ยท
f โ1 ( f ( x)) = f โ1 ยจ
ยธ = 5ยจ
ยธ +1
5
ยฉ
ยน
ยฉ 5 ยน
= x โ1+1 = x
6x
= x
6
11. f ( x) = 3 x
f โ1 ( x) = x3
8. f ( x) = 13 x
f ( f โ1 ( x)) = f ( x3 ) = 3 x3 = x
f โ1 ( x) = 3 x
โ1
(3x + 1) โ 1 = x
x โ1
5
6. Horizontal
f(f
221
( ) ( x) = x
f โ1 ( f ( x)) = f โ1 3 x =
( x)) = f (3x) = ( ) = x
1 3x
3
( )
( )
3
3
12. f ( x) = x5
f โ1 ( f ( x)) = f โ1 13 x = 3 13 x = x
f โ1 ( x) = 5 x
f ( f โ1 ( x)) = f
( x) = ( x) = x
5
5
5
f โ1 ( f ( x)) = f โ1 ( x5 ) = 5 x5 = x
7ยง 2x + 6 ยท
ยง 2x + 6 ยท
13. ( f D g )( x) = f ( g ( x)) = f ยจ โ
ยธ = โ ยจโ
ยธ โ3 = x +3โ3 = x
7 ยน
2ยฉ
7 ยน
ยฉ
ยง 7
ยท
2ยจ โ x โ 3ยธ + 6
โ ( โ 7 x)
7
2
ยง
ยท
ยฉ
ยน
=
= x
( g D f )( x) = g ( f ( x)) = g ยจ โ x โ 3ยธ = โ
7
7
ยฉ 2
ยน
4x + 9 โ 9
4x
=
= x
4
4
x โ 9ยท
ยง x โ 9ยท
( g D f )( x) = g ( f ( x)) = g ยงยจ
ยธ = 4ยจ
ยธ +9 = x โ9+9 = x
ยฉ 4 ยน
ยฉ 4 ยน
14. ( f D g )( x) = f ( g ( x)) = f ( 4 x + 9) =
15. ( f D g )( x) = f ( g ( x)) = f
( x โ 5) = ( x โ 5) + 5 = x โ 5 + 5 = x
3
3
3
( g D f )( x) = g ( f ( x)) = g ( x3 + 5) = 3 x3 + 5 โ 5 = 3 x3 = x
16. ( f D g )( x) = f ( g ( x)) = f
(
3
)
2x =
( 2x ) = 2x = x
3
3
2
2
ยงx ยท
ยงx ยท
3
3
ยธ = 3 2ยจ ยธ = x = x
ยฉ2ยน
ยฉ2ยน
( g D f )( x) = g ( f ( x)) = g ยจ
3
3
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
222
Chapter 2
17.
y
NOT FOR SALE
Functions
ctions and Their Graphs
22. f ( x) = x โ 5, g ( x) = x + 5
(a) f ( g ( x)) = f ( x + 5) = ( x + 5) โ 5 = x
3
2
g ( f ( x)) = g ( x โ 5) = ( x โ 5) + 5 = x
1
โ3
โ1
(b)
x
1
2
3
โ1
โ2
โ3
18.
y
7
6
5
4
3
23. f ( x) = 7 x + 1, g ( x) =
2
1
x
โ1
โ1
1
19.
2
3
4
5
6
x โ1
7
ยง x โ 1ยท
ยง x โ 1ยท
(a) f ( g ( x)) = f ยจ
ยธ = 7ยจ
ยธ +1= x
7
ยฉ
ยน
ยฉ 7 ยน
7
g ( f ( x)) = g (7 x + 1) =
y
4
(7 x + 1) โ 1 = x
7
(b)
3
2
1
x
โ1
1
2
3
4
โ1
20.
y
3
24. f ( x) = 3 โ 4 x, g ( x) =
2
1
โ3
โ2
ยง3 โ xยท
ยง3 โ xยท
(a) f ( g ( x)) = f ยจ
ยธ = 3 โ 4ยจ
ยธ
ยฉ 4 ยน
ยฉ 4 ยน
x
โ1
1
2
3
= 3 โ (3 โ x ) = x
โ2
โ3
21. f ( x) = 2 x, g ( x) =
3โ x
4
g ( f ( x )) = g (3 โ 4 x ) =
x
2
3 โ (3 โ 4 x )
4
=
4x
= x
4
(b)
ยง xยท
ยง xยท
(a) f ( g ( x)) = f ยจ ยธ = 2ยจ ยธ = x
ยฉ 2ยน
ยฉ 2ยน
2x
= x
g ( f ( x )) = g ( 2 x ) =
2
(b)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.7
25. f ( x) =
27. f ( x) =
x3
, g ( x) = 3 8 x
8
(a) f ( g ( x)) = f
( 8x ) =
3
( 8x ) = 8x = x
8
223
x โ 4, g ( x) = x 2 + 4, x โฅ 0
(a) f ( g ( x)) = f ( x 2 + 4), x โฅ 0
3
3
Inver
Inverse Functions
=
8
( x 2 + 4) โ 4 = x
( x โ 4)
= ( x โ 4) + 4 = x
g ( f ( x)) = g
ยง x3 ยท
ยง x3 ยท
g ( f ( x)) = g ยจ ยธ = 3 8ยจ ยธ = 3 x3 = x
ยฉ8ยน
ยฉ8ยน
2
(b)
(b)
26. f ( x) =
1
1
, g ( x) =
x
x
28. f ( x) = 1 โ x3 , g ( x) = 3 1 โ x
x
1
1
ยง1ยท
(a) f ( g ( x)) = f ยจ ยธ =
=1รท
= 1โ
= x
1
1
x
x
x
ยฉ ยน
(a) f ( g ( x)) = f
( 1 โ x) = 1 โ ( 1 โ x)
3
3
3
= 1 โ (1 โ x) = x
1
1
x
ยง1ยท
g ( f ( x )) = g ยจ ยธ =
=1รท
= 1โ
= x
1
1
x
x
x
ยฉ ยน
g ( f ( x)) = g (1 โ x3 ) = 3 1 โ (1 โ x3 )
(b)
= 3 x3 = x
(b)
29. f ( x) = 9 โ x 2 , x โฅ 0; g ( x) =
(a) f ( g ( x)) = f
9 โ x, x โค 9
( 9 โ x ), x โค 9 = 9 โ ( 9 โ x ) = x
2
g ( f ( x)) = g (9 โ x 2 ), x โฅ 0 =
9 โ (9 โ x 2 ) = x
(b)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
224
Chapter 2
30. f ( x) =
NOT FOR SALE
Functions
ctions and Their Graphs
1
1โ x
, x โฅ 0; g ( x) =
,0 < x โค 1
1+ x
x
1
1
1
ยง1 โ x ยท
=
=
= x
(a) f ( g ( x)) = f ยจ
ยธ =
1
x 1โ x
ยง1 โ x ยท
ยฉ x ยน
+
1+ยจ
ยธ
x
x
x
ยฉ x ยน
ยง 1 ยท
g ( f ( x )) = g ยจ
ยธ =
ยฉ1 + x ยน
ยง 1 ยท
1+ x
1
x
1โยจ
โ
ยธ
ยฉ1 + x ยน = 1 + x 1 + x = 1 + x = x โ
x + 1 = x
1
1
1+ x
1
ยง 1 ยท
ยจ
ยธ
x
x
+
+
1
1
ยฉ1 + x ยน
(b)
31. f ( x) =
x โ1
5x + 1
, g ( x) = โ
x +5
x โ1
ยง 5x + 1
ยท
โ 1ยธ
ยจโ
โ (5 x + 1) โ ( x โ 1)
x โ1
โ 6x
x โ1
ยง 5x + 1ยท
ยฉ
ยน
(a) f ( g ( x)) = f ยจ โ
โ
=
=
= x
ยธ =
โ (5 x + 1) + 5( x โ 1)
โ6
ยง 5x + 1
ยท x โ1
ยฉ x โ1ยน
5
โ
+
ยจ
ยธ
ยฉ x โ1
ยน
ยช ยง x โ 1ยท
ยบ
ยซ5ยจ x + 5 ยธ + 1ยป x + 5
5( x โ 1) + ( x + 5)
6x
ยง x โ 1ยท
ยฉ
ยน
ยฌ
ยผ โ
g ( f ( x )) = g ยจ
= โ
= โ
= x
ยธ = โ x โ1
5
5
1
5
6
x
x
x
x
+
+
โ
โ
+
โ
ยช
ยบ
(
) (
)
ยฉ
ยน
1
โ
ยซยฌ x + 5
ยปยผ
(b)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.7
32. f ( x) =
Inver
Inverse Functions
225
x +3
2x + 3
, g ( x) =
x โ 2
x โ1
2x + 3
2 x + 3 + 3x โ 3
+3
5x
ยง 2x + 3 ยท
x
x โ1
1
โ
(a) f ( g ( x)) = f ยจ
=
=
= x
ยธ = 2x + 3
2x + 3 โ 2x + 2
5
ยฉ x โ1ยน
โ 2
x โ1
x โ1
ยง x + 3ยท
2
6 + 3x โ 6
x
+
2ยจ
ยธ +3
5x
x โ 2ยน
ยง x + 3ยท
ยฉ
x โ 2
g ( f ( x)) = g ยจ
=
=
= x
ยธ = x +3
3
2
+
โ
+
x
x
2
5
โ
x
ยฉ
ยน
โ1
x โ 2
x โ 2
(b)
33. No, {( โ2, โ1), (1, 0), ( 2, 1), (1, 2), ( โ2, 3), ( โ6, 4)} does
not represent a function. โ2 and 1 are paired with two
different values.
42. f ( x) = 18 ( x + 2) โ 1
2
34. Yes, {(10, โ 3), (6, โ 2), ( 4, โ1), (1, 0), ( โ3, 2), (10, 2)}
does represent a function.
35.
36.
f does not pass the Horizontal Line Test, so f does not
have an inverse.
x
โ2
0
2
4
6
8
f โ1 ( x)
โ2
โ1
0
1
2
3
x
โ10
โ7
โ4
โ1
2
5
โ3
โ2
โ1
0
1
2
f
โ1
( x)
43. f ( x) = โ2 x 16 โ x 2
37. Yes, because no horizontal line crosses the graph of f at
more than one point, f has an inverse.
38. No, because some horizontal lines intersect the graph of f
twice, f does not have an inverse.
f does not pass the Horizontal Line Test, so f does not
have an inverse.
44. h( x) = x + 4 โ x โ 4
39. No, because some horizontal lines cross the graph of f
twice, f does not have an inverse.
40. Yes, because no horizontal lines intersect the graph, of f
at more than one point, f has an inverse.
41. g ( x) = ( x + 5)
h does not pass the Horizontal Line Test, so h does not
have an inverse.
3
g passes the Horizontal Line Test, so g has an inverse.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
226
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
f ( x) = 2 x โ 3
45. (a)
(b)
f ( x) =
49. (a)
y = 2x โ 3
x = 2y โ 3
x +3
y =
2
x +3
โ1
f ( x) =
2
4 โ x2
x =
4 โ y2
y2 = 4 โ x2
y =
(d) The domains and ranges of f and f โ1 are all real
numbers.
f ( x) = 3 x + 1
y =
x2 = 4 โ y2
(c) The graph of f โ1 is the reflection of the graph of f
in the line y = x.
46. (a)
4 โ x2 , 0 โค x โค 2
f โ1 ( x) =
4 โ x2
4 โ x2 , 0 โค x โค 2
(b)
(b)
y = 3x + 1
x = 3y + 1
x โ1
= y
3
x โ1
f โ1 ( x) =
3
(c) The graph of f โ1 is the same as the graph of f.
(c) The graph of f โ1 is the reflection of f in the line
y = x.
(d) The domains and ranges of f and f
numbers.
f ( x) = x โ 2
5
47. (a)
โ1
are all real
(d) The domains and ranges of f and f โ1 are all real
numbers x such that 0 โค x โค 2.
f ( x) = x 2 โ 2, x โค 0
50. (a)
y = x2 โ 2
x = y2 โ 2
(b)
ยฑ
y = x5 โ 2
x + 2 = y
f โ1 ( x) = โ
x = y5 โ 2
x + 2
(b)
y = 5 x + 2
f โ1 ( x) = 5 x + 2
(c) The graph of f โ1 is the reflection of the graph of f
in the line y = x.
(d) The domains and ranges of f and f โ1 are all real
numbers.
f ( x) = x + 1
3
48. (a)
(b)
(d) [โ 2, โ) is the range of f and domain of f โ1.
3
y = x +1
x = y3 + 1
x โ1 = y
3
(c) The graph of f โ1 is the reflection of f in the line
y = x.
(โ โ, 0] is the domain of f and the range of f โ1.
3
x โ1 = y
f โ1 ( x) = 3 x โ 1
(c) The graph of f โ1 is the reflection of f in the line
y = x.
(d) The domains and ranges of f and f โ1 are all real
numbers.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.7
51. (a)
4
x
4
y =
x
4
x =
y
f ( x) =
x โ3
x + 2
x โ3
y =
x + 2
y โ3
x =
y + 2
xy + 2 x โ y + 3 = 0
xy = 4
y ( x โ 1) = โ 2 x โ 3
4
y =
x
4
โ1
f ( x) =
x
โ 2x โ 3
x โ1
โ 2x โ 3
โ1
f ( x) =
x โ1
y =
(c) The graph of f โ1 is the same as the graph of f.
(d) The domains and ranges of f and f โ1 are all real
numbers except for 0.
52. (a)
2
x
2
y = โ
x
2
x = โ
y
f ( x) = โ
(b)
(b)
(c) The graph of f โ1 is the reflection of the graph of f
in the line y = x.
2
x
2
f โ1 ( x) = โ
x
y = โ
(d) The domain of f and the range of f โ1 is all real
numbers except x = โ 2.
(c) The graphs are the same.
The range of f and the domain of f โ1 is all real
numbers x except x = 1.
(d) The domains and ranges of f and f โ1 are all real
numbers except for 0.
53. (a)
x +1
x โ 2
x +1
y =
x โ 2
y +1
x =
y โ 2
f ( x) =
227
f ( x) =
54. (a)
(b)
Inver
Inverse Functions
55. (a)
(b)
f ( x) = 3 x โ 1
y =
3
(b)
x โ1
x = 3 y โ1
x3 = y โ 1
y = x3 + 1
f โ1 ( x) = x3 + 1
x ( y โ 2) = y + 1
xy โ 2 x = y + 1
(c) The graph of f โ1 is the reflection of the graph of f
in the line y = x.
xy โ y = 2 x + 1
y ( x โ 1) = 2 x + 1
(d) The domains and ranges of f and f โ1 are all real
numbers.
2x + 1
y =
x โ1
2x + 1
โ1
f ( x) =
x โ1
(c) The graph of f โ1 is the reflection of graph of f in
the line y = x.
(d) The domain of f and the range of f โ1 is all real
numbers except 2.
The range of f and the domain of f โ1 is all real
numbers except 1.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
228
NOT FOR SALE
Chapter 2
56. (a)
Functions
ctions and Their Graphs
f ( x) = x3 5
y = x
60.
(b)
y = 3x + 5
x = 3y + 5
x = y3 5
x5 3 = ( y 3 5 )
x โ 5 = 3y
x โ5
= y
3
53
x5 3 = y
This is a function of x, so f has an inverse.
f โ1 ( x) = x5 3
(c) The graph of f โ1 is the reflection of the graph of f
in the line y = x.
(d) The domains and ranges of f and f โ1 are all real
numbers.
f โ1 ( x) =
x โ5
3
61. p( x) = โ 4
y = โ4
Because y = โ 4 for all x, the graph is a horizontal line
57. f ( x) = x 4
and fails the Horizontal Line Test. p does not have an
inverse.
y = x4
x = y4
62.
y = ยฑ4 x
This does not represent y as a function of x. f does not
have an inverse.
1
x2
1
y = 2
x
1
x = 2
y
1
y2 =
x
58. f ( x) =
y = ยฑ
f ( x) = 3 x + 5
35
3x + 4
5
3x + 4
y =
5
3y + 4
x =
5
5x = 3 y + 4
5x โ 4 = 3 y
5x โ 4
= y
3
f ( x) =
This is a function of x, so f has an inverse.
f โ1 ( x) =
1
x
5x โ 4
3
63. f ( x) = ( x + 3) , x โฅ โ 3 ย y โฅ 0
2
This does not represent y as a function of x. f does not
have an inverse.
y = ( x + 3) , x โฅ โ 3, y โฅ 0
2
x = ( y + 3) , y โฅ โ 3, x โฅ 0
2
x
59. g ( x) =
8
x
y =
8
y
x =
8
y = 8x
x = y + 3, y โฅ โ 3, x โฅ 0
y =
x โ 3, x โฅ 0, y โฅ โ 3
This is a function of x, so f has an inverse.
f โ1 ( x) =
This is a function of x, so g has an inverse.
64.
x โ 3, x โฅ 0
q( x) = ( x โ 5)
2
y = ( x โ 5)
2
g โ1 ( x) = 8 x
x = ( y โ 5)
ยฑ
5ยฑ
2
x = y โ5
x = y
This does not represent y as a function of x, so q does not
have an inverse.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Section 2.7
Inver
Inverse Functions
229
3
2x + 3 ย x โฅ โ , y โฅ 0
2
3
y = 2 x + 3, x โฅ โ , y โฅ 0
2
3
x = 2 y + 3, y โฅ โ , x โฅ 0
2
3
x 2 = 2 y + 3, x โฅ 0, y โฅ โ
2
2
x โ3
3
y =
, x โฅ 0, y โฅ โ
2
2
ยญx + 3, x 0
f โ1 ( x) =
x2 โ 3
,x โฅ 0
2
f ( x) =
70.
x โ 2 ย x โฅ 2, y โฅ 0
y =
x โ 2, x โฅ 2, y โฅ 0
x =
y โ 2, y โฅ 2, x โฅ 0
2
x = y โ 2, x โฅ 0, y โฅ 2
2
x + 2 = y, x โฅ 0, y โฅ 2
This is a function of x, so f has an inverse.
f โ1 ( x) = x 2 + 2, x โฅ 0
The graph fails the Horizontal Line Test, so f does not
have an inverse.
67. h( x) = โ
4
x2
y
71.
6x + 4
4x + 5
6x + 4
y =
4x + 5
6y + 4
x =
4y + 5
f ( x) =
x( 4 y + 5) = 6 y + 4
2
4 xy + 5 x = 6 y + 4
4 xy โ 6 y = โ 5 x + 4
x
โ4
4
y( 4 x โ 6) = โ 5 x + 4
โ2
โ 5x + 4
4x โ 6
5x โ 4
=
6 โ 4x
y =
The graph fails the Horizontal Line Test so h does not
have an inverse.
68. f ( x) = x โ 2 , x โค 2 ย y โฅ 0
This is a function of x, so f has an inverse.
f โ1 ( x) =
5x โ 4
6 โ 4x
y = x โ 2 , x โค 2, y โฅ 0
x = y โ 2 , y โค 2, x โฅ 0
x = y โ 2 or
2+ x = y
โx = y โ 2
or 2 โ x = y
The portion that satisfies the conditions y โค 2 and
x โฅ 0 is 2 โ x = y. This is a function of x, so f has
an inverse.
INSTRUCTOR USE ONLY
f โ1 ( x) = 2 โ x, x โฅ 0
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
230
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
72. The graph of f passes the Horizontal Line Test. So, you
know f is one-to-one and has an inverse function.
5x โ 3
2x + 5
5x โ 3
y =
2x + 5
5y โ 3
x =
2y + 5
f ( x) =
75. f ( x) = x + 2
domain of f : x โฅ โ 2, range of f : y โฅ 0
f ( x) = x + 2
y = x + 2
x = y + 2
x โ 2 = y
x( 2 y + 5) = 5 y โ 3
So, f โ1 ( x) = x โ 2.
2 xy + 5 x = 5 y โ 3
domain of f โ1 : x โฅ 0, range of f โ1 : y โฅ โ 2
2 xy โ 5 y = โ 5 x โ 3
76. f ( x) = x โ 5
y ( 2 x โ 5) = โ (5 x + 3)
domain of f : x โฅ 5, range of f : y โฅ 0
5x + 3
2x โ 5
5x + 3
f โ1 ( x) = โ
2x โ 5
y = โ
73. f ( x) = ( x โ 2)
f ( x) = x โ 5
y = x โ5
x = y โ5
2
x +5 = y
domain of f : x โฅ 2, range of f : y โฅ 0
f ( x ) = ( x โ 2)
2
y = ( x โ 2)
2
x = ( y โ 2)
domain f โ1 : x โฅ 0, range of f โ1 : y โฅ 5
77. f ( x) = ( x + 6)
2
x + 2 = y
x + 2.
domain of f โ1 : x โฅ 0, range of f โ1 : x โฅ 2
74. f ( x) = 1 โ x 4
f ( x ) = ( x + 6)
2
y = ( x + 6)
2
x = ( y + 6)
2
x = y + 6
x โ6 = y
domain of f : x โฅ 0, range of f : y โค 1
f ( x) = 1 โ x 4
So, f โ1 ( x) =
x โ 6.
domain of f โ1 : x โฅ 0, range of f โ1 : y โฅ โ 6
y = 1 โ x4
78. f ( x) = ( x โ 4)
x = 1 โ y4
2
domain of f : x โฅ 4, range of f : y โฅ 0
x โ 1 = โ y4
4
2
domain of f : x โฅ โ 6, range of f : y โฅ 0
x = y โ 2
So, f โ1 ( x) =
So, f โ1 ( x) = x + 5.
1โ x = y
f ( x ) = ( x โ 4)
2
So, f โ1 ( x) = 4 1 โ x .
y = ( x โ 4)
2
domain of f โ1 : x โค 1, range of f โ1 : y โฅ 0
x = ( y โ 4)
2
x = y โ 4
x + 4 = y
So, f โ1 ( x) =
x + 4.
domain of f โ1 : x โฅ 0, range of f โ1 : y โฅ 4
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Section 2.7
domain of f : x โฅ 1, range of f : y โค โ 2
domain of f : x โฅ 0, range of f : y โค 5
f ( x) = โ 2 x 2 + 5
f ( x) = โ x โ 1 โ 2
y = โ 2×2 + 5
y = โ x โ1 โ 2
x = โ( y โ 1) โ 2
x = โ 2 y2 + 5
x โ 5 = โ2y
x = โy โ 1
2
5 โ x = 2 y2
โx โ 1 = y
5โ x
= y
2
So, f โ1 ( x) = โ x โ 1.
5โ x
โ
2
2
โ 2( x โ 5)
2
โ1
In Exercises 83โ 88, f ( x ) = 18 x โ 3, f โ1 ( x ) = 8( x + 3),
g ( x ) = x 3 , g โ1 ( x ) = 3 x .
= y
So, f โ1 ( x) =
domain of f
domain of f โ1 : x โค โ 2, range of f โ1 : y โฅ 1
2
= y
2
2(5 โ x)
83. ( f โ1 D g โ1 )(1) = f โ1 ( g โ1 (1))
.
( x): x โค 5, range of f ( x): y โฅ 0
domain of f : x โฅ 0, range of f : y โฅ โ1
(
84. ( g โ1 D f โ1 )( โ3) = g โ1 ( f โ1 ( โ 3))
= g โ1 (8( โ 3 + 3))
= g โ1 (0) = 3 0 = 0
85. ( f โ1 D f โ1 )(6) = f โ1 ( f โ1 (6))
x = 12 y 2 โ 1
= f โ1 (8[6 + 3])
x + 1 = 12 y 2
= 8ยฌยช8(6 + 3) + 3ยผยบ = 600
2x + 2 = y2
2x + 2 = y
So, f
( x) =
domain of f
โ1
)
= 8 3 1 + 3 = 32
1 2
x โ1
2
y = 12 x 2 โ 1
โ1
( )
= f โ1 3 1
โ1
1 x2 โ 1
2
f ( x) =
231
82. f ( x) = โ x โ 1 โ 2
79. f ( x) = โ 2 x 2 + 5
80. f ( x) =
Inver
Inverse Functions
86. ( g โ1 D g โ1 )( โ 4) = g โ1 ( g โ1 ( โ 4))
2 x + 2.
(
= g โ1 3 โ 4
: x โฅ โ1, range of f
โ1
:y โฅ 0
81. f ( x) = x โ 4 + 1
domain of f : x โฅ 4, range of f : y โฅ 1
)
= 3 3 โ4 = 9 โ4
87.
( f D g )( x) = f ( g ( x)) = f ( x3 ) = 18 x3 โ 3
y = 18 x3 โ 3
f ( x) = x โ 4 + 1
x = 18 y 3 โ 3
y = x โ3
x + 3 = 18 y 3
x = y โ3
x +3 = y
8( x + 3) = y 3
So, f โ1 ( x) = x + 3.
(
) = y
3 8 x + 3
domain of f โ1 : x โฅ 1, range of f โ1 : y โฅ 4
โ1
( f D g ) ( x) = 2 3 x + 3
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
232
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
88. g โ1 D f โ1 = g โ1 ( f โ1 ( x))
x = 10 + 0.75 y
= g โ1 (8( x + 3))
x โ 10 = 0.75 y
= 3 8( x + 3)
x โ 10
= y
0.75
= 23 x + 3
So, f โ1 ( x) =
In Exercises 89โ92, f ( x ) = x + 4, f โ1 ( x ) = x โ 4,
g ( x ) = 2 x โ 5, g โ1 ( x ) =
89. ( g
โ1
D f
โ1
x +5
.
2
(b) y =
โ1
24.25 โ 10
= 19
0.75
So, 19 units are produced.
= g โ1 ( x โ 4)
=
( x โ 4) + 5
y = 0.03x 2 + 245.50, 0 < x < 100
94. (a)
2
x +1
=
2
90. ( f
โ1
D g
โ1
ย 245.50 < y < 545.50
x = 0.03 y 2 + 245.50
x โ 245.50 = 0.03 y 2
)( x) = f ( g ( x))
โ1
x โ 10
.
0.75
x = hourly wage, y = number of units produced
)( x) = g ( f ( x))
โ1
y = 10 + 0.75 x
93. (a)
โ1
x โ 245.50
= y2
0.03
ยง x + 5ยท
= f โ1 ยจ
ยธ
ยฉ 2 ยน
x +5
=
โ 4
2
x +5โ8
=
2
x โ3
=
2
x โ 245.50
= y, 245.50 < x < 545.50
0.03
f โ1 ( x) =
x โ 245.50
0.03
x = temperature in degrees Fahrenheit
y = percent load for a diesel engine
(b)
91. ( f D g )( x) = f ( g ( x))
= f ( 2 x โ 5)
= ( 2 x โ 5) + 4
= 2x โ 1
( f D g)
โ1
( x) =
(c) 0.03 x 2 + 245.50 โค 500
x +1
2
0.03 x 2 โค 254.50
x 2 โค 8483.33
Note: Comparing Exercises 89 and 91,
( f D g ) ( x) = ( g โ1 D f โ1 )( x).
โ1
92.
( g D f )( x) = g ( f ( x))
= g ( x + 4)
= 2( x + 4) โ 5
= 2x + 8 โ 5
= 2x + 3
y = 2x + 3
x โค 92.10
Thus, 0 โ1
22. h( x) =
(a) h( โ 2) = 2( โ 2) + 1 = โ 3
(b) h( โ1) = 2( โ1) + 1 = โ1
2
Domain: All real numbers x except x = โ 2, 3
(c) h(0) = 02 + 2 = 2
(d) h( 2) = 22 + 2 = 6
21. f ( x) =
25 โ x 2
25 โ x 2 โฅ 0
Domain:
(5 + x)(5 โ x) โฅ 0
Critical numbers: x = ยฑ 5
23. v(t ) = โ 32t + 48
Test intervals: ( โ โ, โ 5), ( โ 5, 5), (5, โ)
v(1) = 16 feet per second
2
Test: Is 25 โ x โฅ 0?
Solution set: โ 5 โค x โค 5
24. 0 = โ 32t + 48
Domain: all real numbers x such that
โ 5 โค x โค 5, or [โ 5, 5]
48
t = 32
= 1.5 seconds
25. f ( x) = 2 x 2 + 3 x โ 1
f ( x + h) โ f ( x)
h
ยช2( x + h) + 3( x + h) โ 1ยบ โ ( 2 x 2 + 3 x โ 1)
ยผ
= ยฌ
h
2
=
=
2 x 2 + 4 xh + 2h 2 + 3 x + 3h โ 1 โ 2 x 2 โ 3 x + 1
h
h( 4 x + 2h + 3)
h
= 4 x + 2h + 3, h โ 0
f ( x) = x3 โ 5 x 2 + x
26.
f ( x + h) = ( x + h) โ 5( x + h) + ( x + h)
3
2
= x3 + 3x 2 h + 3 xh 2 + h3 โ 5 x 2 โ 10 xh โ 5h 2 + x + h
f ( x + h) โ f ( x)
h
=
x3 + 3x 2 h + 3 xh 2 + h3 โ 5 x 2 โ 10 xh โ 5h 2 + x + h โ x3 + 5 x 2 โ x
h
=
3 x 2 h + 3 xh 2 + h3 โ 10 xh โ 5h 2 + h
h
=
h(3 x 2 + 3 xh + h 2 โ 10 x โ 5h + 1)
h
INSTRUCTOR USE ONLY
2
2
= 3 x + 3 xh + h โ 10 x โ 5h + 1, h โ 0
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises for
f Chapter 2
27. y = ( x โ 3)
34. f ( x ) = ( x 2 โ 4)
2
237
2
A vertical line intersects the graph no more than once, so
y is a function of x.
28. x = โ 4 โ y
A vertical line intersects the graph more than once, so y
is not a function of x.
f is increasing on ( โ 2, 0) and ( 2, โ).
29. f ( x ) = 5 x 2 + 4 x โ 1
f is decreasing on ( โ โ, โ 2) and (0, 2).
5×2 + 4 x โ 1 = 0
(5 x โ 1)( x + 1) = 0
35. f ( x ) = โ x 2 + 2 x + 1
Relative maximum: (1, 2)
5 x โ 1 = 0 ย x = 15
x + 1 = 0 ย x = โ1
30. f ( x ) =
8x + 3
11 โ x
36. f ( x) = x3 โ 4 x 2 โ 1
8x + 3
= 0
11 โ x
8x + 3 = 0
Relative minimum:
(2.67, โ10.48)
x = โ 83
31. f ( x) =
Relative maximum: (0, โ1)
2x + 1
37. f ( x) = โ x 2 + 8 x โ 4
2x + 1 = 0
f ( 4) โ f (0)
2x + 1 = 0
4โ0
2 x = โ1
38. f ( x) = 2 โ
32. f ( x ) = x 3 โ x 2
x3 โ x 2 = 0
f (7) โ f (3)
x 2 ( x โ 1) = 0
7 โ3
x = 0
12 โ ( โ 4)
4
= 4
The average rate of change of f from x1 = 0 to x2 = 4
is 4.
x = 12
x 2 = 0 or
=
=
(2 โ
)
8 โ ( 2 โ 2)
4
2โ 2 2
1โ 2
=
=
4
2
x โ1 = 0
x =1
The average rate of change of f from x1 = 3 to x2 = 7
(
is 1 โ
33. f ( x) = x + x + 1
f is increasing on (0, โ).
x +1
39.
f is decreasing on ( โ โ, โ1).
)
2 2.
f ( x) = x5 + 4 x โ 7
f ( โ x) = ( โ x) + 4( โ x) โ 7
5
f is constant on ( โ1, 0).
= โ x5 โ 4 x โ 7
โ f ( x)
โ โ f ( x)
Neither even nor odd
40.
f ( x ) = x 4 โ 20 x 2
f ( โ x ) = ( โ x) โ 20( โ x) = x 4 โ 20 x 2 = f ( x)
4
2
INSTRUCTOR USE ONLY
The functionn is
i even.
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
238
Chapter 2
Functions
ctions and Their Graphs
41.
f ( x) = 2 x
45. f ( x) = x 2 + 5
x2 + 3
f ( โ x) = 2( โ x)
= โ 2x
( โ x) + 3
2
x2 + 3
= โ f ( x)
The function is odd.
42.
f ( x) = 5 6 x 2
f ( โ x ) = 5 6( โ x )
= 5 6 x 2 = f ( x)
2
46. g ( x) = โ 3 x3
The function is even.
43. (a) f ( 2) = โ 6, f ( โ1) = 3
Points: ( 2, โ 6), ( โ1, 3)
m =
3 โ ( โ 6)
โ1 โ 2
=
9
= โ3
โ3
y โ ( โ 6) = โ 3( x โ 2)
y + 6 = โ 3x + 6
y = โ 3x
47. f ( x ) =
f ( x) = โ 3 x
x +1
(b)
44. (a) f (0) = โ 5, f ( 4) = โ 8
(0, โ 5), (4, โ 8)
โ 8 โ ( โ 5)
3
= โ
m =
4โ0
48. g ( x) =
1
x +5
4
3
( x โ 0)
4
3
y = โ x โ5
4
3
f ( x) = โ x โ 5
4
y โ ( โ 5) = โ
(b)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Review Exercises ffor Chapter 2
49. g ( x) = a x + 4b
53. (a) f ( x ) =
(b) h( x) = โ
239
x
x + 4
Vertical shift 4 units upward, reflection in the x-axis
(c)
x โฅ โ1
ยญ5 x โ 3,
50. f ( x) = ยฎ
ยฏโ 4 x + 5, x < โ1
(d) h( x) = โ f ( x) + 4
54. (a) f ( x) = x
(b) h( x) = x + 3 โ 5
Horizontal shift 3 units to the left; vertical shift
5 units downward
(c)
51. (a) f ( x) = x 2
(b) h( x) = x 2 โ 9
Vertical shift 9 units downward
(c)
(d) h( x) = f ( x + 3) โ 5
55. (a) f ( x) = x 2
(b) h( x) = โ ( x + 2) + 3
2
Horizontal shift two units to the left, vertical shift
3 units upward, reflection in the x-axis.
(d) h( x) = f ( x) โ 9
(c)
52. (a) f ( x ) = x 3
(b) h( x) = ( x โ 2) + 2
3
Horizontal shift 2 units to the right; vertical shift
2 units upward
(c)
(d) h( x) = โ f ( x + 2) + 3
INSTRUCTOR USE ONLY
(d) h( x) = f ( x โ 2) + 2
(d
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
240
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
59. (a) f ( x) = a xb
56. (a) f ( x) = x 2
(b) h( x) = 5a x โ 9b
(b) h( x) = 12 ( x โ 1) โ 2
2
Horizontal shift 9 units to the right and a vertical
stretch (each y-value is multiplied by 5)
Horizontal shift one unit to the right, vertical shrink,
vertical shift 2 units downward
(c)
(c)
(d) h( x) = 5 f ( x โ 9)
(d) h( x) = 12 f ( x โ 1) โ 2
60. (a) f ( x ) = x3
57. (a) f ( x) = a xb
(b) h( x) = โ 13 x3
(b) h( x) = โa xb + 6
Reflection in the x-axis; vertical shrink
(each y-value is multiplied by 13 )
Reflection in the x-axis and a vertical shift 6 units
upward
(c)
(c)
(d) h( x) = โ f ( x) + 6
58. (a) f ( x ) =
(b) h( x) = โ
(d) h( x) = โ 13 f ( x)
x
61. f ( x) = x 2 + 3, g ( x) = 2 x โ 1
x +1 +9
Reflection in the x-axis, a horizontal shift 1 unit to
the left, and a vertical shift 9 units upward
(c)
(a)
( f + g )( x) = ( x 2 + 3) + (2 x โ 1) = x 2 + 2 x + 2
(b) ( f โ g )( x) = ( x 2 + 3) โ ( 2 x โ 1) = x 2 โ 2 x + 4
(c)
( fg )( x) = ( x 2 + 3)( 2 x โ 1) = 2 x3 โ x 2 + 6 x โ 3
ยงfยท
x2 + 3
1
(d) ยจ ยธ( x) =
, Domain: x โ
2x โ 1
2
ยฉgยน
62. f ( x ) = x 2 โ 4, g ( x) =
( f + g )( x) = f ( x) + g ( x) = x 2 โ 4 +
3โ x
(b) ( f โ g )( x) = f ( x) โ g ( x) = x 2 โ 4 โ
3โ x
(a)
(d) h( x) = โ f ( x + 1) + 9
3โ x
(c)
( fg )( x) = f ( x) g ( x) = ( x 2 โ 4)(
3โ x
)
f ( x)
ยงfยท
x2 โ 4
=
, Domain: x 4 and y > 0.
2
y = 2( x โ 4)
2
x = 2( y โ 4) , x > 0, y > 4
2
x
2
= ( y โ 4)
2
71. (a)
x
= y โ 4
2
f ( x) = 12 x โ 3 (b)
x
+ 4 = y
2
y = 12 x โ 3
x = 12 y โ 3
f โ1 ( x) =
x + 3 = 12 y
2( x + 3) = y
x
+ 4, x > 0
2
74. f ( x) = x โ 2 is increasing on ( 2, โ).
f โ1 ( x) = 2 x + 6
(c) The graph of f โ1 is the reflection of the graph of f
in the line y = x.
(d) The domains and ranges of f and f โ1 are the set of
all real numbers.
Let f ( x) = x โ 2, x > 2, y > 0.
y = x โ 2
x = y โ 2, x > 0, y > 2
x + 2 = y, x > 0, y > 2
f โ1 ( x) = x + 2, x > 0
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Problem Solving ffor Chapter 2
75. False. The graph is reflected in the x-axis, shifted 9 units
to the left, then shifted 13 units down ward.
243
76. True. If f ( x) = x3 and g ( x) = 3 x , then the domain
of g is all real numbers, which is equal to the range of f
and vice versa.
Problem Solving for Chapter 2
1. (a) W1 = 0.07 S + 2000
(b) W2 = 0.05S + 2300
(c)
Point of intersection: (15,000, 3050)
Both jobs pay the same, $3050, if you sell $15,000 per month.
(d) No. If you think you can sell $20,000 per month, keep your current job with the higher commission rate.
For sales over $15,000 it pays more than the other job.
2. Mapping numbers onto letters is not a function. Each number between 2 and 9 is mapped to more than one letter.
{(2, A), (2, B), (2, C ), (3, D), (3, E ), (3, F ), (4, G), (4, H ), (4, I ), (5, J ), (5, K ), (5, L),
(6, M ), (6, N ), (6, O), (7, P), (7, Q), (7, R), (7, S ), (8, T ), (8, U ), (8, V ), (9, W ), (9, X ), (9, Y ), (9, Z )}
Mapping letters onto numbers is a function. Each letter is only mapped to one number.
{( A, 2), ( B, 2), (C , 2), ( D, 3), ( E , 3), ( F , 3), (G, 4), ( H , 4), ( I , 4), ( J , 5), ( K , 5), ( L, 5),
( M , 6), ( N , 6), (O, 6), ( P, 7), (Q, 7), ( R, 7), ( S , 7), (T , 8), (U , 8), (V , 8), (W , 9), ( X , 9), (Y , 9), ( Z , 9)}
3. (a) Let f ( x) and g ( x) be two even functions.
(b) Let f ( x) and g ( x) be two odd functions.
Then define h( x) = f ( x) ยฑ g ( x).
Then define h( x) = f ( x) ยฑ g ( x).
h( โ x ) = f ( โ x ) ยฑ g ( โ x )
h( โ x ) = f ( โ x ) ยฑ g ( โ x )
= f ( x) ยฑ g ( x) because f and g are even
= โ f ( x) ยฑ g ( x) because f and g are odd
= h( x )
= โ h( x )
So, h( x) is also odd. ( If f ( x) โ g ( x))
So, h( x) is also even.
(c) Let f ( x) be odd and g ( x) be even. Then define h( x) = f ( x) ยฑ g ( x).
h( โ x ) = f ( โ x ) ยฑ g ( โ x )
= โ f ( x) ยฑ g ( x) because f is odd and g is even
โ h( x )
โ โ h( x )
So, h( x) is neither odd nor even.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
244
Chapter 2
NOT FOR SALE
Functions
ctions and Their Graphs
4. f ( x) = x
g ( x) = โ x
( f D f )( x) = x and ( g D g )( x) = x
These are the only two linear functions that are their own inverse functions since m has to equal 1 m for this to be true.
General formula: y = โ x + c
5.
f ( x ) = a2 n x 2 n + a2 n โ 2 x 2 n โ 2 + ” + a2 x 2 + a0
f ( โ x ) = a2 n ( โ x )
2n
+ a2 n โ 2 ( โ x )
2n โ 2
+ ” + a2 ( โ x) + a0 = a2 n x 2 n + a2 n โ 2 x 2 n โ 2 + ” + a 2 x 2 + a0 = f ( x)
2
So, f ( x) is even.
6. It appears, from the drawing, that the triangles are equal;
thus ( x, y ) = (6, 8).
The line between ( 2.5, 2) and (6, 8)
7. (a) April 11: 10 hours
April 12: 24 hours
April 13: 24 hours
is y = 12
x โ 16
.
7
7
x + 128
.
The line between (9.5, 2) and (6, 8) is y = โ 12
7
7
2
April 14: 23 hours
3
The path of the ball is:
Total:
ยญยฐ12 x โ 16 ,
2.5 โค x โค 6
7
f ( x) = ยฎ 7
128
12
ยฐฬโ 7 x + 7 , 6 < x โค 9.5
(b) Speed =
2
81 hours
3
distance
2100
180
5
=
=
= 25 mph
2
time
7
7
81
3
180
t + 3400
7
1190
Domain: 0 โค t โค
9
Range: 0 โค D โค 3400
(c) D = โ
(d)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Problem Solving ffor Chapter 2
8. (a)
f ( x2 ) โ f ( x1 )
(b)
f ( x2 ) โ f ( x1 )
(c)
f ( x2 ) โ f ( x1 )
(d)
f ( x2 ) โ f ( x1 )
(e)
f ( x2 ) โ f ( x1 )
x2 โ x1
x2 โ x1
x2 โ x1
x2 โ x1
x2 โ x1
=
=
=
=
=
f ( 2) โ f (1)
2 โ1
=
f (1.5) โ f (1)
1.5 โ 1
245
1โ0
=1
1
=
0.75 โ 0
= 1.5
0.5
=
0.4375 โ 0
= 1.75
0.25
=
0.234375 โ 0
= 1.875
0.125
=
0.12109375 โ 0
= 1.9375
0.625
f (1.25) โ f (1)
1.25 โ 1
f (1.125) โ f (1)
1.125 โ 1
f (1.0625) โ f (1)
1.0625 โ 1
(f ) Yes, the average rate of change appears to be approaching 2.
(g) a. (1, 0), ( 2, 1), m = 1, y = x โ 1
b. (1, 0), (1.5, 0.75), m =
0.75
= 1.5, y = 1.5 x โ 1.5
0.5
c. (1, 0), (1.25, 0.4375), m =
0.4375
= 1.75, y = 1.75 x โ 1.75
0.25
d. (1, 0), (1.125, 0.234375), m =
0.234375
= 1.875, y = 1.875 x โ 1.875
0.125
e. (1, 0), (1.0625, 0.12109375), m =
0.12109375
= 1.9375, y = 1.9375 x โ 1.9375
0.0625
(h) (1, f (1)) = (1, 0), m โ 2, y = 2( x โ 1), y = 2 x โ 2
9. (a)โ(d) Use f ( x) = 4 x and g ( x) = x + 6.
(a)
( f D g )( x) = f ( x + 6) = 4( x + 6) = 4 x + 24
(b) ( f D g )
โ1
( x) =
the length of the trip over land is
1 + (3 โ x ) .
2
The total time is
x โ 24
1
= x โ6
4
4
T ( x) =
1
x
4
g โ1 ( x ) = x โ 6
(c) f โ1 ( x ) =
4 + x2
+
2
1
=
2
1
ยง1 ยท
(d) ( g โ1 D f โ1 )( x) = g โ1 ยจ x ยธ = x โ 6
4
4
ยฉ ยน
22 + x 2 , and
10. (a) The length of the trip in the water is
1 + (3 โ x )
1
4+ x +
4
2
2
4
2
x โ 6 x + 10.
(b) Domain of T ( x): 0 โค x โค 3
(c)
(e) f ( x) = x + 1 and g ( x) = 2 x
3
( f D g )( x) = f (2 x) = (2 x)3 + 1 = 8 x3 + 1
โ1
( f D g ) ( x) = 3
x โ1
1 3
x โ1
=
8
2
f โ1 ( x) = 3 x โ 1
g โ1 ( x) =
1
x
2
( g โ1 D f โ1 )( x) = g โ1( 3 x โ 1) = 12 3 x โ 1
(d) T ( x) is a minimum when x = 1.
(e) Answers will vary. Sample answer: To reach point Q
in the shortest amount of time, you should row to a
point one mile down the coast, and then walk the
rest of the way.
(f ) Answers will vary.
(g) Conjecture: ( f D g )
โ1
( x) = ( g โ1 D f โ1 )( x)
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
246
Chapter 2
Functions
ctions and Their Graphs
ยญ1, x โฅ 0
11. H ( x) = ยฎ
ยฏ0, x < 0
(a) H ( x) โ 2
(b)
H ( x โ 2)
(c)
โ H ( x)
(d) H ( โ x)
(e)
1
H
2
( x)
(f )
โ H ( x โ 2) + 2
y
3
2
โ3
โ2
โ1
x
1
2
3
โ1
โ2
โ3
1
1โ x
(a) Domain: all real numbers x except x = 1
1
1
ยง x โ 1ยท
(c) f f ( f ( x)) = f ยจ
=
= x
ยธ =
1
ยฉ x ยน 1 โ ยง x โ 1ยท
ยจ
ยธ
x
ยฉ x ยน
Range: all real numbers y except y = 0
The graph is not a line. It has holes at (0, 0) and
12. f ( x) = y =
(
ยง 1 ยท
(b) f ( f ( x)) = f ยจ
ยธ
ยฉ1 โ x ยน
1
1
=
=
1โ x โ1
ยง 1 ยท
1โยจ
ยธ
1โ x
ยฉ1 โ x ยน
x โ1
1โ x
=
=
โx
x
)
(1, 1).
Domain: all real numbers x except x = 0 and
x =1
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Problem Solving ffor Chapter 2
247
(
)
(( f D g ) D h)( x) = ( f D g )(h( x)) = f ( g (h( x))) = ( f D g D h)( x)
13. ( f D ( g D h))( x) = f (( g D h)( x)) = f g ( h( x)) = ( f D g D h)( x)
14. (a) f ( x + 1)
(b)
f ( x) + 1
(c)
2 f ( x)
(d) f ( โ x)
(e)
โ f ( x)
(f )
f ( x)
(g) f ( x )
15.
(a)
f ( f โ1 ( x))
x
f ( x)
f โ1 ( x)
โ4
โ
2
โ4
โ3
4
1
โ2
โ2
1
0
0
โ1
0
โ
4
f ( f โ1 ( 4)) = f ( โ3) = 4
0
โ2
โ1
1
โ3
โ2
x
( f โ
f โ1 )( x)
2
โ4
โ
โ3
3
โ
โ
4
โ
โ3
(c)
x
(b)
f ( f โ1 ( โ4)) = f ( 2) = โ4
f ( f โ1 ( โ2)) = f (0) = โ2
f ( f โ1 (0)) = f ( โ1) = 0
(d)
x
( f + f โ1 )( x)
โ3
f ( โ3) + f โ1 ( โ3) = 4 + 1 = 5
โ2
f ( โ2) + f โ1 ( โ2) = 1 + 0 = 1
0
f (0) + f โ1 (0) = โ2 + ( โ1) = โ3
1
f (1) + f โ1 (1) = โ3 + ( โ2) = โ5
x
f โ1 ( x)
f ( โ3) f โ1 ( โ3) = ( 4)(1) = 4
โ4
f โ1 ( โ4) = 2 = 2
โ2
f ( โ2) f โ1 ( โ2) = (1)(0) = 0
โ3
f โ1 ( โ3) = 1 = 1
0
f (0) f โ1 (0) = ( โ2)( โ1) = 2
0
f โ1 (0) = โ1 = 1
1
f (1) f โ1 (1) = ( โ3)( โ2) = 6
4
f โ1 ( 4) = โ3 = 3
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
248
Chapter 2
Functions
ctions and Their Graphs
Practice Test for Chapter 2
1. Find the equation of the line through ( 2, 4) and (3, โ1).
2. Find the equation of the line with slope m = 4 3 and y-intercept b = โ3.
3. Find the equation of the line through ( 4, 1) perpendicular to the line 2 x + 3 y = 0.
4. If it costs a company $32 to produce 5 units of a product and $44 to produce 9 units, how much does it cost to produce
20 units? (Assume that the cost function is linear.)
5. Given f ( x) = x 2 โ 2 x + 1, find f ( x โ 3).
6. Given f ( x) = 4 x โ 11, find
f ( x) โ f (3)
x โ3
7. Find the domain and range of f ( x) =
36 โ x 2 .
8. Which equations determine y as a function of x?
(a) 6 x โ 5 y + 4 = 0
(b) x 2 + y 2 = 9
(c) y 3 = x 2 + 6
9. Sketch the graph of f ( x) = x 2 โ 5.
10. Sketch the graph of f ( x) = x + 3 .
ยญ2 x + 1, if x โฅ 0,
11. Sketch the graph of f ( x) = ยฎ 2
ยฏx โ x, if x < 0.
12. Use the graph of f ( x) = x to graph the following:
(a) f ( x + 2)
(b) โ f ( x) + 2
13. Given f ( x) = 3x + 7 and g ( x) = 2 x 2 โ 5, find the following:
(a)
( g โ f )( x)
(b) ( fg )( x)
14. Given f ( x) = x 2 โ 2 x + 16 and g ( x) = 2 x + 3, find f ( g ( x)).
15. Given f ( x) = x3 + 7, find f โ1 ( x).
16. Which of the following functions have inverses?
(a) f ( x) = x โ 6
(b) f ( x) = ax + b, a โ 0
(c) f ( x) = x3 โ 19
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
NOT FOR SALE
Practice Test ffor Chapter 2
17. Given f ( x) =
249
3โ x
, 0 < x โค 3, find f โ1 ( x).
x
Exercises 18โ20, true or false?
18. y = 3 x + 7 and y = 13 x โ 4 are perpendicular.
19. ( f D g )
โ1
= g โ1 D f โ1
20. If a function has an inverse, then it must pass both the Vertical Line Test and the Horizontal Line Test.
INSTRUCTOR USE ONLY
ยฉ 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฉ Cengage Learning. All Rights Reserved.
Document Preview (86 of 1213 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Algebra and Trigonometry, 9th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Amelia Rodriguez
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)