Aircraft Structures for Engineering Students, 5th Edition Solution Manual

Preview Extract
Aircraft Structures for Engineering Students Fifth Edition Solutions Manual T. H. G. Megson This page intentionally left blank Solutions Manual Solutions to Chapter 1 Problems S.1.1 The principal stresses are given directly by Eqs (1.11) and (1.12) in which ฯƒ x = 80N/mm2, ฯƒ y = 0 (or vice versa) and ฯ„ xy = 45N/mm2. Thus, from Eq. (1.11) ฯƒI = 80 1 + 802 + 4 ร— 452 2 2 i.e. ฯƒ I = 100.2 N/mm2 From Eq. (1.12) ฯƒ II = 80 1 โˆ’ 802 + 4 ร— 452 2 2 i.e. ฯƒ II = โ€“ 20.2 N/mm2 The directions of the principal stresses are defined by the angle ฮธ in Fig. 1.8(b) in which ฮธ is given by Eq. (1.10). Hence tan = 2ฮธ 2 ร— 45 = 1.125 80 โˆ’ 0 which gives ฮธ = 24ยฐ11โ€ฒ and ฮธ = 114ยฐ11โ€ฒ It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of ฮธ corresponds to ฯƒ I while the second value corresponds to ฯƒ II . Finally, the maximum shear stress is obtained from either of Eqs (1.14) or (1.15). Hence from Eq. (1.15) 100.2 โˆ’ (โˆ’20.2) ฯ„ max = 60.2N / mm 2 = 2 and will act on planes at 45ยฐ to the principal planes. 4 Solutions Manual S.1.2 The principal stresses are given directly by Eqs (1.11) and (1.12) in which ฯƒ x = 50N/mm2, ฯƒ y = โ€“35 N/mm2 and ฯ„ xy = 40 N/mm2. Thus, from Eq. (1.11) ฯƒI = 50 โˆ’ 35 1 + (50 + 35)2 + 4 ร— 402 2 2 i.e. ฯƒ I = 65.9 N/mm2 and from Eq. (1.12) = ฯƒ II 50 โˆ’ 35 1 โˆ’ (50 + 35) 2 + 4 ร— 402 2 2 i.e. ฯƒ II = โ€“50.9 N/mm2 From Fig. 1.8(b) and Eq. (1.10) = tan 2ฮธ 2 ร— 40 = 0.941 50 + 35 which gives ฮธ = 21ยฐ38โ€ฒ(ฯƒ I ) and ฮธ = 111ยฐ38โ€ฒ(ฯƒ II ) The planes on which there is no direct stress may be found by considering the triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents the plane on which there is no direct stress. For equilibrium of the element in a direction perpendicular to AC 0 = 50ABcos ฮฑ โˆ’ 35BCsin ฮฑ + 40ABsinฮฑ +40BC cosฮฑ Fig. S.1.2 (i) Solutions to Chapter 1 Problems Dividing through Eq. (i) by AB 0 = 50 cos ฮฑ โˆ’ 35 tan ฮฑ sin ฮฑ + 40sin ฮฑ + 40 tan ฮฑ cos ฮฑ which, dividing through by cos ฮฑ, simplifies to 0 = 50โ€“35 tan2 ฮฑ + 80 tan ฮฑ from which tan ฮฑ = 2.797 or โ€“0.511 Hence ฮฑ = 70ยฐ21โ€ฒ or โ€“27ยฐ5โ€ฒ S.1.3 The construction of Mohrโ€™s circle for each stress combination follows the procedure described in Section 1.8 and is shown in Figs S.1.3(a)โ€“(d). Fig. S.1.3(a) Fig. S.1.3(b) 5 6 Solutions Manual Fig. S.1.3(c) Fig. S.1.3(d) S.1.4 The principal stresses at the point are determined, as indicated in the question, by transforming each state of stress into a ฯƒ x , ฯƒ y , ฯ„ xy stress system. Clearly, in the first case ฯƒ x = 0, ฯƒ y = 10 N/mm2, ฯ„ xy = 0 (Fig. S.1.4(a)). The two remaining cases are transformed by considering the equilibrium of the triangular element ABC in Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6 and the principle of superposition (see Section 5.9), the second stress system of Solutions to Chapter 1 Problems Figs S.1.4(b) and (c) becomes the ฯƒ x , ฯƒ y , ฯ„ xy system shown in Fig. S.1.4(d) while 7 8 Solutions Manual Fig. S.1.4(a) Fig. S.1.4(b) Fig. S.1.4(c) Fig. S.1.4(d) the third stress system of Figs S.1.4(e) and (f) transforms into the ฯƒ x , ฯƒ y , ฯ„ xy system of Fig. S.1.4(g). Solutions to Chapter 1 Problems Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that ฯƒ I = ฯƒ II =15N/mm2 and that the x and y planes are principal planes. 9 10 Solutions Manual Fig. S.1.4(e) Fig. S.1.4(f) Fig. S.1.4(g) Fig. S.1.4(h) S.1.5 The geometry of Mohrโ€™s circle of stress is shown in Fig. S.1.5 in which the circle is constructed using the method described in Section 1.8. From Fig. S.1.5 ฯƒ x = OP 1 = OBโ€“ BC +CP 1 (i) Solutions to Chapter 1 Problems 11 Fig. S.1.5 In Eq. (i) OB = ฯƒ I , BC is the radius of the circle which is equal to ฯ„ max and CP1 = CQ12 โˆ’ Q1P12 = 2 2 ฯ„ max โˆ’ ฯ„ xy . Hence 2 2 ฯƒx = ฯƒ 1 โˆ’ ฯ„ max + ฯ„ max โˆ’ ฯ„ xy Similarly ฯƒ y = OP2 = OB โˆ’ BC โˆ’ CP2 in which CP2 = CP1 Thus 2 2 ฯƒy = ฯƒ I โˆ’ ฯ„ max โˆ’ ฯ„ max โˆ’ ฯ„ xy S.1.6 From bending theory the direct stress due to bending on the upper surface of the shaft at a point in the vertical plane of symmetry is given by ฯƒx = My 25 ร— 106 ร— 75 = = 75 N / mm 2 I ฯ€ ร— 1504 / 64 From the theory of the torsion of circular section shafts the shear stress at the same point is ฯ„= xy Tr 50 ร— 106 ร— 75 = = 75N / mm 2 J ฯ€ ร— 1504 / 32 12 Solutions Manual Substituting these values in Eqs (1.11) and (1.12) in turn and noting that ฯƒ y = 0 75 1 ฯƒI = + 752 + 4 ร— 752 2 2 i.e. ฯƒ I = 121.4N / mm 2 75 1 โˆ’ 752 + 4 ร— 752 2 2 ฯƒ II = i.e. ฯƒ II = โˆ’46.4N / mm 2 The corresponding directions as defined by ฮธ in Fig. 1.8(b) are given by Eq. (1.10) i.e. tan = 2ฮธ 2 ร— 75 = 2 75 โˆ’ 0 Hence ฮธ= 31ยฐ43โ€ฒ(ฯƒ I ) and ฮธ 121ยฐ43โ€ฒ(ฯƒ II ) = S.1.7 The direct strains are expressed in terms of the stresses using Eqs (1.42), i.e. 1 ฮตx = [ฯƒ x โˆ’ v(ฯƒ y + ฯƒ z )] E (i) ฮตy = 1 [ฯƒ y โˆ’ v(ฯƒ x + ฯƒ z )] E (ii) ฮตz = 1 [ฯƒ z โˆ’ v(ฯƒ x + ฯƒ y )] E (iii) Then 1 e =ฮต x + ฮต y + ฮต z = [ฯƒ x + ฯƒ y + ฯƒ z โˆ’ 2v(ฯƒ x + ฯƒ y + ฯƒ z )] E i.e. = e (1 โˆ’ 2v) (ฯƒ x + ฯƒ y + ฯƒ z ) E whence ฯƒ y += ฯƒz Ee โˆ’ฯƒx (1 โˆ’ 2v) Solutions to Chapter 1 Problems 13 Substituting in Eq. (i) 1๏ฃฎ E๏ฃฐ ๏ฃซ Ee ๏ฃถ๏ฃน โˆ’ ฯƒ x ๏ฃท๏ฃบ ๏ฃญ 1 โˆ’ 2v ๏ฃธ๏ฃป ฮต x = ๏ฃฏฯƒ x โˆ’ v ๏ฃฌ so that Eฮต x= ฯƒ x (1 + v) โˆ’ vEe 1 โˆ’ 2v Thus = ฯƒx vEe E + ฮตx (1 โˆ’ 2v)(1 + v) (1 + v) or, since G = E/2(1 + ฮฝ) (see Section 1.15) ฯƒ= ฮป e + 2Gฮต x x Similarly ฯƒ= ฮป e + 2Gฮต y y and ฯƒ= ฮป e + 2Gฮต z z S.1.8 The implication in this problem is that the condition of plane strain also describes the condition of plane stress. Hence, from Eqs (1.52) ฮณ= xy ฯ„ xy = ฮตx 1 (ฯƒ x โˆ’ vฯƒ y ) E (i) = ฮตy 1 (ฯƒ y โˆ’ vฯƒ x ) E (ii) = G 2(1 + v) ฯ„ xy E (seeSection 1.15) (iii) (see Section 1.11) (iv) The compatibility condition for plane strain is โˆ‚ 2ฮณ xy โˆ‚ 2ฮต y โˆ‚ 2ฮต x = + โˆ‚x โˆ‚y โˆ‚x 2 โˆ‚y 2 Substituting in Eq. (iv) for ฮต x , ฮต y and ฮณ xy from Eqs (i)โ€“(iii), respectively, gives 2 1 + v) โˆ‚ 2ฯ„ xy โˆ‚2 โˆ‚2 (= ( v ) (ฯƒ x โˆ’ vฯƒ y ) ฯƒ โˆ’ ฯƒ + y x โˆ‚x โˆ‚y โˆ‚x 2 โˆ‚y 2 (v) 14 Solutions Manual Also, from Eqs (1.6) and assuming that the body forces X and Y are zero โˆ‚ฯƒ x โˆ‚ฯ„ zy 0 + = โˆ‚x โˆ‚y โˆ‚ฯƒ y โˆ‚y + โˆ‚ฯ„ xy โˆ‚x (vi) 0 = (vii) Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives โˆ‚ 2ฯƒ x โˆ‚x 2 + โˆ‚ 2ฯ„ xy โˆ‚y โˆ‚x + โˆ‚ 2ฯƒ y โˆ‚y 2 + โˆ‚ 2ฯ„ xy โˆ‚x โˆ‚y 0 = or 2 ๏ฃซ โˆ‚ 2ฯƒ โˆ‚ 2ฯƒ y ๏ฃถ ๏ฃท = โˆ’ ๏ฃฌ 2x + 2 ๏ฃท ๏ฃฌ โˆ‚x โˆ‚x โˆ‚y โˆ‚ y ๏ฃญ ๏ฃธ โˆ‚ 2ฯ„ xy Substituting in Eq. (v) ๏ฃซ โˆ‚ 2ฯƒ โˆ‚ 2ฯƒ y ๏ฃถ โˆ‚ 2 โˆ‚2 ๏ฃท (ฯƒ y โˆ’ vฯƒ x ) + 2 (ฯƒ x โˆ’ vฯƒ y ) โˆ’(1 + v) ๏ฃฌ 2x + = 2 2 ๏ฃฌ โˆ‚x โˆ‚y ๏ฃท๏ฃธ โˆ‚x โˆ‚y ๏ฃญ so that ๏ฃซ โˆ‚ 2ฯƒ ๏ฃซ โˆ‚ 2ฯƒ โˆ‚ 2ฯƒ y ๏ฃถ โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ x โˆ‚ 2ฯƒ y ๏ฃถ x ๏ฃท ๏ฃฌ ๏ฃท โˆ’(1 + v) ๏ฃฌ 2x + = + โˆ’ v + 2 ๏ฃท 2 2 2 ๏ฃท ๏ฃฌ โˆ‚x ๏ฃฌ โˆ‚x 2 โˆ‚ y โˆ‚ x โˆ‚ y โˆ‚ y ๏ฃญ ๏ฃธ ๏ฃญ ๏ฃธ which simplifies to โˆ‚ 2ฯƒ y โˆ‚x 2 + โˆ‚ 2ฯƒ x โˆ‚y 2 + โˆ‚ 2ฯƒ x โˆ‚x 2 + โˆ‚ 2ฯƒ y โˆ‚y 2 0 = or ๏ฃซ โˆ‚2 โˆ‚2 ๏ฃถ 0 + ๏ฃฌ๏ฃฌ 2 ๏ฃท (ฯƒ x + ฯƒ y ) = โˆ‚y 2 ๏ฃท๏ฃธ ๏ฃญ โˆ‚x S.1.9 Suppose that the load in the steel bar is P st and that in the aluminium bar is P al. Then, from equilibrium (i) Pst + Pal = P From Eq. (1.40) Pst Pal = ฮต st = ฮต al Ast Est Aal Eal Solutions to Chapter 1 Problems 15 Since the bars contract by the same amount Pst P = al Ast Est Aal Eal (ii) Solving Eqs (i) and (ii) = Pst Ast Est Aal Eal = P Pal P Ast Est + Aal Eal Ast Est + Aal Eal from which the stresses are = ฯƒ st Est Eal = P ฯƒ al P Ast Est + Aal Eal Ast Est + Aal Eal (iii) The areas of cross-section are = Ast ฯ€ ร— 752 2 = 4417.9 mm = Aal 4 ฯ€ (1002 โˆ’ 752 ) = 3436.1mm 2 4 Substituting in Eq. (iii) we have ฯƒ st 106 ร— 200 000 = 172.6N/mm 2 (compression) (4417.9 ร— 200 000 + 3436.1 ร— 80 000) ฯƒ al 106 ร— 80 000 = 69.1N/mm 2 (compression) (4417.9 ร— 200 000 + 3436.1 ร— 80 000) Due to the decrease in temperature in which no change in length is allowed the strain in the steel is ฮฑ st T and that in the aluminium is ฮฑ alT. Therefore due to the decrease in temperature ฯƒ= Estฮฑ st= T 200 000 ร— 0.000012 ร— 150 = 360.0 N/mm 2 (tension) st ฯƒ al= Ealฮฑ alT= 80 000 ร— 0.000005 ร— 150= 60.0 N/mm 2 (tension) The final stresses in the steel and aluminium are then ฯƒ st (total) = 360.0 โˆ’ 172.6 = 187.4N/mm 2 (tension) ฯƒ al (total) = 60.0 โˆ’ 69.1 = โˆ’9.1N/mm 2 (compression) S.1.10 The principal strains are given directly by Eqs (1.69) and (1.70). Thus 1 2 ฮต I =(โˆ’0.002 + 0.002) + 1 2 (โˆ’0.002 + 0.002) 2 + (+0.002 + 0.002) 2 16 Solutions Manual i.e. ฮต I = +0.00283 Similarly ฮต II = โˆ’0.00283 The principal directions are given by Eq. (1.71), i.e. tan 2ฮธ = 2(โˆ’0.002) + 0.002 โˆ’ 0.002 = โˆ’1 0.002 + 0.002 Hence 2ฮธ = โˆ’45ยฐ or + 135ยฐ and ฮธ= โˆ’22.5ยฐ or + 67.5ยฐ S.1.11 The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus ๏ฃฎ1 ๏ฃฐ2 ฮต I = ๏ฃฏ (โˆ’222 + 45) + ๏ฃน (โˆ’222 + 213) 2 + (โˆ’213 โˆ’ 45) 2 ๏ฃบ ร— 10โˆ’6 2 ๏ฃป 1 i.e. = ฮต I 94.0 ร— 10โˆ’6 Similarly ฮต II = โˆ’217.0 ร— 10โˆ’6 The principal stresses follow from Eqs (1.67) and (1.68). Hence = ฯƒI 31000 (94.0 โˆ’ 0.2 ร— 271.0) ร— 10โˆ’6 1 โˆ’ (0.2) 2 i.e. ฯƒ I = 1.29 N/mm 2 Similarly ฯƒ II = โˆ’814 N/mm 2 Since P lies on the neutral axis of the beam the direct stress due to bending is zero. Therefore, at P, ฯƒ x =7 N/mm2 and ฯƒy = 0. Now subtracting Eq. (1.12) from (1.11) ฯƒ I โˆ’ ฯƒ II = 2 ฯƒ x2 + 4ฯ„ xy Solutions to Chapter 2 Problems 17 i.e. 2 1.29 + 8.14 = 7 2 + 4ฯ„ xy from which ฯ„ xy = 3.17 N/mm2. The shear force at P is equal to Q so that the shear stress at P is given by 3Q = ฯ„ xy 3.17 = 2 ร— 150 ร— 300 from which = Q 95 = 100N 95.1kN. Solutions to Chapter 2 Problems S.2.1 The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3). Fig. S.2.1 From Eqs (1.42) in which ฯƒ z = 0 3p 2p 3.5 p = โˆ’ E E E 3p 3p 2.75 p ฮตy = โˆ’ โˆ’v = โˆ’ E E E ฮตx = โˆ’ โˆ’v Hence, from Eqs (1.27) โˆ‚u 3.5 p 3.5 p = โˆ’ so that u = โˆ’ x + f1 ( y ) โˆ‚x E E (i) (ii) (iii) 18 Solutions Manual where f 1 (y) is a function of y. Also โˆ‚ฯ… 2.75 p 2.75 p =so that ฯ… = โˆ’ y + f 2 ( x) โˆ‚y E E (iv) in which f 2 (x) is a function of x. From the last of Eqs (1.52) and Eq. (1.28) ฮณ xy = 4 p โˆ‚ฯ… โˆ‚u โˆ‚f 2 ( x) โˆ‚f1 ( y ) = + = + G โˆ‚x โˆ‚y โˆ‚x โˆ‚y (from Eqs (iv) and (iii)) Suppose โˆ‚f1 ( y ) =A โˆ‚y then f1 ( y= ) Ay + B (v) in which A and B are constants. Similarly, suppose โˆ‚f 2 ( x) =C โˆ‚x then f 2 ( x= ) Cx + D (vi) in which C and D are constants. Substituting for f 1 (y) and f 2 (x) in Eqs (iii) and (iv) gives 3.5 p u= โˆ’ x + Ay + B E (vii) 2.75 p y + Cx + D E (viii) and = ฯ… Since the origin of the axes is fixed in space it follows that when x = y = 0, u=v = 0. Hence, from Eqs (vii) and (viii), B = D = 0. Further, the direction of Ox is fixed in space so that, wheny = 0, โˆ‚v/โˆ‚x = 0. Therefore, from Eq. (viii), C = 0. Thus, from Eqs (1.28) and (vii), when x = 0. โˆ‚u 4 p = = A โˆ‚y G Eqs (vii) and (viii) now become 3.5 p 4p u= โˆ’ x+ y E G (ix) Solutions to Chapter 2 Problems 19 2.75 p y E From Eq. (1.50), G=E/2(1 +ฮฝ) =E/2.5 and Eq. (ix) becomes u= ฯ…= (x) p (โˆ’3.5 + 10 y ) E (xi) At the point (2, 3) u= 23 p (from Eq. (xi)) E ฯ…= 8.25 p (from Eq. (x)) E and The point P therefore moves at an angle ฮฑ to the x axis given by S.2.2 An Airy stress function, ฯ†, is defined by the equations (Eqs (2.8)): ฯƒx = โˆ‚ 2ฯ† โˆ‚ 2ฯ† โˆ‚ 2ฯ† ฯƒ = ฯ„ = โˆ’ y xy โˆ‚x โˆ‚y โˆ‚y 2 โˆ‚x 2 and has a final form which is determined by the boundary conditions relating to a particular problem. Since ฯ† =Ay 3 + By 3 x + Cyx (i) โˆ‚ 4ฯ† โˆ‚ 4ฯ† โˆ‚ 4ฯ† 0 0 0 = = = โˆ‚x 4 โˆ‚y 4 โˆ‚x 2 โˆ‚y 2 and the biharmonic equation (2.9) is satisfied. Further = ฯƒx โˆ‚ 2ฯ† = 6 Ay + 6 Byx โˆ‚y 2 (ii) โˆ‚ 2ฯ† = 0 โˆ‚x 2 (iii) โˆ‚ 2ฯ† = โˆ’3By 2 โˆ’ C โˆ‚x โˆ‚y (iv) = ฯƒy ฯ„ xy = โˆ’ The distribution of shear stress in a rectangular section beam is parabolic and is zero at the upper and lower surfaces. Hence, when y = ยฑd/2, ฯ„ xy = 0. Thus, from Eq. (iv) โˆ’4C (v) B= 3d 2 20 Solutions Manual The resultant shear force at any section of the beam is โ€“P. Therefore โˆซ d /2 โˆ’ d /2 ฯ„ xy t dy = โˆ’ P Substituting for ฯ„ xy from Eq. (iv) โˆซ d /2 โˆ’ d /2 โˆ’P (โˆ’3By 2 โˆ’ C )t dy = which gives ๏ฃซ Bd 3 Cd ๏ฃถ 2t ๏ฃฌ๏ฃฌ + P ๏ฃท= 2 ๏ฃท๏ฃธ ๏ฃญ 8 Substituting for B from Eq. (v) gives C= 3P 2td (vi) It now follows from Eqs (v) and (vi) that โˆ’2P (vii) td 3 At the free end of the beam where x =l the bending moment is zero and thus ฯƒ x = 0 for any value of y. Therefore, from Eq. (ii) 6A + 6Bl = 0 whence B= A= 2Pl td 3 (viii) Then, from Eq. (ii) = ฯƒx 12 Pl 12 P y โˆ’ 3 xy 3 td td or 12 P(l โˆ’ x) (ix) y td 3 Equation (ix) is the direct stress distribution at any section of the beam given by simple bending theory, i.e. ฯƒx = ฯƒx = My I where M = P (l โ€“x) and I = td3/12. The shear stress distribution given by Eq. (iv) is = ฯ„ xy 6 P 2 3P y โˆ’ 2td td 3 Solutions to Chapter 2 Problems 21 or ฯ„ xy = 6P ๏ฃซ 2 d 2 ๏ฃถ ๏ฃฌy โˆ’ ๏ฃท 4 ๏ฃท๏ฃธ td 3 ๏ฃฌ๏ฃญ (x) Equation (x) is identical to that derived from simple bending theory and may be found in standard texts on stress analysis, strength of materials, etc. S.2.3 The stress function is = ฯ† w (15 h 2 x 2 y โˆ’ 5 x 2 y 3 โˆ’ 2h 2 y 3 + y 5 ) 3 20h Then โˆ‚ 2ฯ† w = = (30h 2 y โˆ’ 10 y3 ) ฯƒ y 2 โˆ‚x 20h3 โˆ‚ 2ฯ† w = (โˆ’30 x 2 y โˆ’ 12h 2 y + 20 y 3 ) = ฯƒ x 2 3 โˆ‚y 20h โˆ‚ 2ฯ† w = โˆ’ฯ„ xy (30h 2 x โˆ’ 30 xy 2 ) = โˆ‚x โˆ‚y 20h3 โˆ‚ 4ฯ† =0 โˆ‚x 4 โˆ‚ 4ฯ† w = (120 y ) 4 โˆ‚y 20h3 โˆ‚ 4ฯ† w = (โˆ’60 y ) 2 2 โˆ‚x โˆ‚y 20h3 Substituting in Eq. (2.9) โˆ‡ 4ฯ† = 0 so that the stress function satisfies the biharmonic equation. The boundary conditions are as follows: โ— At y= h, ฯƒ y = w and ฯ„ xy = 0 which are satisfied. โ— At y = โ€“h, ฯƒ y = โ€“w and ฯ„ xy = 0 which are satisfied. โ— At x =0, ฯƒ x = w/20h3 (โ€“12h2y + 20y3) โ‰  0. Also h w h ฯƒ x d= (โˆ’12h 2 y + 20 y 3 )dy y โˆ’h 20h3 โˆ’ h w = [โˆ’6h 2 y 2 + 5 y 4 ]hโˆ’ h 3 20h =0 i.e. no resultant force. โˆซ โˆซ 22 Solutions Manual Finally โˆซ h โˆ’h w h (โˆ’12h 2 y 2 + 20 y 4 )dy 3 โˆ’h 20h w = [โˆ’4h 2 y 3 + 4 y 5 ]hโˆ’ h 3 20h =0 โˆซ ฯƒ x y dy= i.e. no resultant moment. S.2.4 The Airy stress function is = ฯ† p [5( x3 โˆ’ l 2 x)( y + d ) 2 ( y โˆ’ 2d ) โˆ’ 3 yx( y 2 โˆ’ d 2 ) 2 ] 120d 3 Then โˆ‚ 4ฯ† โˆ‚ 4ฯ† 3 pxy โˆ‚ 4ฯ† 3 pxy = 0 = โˆ’ = 4 4 3 2 2 โˆ‚x โˆ‚y d โˆ‚x โˆ‚y 2d 3 Substituting these values in Eq. (2.9) gives 0 + 2ร— 3 pxy 3 pxy โˆ’ 3 = 0 2d 3 d Therefore, the biharmonic equation (2.9) is satisfied. The direct stress, ฯƒ x , is given by (see Eqs (2.8)) ฯƒx = โˆ‚ 2ฯ† px [5 y ( x 2 โˆ’ l 2 ) โˆ’ 10 y 3 + 6d 2 y ] = 2 3 20d โˆ‚y When x = 0, ฯƒ x = 0 for all values of y. When x = l pl (โˆ’10 y 3 + 6d 2 y ) 20d 3 ฯƒx= and the total end load = d โˆซ ฯƒ 1 dy โˆ’d = x pl 20d 3 d )dy 0 โˆซ (โˆ’10 y + 6d y= 3 2 โˆ’d Thus the stress function satisfies the boundary conditions for axial load in the x direction. Also, the direct stress, ฯƒ y , is given by (see Eqs (2.8)) px โˆ‚ 2ฯ† = 3 ( y 3 โˆ’ 3 yd 2 โˆ’ 2d 3 ) 2 4d โˆ‚x ฯƒy = Solutions to Chapter 2 Problems 23 When x = 0, ฯƒ y = 0 for all values of y. Also at any section x where y = โ€“d ฯƒ y= px (โˆ’d 3 + 3d 3 โˆ’ 2d 3 = ) 0 3 4d and when y = +d px 4d ฯƒ y =3 (d 3 โˆ’ 3d 3 โˆ’ 2d 3 ) = โˆ’ px Thus, the stress function satisfies the boundary conditions for load in the y direction. The shear stress, ฯ„ xy , is given by (see Eqs (2.8)) p โˆ‚ 2ฯ† [5(3x 2 โˆ’ l 2 )( y 2 โˆ’ d 2 ) โˆ’ 5 y 4 + 6 y 2 d 2 โˆ’ d 4 ] = โˆ’ โˆ‚x โˆ‚y 40d 3 ฯ„ xy = โˆ’ When x = 0 p [โˆ’5l 2 ( y 2 โˆ’ d 2 ) โˆ’ 5 y 4 + 6 y 2 d 2 โˆ’ d 4 ] 40d 3 ฯ„ xy = โˆ’ so that, when y = ยฑd, ฯ„ xy = 0. The resultant shear force on the plane x = 0 is given by โˆซ d โˆ’d p 40d 3 โˆ’ ฯ„ xy 1 dy = pl 2 โˆ’ [โˆ’5l 2 ( y 2 โˆ’ d 2 ) โˆ’ 5 y 4 + 6 y 2 d 2 โˆ’ d 4 ]dy = โˆ’d 6 โˆซ d From Fig. P.2.4 and taking moments about the plane x = l, = ฯ„ xy ( x 0)12 = dl 1 2 lpl l 2 3 i.e. ฯ„ xy (= = x 0) pl 2 6d and the shear force is pl2/6. Thus, although the resultant of the Airy stress function shear stress has the same magnitude as the equilibrating shear force it varies through the depth of the beam whereas the applied equilibrating shear stress is constant. A similar situation arises on the plane x = l. S.2.5 The stress function is ฯ†= w (โˆ’10c3 x 2 โˆ’ 15c 2 x 2 y + 2c 2 y 3 + 5 x 2 y 3 โˆ’ y 5 ) 40bc3 24 Solutions Manual Then โˆ‚ 2ฯ† w = = (12c 2 y + 30 x 2 y โˆ’ 20 y3 ) ฯƒ x 2 3 โˆ‚y 40bc โˆ‚ 2ฯ† w = (โˆ’20c3 โˆ’ 30c 2 y + 10 y 3= ) ฯƒy 2 3 โˆ‚x 40bc โˆ‚ 2ฯ† w = (โˆ’30c 2 x + 30 xy 2 ) = โˆ’ฯ„ xy โˆ‚x โˆ‚y 40bc3 โˆ‚ 4ฯ† =0 โˆ‚x 4 โˆ‚ 4ฯ† w = (โˆ’120 y ) 4 โˆ‚y 40bc3 โˆ‚ 4ฯ† w = (60 y ) 2 2 โˆ‚x โˆ‚y 40bc3 Substituting in Eq. (2.9) โˆ‡ 4ฯ† = 0 so that the stress function satisfies the biharmonic equation. On the boundary, y = +c w 0 ฯƒy = โˆ’ ฯ„ xy = b At y = โ€”c = ฯƒ y 0= ฯ„ xy 0 At x = 0 = ฯƒx w (12c 2 y โˆ’ 20 y 3 ) 3 40bc Then c w (12c 2 y โˆ’ 20 y 3 )dy 3 โˆ’c 40bc โˆ’ c w = [6c 2 y 2 โˆ’ 5 y 4 ]cโˆ’ c 40bc3 =0 i.e. the direct stress distribution at the end of the cantilever is self-equilibrating. The axial force at any section is c c w = ฯƒ x dy (12c 2 y + 30 x 2 y โˆ’ 20 y 3 )dy 3 โˆ’c โˆ’c 40bc w = [6c 2 y 2 + 15 x 2 y 2 โˆ’ 5 y 4 ]cโˆ’ c 40bc3 =0 i.e. no axial force at any section of the beam. โˆซ c โˆซ = ฯƒ x dy โˆซ โˆซ Solutions to Chapter 2 Problems 25 The bending moment at x =0 is โˆซ c c w (12c 2 y 2 โˆ’ 20 y 4 )dy 3 โˆ’c 40bc w 5 c = [4c 2 y 3 โˆ’ 4 y= ]โˆ’ c 0 3 40bc โˆซ = ฯƒ x y dy โˆ’c i.e. the beam is a cantilever beam under a uniformly distributed load of w/unit area with a self-equilibrating stress application at x = 0. S.2.6 From physics, the strain due to a temperature rise T in a bar of original length L 0 and final length L is given by L โˆ’ L0 L0 (1 + ฮฑ T ) = = ฮฑT L0 L0 = ฮต Thus for the isotropic sheet, Eqs (1.52) become 1 (ฯƒ x โˆ’ vฯƒ y ) + ฮฑ T E 1 ฮตy = (ฯƒ y โˆ’ vฯƒ x ) + ฮฑ T E ฮตx = Also, from the last of Eqs (1.52) and (1.50) ฮณ xy = 2(1 + v) ฯ„ xy E Substituting in Eq. (1.21) 2 2 โˆ‚ 2ฯƒ y ๏ฃถ โˆ‚ 2ฯƒ x ๏ฃถ 2(1 + v) โˆ‚ ฯ„ xy 1 ๏ฃซ โˆ‚ ฯƒ y โˆ‚ 2T 1 ๏ฃซ โˆ‚ 2ฯƒ x โˆ‚ 2T ๏ฃฌ ๏ฃท ๏ฃฌ ๏ฃท = โˆ’ + ฮฑ + โˆ’ + ฮฑ v v E โˆ‚x โˆ‚y E ๏ฃญ๏ฃฌ โˆ‚x 2 โˆ‚x 2 ๏ฃธ๏ฃท โˆ‚x 2 E ๏ฃญ๏ฃฌ โˆ‚y 2 โˆ‚y 2 ๏ฃธ๏ฃท โˆ‚y 2 or 2(1 + v) โˆ‚ 2ฯ„ xy โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ x โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ x v v = + โˆ’ โˆ’ + Eฮฑโˆ‡ 2T โˆ‚x โˆ‚y โˆ‚x 2 โˆ‚y 2 โˆ‚x 2 โˆ‚y 2 From Eqs (1.6) and assuming body forces X =Y =0 โˆ‚ 2ฯ„ xy 2 โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ x โˆ‚ ฯ„ xy = โˆ’ 2 = โˆ’ โˆ‚y โˆ‚x โˆ‚x โˆ‚y โˆ‚x โˆ‚y 2 Hence 2 โˆ‚ 2ฯ„ xy โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ = โˆ’ 2x โˆ’ โˆ‚x โˆ‚y โˆ‚x โˆ‚y 2 (i) 26 Solutions Manual and 2v โˆ‚ 2ฯ„ xy โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ x v = โˆ’v โˆ’ โˆ‚x โˆ‚y โˆ‚x 2 โˆ‚y 2 Substituting in Eq. (i) โˆ’ โˆ‚ 2ฯƒ x โˆ‚x 2 โˆ’ โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ y โˆ‚ 2ฯƒ x = + + Eฮฑโˆ‡ 2T โˆ‚y 2 โˆ‚x 2 โˆ‚y 2 Thus ๏ฃซ โˆ‚2 โˆ‚2 ๏ฃถ 2 0 + ๏ฃฌ๏ฃฌ โˆ‚x 2 โˆ‚y 2 ๏ฃท๏ฃท (ฯƒ x + ฯƒ y ) + Eฮฑโˆ‡ T = ๏ฃญ ๏ฃธ and since = ฯƒx โˆ‚ 2ฯ† โˆ‚ 2ฯ† (see Eqs (2.8)) = ฯƒ y โˆ‚y 2 โˆ‚x 2 ๏ฃซ โˆ‚2 โˆ‚ 2 ๏ฃถ ๏ฃซ โˆ‚ 2ฯ† โˆ‚ 2ฯ† ๏ฃถ 2 0 + ๏ฃฌ๏ฃฌ โˆ‚x 2 โˆ‚y 2 ๏ฃท๏ฃท ๏ฃฌ๏ฃฌ โˆ‚y 2 + โˆ‚x 2 ๏ฃท๏ฃท + Eฮฑโˆ‡ T = ๏ฃญ ๏ฃธ ๏ฃญ ๏ฃธ or โˆ‡ 2 (โˆ‡ 2ฯ† + Eฮฑ T ) = 0 S.2.7 The stress function is = ฯ† 3Qxy Qxy 3 โˆ’ 4a 4a 3 Then โˆ‚ 2ฯ† = 0= ฯƒ y โˆ‚x 2 3Qxy โˆ‚ 2ฯ† ฯƒx = โˆ’ = 2 2a 3 โˆ‚y 3Q 3Qy 2 โˆ‚ 2ฯ† = โˆ’ = โˆ’ฯ„ xy โˆ‚x โˆ‚y 4a 4a 3 Also โˆ‚ 4ฯ† โˆ‚ 4ฯ† โˆ‚ 4ฯ† 0 0 = = = 0 โˆ‚x 4 โˆ‚y 4 โˆ‚x 2 โˆ‚y 2 so that Eq. (2.9), the biharmonic equation, is satisfied. Solutions to Chapter 2 Problems 27 When x = a, ฯƒ x = โ€“3Qy/2a2, i.e. linear. Then, when = ฯƒx 0 y 0= 3Q โˆ’a ฯƒ x = y= 2a โˆ’3Q +a ฯƒ x = y= 2a Also, when x = โ€“a, ฯƒ x = 3Qy/2a2, i.e. linear and when = ฯƒx 0 y 0= โˆ’3Q โˆ’a ฯƒ x = y= 2a 3Q +a ฯƒ x = y= 2a The shear stress is given by (see above) 3Q ๏ฃซ 4a ๏ฃญ ฯ„ xy = โˆ’ ๏ฃฌ๏ฃฌ1 โˆ’ y2 ๏ฃถ ๏ฃท , i.e. parabolic a 2 ๏ฃท๏ฃธ so that, when y = ยฑa, ฯ„ xy = 0 and when y = 0, ฯ„ xy = โ€“3Q/4a. The resultant shear force at x = ยฑa is โˆซ 3Q ๏ฃซ y2 ๏ฃถ ๏ฃฌ๏ฃฌ1 โˆ’ 2 ๏ฃท๏ฃท dy 4a ๏ฃญ a ๏ฃธ a = โˆ’ โˆ’a i.e. SF = Q. The resultant bending moment at x = ยฑa is = = a โˆซ ฯƒ y dy โˆ’a โˆซ x a 3Qay 2 โˆ’a 2a 3 dy i.e. BM = โ€“Qa Solutions to Chapter 3 Problems 27 Solutions to Chapter 3 Problems S.3.1 Initially the stress function, ฯ†, must be expressed in terms of Cartesian coordinates. Thus, from the equation of a circle of radius, a, and having the origin of its axes at its centre. ฯ†= k ( x 2 + y 2 โˆ’ a 2 ) (i) โˆ‚ 2ฯ† โˆ‚ 2ฯ† dฮธ + 2 = โˆ’2G F= 2 dz โˆ‚x โˆ‚y (ii) From Eqs (3.4) and (3.11) Differentiating Eq. (i) and substituting in Eq. (ii) 4k = โˆ’2G dฮธ dz or 1 dฮธ k= โˆ’ G 2 dz (iii) From Eq. (3.8) T =2 โˆซโˆซ ฯ† dx dy i.e. dฮธ ๏ฃฎ โˆ’G T= x 2 dx dy + dz ๏ฃฐ๏ฃฏ A โˆซโˆซ โˆซโˆซ y dx dy โˆ’ a โˆซโˆซ dx dy ๏ฃป๏ฃน๏ฃบ 2 2 A (iv) A where โˆซโˆซ A x2 dx dy = I y , the second moment of area of the cross-section about the y axis; โˆซโˆซ A y2 dx dy = I x , the second moment of area of the cross-section about the x axis and โˆซโˆซ A dx dy = A, the area of the cross-section. Thus, since I y = ฯ€a4/4, I x = ฯ€a4/4 and A = ฯ€a2 Eq. (iv) becomes T =G dฮธ ฯ€ a 4 dz 2 or dฮธ 2T T = = 4 dz Gฯ€ a GI p (v) From Eqs (3.2) and (v) dฮธ Tx โˆ‚ฯ† G x= ฯ„ zy = โˆ’ = โˆ’2kx = โˆ‚x dz Ip (vi) 28 Solutions Manual and Ty โˆ‚ฯ† dฮธ = โˆ’G โˆ’ ฯ„ zx = 2ky = y= โˆ‚y dz Ip (vii) Substituting for ฯ„ zy and ฯ„ zx from Eqs (vi) and (vii) in the second of Eqs (3.15) T ( xl + ym) Ip = ฯ„ zs (viii) in which, from Eqs (3.6) l= dy ds m= โˆ’ dx ds Suppose that the bar of Fig. 3.2 is circular in cross-section and that the radius makes an angle ฮฑ with the x axis. Then. = m sin = ฮฑ and l cos ฮฑ Also, at any radius, r = y r= sin ฮฑ x r cos ฮฑ Substituting for x, l, y and m in Eq. (viii) gives ฯ„= zs Tr =( ฯ„ ) Ip Now substituting for ฯ„ zx , ฯ„ zy and dฮธ/dz from Eqs (vii), (vi) and (v) in Eqs (3.10) โˆ‚w Ty Ty 0 = โˆ’ + = GI p GI p โˆ‚x (ix) โˆ‚w Tx Tx 0 = โˆ’ + = โˆ‚y GI p GI p (x) The possible solutions of Eqs (ix) and (x) are w = 0 and w = constant. The latter solution implies a displacement of the whole bar along the z axis which, under the given loading, cannot occur. Therefore, the first solution applies, i.e. the warping is zero at all points in the cross-section. The stress function, ฯ†, defined in Eq. (i) is constant at any radius, r, in the crosssection of the bar so that there are no shear stresses acting across such a boundary. Thus, the material contained within this boundary could be removed without affecting the stress distribution in the outer portion. Therefore, the stress function could be used for a hollow bar of circular cross-section.

Document Preview (30 of 398 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in