Preview Extract
Aircraft Structures
for Engineering Students
Fifth Edition
Solutions Manual
T. H. G. Megson
This page intentionally left blank
Solutions Manual
Solutions to Chapter 1 Problems
S.1.1
The principal stresses are given directly by Eqs (1.11) and (1.12) in which
ฯ x = 80N/mm2, ฯ y = 0 (or vice versa) and ฯ xy = 45N/mm2. Thus, from Eq. (1.11)
ฯI =
80 1
+
802 + 4 ร 452
2 2
i.e.
ฯ I = 100.2 N/mm2
From Eq. (1.12)
ฯ II =
80 1
โ
802 + 4 ร 452
2 2
i.e.
ฯ II = โ 20.2 N/mm2
The directions of the principal stresses are defined by the angle ฮธ in Fig. 1.8(b) in
which ฮธ is given by Eq. (1.10). Hence
tan
=
2ฮธ
2 ร 45
= 1.125
80 โ 0
which gives
ฮธ = 24ยฐ11โฒ and
ฮธ = 114ยฐ11โฒ
It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of ฮธ
corresponds to ฯ I while the second value corresponds to ฯ II .
Finally, the maximum shear stress is obtained from either of Eqs (1.14) or (1.15).
Hence from Eq. (1.15)
100.2 โ (โ20.2)
ฯ max = 60.2N / mm 2
=
2
and will act on planes at 45ยฐ to the principal planes.
4
Solutions Manual
S.1.2
The principal stresses are given directly by Eqs (1.11) and (1.12) in which ฯ x =
50N/mm2, ฯ y = โ35 N/mm2 and ฯ xy = 40 N/mm2. Thus, from Eq. (1.11)
ฯI
=
50 โ 35 1
+
(50 + 35)2 + 4 ร 402
2
2
i.e.
ฯ I = 65.9 N/mm2
and from Eq. (1.12)
=
ฯ II
50 โ 35 1
โ
(50 + 35) 2 + 4 ร 402
2
2
i.e.
ฯ II = โ50.9 N/mm2
From Fig. 1.8(b) and Eq. (1.10)
=
tan 2ฮธ
2 ร 40
= 0.941
50 + 35
which gives
ฮธ = 21ยฐ38โฒ(ฯ I ) and
ฮธ = 111ยฐ38โฒ(ฯ II )
The planes on which there is no direct stress may be found by considering the
triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents
the plane on which there is no direct stress. For equilibrium of the element in a direction
perpendicular to AC
0 = 50ABcos ฮฑ โ 35BCsin ฮฑ + 40ABsinฮฑ +40BC cosฮฑ
Fig. S.1.2
(i)
Solutions to Chapter 1 Problems
Dividing through Eq. (i) by AB
0 = 50 cos ฮฑ โ 35 tan ฮฑ sin ฮฑ + 40sin ฮฑ + 40 tan ฮฑ cos ฮฑ
which, dividing through by cos ฮฑ, simplifies to
0 = 50โ35 tan2 ฮฑ + 80 tan ฮฑ
from which
tan ฮฑ = 2.797 or โ0.511
Hence
ฮฑ = 70ยฐ21โฒ or โ27ยฐ5โฒ
S.1.3
The construction of Mohrโs circle for each stress combination follows the procedure
described in Section 1.8 and is shown in Figs S.1.3(a)โ(d).
Fig. S.1.3(a)
Fig. S.1.3(b)
5
6
Solutions Manual
Fig. S.1.3(c)
Fig. S.1.3(d)
S.1.4
The principal stresses at the point are determined, as indicated in the question, by
transforming each state of stress into a ฯ x , ฯ y , ฯ xy stress system. Clearly, in the
first case ฯ x = 0, ฯ y = 10 N/mm2, ฯ xy = 0 (Fig. S.1.4(a)). The two remaining cases
are transformed by considering the equilibrium of the triangular element ABC in
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6
and the principle of superposition (see Section 5.9), the second stress system of
Solutions to Chapter 1 Problems
Figs S.1.4(b) and (c) becomes the ฯ x , ฯ y , ฯ xy system shown in Fig. S.1.4(d)
while
7
8
Solutions Manual
Fig. S.1.4(a)
Fig. S.1.4(b)
Fig. S.1.4(c)
Fig. S.1.4(d)
the third stress system of Figs S.1.4(e) and (f) transforms into the ฯ x , ฯ y , ฯ xy system of
Fig. S.1.4(g).
Solutions to Chapter 1 Problems
Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed
to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that
ฯ I = ฯ II =15N/mm2 and that the x and y planes are principal planes.
9
10
Solutions Manual
Fig. S.1.4(e)
Fig. S.1.4(f)
Fig. S.1.4(g)
Fig. S.1.4(h)
S.1.5
The geometry of Mohrโs circle of stress is shown in Fig. S.1.5 in which the circle is
constructed using the method described in Section 1.8.
From Fig. S.1.5
ฯ x = OP 1 = OBโ BC +CP 1
(i)
Solutions to Chapter 1 Problems 11
Fig. S.1.5
In Eq. (i) OB = ฯ I , BC is the radius of the circle which is equal to ฯ max and
CP1 =
CQ12 โ Q1P12 =
2
2
ฯ max
โ ฯ xy
. Hence
2
2
ฯx =
ฯ 1 โ ฯ max + ฯ max
โ ฯ xy
Similarly
ฯ y = OP2 = OB โ BC โ CP2 in which CP2 = CP1
Thus
2
2
ฯy =
ฯ I โ ฯ max โ ฯ max
โ ฯ xy
S.1.6
From bending theory the direct stress due to bending on the upper surface of the shaft
at a point in the vertical plane of symmetry is given by
ฯx
=
My 25 ร 106 ร 75
=
= 75 N / mm 2
I
ฯ ร 1504 / 64
From the theory of the torsion of circular section shafts the shear stress at the same
point is
ฯ=
xy
Tr 50 ร 106 ร 75
=
= 75N / mm 2
J ฯ ร 1504 / 32
12
Solutions Manual
Substituting these values in Eqs (1.11) and (1.12) in turn and noting that ฯ y = 0
75 1
ฯI =
+
752 + 4 ร 752
2 2
i.e.
ฯ I = 121.4N / mm 2
75 1
โ
752 + 4 ร 752
2 2
ฯ II =
i.e.
ฯ II = โ46.4N / mm 2
The corresponding directions as defined by ฮธ in Fig. 1.8(b) are given by Eq. (1.10)
i.e.
tan
=
2ฮธ
2 ร 75
= 2
75 โ 0
Hence
ฮธ= 31ยฐ43โฒ(ฯ I )
and
ฮธ 121ยฐ43โฒ(ฯ II )
=
S.1.7
The direct strains are expressed in terms of the stresses using Eqs (1.42), i.e.
1
ฮตx =
[ฯ x โ v(ฯ y + ฯ z )]
E
(i)
ฮตy =
1
[ฯ y โ v(ฯ x + ฯ z )]
E
(ii)
ฮตz =
1
[ฯ z โ v(ฯ x + ฯ y )]
E
(iii)
Then
1
e =ฮต x + ฮต y + ฮต z = [ฯ x + ฯ y + ฯ z โ 2v(ฯ x + ฯ y + ฯ z )]
E
i.e.
=
e
(1 โ 2v)
(ฯ x + ฯ y + ฯ z )
E
whence
ฯ y +=
ฯz
Ee
โฯx
(1 โ 2v)
Solutions to Chapter 1 Problems 13
Substituting in Eq. (i)
1๏ฃฎ
E๏ฃฐ
๏ฃซ Ee
๏ฃถ๏ฃน
โ ฯ x ๏ฃท๏ฃบ
๏ฃญ 1 โ 2v
๏ฃธ๏ฃป
ฮต x = ๏ฃฏฯ x โ v ๏ฃฌ
so that
Eฮต x= ฯ x (1 + v) โ
vEe
1 โ 2v
Thus
=
ฯx
vEe
E
+
ฮตx
(1 โ 2v)(1 + v) (1 + v)
or, since G = E/2(1 + ฮฝ) (see Section 1.15)
ฯ=
ฮป e + 2Gฮต x
x
Similarly
ฯ=
ฮป e + 2Gฮต y
y
and
ฯ=
ฮป e + 2Gฮต z
z
S.1.8
The implication in this problem is that the condition of plane strain also describes
the condition of plane stress. Hence, from Eqs (1.52)
ฮณ=
xy
ฯ xy
=
ฮตx
1
(ฯ x โ vฯ y )
E
(i)
=
ฮตy
1
(ฯ y โ vฯ x )
E
(ii)
=
G
2(1 + v)
ฯ xy
E
(seeSection 1.15)
(iii)
(see Section 1.11)
(iv)
The compatibility condition for plane strain is
โ 2ฮณ xy โ 2ฮต y โ 2ฮต x
=
+
โx โy
โx 2
โy 2
Substituting in Eq. (iv) for ฮต x , ฮต y and ฮณ xy from Eqs (i)โ(iii), respectively, gives
2 1 + v)
โ 2ฯ xy
โ2
โ2
(=
(
v
)
(ฯ x โ vฯ y )
ฯ
โ
ฯ
+
y
x
โx โy โx 2
โy 2
(v)
14
Solutions Manual
Also, from Eqs (1.6) and assuming that the body forces X and Y are zero
โฯ x โฯ zy
0
+
=
โx
โy
โฯ y
โy
+
โฯ xy
โx
(vi)
0
=
(vii)
Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives
โ 2ฯ x
โx 2
+
โ 2ฯ xy
โy โx
+
โ 2ฯ y
โy 2
+
โ 2ฯ xy
โx โy
0
=
or
2
๏ฃซ โ 2ฯ
โ 2ฯ y ๏ฃถ
๏ฃท
=
โ ๏ฃฌ 2x +
2 ๏ฃท
๏ฃฌ โx
โx โy
โ
y
๏ฃญ
๏ฃธ
โ 2ฯ xy
Substituting in Eq. (v)
๏ฃซ โ 2ฯ
โ 2ฯ y ๏ฃถ โ 2
โ2
๏ฃท
(ฯ y โ vฯ x ) + 2 (ฯ x โ vฯ y )
โ(1 + v) ๏ฃฌ 2x + =
2
2
๏ฃฌ โx
โy ๏ฃท๏ฃธ โx
โy
๏ฃญ
so that
๏ฃซ โ 2ฯ
๏ฃซ โ 2ฯ
โ 2ฯ y ๏ฃถ โ 2ฯ y โ 2ฯ x
โ 2ฯ y ๏ฃถ
x
๏ฃท
๏ฃฌ
๏ฃท
โ(1 + v) ๏ฃฌ 2x +
=
+
โ
v
+
2 ๏ฃท
2
2
2 ๏ฃท
๏ฃฌ โx
๏ฃฌ โx 2
โ
y
โ
x
โ
y
โ
y
๏ฃญ
๏ฃธ
๏ฃญ
๏ฃธ
which simplifies to
โ 2ฯ y
โx 2
+
โ 2ฯ x
โy 2
+
โ 2ฯ x
โx 2
+
โ 2ฯ y
โy 2
0
=
or
๏ฃซ โ2
โ2 ๏ฃถ
0
+
๏ฃฌ๏ฃฌ 2
๏ฃท (ฯ x + ฯ y ) =
โy 2 ๏ฃท๏ฃธ
๏ฃญ โx
S.1.9
Suppose that the load in the steel bar is P st and that in the aluminium bar is P al. Then,
from equilibrium
(i)
Pst + Pal =
P
From Eq. (1.40)
Pst
Pal
=
ฮต st =
ฮต al
Ast Est
Aal Eal
Solutions to Chapter 1 Problems 15
Since the bars contract by the same amount
Pst
P
= al
Ast Est Aal Eal
(ii)
Solving Eqs (i) and (ii)
=
Pst
Ast Est
Aal Eal
=
P Pal
P
Ast Est + Aal Eal
Ast Est + Aal Eal
from which the stresses are
=
ฯ st
Est
Eal
=
P ฯ al
P
Ast Est + Aal Eal
Ast Est + Aal Eal
(iii)
The areas of cross-section are
=
Ast
ฯ ร 752
2
= 4417.9 mm
=
Aal
4
ฯ (1002 โ 752 )
= 3436.1mm 2
4
Substituting in Eq. (iii) we have
ฯ st
106 ร 200 000
= 172.6N/mm 2 (compression)
(4417.9 ร 200 000 + 3436.1 ร 80 000)
ฯ al
106 ร 80 000
= 69.1N/mm 2 (compression)
(4417.9 ร 200 000 + 3436.1 ร 80 000)
Due to the decrease in temperature in which no change in length is allowed the strain
in the steel is ฮฑ st T and that in the aluminium is ฮฑ alT. Therefore due to the decrease in
temperature
ฯ=
Estฮฑ st=
T 200 000 ร 0.000012 ร 150
= 360.0 N/mm 2 (tension)
st
ฯ al= Ealฮฑ alT= 80 000 ร 0.000005 ร 150= 60.0 N/mm 2 (tension)
The final stresses in the steel and aluminium are then
ฯ st (total) = 360.0 โ 172.6 = 187.4N/mm 2 (tension)
ฯ al (total) =
60.0 โ 69.1 =
โ9.1N/mm 2 (compression)
S.1.10
The principal strains are given directly by Eqs (1.69) and (1.70). Thus
1
2
ฮต I =(โ0.002 + 0.002) +
1
2
(โ0.002 + 0.002) 2 + (+0.002 + 0.002) 2
16
Solutions Manual
i.e.
ฮต I = +0.00283
Similarly
ฮต II = โ0.00283
The principal directions are given by Eq. (1.71), i.e.
tan 2ฮธ =
2(โ0.002) + 0.002 โ 0.002
= โ1
0.002 + 0.002
Hence
2ฮธ =
โ45ยฐ or + 135ยฐ
and
ฮธ=
โ22.5ยฐ or + 67.5ยฐ
S.1.11
The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus
๏ฃฎ1
๏ฃฐ2
ฮต I = ๏ฃฏ (โ222 + 45) +
๏ฃน
(โ222 + 213) 2 + (โ213 โ 45) 2 ๏ฃบ ร 10โ6
2
๏ฃป
1
i.e.
=
ฮต I 94.0 ร 10โ6
Similarly
ฮต II =
โ217.0 ร 10โ6
The principal stresses follow from Eqs (1.67) and (1.68). Hence
=
ฯI
31000
(94.0 โ 0.2 ร 271.0) ร 10โ6
1 โ (0.2) 2
i.e.
ฯ I = 1.29 N/mm 2
Similarly
ฯ II = โ814 N/mm 2
Since P lies on the neutral axis of the beam the direct stress due to bending is zero.
Therefore, at P, ฯ x =7 N/mm2 and ฯy = 0. Now subtracting Eq. (1.12) from (1.11)
ฯ I โ ฯ II =
2
ฯ x2 + 4ฯ xy
Solutions to Chapter 2 Problems 17
i.e.
2
1.29 + 8.14 = 7 2 + 4ฯ xy
from which ฯ xy = 3.17 N/mm2.
The shear force at P is equal to Q so that the shear stress at P is given by
3Q
=
ฯ xy 3.17
=
2 ร 150 ร 300
from which
=
Q 95
=
100N 95.1kN.
Solutions to Chapter 2 Problems
S.2.1
The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).
Fig. S.2.1
From Eqs (1.42) in which ฯ z = 0
3p
2p
3.5 p
=
โ
E
E
E
3p
3p
2.75 p
ฮตy =
โ
โv
=
โ
E
E
E
ฮตx =
โ
โv
Hence, from Eqs (1.27)
โu
3.5 p
3.5 p
=
โ
so that u =
โ
x + f1 ( y )
โx
E
E
(i)
(ii)
(iii)
18
Solutions Manual
where f 1 (y) is a function of y. Also
โฯ
2.75 p
2.75 p
=so that ฯ
=
โ
y + f 2 ( x)
โy
E
E
(iv)
in which f 2 (x) is a function of x.
From the last of Eqs (1.52) and Eq. (1.28)
ฮณ xy =
4 p โฯ
โu โf 2 ( x) โf1 ( y )
=
+
=
+
G
โx โy
โx
โy
(from Eqs (iv) and (iii))
Suppose
โf1 ( y )
=A
โy
then
f1 ( y=
) Ay + B
(v)
in which A and B are constants.
Similarly, suppose
โf 2 ( x)
=C
โx
then
f 2 ( x=
) Cx + D
(vi)
in which C and D are constants.
Substituting for f 1 (y) and f 2 (x) in Eqs (iii) and (iv) gives
3.5 p
u=
โ
x + Ay + B
E
(vii)
2.75 p
y + Cx + D
E
(viii)
and
=
ฯ
Since the origin of the axes is fixed in space it follows that when x = y = 0, u=v = 0.
Hence, from Eqs (vii) and (viii), B = D = 0. Further, the direction of Ox is fixed in space
so that, wheny = 0, โv/โx = 0. Therefore, from Eq. (viii), C = 0. Thus, from Eqs (1.28)
and (vii), when x = 0.
โu 4 p
= = A
โy G
Eqs (vii) and (viii) now become
3.5 p
4p
u=
โ
x+
y
E
G
(ix)
Solutions to Chapter 2 Problems 19
2.75 p
y
E
From Eq. (1.50), G=E/2(1 +ฮฝ) =E/2.5 and Eq. (ix) becomes
u=
ฯ
=
(x)
p
(โ3.5 + 10 y )
E
(xi)
At the point (2, 3)
u=
23 p
(from Eq. (xi))
E
ฯ
=
8.25 p
(from Eq. (x))
E
and
The point P therefore moves at an angle ฮฑ to the x axis given by
S.2.2
An Airy stress function, ฯ, is defined by the equations (Eqs (2.8)):
ฯx =
โ 2ฯ
โ 2ฯ
โ 2ฯ
ฯ
=
ฯ
=
โ
y
xy
โx โy
โy 2
โx 2
and has a final form which is determined by the boundary conditions relating to a
particular problem.
Since
ฯ =Ay 3 + By 3 x + Cyx
(i)
โ 4ฯ
โ 4ฯ
โ 4ฯ
0
0
0
=
=
=
โx 4
โy 4
โx 2 โy 2
and the biharmonic equation (2.9) is satisfied. Further
=
ฯx
โ 2ฯ
= 6 Ay + 6 Byx
โy 2
(ii)
โ 2ฯ
= 0
โx 2
(iii)
โ 2ฯ
=
โ3By 2 โ C
โx โy
(iv)
=
ฯy
ฯ xy =
โ
The distribution of shear stress in a rectangular section beam is parabolic and is zero
at the upper and lower surfaces. Hence, when y = ยฑd/2, ฯ xy = 0. Thus, from Eq. (iv)
โ4C
(v)
B=
3d 2
20
Solutions Manual
The resultant shear force at any section of the beam is โP. Therefore
โซ
d /2
โ d /2
ฯ xy t dy = โ P
Substituting for ฯ xy from Eq. (iv)
โซ
d /2
โ d /2
โP
(โ3By 2 โ C )t dy =
which gives
๏ฃซ Bd 3 Cd ๏ฃถ
2t ๏ฃฌ๏ฃฌ
+
P
๏ฃท=
2 ๏ฃท๏ฃธ
๏ฃญ 8
Substituting for B from Eq. (v) gives
C=
3P
2td
(vi)
It now follows from Eqs (v) and (vi) that
โ2P
(vii)
td 3
At the free end of the beam where x =l the bending moment is zero and thus ฯ x = 0
for any value of y. Therefore, from Eq. (ii)
6A + 6Bl = 0
whence
B=
A=
2Pl
td 3
(viii)
Then, from Eq. (ii)
=
ฯx
12 Pl
12 P
y โ 3 xy
3
td
td
or
12 P(l โ x)
(ix)
y
td 3
Equation (ix) is the direct stress distribution at any section of the beam given by
simple bending theory, i.e.
ฯx =
ฯx =
My
I
where M = P (l โx) and I = td3/12.
The shear stress distribution given by Eq. (iv) is
=
ฯ xy
6 P 2 3P
y โ
2td
td 3
Solutions to Chapter 2 Problems 21
or
ฯ xy
=
6P ๏ฃซ 2 d 2 ๏ฃถ
๏ฃฌy โ
๏ฃท
4 ๏ฃท๏ฃธ
td 3 ๏ฃฌ๏ฃญ
(x)
Equation (x) is identical to that derived from simple bending theory and may be found
in standard texts on stress analysis, strength of materials, etc.
S.2.3
The stress function is
=
ฯ
w
(15 h 2 x 2 y โ 5 x 2 y 3 โ 2h 2 y 3 + y 5 )
3
20h
Then
โ 2ฯ
w
=
=
(30h 2 y โ 10
y3 ) ฯ y
2
โx
20h3
โ 2ฯ
w
=
(โ30 x 2 y โ 12h 2 y + 20 y 3 ) = ฯ x
2
3
โy
20h
โ 2ฯ
w
=
โฯ xy
(30h 2 x โ 30 xy 2 ) =
โx โy 20h3
โ 4ฯ
=0
โx 4
โ 4ฯ
w
=
(120 y )
4
โy
20h3
โ 4ฯ
w
=
(โ60 y )
2
2
โx โy
20h3
Substituting in Eq. (2.9)
โ 4ฯ =
0
so that the stress function satisfies the biharmonic equation.
The boundary conditions are as follows:
โ At y= h, ฯ y = w and ฯ xy = 0 which are satisfied.
โ At y = โh, ฯ y = โw and ฯ xy = 0 which are satisfied.
โ At x =0, ฯ x = w/20h3 (โ12h2y + 20y3) โ 0.
Also
h
w h
ฯ x d=
(โ12h 2 y + 20 y 3 )dy
y
โh
20h3 โ h
w
=
[โ6h 2 y 2 + 5 y 4 ]hโ h
3
20h
=0
i.e. no resultant force.
โซ
โซ
22
Solutions Manual
Finally
โซ
h
โh
w h
(โ12h 2 y 2 + 20 y 4 )dy
3 โh
20h
w
=
[โ4h 2 y 3 + 4 y 5 ]hโ h
3
20h
=0
โซ
ฯ x y dy=
i.e. no resultant moment.
S.2.4
The Airy stress function is
=
ฯ
p
[5( x3 โ l 2 x)( y + d ) 2 ( y โ 2d ) โ 3 yx( y 2 โ d 2 ) 2 ]
120d 3
Then
โ 4ฯ
โ 4ฯ
3 pxy โ 4ฯ
3 pxy
=
0
=
โ
=
4
4
3
2
2
โx
โy
d
โx โy
2d 3
Substituting these values in Eq. (2.9) gives
0 + 2ร
3 pxy 3 pxy
โ 3 =
0
2d 3
d
Therefore, the biharmonic equation (2.9) is satisfied.
The direct stress, ฯ x , is given by (see Eqs (2.8))
ฯx =
โ 2ฯ
px
[5 y ( x 2 โ l 2 ) โ 10 y 3 + 6d 2 y ]
=
2
3
20d
โy
When x = 0, ฯ x = 0 for all values of y. When x = l
pl
(โ10 y 3 + 6d 2 y )
20d 3
ฯx=
and the total end load =
d
โซ ฯ 1 dy
โd
=
x
pl
20d 3
d
)dy 0
โซ (โ10 y + 6d y=
3
2
โd
Thus the stress function satisfies the boundary conditions for axial load in the x direction.
Also, the direct stress, ฯ y , is given by (see Eqs (2.8))
px
โ 2ฯ
= 3 ( y 3 โ 3 yd 2 โ 2d 3 )
2
4d
โx
ฯy =
Solutions to Chapter 2 Problems 23
When x = 0, ฯ y = 0 for all values of y. Also at any section x where y = โd
ฯ y=
px
(โd 3 + 3d 3 โ 2d 3 =
) 0
3
4d
and when y = +d
px
4d
ฯ y =3 (d 3 โ 3d 3 โ 2d 3 ) =
โ px
Thus, the stress function satisfies the boundary conditions for load in the y direction.
The shear stress, ฯ xy , is given by (see Eqs (2.8))
p
โ 2ฯ
[5(3x 2 โ l 2 )( y 2 โ d 2 ) โ 5 y 4 + 6 y 2 d 2 โ d 4 ]
=
โ
โx โy
40d 3
ฯ xy =
โ
When x = 0
p
[โ5l 2 ( y 2 โ d 2 ) โ 5 y 4 + 6 y 2 d 2 โ d 4 ]
40d 3
ฯ xy =
โ
so that, when y = ยฑd, ฯ xy = 0. The resultant shear force on the plane x = 0 is given by
โซ
d
โd
p
40d 3
โ
ฯ xy 1 dy =
pl 2
โ
[โ5l 2 ( y 2 โ d 2 ) โ 5 y 4 + 6 y 2 d 2 โ d 4 ]dy =
โd
6
โซ
d
From Fig. P.2.4 and taking moments about the plane x = l,
=
ฯ xy ( x 0)12
=
dl
1
2
lpl l
2
3
i.e.
ฯ xy (=
=
x 0)
pl 2
6d
and the shear force is pl2/6.
Thus, although the resultant of the Airy stress function shear stress has the same
magnitude as the equilibrating shear force it varies through the depth of the beam
whereas the applied equilibrating shear stress is constant. A similar situation arises on
the plane x = l.
S.2.5
The stress function is
ฯ=
w
(โ10c3 x 2 โ 15c 2 x 2 y + 2c 2 y 3 + 5 x 2 y 3 โ y 5 )
40bc3
24
Solutions Manual
Then
โ 2ฯ
w
=
=
(12c 2 y + 30 x 2 y โ 20
y3 ) ฯ x
2
3
โy
40bc
โ 2ฯ
w
=
(โ20c3 โ 30c 2 y + 10 y 3=
) ฯy
2
3
โx
40bc
โ 2ฯ
w
= (โ30c 2 x + 30 xy 2 ) =
โฯ xy
โx โy 40bc3
โ 4ฯ
=0
โx 4
โ 4ฯ
w
=
(โ120 y )
4
โy
40bc3
โ 4ฯ
w
=
(60 y )
2
2
โx โy
40bc3
Substituting in Eq. (2.9)
โ 4ฯ =
0
so that the stress function satisfies the biharmonic equation.
On the boundary, y = +c
w
0
ฯy =
โ ฯ xy =
b
At y = โc
=
ฯ y 0=
ฯ xy 0
At x = 0
=
ฯx
w
(12c 2 y โ 20 y 3 )
3
40bc
Then
c
w
(12c 2 y โ 20 y 3 )dy
3
โc
40bc โ c
w
=
[6c 2 y 2 โ 5 y 4 ]cโ c
40bc3
=0
i.e. the direct stress distribution at the end of the cantilever is self-equilibrating.
The axial force at any section is
c
c
w
=
ฯ x dy
(12c 2 y + 30 x 2 y โ 20 y 3 )dy
3 โc
โc
40bc
w
=
[6c 2 y 2 + 15 x 2 y 2 โ 5 y 4 ]cโ c
40bc3
=0
i.e. no axial force at any section of the beam.
โซ
c
โซ
=
ฯ x dy
โซ
โซ
Solutions to Chapter 2 Problems 25
The bending moment at x =0 is
โซ
c
c
w
(12c 2 y 2 โ 20 y 4 )dy
3 โc
40bc
w
5 c
=
[4c 2 y 3 โ 4 y=
]โ c 0
3
40bc
โซ
=
ฯ x y dy
โc
i.e. the beam is a cantilever beam under a uniformly distributed load of w/unit area
with a self-equilibrating stress application at x = 0.
S.2.6
From physics, the strain due to a temperature rise T in a bar of original length L 0 and
final length L is given by
L โ L0 L0 (1 + ฮฑ T )
=
= ฮฑT
L0
L0
=
ฮต
Thus for the isotropic sheet, Eqs (1.52) become
1
(ฯ x โ vฯ y ) + ฮฑ T
E
1
ฮตy =
(ฯ y โ vฯ x ) + ฮฑ T
E
ฮตx =
Also, from the last of Eqs (1.52) and (1.50)
ฮณ xy =
2(1 + v)
ฯ xy
E
Substituting in Eq. (1.21)
2
2
โ 2ฯ y ๏ฃถ
โ 2ฯ x ๏ฃถ
2(1 + v) โ ฯ xy 1 ๏ฃซ โ ฯ y
โ 2T 1 ๏ฃซ โ 2ฯ x
โ 2T
๏ฃฌ
๏ฃท
๏ฃฌ
๏ฃท
=
โ
+
ฮฑ
+
โ
+
ฮฑ
v
v
E
โx โy E ๏ฃญ๏ฃฌ โx 2
โx 2 ๏ฃธ๏ฃท
โx 2 E ๏ฃญ๏ฃฌ โy 2
โy 2 ๏ฃธ๏ฃท
โy 2
or
2(1 + v)
โ 2ฯ xy โ 2ฯ y โ 2ฯ x
โ 2ฯ y
โ 2ฯ x
v
v
=
+
โ
โ
+ Eฮฑโ 2T
โx โy
โx 2
โy 2
โx 2
โy 2
From Eqs (1.6) and assuming body forces X =Y =0
โ 2ฯ xy
2
โ 2ฯ y
โ 2ฯ x โ ฯ xy
=
โ 2
=
โ
โy โx
โx โy
โx
โy 2
Hence
2
โ 2ฯ xy
โ 2ฯ y
โ 2ฯ
=
โ 2x โ
โx โy
โx
โy 2
(i)
26
Solutions Manual
and
2v
โ 2ฯ xy
โ 2ฯ y
โ 2ฯ x
v
=
โv
โ
โx โy
โx 2
โy 2
Substituting in Eq. (i)
โ
โ 2ฯ x
โx 2
โ
โ 2ฯ y โ 2ฯ y โ 2ฯ x
=
+
+ Eฮฑโ 2T
โy 2
โx 2
โy 2
Thus
๏ฃซ โ2
โ2 ๏ฃถ
2
0
+
๏ฃฌ๏ฃฌ โx 2 โy 2 ๏ฃท๏ฃท (ฯ x + ฯ y ) + Eฮฑโ T =
๏ฃญ
๏ฃธ
and since
=
ฯx
โ 2ฯ
โ 2ฯ
(see Eqs (2.8))
=
ฯ
y
โy 2
โx 2
๏ฃซ โ2
โ 2 ๏ฃถ ๏ฃซ โ 2ฯ โ 2ฯ ๏ฃถ
2
0
+
๏ฃฌ๏ฃฌ โx 2 โy 2 ๏ฃท๏ฃท ๏ฃฌ๏ฃฌ โy 2 + โx 2 ๏ฃท๏ฃท + Eฮฑโ T =
๏ฃญ
๏ฃธ ๏ฃญ
๏ฃธ
or
โ 2 (โ 2ฯ + Eฮฑ T ) =
0
S.2.7
The stress function is
=
ฯ
3Qxy Qxy 3
โ
4a
4a 3
Then
โ 2ฯ
= 0= ฯ y
โx 2
3Qxy
โ 2ฯ
ฯx
=
โ
=
2
2a 3
โy
3Q 3Qy 2
โ 2ฯ
=
โ
=
โฯ xy
โx โy 4a
4a 3
Also
โ 4ฯ
โ 4ฯ
โ 4ฯ
0
0
=
=
= 0
โx 4
โy 4
โx 2 โy 2
so that Eq. (2.9), the biharmonic equation, is satisfied.
Solutions to Chapter 2 Problems 27
When x = a, ฯ x = โ3Qy/2a2, i.e. linear.
Then, when
=
ฯx 0
y 0=
3Q
โa ฯ x =
y=
2a
โ3Q
+a ฯ x =
y=
2a
Also, when x = โa, ฯ x = 3Qy/2a2, i.e. linear and when
=
ฯx 0
y 0=
โ3Q
โa ฯ x =
y=
2a
3Q
+a ฯ x =
y=
2a
The shear stress is given by (see above)
3Q ๏ฃซ
4a ๏ฃญ
ฯ xy =
โ
๏ฃฌ๏ฃฌ1 โ
y2 ๏ฃถ
๏ฃท , i.e. parabolic
a 2 ๏ฃท๏ฃธ
so that, when y = ยฑa, ฯ xy = 0 and when y = 0, ฯ xy = โ3Q/4a.
The resultant shear force at x = ยฑa is
โซ
3Q ๏ฃซ
y2 ๏ฃถ
๏ฃฌ๏ฃฌ1 โ 2 ๏ฃท๏ฃท dy
4a ๏ฃญ
a ๏ฃธ
a
= โ
โa
i.e.
SF = Q.
The resultant bending moment at x = ยฑa is
=
=
a
โซ ฯ y dy
โa
โซ
x
a 3Qay 2
โa
2a 3
dy
i.e.
BM = โQa
Solutions to Chapter 3 Problems 27
Solutions to Chapter 3 Problems
S.3.1
Initially the stress function, ฯ, must be expressed in terms of Cartesian coordinates.
Thus, from the equation of a circle of radius, a, and having the origin of its axes at
its centre.
ฯ= k ( x 2 + y 2 โ a 2 )
(i)
โ 2ฯ โ 2ฯ
dฮธ
+ 2 =
โ2G
F=
2
dz
โx
โy
(ii)
From Eqs (3.4) and (3.11)
Differentiating Eq. (i) and substituting in Eq. (ii)
4k = โ2G
dฮธ
dz
or
1 dฮธ
k= โ G
2 dz
(iii)
From Eq. (3.8)
T =2
โซโซ ฯ dx dy
i.e.
dฮธ ๏ฃฎ
โG
T=
x 2 dx dy +
dz ๏ฃฐ๏ฃฏ A
โซโซ
โซโซ y dx dy โ a โซโซ dx dy ๏ฃป๏ฃน๏ฃบ
2
2
A
(iv)
A
where โซโซ A x2 dx dy = I y , the second moment of area of the cross-section about the y
axis; โซโซ A y2 dx dy = I x , the second moment of area of the cross-section about the x axis
and โซโซ A dx dy = A, the area of the cross-section. Thus, since I y = ฯa4/4, I x = ฯa4/4
and A = ฯa2 Eq. (iv) becomes
T =G
dฮธ ฯ a 4
dz 2
or
dฮธ
2T
T
= =
4
dz Gฯ a
GI p
(v)
From Eqs (3.2) and (v)
dฮธ
Tx
โฯ
G
x=
ฯ zy =
โ
=
โ2kx =
โx
dz
Ip
(vi)
28
Solutions Manual
and
Ty
โฯ
dฮธ
=
โG
โ
ฯ zx =
2ky =
y=
โy
dz
Ip
(vii)
Substituting for ฯ zy and ฯ zx from Eqs (vi) and (vii) in the second of Eqs (3.15)
T
( xl + ym)
Ip
=
ฯ zs
(viii)
in which, from Eqs (3.6)
l=
dy
ds
m= โ
dx
ds
Suppose that the bar of Fig. 3.2 is circular in cross-section and that the radius makes
an angle ฮฑ with the x axis. Then.
=
m sin
=
ฮฑ and l cos ฮฑ
Also, at any radius, r
=
y r=
sin ฮฑ x r cos ฮฑ
Substituting for x, l, y and m in Eq. (viii) gives
ฯ=
zs
Tr
=( ฯ )
Ip
Now substituting for ฯ zx , ฯ zy and dฮธ/dz from Eqs (vii), (vi) and (v) in Eqs (3.10)
โw
Ty
Ty
0
=
โ
+
=
GI p GI p
โx
(ix)
โw
Tx
Tx
0
=
โ
+
=
โy
GI p GI p
(x)
The possible solutions of Eqs (ix) and (x) are w = 0 and w = constant. The latter solution implies a displacement of the whole bar along the z axis which, under the given
loading, cannot occur. Therefore, the first solution applies, i.e. the warping is zero at
all points in the cross-section.
The stress function, ฯ, defined in Eq. (i) is constant at any radius, r, in the crosssection of the bar so that there are no shear stresses acting across such a boundary.
Thus, the material contained within this boundary could be removed without affecting
the stress distribution in the outer portion. Therefore, the stress function could be used
for a hollow bar of circular cross-section.
Document Preview (30 of 398 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Aircraft Structures for Engineering Students, 5th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
William Taylor
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)